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Abstract. Differences among the Earth gravity field models, which were (in Kloko6nik and Pospigilovfi, 

1981) expressed as dispersions of the relevant lumped geopotential  coefficients, are here transformed to 

the differences in variations of orbital  quantities. 
Theoretical  formulae, the Lagrange (planetary) equations, describing the orbital rates near resonances 

due to the geopotential,  are derived in a simple and unified form. They are then applied to estimate the 

orbital uncertainty as a function of Earth models differences. The first set of the Earth models (set I) consists 

of 11 models from the decade 1970-1980, of greatly varying qua l i ty ; the  set II contains several recent models; 

we present a test (for the 13th- to 15th-order) based on s tandard deviations of the lumped values of G E M  

10B, which were estimated by means of independent  resonant data (in Kloko~nik, 1982). 
Maxima of the differences in the variations of the elements for the set I reach 8 x 10 -4 deg day-1,  

1 0 - 1 2 m d a y  -1 or 2 0 0 t o d a y  -1 in I, a, or L 0 = co + M o + ~,  respectively, for close and polar  orbits 
( --~ 15 revs d a y -  1 ); the values are not higher than 10 .4  deg d a y -  1, 1-2 m d a y -  1 or 20 m d a y -  1 in I, a, 

L o for higher orbits ( --~ 6 -7  revs d a y -  1). For  the set II, calibrated by resonant  data, the maximum inaccuracy 
( +_ 3a) is about  3 x 10 - 4  deg d a y -  l, ~< 6 m d a y -  1 or ~< 100 m d a y -  1 for I, a, and L 0 at 15 revs d a y -  i, 

and is not larger than --~ 1 x 10 -4 deg d a y -  1, 2 m d a y -  1 or 25 m d a y -  1 for 13 revs d a y -  1 

1. Introduction 

The Lagrange Planetary Equations (LPE), describing variations of some of the orbital 
elements of an Earth's artificial satellite owing to the Earth's gravitational potential, 
have been transformed into a form suitable for investigating the orbital resonances of 
satellites by Allan (1971) and Gooding (1971, 1975). Here, we present similar equa- 
tions for additional elements; the case of nearly circular orbit is described in a simple 
and unified form, using the lumped geopotential coefficients. 

The reasons for our derivations rise from practical demands. The requirements for 
the prediction of orbits of close Earth's satellites can be at a submeter level of accuracy 
to fully utilize certain satellite-determined data for geoscience applications. The 
usually available orbital accuracy is, however, about several meters, using recent Earth 
gravitational field models (EM), and only exceptionally -~ + 1 m (in radial direction) 
is achievable (Lerch et al., 1982a, b). A considerable problem is posed by the uncer- 
tainty in the parameters characterizing the Earth's gravitational field. The investiga- 
tion of the accuracy of the EMs has been carried out in various ways, and here, a 
further approach is presented. The differences among the EMs, originally available 
as differences among the relevant lumped coefficients, will be transformed to the 
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differences in the orbital elements, expressed in terms of the LPE. Instead of the differ- 

ences in 'abstract',  dimensionless harmonics, we will have 'live', dimensioned orbital 
rates (separately for the individual orders of harmonics). This test may be prepared 

with various sets of the EMs, for arbitrary orbital inclination and need not be connect- 

ed to any Earth satellite and so limited by its inclination. Alternative methods will be 
mentioned in Section 4, where numerical examples of our tests will be discussed. 

2. Funct ions  and S y m b o l s  U s e d  

We suppose the Earth's gravitational potential written as a function of the harmonic 
coefficients Clm, S~m (l degree, m order), fully normalized (labelled by the bar), of the 

inclination functions Fzmv(I), also fully normalized (e.g., Allan, 1967), of the eccentricity 

functions Gtpq(e ) = Xl-_lz-r Kaula (1966), and of 

- ( I -  2p)co + ( l -  2p + q)M + m(~ - S - 2~m), Olmpq 
where S is the sidereal Greenwich time, 

2 ~ / <  oo, O<.m~l ,  O ~ p ~ l ,  

m2lm = arctan (Slm/C1m). 
We make use of the usual orbital 

- oo < q <  oo, 

(1) 

elements a, e, I, co, f~, M. LPE, describing their 
variations due to the geopotential, will be used in the form derived in Allan (1967). 

The 'resonant'  indices for F~mp(I ) and Czm, S~m for given orbital resonance /?/c~ 
(/3 nodal revolution of a satellite per c~ sideral days; c~,/3 mutually prime integers) will 
be choosen from all (l, m, p) by this way (Kloko6nik, 1976): 

/3/e" c~ 7 = 1 - 2p + q, /37 = m, 

li = f17 + ~ + 2i, 

mi-- fiT, 

2pi 

i = 0 ,  1,2, . . .  , 

= 0  ... for 

= (/3 - ~)7 + 6 + q + 2i, 

(/3 - ~z)7 + q 

6 = 1 ... for (/3 - ~)7 + q odd, 

e = l - ~ .  

7 = 1 , 2 , 3 ,  

even, 

The original quanti ty of (1) will then be transformed to 

~lmpq(res) - -  ~(/)fl/o~ - -  m Z l m  - -  qco, 

where ~bp/~ is the so-called resonant angle 

qSa/~ - c~(co + M) +/~(f~ - S). 

... (resonance levels); 

(2) 

(3) 
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Further symbols: 

a o is a length (conveniently taken as the best estimation of the Earth' equatorial 
radius), the scaling factor associated with (Ttm, Stm ; 

M = Jn dt + M 0, 

n is the osculating mean motion, 
L = 03 + t2 is the  m e a n  l o n g i t u d e ,  

2 = 03 + t2 cos I is called along-track component, and 
0 3 = c o + M ;  
j = x / / -  1. 

The term 'lumped (geopotential) coefficient' has been introduced by Gooding (1971) 
and Allan (1971, 1973); the harmonic coefficients of various degree (either even, or 
odd) of the same order m = fly are 'lumped' to linear combinations; these quantities 
are directly observable from the resonant phenomena in satellite orbits. The lumped 
values ]~,k(l) are defined in this way: 

O(3 

/ ~ ; k ( i  ) = ~ Q~,k #~(I) x - , (4) + 6 + 2 i ,  R # r + o +  2i,#y 
i = 0  

where the influence coefficients Q(I) are functions of Flmp(l), see Section 3; the symbol 
R subs t i tu t e s  C or S. 

The lumped coefficients can be assorted (Kloko6nik and Pospigilovh, 1981) as 
follows: 

-one day resonances (~ 
y =  1, q = 0 . . .  
y =  1, q =  __+1 ... 

y = 2 ,  q = 0 . . .  

Y>~2,1q[>O 

= 1): 
- 0 , 1  . 'basic terms' R# , 

' e - terms ' /~ '  o,/~- 1,2 

(of 'side-band' resonance); 
'double terms' ~0,2 

" ' 2 #  

(overtones); 

higher terms (usually indeterminate from satellite orbits). 

- two-day resonances (~ = 2)" 
7 = l , q = 0  

y = 2 ,  q = 0  

- 0 ,  2 'basic terms' R# ; 

'double terms'/~o,4 etc. 2# ' 

The index k = ~V - q has becn suggested by Gooding (1975). 
-~ and -• 1,~ 1(1 ) in theoretical formulae for I and Further on we will deal with R# R# 

a, and just with the basic terms for the 'longitudinal' quantities and numerical exam- 
pies;these terms are the most important for nearly circular orbits. 
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3. Derivation 

There are two main steps in the derivations: 
(i) the selection of the resonant  terms for given combinat ion  of ~,/3, 7, q. 
(ii) the inclusion of the lumped coefficients. The pat tern of the derivations is the 

same for all the elements (the details for the inclination are in Kloko~nik, 1976). 

3.1. INCLINATION I 

Following Allan (1967): 

d l / d t  = n(1 - e 2 )  - 1/2 E Jlm(ao/a)l• 
lra pq 

• ~ {  Fl . , v ( I )Glpq(e) j [ ( l  - 2p) cot I - m cosec I]  x 

x exp(jqG.pq ) }, (5) 

~'{. } denotes the real part  of the respective complex expression. 
One can select the resonant  terms by means of (2), introduce (3) instead of (1) and 

to use (4). Various subsidiary formulae are needed, e.g.: 

yt,n~ {j2i exp(j~tmpO ) } ----- (-- l i(Stm sin ~bt~/~ + C,,,, cos ~bt~/,,), 

_ jl,, ~ {j2i+ 1 exp(j@lmpO)} = ( _  1)/+ l(Clm sin ~ba/, - Sire cos  t])///at). (6) 

By simplifying for 7 = 1, q - 0, 4- 1, the final ' resonant '  LPE  for I reads (compare with 
Allan, 1973; Gooding,  1975; Kloko6nik,  1976; or K ing -He le  and Walker, 1981)" 

(dI/dt)t~/~ = i t{  [ t ~ ' "  sin ~t~/,, .~o,~ - c o s  + 

+ 1 , ~ 1  +e[C# sin(q~#/~ +og)- S;l'~-X cos(qb#/~, ~r + 

where in [ . ]  
higher-terms, 

+ 0(7, q), 

is the summat ion  over the e-terms, 

t ak ing  q 

with ~- 

fx = n(fl - ~ cos I) cosec I x 

O, or 

f t = nJ~(f l  - ot cos I) cosec I 

~. ~]; and the lumped coefficients are 

0(7, q) are 

(7) 

neglected double- and 

~IVa + ~,, O, 1/2~ -,,) + 1/2,5(I)(ao/a)P +'~ 

= 1/f~+~,~, 1/2(~-~)+ 1/2~ (I) ( -  1) / (ao/a) 2i x 
+ / - o  

X ff~+2i+6,~,1/~_(~_~)+1/2~+i (I S #+2i+6,~ 

(8)  

(9) 

( 1 0 )  
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6C + eg = [fi - (a ~ 1)cos I]  x 

• [2(fl - a cos I)ff~+~,~, 1/2(fl-a)+ 1/2~(I)] -1 • 

0(3 

• ~ ( -  1)i(fl - a - e + x0~( + 2i)(ao/a) 2i+'~-~ • 
i = 0  

• f iB+ 2i+6, fl, 1 / 2 ( f l - ~ ) +  1 /26+ 1/2 +i(I) • 

+ 2 i + 6 ,  fl 

(11) 

where  x = 3 for q = + 1 and  x = - 1 for q = - 1. 

The  no rma l i za t i on  in (10) by the leading incl inat ion funct ion (with the lowest  l, p 

for given fl) is to keep the compat ib i l i ty  with the fo rmulae  in K i n g - H e l e  and  Walker ,  

(1981). As for two-ba r  values, they are chosen  such tha t  the a r g u m e n t  [(7 s i n ( . ) -  

- S cos ( . ) ]  in (7) holds  for any (fl - c~)7 + q. A n o t h e r  possibil i ty is to define Cq~' k = 
= f((T/, p) and  S~'f = f(Sl,  B) for each (fl - ~)7 + q and hence to have the a r g u m e n t s  as 
follows" 

[(e(7~' k + 3S~'y k) sin( .)  + (3(7~' k - eS~' k) cos( . ) ] .  

3.2. SEMIMAJOR AXIS a 

Accord ing  to Allan (1967)" 

da/dt = 2na ~ Jlm(ao/a) t • 
lmpq 

x ~ { j ( l -  2p + q)F~mp(I)Gtpq(e)exp(jC/t~pq)}. (12) 

Repea t ing  the same p r o c e d u r e  as for I, we arr ive at 

~ 0 ,  O~ (da/dt)#/= = fa{ [C~' sin ~b#/= - S# cos ~b#/~] + 

+ 1,~;- 1 sin(~b~/~ + co) - -+ 1,=-v 1 + e [ ( ~  - S~- cos(~b~/~ ~ co)] } + 

+O(7, q), (13) 

with fa  = - - 2 ~ n a ~ ,  t ak ing  q = 0. 

The  form of (13) is the same as of (7) and  the l u m p e d  coefficients are also the same. 

There  is a simple re la t ion  be tween  (13) and (7); dividing them mutual ly ,  we can ob ta in  

da/dt = [2aa(a cos I - f l ) - i  sin I]  (dI/dt), (7 = 1, q = 0), 

which yields a useful check or a tool  for predic t ing  one qual i ty  f rom 

(Batrakov,  1965; W a g n e r  and  Klosko ,  1975). 

the 

(14) 

o ther  

3 . 3 .  

The 

LONGITUDE L o 

analyses of L = co + M + ~ at shal low resonances  have been successfully used 
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Since the explicit equation (21) is not known from literature, we should emphasize 

its differences from (10) and ( 11 )" the position of 6 and e differs; (21 ) cannot be replaced 
by (10). 

3.4. A L O N G - T R A C K  COMPONENT /~0 

2 -- co + M + f~ cos I has been recommended and used for the analysis of resonant 
phenomena by Wagner et al. (e.g., Wagner and Klosko, 1975; Klosko and Wagner, 
1982; Dunn, 1981). The formulae for (d20/dt)res, omitting the same terms as for L o, 
may be derived similarly as (18), starting from (15)-(17). A change arises owing to 

presence of the term 'cos I'" instead of F(I), we need to introduce 

*fflrnp(I) = 2(/3 + 2i + c5 + 1)ffl,np(I ) (22) 

or by means of (20) 

*Flrnp(I ) = Ftrnp(I ) - F't,.p(I ) t a n ( I / 2 ) .  (23) 

The LPE is 

o, ~ s in 0a/~ (d2o/dt)a/~ = f ~(*Ca 

where f~ = fL and 

6"C - ~*S ~o,~ 

e*C + 6"S ]~ 

,ffO,~ - ~.~ cos ~b~/~) + O(e), (24) 

= 1/Fa+a,a, 1/2(/~-cQ+ 1/26(1) • 

0(3 

x ~. (-1)i(ao/a)Zix 
i = 0  

X ~aFB+ 2i+6,~, 1 / 2 ( / 3 - e ) +  1/26+i(I) (25) 

Both d20/dt and dLo/dt contain the same combination of 6, e, both differ from (10) 
and (11). From (10), (21), or (25) we see that the harmonic coefficients of even degree 
cannot be evaluated from nearly circular orbits; but this was known already to 
Batrakov (1965). 

3.5. COMMENTS 

It should be emphasized that the 'longitudinal' coefficients (25) are formally very 

similar to (10), but they differ by the factor *F(I)/F(I), (22), which depends on i (or 1), 
so that R~-~ 1_value s cannot be used in place of *R ~ 1. 

Now it would be easy to repeat the derivation for co, f2, M 0 or for the angle o 5 -  

= co + m. The result for (doS/dt)res would be similar to (24), f ;  = fa, a n d / ~ ' ~  (instead 
of *R~~ would be compatible to (25), when *if(l) would be changed to 

A m 

Flmp(I  ) - -  2(fl + 2i + 6 + 1)Flrnp(I ) -- f'lrnp(I)cot I. (26) 

For  a check, we can use the 'perturbation factors' from Kaula (1966), p. 40 or 
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general Allan's equations (Allan, 1967; p. 1843) to verify our Q-coefficients for all 

Equations (10), (11), (20), (21), (22), (25) or (26). We have also confronted (7)-(10), (13), 

and (18)-(21) with the formulae in Kloko~nik and Kosteleck~ (1979), which were 
derived there for geostationary orbits (fl/c~ = 1/1 ; 7 = 1, q = 0); they coincide well. 

The rates of change of L o and 2 o are in deg day-  1 in (18) and (24), if n is in deg day-  1, 

and can be converted to m day-  1 (Section 4)" 

d E / d t [ m / d a y  ] = (a[m]/(180/Tz)[aeg])(dE/dt)[deg/day ] . (27) 

4. Application 

4.1. DIFFERENCES AMONG EARTH MODELS 

To achieve the aim, which was described in Section 1, it is sufficient to take into 

account the lumped coefficients with q = 0 and q -  _+ 1 (7 = 1, 2, ...); the lumped 
values for q = _+ 2, _+ 4, ... (or __+ 3, _+ 5, ...) contain the same harmonic coefficients 
(followed by different inclination functions) as those for q = 0 (or _+ 1). We have 
numerical examples for q = 0, c~ = 7 -  1. 

To assess the differences in the variations of the orbital parameters, corresponding 
to the differences among the EMs, one can directly apply (7), (13), (18), or (24) for 

each model separately, and then to subtract resulting (dE/dt)///. More conveniently, 
the differences among the lumped coefficients of a set of EMs, say A/{~'k(I), can be 
converted to the differences in the orbital rates, namely 

-o,= sin ~ba/~ A -o, A(dE/dt)///= =fe(AC//  - S// cos $///=), 

-o,=(i) are computed by the formulae from Sections 3.1-3.4. where fE and R// 

(28) 

=0, Numerical values o f  Flmin,//,pmin(I)~ ~, 1(I ) __ and not R// 1(i) themselves-  have 

been available from the set of figures (1-20) in Kloko6nik and Pospigilovfi (1981), 
those for the longitudinal terms from the authors'  paper (1984); all values for 

30 ~ I ~ 140 ~ (in step 1 o) and order 6 ~</3 ~< 15. The actual computing equation was 
accordingly: 

A(dE/dt)///1 = ( f  E/ fmin) X 

- 0 ,  1 --  A (Fmin -0,  1 ] X [ A ( f f m i n C / /  ) sin ~)///1 - 8/3 ) COS (/)///1 ' (28') 

w h e r e  f m i  n = flrnin, fl, pmin(I ). The values of (28') were computed for 0 < ~b///1 ~ 360 ~ 
in step of 5 ~ . We do not work with real satellites, so that we need not know their 

orbital elements and time to define (3); thus we decided to choose maximum values 

of A(dE/dt)///1, observed at a ~b///1, say ~///1, and these maxima will be labelled 
[ max A(dE/dt)///1 I. These amplitudes are plotted in f igures-Figures 1, 2, 3 for I, a, 

L o, respectively. 
The results A(dE/dt) will evidently depend on our choice of the EMs. We want 
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dl/dt 
X 10 "' 

deg/day 

15 

14 

13 

8 -  

6 -  

4 

2 

0 

4 -  

2 

0 

2 -  
1 
0 

/ 
I 

I 
I 

- i 

_ /  

f ~  

I I I 

_ \ 

I 

/ 

1 

f 
f \ 

\ 
\ 

\ 

~ .,,~. ~ ','~B ~ - '  ~ - -  

\ 
\ 

..._.. ~ 

I I [ I I I I 

\ 

I l I I 

J 

f 
f ~ ~ .  I " - '  " ~  ~ ~ I 

i i i I I 

f 
f ~  f 

J 

t [ [ I l [ 

~ ,..,,.. 

I ~ - ~  I 

12 

7 

6 

1 
0 

1 
0 

ORDER / 

I 
0 

- - -  " -  I I I I I I I 

- - ~  i I F i [ I 

-.--,....=.... 

1 

. _  

- - I . - -  - -  - - [  I - -  - - - - I  - - ,  I l -~- -  - - I  I - - - -  ~ I 

[ I ,  I l 1 I i I I 1 

NCIINATION 60 80 100 120" deg 

Fig. 1. The amplitudes of ]max A(dI/dt) - d a s h e d  c u r v e s - a n d  of 3adx/a t (full curves) with set I and II of 
the EMs. 
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Fig. 2. The amplitudes of ]max A ( d a / d t ) [ - d a s h e d  curves -  and of 3ad,,/d t (full curves) with set I and II of 

the EMs. 
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Fig. 3. The ampl i tudes  of  max A(dLo/dt)[-dashed c u r v e s - a n d  of 3crd/~o/a t (full curves) with set I and II 
of  the EMs. 
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to take into account many of the EMs, which are available, to avoid a biased 

conclusion based on only a few of them. At the same time, we adopt the selection 
of the EMs by means of the truncation error tests from Kloko6nik and Pospigilovfi 

(1981, Section 3.2) to be sure that all compared models have a 'sufficient number' of 

harmonic coefficients for given order. Some of older EMs are effectively excluded. 
Nevertheless, EMs will never form a homogeneous set from the point of view of 
the accuracy. Moreover, many of EMs are mutually dependent, because parts of 
their data are common. 

Our set I consists of: SAO SE 2, 3, 5 (or 6); GSFC GEM 6, 7, 8, 10B; 'Koch 74' 
(or 'Chovitz and Koch 78') for/3 ~< 8; Harmograv, 'Rapp 77' and GRIM 2 to keep the 
compatibility with the tests in Kloko6nik and Pospigilovfi (1981) (see there also for 

the references of the EMs). 

Our set II contains: 'Rapp 81' (Rapp 1981), GRIM 3 (Reigber et al., 1982), PGS-S3 
and $4 (Lerch et al., 1982a), G E M - L 2  (Lerch et al., 1982b) and again GEM 10B. 

The results A(dE/dt) will also be influenced by our definition of the differences 
among the lumped values. We make use of 'mean characteristic differences' in the 
set of figures (30 ~< I ~< 140 ~ step 5~ where the typical differences were ambiguous, 
a smoothing took place. 

Figures 1-3 show how the amplitudes decrease with decreasing fl, i.e. with increas- 

ing semimajor axis, but the effect for/3 = 13, e.g., is sometimes greater than that for 
/3=14. 

The extreme differences among the EMs (Kloko6nik and Pospigilovfi, 1981; 
Table 3) in set I have relevant 'extreme' max A(dE/dt). Let us give several examples: 
For L o and/3 = 15, the typical maximum differences are roughly 30~ of the extreme 
differences between SE 5 or 'Rapp 77' and all other tested models (80 ~< I ~< 100~ 
The departures of GRIM 2 or SE 2 from a mean value, for some parts of 30 ~< I ~< 140 ~ 

lead up to twice the value of ImaxA(dLo/dt)14/1]; similarly for Harmograv for 

f l=  13. The extreme [max A(dLo/dt)7/~ ], originating from the difference between 
'Koch 74' and the other models, is twice or even three times that of the typical 
[max A(dLo/dt)7/~ [ at I ~ 60, ~ 110 ~ or 65 ~< I ~< 95 ~ These facts indicate that orbit 
predictions with those EMs would show observable differences from the predictions 
with the other EMs, for some I and/3. By applying 'Koch 74', for example, for a 

satellite in polar (circular) orbit near 7 revs day-1, the amplitude of A(dLo/dt)7/1 
increases from 17 to 48 m day-1. 

The following conclusions from the tests with set I are possible: 
(i) The uncertainty in dI/dt may reach 8 x 10 - 4  deg day - i  for low and polar 

orbits (I ~ 90 ~ 15th order resonance); the value of 5 x 10 .4 ( ~  50 m in geocentric 
position) is exceeded for majority of 30 ~< I ~< 140 ~ For higher orbits, the geopotential 
uncertainty effects are very small. 

(ii) 'Radial' uncertainty ]max A(da/dt)] is about 10-12 m day-1 for the low and 

polar orbits and is not higher than about 4 m day-  1 for fl ~< 14. 

(iii) The values of Imax A(dLo/dt) ] are the largest; they approach 200m day -~ 
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for/3 = 15, 20-60 m day-1  for fl = 13 or 14 and do not exceed 20 m day-~ for the 

higher orbits. 

For  some of the EMs, the differences may be still greater, as discussed above. 
These results are very pessimistic. The majority of the EMs of set I have, however, 

only historical value now and no one would use them today for orbit predictions. 

With set II, we will try to estimate the present state of art in the Earth gravity field 
description. The difference between sets I and II will reflect, to a certain extent, an 

improvement during the last decade. 
-~ among the different EMs cannot, however, measure the The scatter in R~ 

actual accuracy of the EMs" it may be used for a relative comparison of the models 

and can reveal some of their imperfections. An absolute accuracy test is possible 
via the independent data, e.g., by means of the lumped coefficients, observed from 

resonant perturbations. 

4.2. TEST OF THE A C C U R A C Y  

The 15th-order lumped coefficients odd degree have been evaluated from resonant 

variations of 23 satellites (King-Hele  and Walker, 1981). The important  fact is that 

these results are independent on the lumped coefficients, which can be reconstituted 
from the harmonic coefficients of the 15th-order of G E M  10B/C (or from the older 
GSFC'  models). Other EMs ('Rapp 81', GRIM 3, etc.) utilize some of resonant 

results. 
The test of the accuracy of some of the EMs has been performed for the 13th-15th 

order with the aid of the lumped coefficients (Kloko~nik, 1982), the most strict 
being for the 15th-order. The limit of a~, 15 = - 5 x 10- 9 for the 15th-order harmonic 

coefficients (fully normalized, odd degree) in the GEM' 10B has been deduced. This 
- , 1(i) for limit gives aFRos(I)~ (2--3)X 10 9 in the lumped values of Fls .  15. 7(1) l}~ 5 

30 ~< I ~< 140 ~ (see Figures 3a, b and Table 2 in Kloko6nik, 1982). The values of 

aFRo(1 ) can be transformed to Crde/at(~/~), using slightly modified Equation (28'). 

For  our purpose, we decided to use the limit _+ 3aVR" (I) (risk < 1~o) of G E M  10B 

(30 ~< I ~< 140 ~ step 5~ We have plotted the values of/~min/}~' ~ of all EMs of set II 

(13 ~< fl ~< 15). It is observed that the belt of _+ 3aVR ~ (I) of G E M  10B covers completely 

the differences in the lumped values of set II (the differences are often inside + 1 aFR ~ 
of G E M  10B, but this interval would not be sufficient if various resonant solutions 
for 13 ~</? ~< 15 are taken into account, see Kloko6nik, 1982). Thus, we have the 

values of + 3aVR ~ as an upper limit for the inaccuracy of all the EMs in the set II 

(valid at least for /3 = 15, perhaps also for /3 = 14 and 13). The values of aa~/d t = 
=f(3aVR~) are plotted in Figures 1-3 (full cu rves ) fo r  the comparison with 

[max A(dE/dt)~/11 (dashed). 

From the tests, described in this section, the following conclusions are suggested: 
(i) The inaccuracy in dI/dt,  i.e. _+ 3ad//d t, is not higher than 3.5 x 10 .4  deg day-1 
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for close and polar orbits (15/1 . . .470-650 km above the Earth's surface) and is 
5 x 10-5-1 x 10 .4  deg day -1 for 14/1 (800-950 kin) or 13/1 (1200-1300 km). 

(ii) The inaccuracy of da/dt, +_ 3aaa/a ~, varies from 2 to 6 m day-  1 for 15/1, and is 

below 2 m day-  1 for the higher orbits. 

(iii) The values of _+ 3adLo/d~ may reach 100 m day-  1 for 15/1, and are expected to 

be lower than 40 m day-  ~ for fl = 14 and 25 m day-  1 for/3 = 13. 

4.3. COMPARISONS 

Klosko and Wagner (1982) have suggested an alternative method. They use the linear 
theory of Kaula (1966) to estimate the errors in any of the orbital elements by normal- 

izing the lumped coefficients' differences to an equivalent error in the dominant 

ordinary harmonic coefficient. They work with real satellite orbits (the terms with 

q :p 0 are included). They use only several of the EMs, mainly the GEMs. Their 

results are valid for specific inclinations and time intervals (argument of perigee). 
Our results are prepared for the individual orders of the harmonic coefficients 

separately. We do not use any real orbits and this results in no limitation for I and 

~b~/. Our numerical values are not available for q :/: 0 yet. The disadvantage is that 

only the maxima of the differences [max A(dE/dt)l or of the inaccuracies ~dE/dt are 
estimated; therefore, our results must be considered as pessimistic 'upper limits'. 

Lerch et al. (1982a) have analyzed the orbit of SEASAT-A (I - 108~ the radial 

ephemeris error, using GEM 9, 10B, and PGS-S4  is estimated to be 3-5, 1, and 0.7 m. 

We have estimated the maximum possible contribution of the uncertainty in the 
14th-order odd degree harmonic coefficients to the orbital uncertainty, namely 

Imax A(da/dt)14/~[ - 2 m day-  1 or _+ l t T d a / d  t - -  0.6 m day-  1 (Figure 2). Only a com- 
parison of the order of the effects is possible due to various differences between our 

methods; taking this into account, the agreement is good. 
Our results are not in disagreement also with Wakker et al. (1982), where the 

effects of different EMs on several satellite orbits have been studied. 

5. Conclusions 

Differences among the Earth models (EM), which were expressed as dispersions of 

the relevant lumped coefficients (in our previous paper), were here transformed to 

the differences in the orbital rates dI/dt, da/dt, and dLo/dt. The formulae are given 

in Section 3. Examples have been evaluated for nearly circular orbits (q = 0), for 

individual orders of harmonic coefficients (6 ~</3 ~ 15) and arbitrary inclination in 

30 ~< I ~< 140 ~ In Figures 1-3, the maximum differences (or inaccuracies) in the 

variations of I, a, and L 0 are plotted for two sets of the EMs. 
The first set consists of the EMs from 1970-1980 of greatly varying quality (SAO 

SE 2, 3, 5, 6; GSFC GEM 6, 7, 8, 10B; 'Koch 74', 'Chovitz and Koch 78'; Harmograv, 

'Rapp 77' and GRIM 2). The maxima of the differences in the variations reach 
8 x 10-4 deg day-  1, 10-12 m day-  1 or 200 m day-  1 in I, a, or L o for close and polar 
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orbits ( ~ 15 revs day-  1); the values are not higher than 10- 4 deg day-  1, 1-2 m day-  1 

or 20 m day-1 in these rates for higher orbits ( ~  6-7  revs day-1) ;  see the dashed 

curves in Figures 1-3. Majori ty of the EMs of this set have only historical value 

now and no one would use them for orbit predictions. 
The second set consists of more recent EMs" 'Rapp 81', GRIM 3, PGS-S3,  and 

$4, G E M - L 2  and again G E M  10B. The testing of their accuracy is based on the 

calibration by means of more or less independent resonant lumped coefficients. The 

limit of a~,15 = _+ 5 x 10 - 9  for C1,15, S/,15 (odd degree) in G E M  10B has been 
deduced in previous works. This limit corresponds to aVR ~(I) in the lumped values 

=0,1(i) and further, these values are transformed to the inaccuracy in dI/dt, ffminR~ 

da/dt, and dL~/dt. The belts of + 3aFRp(I) of G E M  10B cover completely the differ- 
- - 0 , 1  ences in Fmi n R/~ (I) for all EMs in set II (13 ~< fl ~< 15, 30 ~< 1 ~ 140~ The values of 

__+ 3aVR ~(1) (GEM 10B) have been used for the accuracy estimates. The inaccuracy 
+ 3aa//d t is not higher than 3.5 x 10-4 deg day-  1 at 15 revs day-  1 and is ~ 5 x 10- 5 
1 x 10-4 deg day-  1 for 13-14 revs day-  1 The inaccuracy + 3~aa/d t varies from 2 to 

6 m day -  1 for 15/1, and is below 2 m day -  1 for the higher orbits. Finally, the longi- 

tudinal terms have the accuracy _ 100 m day-1 or better for 15/1, and better than 
4 0 m  day -1 for 14/1 and 25 m day -1 for 13/1. 

Our results are not in disagreement with the analyses of satellite orbits in Klosko 

and Wagner (1982), Lerch et al. (1982a), and Wakker  et al. (1982). 
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