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Abstract. An analytic solution for the J2 perturbed equatorial orbit is obtained in terms of elliptic functions 
and integrals. The necessary equations for computing the position and velocity vectors, and the time are 
given in terms of known functions. The perturbed periapsis and apoapsis distances are determined from 
the roots of a characteristic cubic. 

1. Introduction 

The motion of a satellite constrained to lie in the equatorial plane and subject to 
forces due to an inverse-square gravitational attraction and a perturbation due to 
the Earth's oblateness as the J2 term can be analytically determined in terms of 
elliptic functions and elliptic integrals. Whittaker (1944) discusses the integrable 
cases of central forces in which the magnitude depends only on the distance r. He 
shows which power of the distance is soluble by circular or elliptic functions. The 
present problem with a perturbation power of - 4  is shown to be integrable in terms 
of elliptic functions. Sterne (1957) investigates the solutions of non-circular equatorial 
orbits using a canonical approach. Ramnath (1973) was also aware that this solution 
was integrable but choose to investigate the motion in terms of asymptotic solutions. 
A recent paper by Cohen and Lyddane (1981) implies that the J2 perturbed equatorial 
problem does not possess an analytic solution. They examine this problem using 
Lie series showing that the solution diverges under certain conditions. 

General solutions for the motion of an artificial Earth satellite subject to perturba- 
tions can be applied to this problem. Brouwer's (1959) theory using Delaunay variables 
can be considered one of the fundamental solutions using canonical variables. The 
limitations on small eccentricities and inclinations were eliminated by Lyddane 
(1963). Vinti's (1961) satellite theory in terms of oblate spherical coordinates describes 
a gravitational potential which accounts exactly for zonal harmonics through second 
order and a portion of the fourth zonal. Limitations on small inclinations were 
removed by Vinti (1962) and satellite prediction formulae were expressed in elliptic 
functions by O'Mathuna (1970). These and other solutions are available for predicting 
the motion of a satellite constrained to the equatorial plane and subject to the J2 
perturbation only. 

In this paper we will develop the analytic solution for the J2 perturbed equatorial 
orbit problem. There is a twofold utility for such a solution: (1) it leads to a clearer 
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understanding of the motion by examining possibly the simplest model; and (2) 
it can be used as an intermediary orbit for the motion subject to perturbations due 
to zonal harmonics and small inclinations. One possible method for obtaining this 
latter result is the procedure developed by Jezewski (1983). The solution for the 
position and velocity vectors will be shown to be determined by an incomplete 
elliptic integral of the first kind. Explicit equations and tests will be given such that 
the solution is easily obtained. In addition, the time will be shown to be determined 
by an incomplete elliptic integral of the third kind and is also readily calculated. 
An additional bonus of this solution is that the perturbed periapsis and apoapsis 
distance can be obtained from the roots of a characteristic cubic; a precalculation 
of elliptic functions and integrals. 

2. Problem Formulation 

The differential equations of motion for a particle constrained to lie in the equatorial 
plane and subject to forces of an inverse-square gravitational attraction and a per- 
turbation due to the Earth's oblateness as the J2 term can be expressed in polar 
coordinates as 

# Jo d 
/: -- r{) 2 + ~-  q- r4 O, dt (r 20) O, (1) 

where r, 0 are the radius and polar angle, respectively, kt is the gravitational constant, 
and the dots refer to differentiation with respect to the independent variable, time. 

The constant J0 is 

3 2 
J o  = - ~ # J 2 r e  , 

w h e r e  r e is the equatorial radius of the Earth. From Equation (1) we note an integral 
of the motion (the angular momentum), which we shall designate as 

r2~) = h0, (2) 

where h 0 is a constant. It is convenient to transform both the dependent and the 
independent variables of the problem; the independent variable is transformed from 
time, t, to the angular variable, 0, using Equation (2) and the dependent variable by 

1 
r ~ - R  

u 

First and second derivatives of the radius are expressed as 

r ~ 2  2 " 
i" = - h o u  , i" = - n o U  u , 

where the prime refers to differentiation with respect to 0. Using these transformations 
in Equation (1), the motion can be described by the second-order, nonlinear differen- 
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tial equation 

,, [1 Jo u2 
u + u - O. (3 )  

ho ho 
A first integral of this differential equation can be obtained by multiplying through 
by the integrating factor u'. We obtain 

, ]  2 f 
, . 0 u U , f l U  I 

u u  + u u  =0.  
h 2 h o 

Integrating this equation, we have 

y 2 ( U ' ) 2  - -  U 3 + a2 u2 -+- aau + a o, (4) 

where 

,~2 3h2 3p 
= , a2  __ __ ,))2 al = - - ,  ao : , ~ 2 S 0  

2Jo ' Jo 

and s o is an integral of the motion and can be computed from the initial conditions. 
Taking the square root and separating the variables, we express the solution by the 
quadrature 

IdO-- f i 
�9 U 3 + a 2 

du 
u 2 + a l u  + a0 )1/2" (5) 

The right-hand side of this equation is an incomplete elliptic integral of the first 
kind. However, before proceeding with the formal mathematical solution of Equation 
(5), let us analyze it from an orbital mechanics viewpoint. 

3. Analysis 

Consider orbits which are 'elliptic'. These trajectories will exhibit points of closest 
and furthest approach to the attracting mass, which we shall designate the 'periapsis' 
and 'apoapsis' radii, r v and r a, respectively. At these points, i = 0, and from the trans- 
formation equations, we have 

i ! 

U = = 0  

ho 
(apsis condition). 

Therefore, for these orbits, the cubic expressed in the right-hand side of Equation (4) 
will exhibit two real zeros per orbit. Since imaginary roots must appear in conjugate 
pairs, we conclude that the roots of the right-hand side of Equation (4) are real, and 
at least two are positive. Designating the roots and their order as 

a > b > c  
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we can express Equation (5) as 

f f du dO = 7 {(u - a)(u - b)(u - c)} 1/2 (6) 

Having determined that the roots are real and that the variable u is bounded between 

two successive values, the two possible ranges for u are 

a > u > b > c ,  a > b > u > c .  

In the first case, if u were greater than b and c but less than a, then the argument under 

the radical in Equation (6) would have to be negative and two roots would be imagin- 
ary. But this contradicts the previous conclusion that all the roots are real; therefore, 

u cannot lie between a-and b. 

For u greater than c but less than a or b, the argument under the radical in Equation 
(6) remains positive�9 The solution is given by (233.00).* Additionally, the roots b 

and c have a special significance. They are the inverses of the periapsis and the apoapsis 

radii, respectively, of the perturbed orbit, or 

1 1 
b = , c = -  .. 

r r p a 

Hence we can find two additional constants of the perturbed 
evaluating the roots of a cubic. 

trajectory by simply 

4. Position and Velocity 

The solution given by (233.00) can be expressed as 

where 0 
s 

Oo 

0 = 0 c + ygz, 

is an integration constant determined by the initial conditions 

Oc = 0o - 7g%- 

is the initial value 0, 

2 

g v / a _ c  

and r is the incomplete elliptic integral of the first kind designated as 

r = F(qS, k). 

(7) 

(8) 

The constant argument k is the modulus of the Jacobian elliptic functions and integrals 

and, for this solution, has the value 

x/b-c k ~ - -  - -  �9 

a r 

* Numbers in parenthesis will refer to mathematical equations in Byrd and Friedman (1971). 
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The variable a rgumen t  4) is k n o w n  as the ampl i tude  of z and, for this solut ion,  is 

defined by 

U m C  

sin 2 4) b - c 0 ~< 4) ~ re/2. 

Elliptic funct ions and  integrals are per iodic  funct ions with a per iod  of 4K, where  in 

s t anda rd  no ta t ion  K is the comple te  elliptic integral  of the first k ind defined by 

K(k) = F(rc/2, k). 

Since these funct ions are periodic,  we need to establish the correct  q u a d r a n t  where 

the solut ion is initially located.  This is accompl i shed  by examin ing  the Jacob ian  sn 

and  cn functions.  F r o m  (233.00) the sn funct ion is defined by 

sn 1: = - (9) 
C 

and the cn funct ion f rom the der ivat ive of the sn funct ion,  (731.01), by 

! 

9u 
cn T = , (10) 

2(b - c )sn  T dn  

where  the Jacobian  dn funct ion is defined by 

dn z = x//1 - k 2 sn 2 T. 

We are now ready to de te rmine  the value of T o in E q u a t i o n  (8) by first eva lua t ing  

Equa t ions  (9) and  (10) using U(Oo) and  u'(Oo), and,  second by using the fol lowing test 

to de te rmine  the correct  q u a d r a n t  and  subsequent  value of z 0 �9 

sn T o > 0 and  cn T o > 0, T o = F(~b o, k), 

sn T o > 0 and  cn z o < 0, T o = 2K - F(~b o, k), 

sn T o < 0 and  cn z o < 0, T o = 2K + F(~bo, k), 

sn T o < 0 and  cn z o > 0, T o = 4K - F(~b o, k), 

where 4) o = 4)(0o). This  conc ludes  the c o m p u t a t i o n s  necessary to c o m p u t e  the integra-  

t ion cons tan t  0 c in E q u a t i o n  (8). 

To c o m p u t e  the values of u(O) and  u'(O) for any value of 0, we first solve Equa t i on  

(7) for T. 

0 - 0  
C 

T ' - -  
?'g 

Des ignat ing  M as the integer  n u m b e r  of 4K per iods  in T or 

T 
m ~ _  _ _  

4K 
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we define the principal  value of r by p as 

p = "c - 4 M K .  

We can now c o m p u t e  sn p by (908.01) or some other  similar compu ta t i on ,  and  cn p 

and dn p as 

cn p = + x//1 - sn 2 p, dn p = x//1 - k 2 sn 2 p, 

where, if K <~ p < 3 K ,  cn p must  be negative. We then c o m p u t e  u(O) and  u'(O) f rom 

Equa t ions  (9) and (10) as 

u(O) = c + (b - c) sn 2/9, 

2(b - c)sn p cn p dn p 
u'(O) = (11) 

9 

Finally, the posi t ion and velocity vectors R and V, respectively, can be expressed as 

in Batt in (1964) 

R = u(O-~)' v = h o { ~ t 0 ) ~ '  - u'(O)~}, 

where the unit  vectors ~ and  ~" are given by 

= A sin 0 + B cos 0, ~' = A cos 0 - B sin 0. 

A and B are cons tan t  unit  o r t hogona l  vectors  defined by 

and  

! ! 

A = ~o sin 0 o + ~o cos 0 o, B - ~o cos 0 o - ~o sin 0 o 

R[ , (rR no-iml ~ o  = - , r  = , -  
r 0o 0o 

5. Time 

The only equa t ion  where  time, t, occurs in the fo rmula t ion  is in the m a g n i t u d e  of the 

angular  m o m e n t u m  vector  expressed in E q u a t i o n  (2). 

h o = r 2 0 ,  

Recall ing that  r = l / u ,  we can express this re la t ionship  by 

dO 
h o dt = U2" 

F r o m  Equa t ions  (7) and  (9), the differential change  in 0 and  the funct ion u can be 

expressed in terms of the variable  r by 

dO = 7g dr, u = c + (b - c )sn  2 "C, 
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Using this relationship, the time equation can be expressed as an incomplete elliptic 
integral of the third kind 

J" t" h o dt = 7g d~ (12) 
C 2 (1 - - 0 {  2 s n  2 T) 2 '  

w h e r e  0{2 is known as the parameter of the elliptic integral of the third kind and has a 
value for this problem of 

c - b  
0{2 

r 

(Note that 0{ 
on whether 

2 is negative here.) There are two possible solutions to Equation (12) based 
~ 0 { 2  > k o r  _ 0 { 2  <k.  

5 .1 .  k < __0{2 < CXD 

This range of 0{2 corresponds to the root c > 0. The solution to Equation (12) is given 
by (432.06) and may be expressed as 

where tc 

C 0 , C 1 , C2~ 

1 (  0{4 sn pcn  p dn p ) 
Cl t  = t c + 0{2E(qS, k) + c3"c . . . . . . . . . .  c2('cAo - f~5) 

c o 1 - 0{2 s n  2 p 
(13) 

is an integration constant defined by the initial conditions, and the constants 

c 3, and A 0 are 

c o = 2(1 - 0{2)(0{2 _ k2), 

C 1 ~ ~  

ho c2 

7g 

C2 - -  0{ 

C3 

2 (k2(3  - 20{2) - 0{2( 2 - 0{2))/l: 

K x / / 2 0 { 2 c 0  

0{2(1 + k 2) - 2 k  2 

1 ~ 0{2 

A 0 --- 
2 
-((E(k) - K)F(fl, k') + KE(fl, k')). 
77, 

The function E(4), k) is the incomplete elliptic integral of the second kind and requires, 
in addition the following test for its evaluation. 

If 

O < p ~ K ,  E(c~, k) = 4ME(k) + E(dp, k), 

K < p  <~2K, E(qS, k) = 2(2M + l)E(k) - E(~b, k), 

2K < p  <~3K, 

3K < p ~< 4K, 

E(qS, k) - 2(2M + l)E(k) + E(~b, k), 

E(~b, k)= 2(2M + 2)E(k)- E(~b, k). 
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The a rgumen t s / / and  k' in the incomplete elliptic integrals, E(fl, k') and F(fl, k') are 
given as 

fl = s i n -  1 1 k' = x / / 1  - k 2 

x//1 -- ~2' 

The function f~5 can be expressed as 

2K 
f2 5 = z q t a n -  1 

7"C I ~ 7  ( - 1)m +lqm2 sin (2my) sinh (2m(p - w)) ] 

�89 q- Z I ( - -  1)mq m2 Gs(-~mvj~ostl(--~(m(p----w)) 

where 

T c K  t 

P =  2 K '  

q = e-2p, 

K ' =  K(k') 

7"C'C 
D - - - - -  

2K'  

W --- 

2K 

In Equation (13), the dependent variable time, t, is expressed as a function of the 
independent variable 0. There is no easy way to invert this analogue of Kepler's 
equation. However, since qS', p', and z' are known or can be readily computed, for a 
given t the variable 0 can be determined using a Newton-Raphson method. 

5.2. 0 < - 0~ 2 < k 

This range of 0~ 2 corresponds to the root c < 0. The solution is given by (431.06), which 
is similar in form to (432.06). The details of this solution can be obtained from Byrd 
and Friedman (1971). 
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