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Abstract. An analytic solution for the J, perturbed equatorial orbit is obtained in terms of elliptic functions
and integrals. The necessary equations for computing the position and velocity vectors, and the time are
given in terms of known functions. The perturbed periapsis and apoapsis distances are determined from
the roots of a characteristic cubic.

1. Introduction

The motion of a satellite constrained to lie in the equatorial plane and subject to
forces due to an inverse-square gravitational attraction and a perturbation due to
the Earth’s oblateness as the J, term can be analytically determined in terms of
elliptic functions and elliptic integrals. Whittaker (1944) discusses the integrable
cases of central forces in which the magnitude depends only on the distance r. He
shows which power of the distance is soluble by circular or elliptic functions. The
present problem with a perturbation power of — 4 is shown to be integrable in terms
of elliptic functions. Sterne (1957) investigates the solutions of non-circular equatorial
orbits using a canonical approach. Ramnath (1973) was also aware that this solution
was integrable but choose to investigate the motion in terms of asymptotic solutions.
A recent paper by Cohen and Lyddane (1981) implies that the J, perturbed equatorial
problem does not possess an analytic solution. They examine this problem using
Lie series showing that the solution diverges under certain conditions.

General solutions for the motion of an artificial Earth satellite subject to perturba-
tions can be applied to this problem. Brouwer’s (1959) theory using Delaunay variables
can be considered one of the fundamental solutions using canonical variables. The
limitations on small eccentricities and inclinations were eliminated by Lyddane
(1963). Vinti’s (1961) satellite theory in terms of oblate spherical coordinates describes
a gravitational potential which accounts exactly for zonal harmonics through second
order and a portion of the fourth zonal. Limitations on small inclinations were
removed by Vinti (1962) and satellite prediction formulae were expressed in elliptic
functions by O’Mathuna (1970). These and other solutions are available for predicting
the motion of a satellite constrained to the equatorial plane and subject to the J,
perturbation only.

In this paper we will develop the analytic solution for the J, perturbed equatorial
orbit problem. There is a twofold utility for such a solution: (1) it leads to a clearer
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understanding of the motion by examining possibly the simplest model; and (2)
it can be used as an intermediary orbit for the motion subject to perturbations due
to zonal harmonics and small inclinations. One possible method for obtaining this
latter result is the procedure developed by Jezewski (1983). The solution for the
position and velocity vectors will be shown to be determined by an incomplete
elliptic integral of the first kind. Explicit equations and tests will be given such that
the solution is easily obtained. In addition, the time will be shown to be determined
by an incomplete elliptic integral of the third kind and is also readily calculated.
An additional bonus of this solution is that the perturbed periapsis and apoapsis
distance can be obtained from the roots of a characteristic cubic; a precalculation
of elliptic functions and integrals.

2. Problem Formulation

The differential equations of motion for a particle constrained to lie in the equatorial
plane and subject to forces of an inverse-square gravitational attraction and a per-

turbation due to the Earth’s oblateness as the J, term can be expressed in polar
coordinates as

w o J d .
—2—+72 0, —(r*0) =0, (1)

r r dt

F—r0? +

where r, 0 are the radius and polar angle, respectively, u is the gravitational constant,
and the dots refer to differentiation with respect to the independent variable, time.
The constant J ; 1s
_— 3 2

JO o E'uJZre >
where r_ is the equatorial radius of the Earth. From Equation (1) we note an integral
of the motion (the angular momentum), which we shall designate as

r20 = hg, (2)

where h, is a constant. It is convenient to transform both the dependent and the
independent variables of the problem; the independent variable is transformed from
time, t, to the angular variable, 0, using Equation (2) and the dependent variable by

First and second derivatives of the radius are expressed as

14

r= —hyu, i"=—h(2)uu,

where the prime refers to differentiation with respect to 0. Using these transformations
in Equation (1), the motion can be described by the second-order, nonlinear differen-
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tial equation

” ‘u ‘]Ou2
u +u——— = 0. 3

A first integral of this differential equation can be obtained by multiplying through
by the integrating factor . We obtain

J u*u u'
u'u” — 02 +uu’—'u—2=O.
hO hO
Integrating this equation, we have
v =u’ +a,u’ +au+a,, (4)
where
3h? 3u
2 0 2 2
V=0T a, = =7 ay == Ao =775,
2J, Jo

and s, 1s an integral of the motion and can be computed from the initial conditions.
Taking the square root and separating the variables, we express the solution by the
quadrature

du
do = . 5
J yJ(tﬁ +au’+au+ay)'’? )

The right-hand side of this equation is an incomplete elliptic integral of the first
kind. However, before proceeding with the formal mathematical solution of Equation
(5), let us analyze it from an orbital mechanics viewpoint.

3. Analysis

Consider orbits which are ‘elliptic’. These trajectories will exhibit points of closest
and furthest approach to the attracting mass, which we shall designate the ‘periapsis’
and ‘apoapsis’ radii, r, and r_, respectively. At these points, ¥ = 0, and from the trans-
formation equations, we have

Uu=——=0 (apsis condition).

Therefore, for these orbits, the cubic expressed in the right-hand side of Equation (4)
will exhibit two real zeros per orbit. Since imaginary roots must appear in conjugate
pairs, we conclude that the roots of the right-hand side of Equation (4) are real, and
at least two are positive. Designating the roots and their order as

a>b>c
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we can express Equation (5) as

JdG—yJ{(u_a(u_ ST (6)

Having determined that the roots are real and that the variable u is bounded between
two successive values, the two possible ranges for u are

a>u>b>c, a>b>u>c.

In the first case, if u were greater than b and ¢ but less than g, then the argument under
the radical in Equation (6) would have to be negative and two roots would be imagin-
ary. But this contradicts the previous conclusion that all the roots are real; therefore,
u cannot lie between a-and b.

For u greater than ¢ but less than g or b, the argument under the radical in Equation
(6) remains positive. The solution is given by (233.00).* Additionally, the roots b
and ¢ have a special significance. They are the inverses of the periapsis and the apoapsis
radii, respectively, of the perturbed orbit, or
1

1

-, C ——.
r r
)4 a

b=

Hence we can find two additional constants of the perturbed trajectory by simply
evaluating the roots of a cubic.

4. Position and Velocity
The solution given by (233.00) can be expressed as
0=0_ +ygr, (7)
where 0_1s an integration constant determined by the initial conditions
0. =0,—ygr,. (8)
0, 1s the initial value 0,
2
a—c
and 7 is the incomplete elliptic integral of the first kind designated as

= F(¢, k).

The constant argument k is the modulus of the Jacobian elliptic functions and integrals
and, for this solution, has the value

b—c

a—=«¢

* Numbers in parenthesis will refer to mathematical equations in Byrd and Friedman (1971).
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The variable argument ¢ is known as the amplitude of t and, for this solution, is
defined by

sin2¢=:_c, 0<¢<n2

Elliptic functions and integrals are periodic functions with a period of 4K, where in
standard notation K is the complete elliptic integral of the first kind defined by

K(k) = F(r/2, k).

Since these functions are periodic, we need to establish the correct quadrant where
the solution is initially located. This is accomplished by examining the Jacobian sn
and cn functions. From (233.00) the sn function is defined by

u—=«¢

snT= 9
T — %)

and the cn function from the derivative of the sn function, (731.01), by
T = gu (10)

" 2b—c)sntdnt
where the Jacobian dn function is defined by

dnrz\/l—kzsnzr.

We are now ready to determine the value of 7, in Equation (8) by first evaluating
Equations (9) and (10) using u(6,) and u'(8,), and, second by using the following test
to determine the correct quadrant and subsequent value of 7, :

snt,>0 and cnrt,>0, T, = F(¢,, k),

snt, >0 and cnrt, <0, 1, = 2K — F(¢,, k),
snt,<0 and cnrt, <0, T, = 2K + F(¢,, k),
snt, <0 and cnt,>0, T, = 4K — F(¢,, k),

where ¢, = ¢(0,). This concludes the computations necessary to compute the integra-
tion constant 0_in Equation (8).

To compute the values of u(6) and u/(0) for any value of 0, we first solve Equation
(7)for 7.
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we define the principal value of 7 by p as
p=1—4MK.

We can now compute sn p by (908.01) or some other similar computation, and cn p
and dn p as

cnp= +./1—sn?p, dnpz\/l——kzsnzp,

where, if K < p < 3K, cn p must be negative. We then compute u(6) and u'(6) from
Equations (9) and (10) as

u(@) =c+ (b —c)sn® p,

_2b—c¢)snpenpdnp
g

u'(0) (11)

Finally, the position and velocity vectors R and V, respectively, can be expressed as
in Battin (1964)

R Ve h (w0 — w(OF),
u(6)

where the unit vectors € and & are given by
E=Asin6 + Bcos 0, & =Acosf —Bsin0.
A and B are constant unit orthogonal vectors defined by

A=¢& sinb,+ & cosb,, B=¢& cosf,— &, sinb,

and
R *R — R
50 - s élo = )

F o, h

0 0o

5. Time

The only equation where time, ¢, occurs in the formulation is in the magnitude of the
angular momentum vector expressed in Equation (2).

h, = r*0,

Recalling that r = 1/u, we can express this relationship by

dé
hO dt = 'u—z

From Equations (7) and (9), the differential change in 6 and the function u can be
expressed in terms of the variable 1 by

df = yg dr, u=c+ (b —c)sn’r,
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Using this relationship, the time equation can be expressed as an incomplete elliptic
integral of the third kind

g dz
h, | dt = , 12
OJ czf(l — o? sn? 1)? (12)

where o* is known as the parameter of the elliptic integral of the third kind and has a
value for this problem of

c—Db
o? = .

C

(Note that o” is negative here.) There are two possible solutions to Equation (12) based
on whether — o? > k or — o? < k.

51.k< —a?2<

This range of «* corresponds to the root ¢ > 0. The solution to Equation (12) is given
by (432.06) and may be expressed as

a*snpenpdnp

1
ct=t + —(oczE(c/), k) +c,t—

Co

e, - Q5)> (13)

where ¢_is an integration constant defined by the initial conditions, and the constants
Cy»Cy>C,»C3, and AO are
co =2(1 — o®)(a® — k?),
h,c”
1= )

i¢Y
2 _ 2y A2 a2
c2=oc2(k (3 —20%)—a*(2 —a®))n |
K./2a%c,
_a2(1 + k?) — 2k?

3 °
1 —a?

C

2
Ao =—((E(k) = K)F(B, k) + KE(B, k).

The function E(¢, k) is the incomplete elliptic integral of the second kind and requires,
in addition the following test for its evaluation.
If

0<p <K, E(¢, k) = 4ME(k) + E(¢, k),

K <p<2K, E(¢ k)=202M + 1)E(k) — E(¢, k),
2K < p <3K, E(¢,k)=202M + )EKk) + E(¢, k),
3K < p <4K, E(¢,k)=202M + 2)E(k) — E(¢, k).
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The arguments f and k' in the incomplete elliptic integrals, E(f, k') and F(f, k') are
given as

628in_1_1——_}_7, klzx/l—kz.

The function Q. can be expressed as

2K . [ Z‘f( — 1)™* g™ sin (2mo) sinh(2m(p — w)) jl
i

QS=T+—tan‘

T T+ (— 1)"g™ cos(2mv) cosh(2m(p — w)
where

™ k- k)
P~k -
q=e *F,

T
v=—0,

2K

nF(f, k')
W=——".

2K

In Equation (13), the dependent variable time, ¢, is expressed as a function of the
independent variable 6. There is no easy way to invert this analogue of Kepler’s
equation. However, since ¢’, p’, and 1’ are known or can be readily computed, for a
given t the variable 6 can be determined using a Newton—Raphson method.

520< —a* <k

This range of «* corresponds to the root ¢ < 0. The solution is given by (431.06), which
is similar in form to (432.06). The details of this solution can be obtained from Byrd
and Friedman (1971).
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