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For every integer d we explicitly construct a family of functions (pseudo-random bit generators) 
that convert a polylogarithmic number of truly random bits to n bits that appear random to any 
family of circuits of polynomial size and depth d. The functions we construct are computable 
by a uniform family of circuits of polynomial size and constant depth. This allows us to simulate 
randomized constant depth polynomial size circuits in DSPACE(polylog) and in DTIME(2P~176 
As a corollary we show that the complexity class AM is equal to the class of languages recognizable in 
NP with a random oracle. Our technique may be applied in order to get pseudo random generators 
for other complexity classes as well; a further paper [16] explores these issues. 

1. I n t r o d u c t i o n  

The relation between randomized and deterministic complexity classes is a fun- 
damenta l  question in complexity theory. Most of the known results do not  achieve 
general simulation of randomized algori thms by straight forward deterministic al- 
gori thms. Known simulations use either al ternat ion [18], non uniformity [1], [3], 
unproven assumptions [21], [10], [17], [19] or simulate only specific algorithms. One 
exception to this is a paper  by Ajtai  and Wigderson [4]. 

Ajtal  and Wigderson consider deterministic simulation of randomized constant  
( R A C ) .  They  explicitly construct  (in logari thmic space) a series of depth  circuits 0 

functions (pseudo-random bit generators) tha t  "stretch" n E t ruly random bits into n 
bits which appear  r andom to  any family of polynomial  size constant  depth  circuits. 
This allows them to simulate RAC 0 in DSPACE(n~), and thus in DTIME(2  he) 
for any ~ > 0. 

In  this paper  we give a different construct ion of a pseudo random bit generator  
for RAC O. Our construct ion is much simpler than  the one in [4], and uses much 
fewer r andom bits. We build functions tha t  "stretch" (log n) c t ruly random bits to 
n bits which appear  r andom to constant  depth  circuits. This allows us to simulate 
RAC 0 in DSPACE(polylog) and thus in DTIME(2p~176 

Theorem 1. For any integer d, there exists a family of functions: {fn : {0, 1} / --* 
{0, 1}n}, where l = O((logn) 2d+6) such that: 
(1) {fn} can be computed by a log-space uniform family of circuits of polynomial 

size and d + 4 depth. 

AMS subject classification (1980): 68 C 25 
1 Part of this work was done while the first author was in U. C. Berkeley, visiting the Hebrew 

University of Jerusalem. 
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(2) For any family {Cn} of circuits of polynomial size and depth d, for any polyno- 
mial p(n), and for all large enough n: 

1 
IPr (Cn(y) = 1) - Pr (Cn(fn(x)) ~- 1)1 _~ p(n---~ 

where y is chosen uniformly in {0, 1} n, and x is chosen uniformly in {0, 1}/. 

Denote by R A C ~  O) the set of languages that can be recognized by a 
uniform family of probabilistic constant depth, polynomial size circuits, with 1-sided 
error (2-sided error bounded away from 1/2 by some polynomially small fraction). 

Theorem 2. 

RAC 0 C B P A C  0 C U DSPACE((l~ C U DTIME(2(I~ 
c c 

As a corollary of the existence of our generator we show that the class AM is 
equal to the class of languages that can be recognized in NP given a random oracle. 

The correctness of our generator is based upon the known lower bounds for con- 
stant depth circuits ([2], [11], [22], and we use the results in [14]). The construction 
is based upon a new idea which allows extraction of many pseudo random bits, from 
any "hard" function. 

2. T h e  g e n e r a t o r  

2.1. M a i n  l e m m a  

Our generator is based upon the fact that  parity is "hard" for constant depth 
circuits. We will be using the following theorem which is a corollary of Hastad's [14] 
results: 

Theorem (Hastad). For any family {Cn} of circuits of depth d and size at most 
1 

2 ~  n'~-~ , and for a11 large enough n: 

1 

IPr (Cn(x) = parity(x)) - 1/21 _< 2~ n~-/ 
When x is chosen uniformly over all n-bit strings. 

Coronary 2.1. Let {Cn} be a family of circuits of depth d, size n 0(1), and m = 
(log n) d+2 inputs, then for any polynomial p(n) and for all large enough n: 

1 
IPr (Cn(x) = parity(x)) - 1/21 < p(n) 

when x is chosen uniformly over all m-bit strings. 

This corollary shows that  the parity of the input bits "looks random" to any 
small constant depth circuit. The main idea of the generator is to compute the 
parity of many nearly disjoint subsets of the input bits. 
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Definition. A collection of sets { S 1 , . . . ,  Sn}, where Si C { 1 , . . . ,  l} is called a partial- 
(k, m)-design if: 
(1) For all i: 

I s i l  = 

(2) For all i r  

I&nSjl <k 
A n  n by 1 0 - l mat r i x  is called a par t ia l - (k ,  m)-design i f  i ts n rows, in terpreted 
as sets over { 1 , . . . ,  t}, are a par t ia l - (k ,  m)-design.  

L e m m a  2.2. Let {Cn} be a family of circuits of depth d and polynomial size, let 
m = re(n) = (log n) d+3, 1 = l(n), and let {An} be a family o fn  by 1 matrices which 
are partial-(log n, m)-designs, then for any polynomial p(n), and for all large enough 
n :  

1 
(I) IPr (Cn(y) = O) - n r  (Cn(Anx) = O)l <_ 

p(n) 

where y is chosen uniformly over all n-bit strings, x is chosen uniformly over all l-bit 
strings, and Anx is matrix-vector multiplication clone over GF(2) .  

Proof .  We will assume (I) doesn ' t  hold and derive a contradict ion to corollary 2.1. 
We first show, as in [12] and in [21], t ha t  if (I) does not hold then one of the bits of 
Anx can be predicted from the previous ones. 

For any i, 0 < i < n, we define a dis t r ibut ion E i on {0, 1} n as follows: the first 
i bits are chosen to be the first i bits of Anx, where x is chosen uniformly over l bit  
strings, and the other  n - i bits are chosen uniformly. Define 

Pi = Pr(Cn(z)  = O) 

where z is chosen according to the dis t r ibut ion E i. We want  to show tha t  [P0 - P n [  <_ 
liP(n).  Assume not,  then  there  exists an i s.t. [Pi-1 - Pi[ > 1/(np(n)). Using this 
fact we can build a circuit t ha t  predicts  the i ' th  bit. 

Define a circuit Dn, which takes as input  the first i - 1 bits of Anx, Y l , - . . ,  Yi-1, 
and predicts  Yi. Dn is a probabil is t ic  circuit. I t  first flips n - i + 1 r andom bits, 
r i , . . .  ,rn. On input  y = <  Yl , . . .  ,Yi-1 >, it computes  Cn(Yl , . . .  , Y i - l , r i , . . .  ,rn). 
I f  this evaluates  to 1 then Dn will re turn  r i as the answer, otherwise it will re turn 
the complement  of  ri. As in [21] it can be shown tha t  

Pr (Dn(Yl, 1 1 �9 = - > 

where the probabi l i ty  is taken over all choices of x and of the r andom bits Dn uses. 
At this point  an averaging a rgument  shows tha t  ~t is possible to set the pr ivate  
r a ndom bits tha t  Dn uses to constants  and achieve a determinis t ic  circuit D "  whi le  
preserving the bias. 

By  now we have const ructed a circuit t ha t  predicts  Yi from the bits Y l , - - . ,  Yi-1. 
To achieve a contradict ion to corollary 2.1. we will now t ransform this circuit to 
a circuit tha t  predicts  Yi from the bits X l , . . . , X l .  W.l.o.g. we can assume tha t  Yi 
depends  on X l , . . .  ,Xm, i.e. 

m 

Y i = Z x j  (,nod 2) 
j = l  



66  NOAM NISAN 

Since Yi does not depend on the other bits of x, it is possible to set the other bits to 
constants, while leaving the prediction of Yi valid. By an averaging argument there 
exist constants Cm+l,... ,cl such that setting xj = cj for all m < j <_ l, preserves 
the prediction probability. At this point, however, each one of the bits Yl , . . .  ,Yi-1 
depends only on at most log n of the bits Xl , . . .  , xm. This is so since the intersection 
of the sets of x~ks defininig Yi and yj is bounded above in size by log n for each j ~ i. 
Now we can compute each yj as a CNF (or DNF) formula of a polynomial (in n) size 
over the bits it uses. This gives us a circuit o Dn(Xl , . . . ,  Xm) that predicts Yi which 
is the parity of X l , . . . ,  Xm. It is easy to check that the size of D~ is still polynomial 
in n, and that the depth is at most d + 1. This contradicts corollary 2.1. 

2.2. Construction 

We will now construct a uniform family of polynomial size constant depth 
circuits, that  uses only (logn) 2d+6 truly random bits and produces n bits that 
appears random to any family of polynomial size depth d circuits. We will first 
give a construction of a family of n by I matrices {An} which are partial-(log n, re)- 
designs, where I = O((logn)2d+6), and m -- O((logn) d+3) and then show how to 
compute Anx. 

A partial design 

We need to construct n different subsets of {1 . . .  l} of size m with small inter- 
sections. Let m be a prime power of size approximately (logn) d+3, and let l -- m 2. 
Consider the numbers in the range {1 . . .  I} as pairs of elements in GF(m), i.e. we 
construct subsets of {< a, b > ta, b E GF(m)}. Given any polynomial f on GE(m), 
we define a set Sf = {< a, f(a) > ]a E GF(m)}. The sets we take are all of this 
form, where f ranges over polynomials of degree at most log n. The following facts 
can now be easily verified: 
(1) The size of each set is exactly m. 
(2) Any two sets intersect in at most log n points. 
(3) There are at least n different sets (the number of polynomials over GF(m) of 

degree at most log n is m l~ n§ ~ n). 
It should be noted that all that  is needed to construct these sets effectively is 

simple arithmetic in GF(ra), and since m has a length of O(log log n) bits, everything 
can be easily computed by a log-space bounded Turing machine. 

The circuit 

Each bit of the output, Anx, is simply the parity of the corresponding subset 
of input bits. All the subsets are of size ra = (log n) d+a. Computing the parity of 
this number of variables can be done in depth d + 4, and polynomial size (in n), by 
a simple explicit construction. 
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3. A M  vs .  a l m o s t - N P  

The existence of this pseudo random generator has implications concerning the 
class AM, which was defined by Babai [5]. 

An AM Turing machine is a machine that  may use both randomization and 
nondeterminism, but in this order only. It first flips as many random bits as necessary 
and then uses nondeterminism. The machine is said to accept a language L if for 
every string in L the probability that there exists an accepting computation is at least 
2/3, and for every string not in L the probability is at most 1/3 (the probability is 
over all random coin flips, and the existence is over all nondeterministic choices). 
The class AM is the set of languages accepted by some AM machine that  runs in 
polynomial time. The randomization stage of the computation is called the "Arthur" 
stage and the second stage, the nondeterministic one is called the "Merlin" stage. 
For exact definitions as well as motivation refer to [5], [7], also see [131. 

Let C be any complexity class (e.g. P, NP, . . .  ). For an oracle A, we define 
the class C A to be the set of languages L that are accepted by some oracle Turing 
machine M runing with the oracle A in the complexity class C. As in [7] we define 
the class almost-C to be the set of languages L such that: 

Pr[L E C A] = 1 

where A is an oracle chosen at random. 
The following theorem is well known ([15], [6]), and underscores the importance 

of BPP  as the random analogue of P: 

Theorem. BPP-=almost-P 

[7] and [13] raised the question of whether AM = almost-NP? This would 
strengthen the feeling that AM is the probabilistic analogue of NP. Our results imply 
that this is indeed the case. 

Theorem 3. AM=almost-NP. 

Proof. Using standard techniques it is easy to see that AM C almost-NP since a 
nondeterministic Turing machine can use the oracle queries to simulate Arthur. We 
will prove the other direction. We first state the following lemma which is similar to 
the case of BPP vs. almost-P ([15], BG): 

Lernm~ 3.1. I l L  E almost-NP then exists a specific nondeterministic oracle Taring 
machine M that runs in polynomial time such that for an oracle A chosen at random: 

Pr[MAacceptsL] >_ 2/3 

We will simulate this machine by an AM machine. The difficulty in simulating 
this machine in AM relies in the fact that the machine may access (nondetermin- 
istically) an exponential number of locations of the oracle, but AM computations 
can only supply a polynomial number of random bits. We will use our generator to 
convert a polynomial number of random bits to an exponential number of bits that 
"look" random to the machine M. 

Let the running time of M be n k. We can view the computation of M as a large 

OR of size 2 nk of all the deterministic polynomial time computations occurring for 
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the different nondeterministic choices. Each of these computations can be converted 

to a CNF formula of size 2 nk over the oracle entries. All together the computation 

of M can be written as a depth 2 circuit of size at most 22nk over the oracle queries. 

Our generator can produce from O(n lOk) random bits 22nk bits that look random 
to any depth 2 circuit of this size. So the simulation of M on a random oracle proceeds 
as follows: Arthur will flip O(n lOk) random bits, and the M will be simulated by 
Merlin; whenever M makes an oracle query, the answer will be generated from the 
random bits according to the generator. Note that  this is just a parity function of 
some subset of the bits, which is clearly in P. Since the generator "fools" this circuit, 
the simulation will accept with approximately the same probability that  M accepts 
on a random oracle. 

Exactly the same technique suffices to show that for any computation in PH, 
the polynomial time hierarchy ([20], [9]), a random oracle can be substituted by an 
"Arthur" phase. Applying to this a result by Sipser [18] and Gacs showing that  
BPP C Z2 N II2 allows simulation of the "Arthur" phase by one more alternation 
and thus we get: 

Theorem 4. almost-PH-=PH 

4. F u r t h e r  results 

How tight are these results? 

In order to produce n bits that  "look" random to all polynomial size depth d 
circuits our generator uses O((logn)C(d)) random bits, where c(d) is some function 
of the depth. It is interesting to ask whether there is a generator that  converts 
O((logn) c) random bits for some fixed c to n bits that "fool" all constant depth 
circuits. Such a result is, however, well beyond reach in the current "state of the 
art". Any proof that a generator that uses only O((log n) ~ random bits produces 
n bits that fool all depth d circuits would also imply a super logarithmic lower bound 
for circuit depth (for the problem of "inverting" that generator). Thus the number 
of bits we use is almost optimal in the "current state of the art". 

Simulating l a rge r  c i rcu i t s  

The parameters in our results can be varied in order to get generators that  look 
random even to larger circuits. For example in order to "fool" all constant depth 
circuits of size 2 ~lyl~ it also suffices to use a polylog number of random bits. In 
particular, probabilistic constant depth circuits of size 2poly~o9 can be simulated in 
DT I M E( 2p~176 ). 
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Better approximation 

The parametes in our results can also be varied in order to get generators which 
approximate the random distribution more closely. For example in order to achieve 
a generator that  approximates the probability of acceptance of a circuit to within 

some (additive) exponentially small fraction, 2 -  , it suffices to use n E random bits 
for some c = E($). 

Generators for other complexity classes 

The technique described here, may be used to produce pseudo-random bit gen- 
erators for any complexity class, given a function that  is "hard" for that  class. A 
further paper  [16] explores these possibilities. For example we can show that  Yao's 

result [21] that  B P P  C DTIME(2 n~) for every e > 0, follows from the much weak- 
er hypothesis than the one required by Yao, namely that  there exists a function in 
E X P T I M E  such that  any polynomial size circuit that  a t tempts  to compute it errs 
on some polynomially small fraction of the inputs. 

We also show results to the effect that  if such pseudo random generators do not 
exist then some nontrivial simulation of Turing machine time by space is possible. 
Specifically we show that  if BPP  is not contained in DTIME(2 hE) for every ~ > 0, 
then there exists some c > 0 such that  for any time bound T(n) >_ C n, any function 
in DTIME(T(n))  has an algorithm for it that  for infinitely many n runs in space 
DSPACE(T(n)  1-~) on any x of length n. A stronger implication of this form was 
proven by Sipser [19], but under an unproven assumption about certain kinds of 
expanders. 

These kinds of results can also be obtained in a unified fashion for all other 
natural  complexity classes. For example if there exists some function in PSPACE 
that  requires circuit depth of n e in order to compute it (with some polynomially small 
fraction of error) then randomized circuits of poly-logarithmic depth can be simulated 
(uniformly) by deterministic circuits of poly-logarithmic depth, in particular RNC C 
DSPACE(polylog). 
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