
r
Akad@miai Kiad6 -- Springer-Verlag

COMBINATORICA 11 (1) (1991) 63-70

PSEUDORANDOM BITS FOR CONSTANT DEPTH CIRCUITS

NOAM NISAN 1

Received March 28, 1988

For every integer d we explicitly construct a family of functions (pseudo-random bit generators)
that convert a polylogarithmic number of truly random bits to n bits that appear random to any
family of circuits of polynomial size and depth d. The functions we construct are computable
by a uniform family of circuits of polynomial size and constant depth. This allows us to simulate
randomized constant depth polynomial size circuits in DSPACE(polylog) and in DTIME(2P~176
As a corollary we show that the complexity class AM is equal to the class of languages recognizable in
NP with a random oracle. Our technique may be applied in order to get pseudo random generators
for other complexity classes as well; a further paper [16] explores these issues.

1. I n t r o d u c t i o n

The relation between randomized and deterministic complexity classes is a fun-
damenta l question in complexity theory. Most of the known results do not achieve
general simulation of randomized algori thms by straight forward deterministic al-
gori thms. Known simulations use either al ternat ion [18], non uniformity [1], [3],
unproven assumptions [21], [10], [17], [19] or simulate only specific algorithms. One
exception to this is a paper by Ajtai and Wigderson [4].

Ajtal and Wigderson consider deterministic simulation of randomized constant
(R A C) . They explicitly construct (in logari thmic space) a series of depth circuits 0

functions (pseudo-random bit generators) tha t "stretch" n E t ruly random bits into n
bits which appear r andom to any family of polynomial size constant depth circuits.
This allows them to simulate RAC 0 in DSPACE(n~), and thus in DTIME(2 he)
for any ~ > 0.

In this paper we give a different construct ion of a pseudo random bit generator
for RAC O. Our construct ion is much simpler than the one in [4], and uses much
fewer r andom bits. We build functions tha t "stretch" (log n) c t ruly random bits to
n bits which appear r andom to constant depth circuits. This allows us to simulate
RAC 0 in DSPACE(polylog) and thus in DTIME(2p~176

Theorem 1. For any integer d, there exists a family of functions: {fn : {0, 1} / --*
{0, 1}n}, where l = O((logn) 2d+6) such that:
(1) {fn} can be computed by a log-space uniform family of circuits of polynomial

size and d + 4 depth.

AMS subject classification (1980): 68 C 25
1 Part of this work was done while the first author was in U. C. Berkeley, visiting the Hebrew

University of Jerusalem.

64 NOAM NISAN

(2) For any family {Cn} of circuits of polynomial size and depth d, for any polyno-
mial p(n), and for all large enough n:

1
IPr (Cn(y) = 1) - Pr (Cn(fn(x)) ~- 1)1 _~ p(n---~

where y is chosen uniformly in {0, 1} n, and x is chosen uniformly in {0, 1}/.

Denote by R A C ~ O) the set of languages that can be recognized by a
uniform family of probabilistic constant depth, polynomial size circuits, with 1-sided
error (2-sided error bounded away from 1/2 by some polynomially small fraction).

Theorem 2.

RAC 0 C B P A C 0 C U DSPACE((l~ C U DTIME(2(I~
c c

As a corollary of the existence of our generator we show that the class AM is
equal to the class of languages that can be recognized in NP given a random oracle.

The correctness of our generator is based upon the known lower bounds for con-
stant depth circuits ([2], [11], [22], and we use the results in [14]). The construction
is based upon a new idea which allows extraction of many pseudo random bits, from
any "hard" function.

2. T h e g e n e r a t o r

2.1. M a i n l e m m a

Our generator is based upon the fact that parity is "hard" for constant depth
circuits. We will be using the following theorem which is a corollary of Hastad's [14]
results:

Theorem (Hastad). For any family {Cn} of circuits of depth d and size at most
1

2 ~ n'~-~ , and for a11 large enough n:

1

IPr (Cn(x) = parity(x)) - 1/21 _< 2~ n~-/
When x is chosen uniformly over all n-bit strings.

Coronary 2.1. Let {Cn} be a family of circuits of depth d, size n 0(1), and m =
(log n) d+2 inputs, then for any polynomial p(n) and for all large enough n:

1
IPr (Cn(x) = parity(x)) - 1/21 < p(n)

when x is chosen uniformly over all m-bit strings.

This corollary shows that the parity of the input bits "looks random" to any
small constant depth circuit. The main idea of the generator is to compute the
parity of many nearly disjoint subsets of the input bits.

PSEUDORANDOM BITS FOR CONSTANT DEPTH CIRCUITS 65

Definition. A collection of sets { S 1 , . . . , Sn}, where Si C { 1 , . . . , l} is called a partial-
(k, m)-design if:
(1) For all i:

I s i l =

(2) For all i r

I&nSjl <k
A n n by 1 0 - l mat r i x is called a par t ia l - (k , m)-design i f i ts n rows, in terpreted
as sets over { 1 , . . . , t}, are a par t ia l - (k , m)-design.

L e m m a 2.2. Let {Cn} be a family of circuits of depth d and polynomial size, let
m = re(n) = (log n) d+3, 1 = l(n), and let {An} be a family o fn by 1 matrices which
are partial-(log n, m)-designs, then for any polynomial p(n), and for all large enough
n :

1
(I) IPr (Cn(y) = O) - n r (Cn(Anx) = O)l <_

p(n)

where y is chosen uniformly over all n-bit strings, x is chosen uniformly over all l-bit
strings, and Anx is matrix-vector multiplication clone over GF(2) .

Proof . We will assume (I) doesn ' t hold and derive a contradict ion to corollary 2.1.
We first show, as in [12] and in [21], t ha t if (I) does not hold then one of the bits of
Anx can be predicted from the previous ones.

For any i, 0 < i < n, we define a dis t r ibut ion E i on {0, 1} n as follows: the first
i bits are chosen to be the first i bits of Anx, where x is chosen uniformly over l bit
strings, and the other n - i bits are chosen uniformly. Define

Pi = Pr(Cn(z) = O)

where z is chosen according to the dis t r ibut ion E i. We want to show tha t [P0 - P n [<_
liP(n). Assume not, then there exists an i s.t. [Pi-1 - Pi[> 1/(np(n)). Using this
fact we can build a circuit t ha t predicts the i ' th bit.

Define a circuit Dn, which takes as input the first i - 1 bits of Anx, Y l , - . . , Yi-1,
and predicts Yi. Dn is a probabil is t ic circuit. I t first flips n - i + 1 r andom bits,
r i , . . . ,rn. On input y = < Yl , . . . ,Yi-1 >, it computes Cn(Yl , . . . , Y i - l , r i , . . . ,rn).
I f this evaluates to 1 then Dn will re turn r i as the answer, otherwise it will re turn
the complement of ri. As in [21] it can be shown tha t

Pr (Dn(Yl, 1 1 �9 = - >

where the probabi l i ty is taken over all choices of x and of the r andom bits Dn uses.
At this point an averaging a rgument shows tha t ~t is possible to set the pr ivate
r a ndom bits tha t Dn uses to constants and achieve a determinis t ic circuit D " whi le
preserving the bias.

By now we have const ructed a circuit t ha t predicts Yi from the bits Y l , - - . , Yi-1.
To achieve a contradict ion to corollary 2.1. we will now t ransform this circuit to
a circuit tha t predicts Yi from the bits X l , . . . , X l . W.l.o.g. we can assume tha t Yi
depends on X l , . . . ,Xm, i.e.

m

Y i = Z x j (,nod 2)
j = l

66 NOAM NISAN

Since Yi does not depend on the other bits of x, it is possible to set the other bits to
constants, while leaving the prediction of Yi valid. By an averaging argument there
exist constants Cm+l,... ,cl such that setting xj = cj for all m < j <_ l, preserves
the prediction probability. At this point, however, each one of the bits Yl , . . . ,Yi-1
depends only on at most log n of the bits Xl , . . . , xm. This is so since the intersection
of the sets of x~ks defininig Yi and yj is bounded above in size by log n for each j ~ i.
Now we can compute each yj as a CNF (or DNF) formula of a polynomial (in n) size
over the bits it uses. This gives us a circuit o Dn(Xl , . . . , Xm) that predicts Yi which
is the parity of X l , . . . , Xm. It is easy to check that the size of D~ is still polynomial
in n, and that the depth is at most d + 1. This contradicts corollary 2.1.

2.2. Construction

We will now construct a uniform family of polynomial size constant depth
circuits, that uses only (logn) 2d+6 truly random bits and produces n bits that
appears random to any family of polynomial size depth d circuits. We will first
give a construction of a family of n by I matrices {An} which are partial-(log n, re)-
designs, where I = O((logn)2d+6), and m -- O((logn) d+3) and then show how to
compute Anx.

A partial design

We need to construct n different subsets of {1 . . . l} of size m with small inter-
sections. Let m be a prime power of size approximately (logn) d+3, and let l -- m 2.
Consider the numbers in the range {1 . . . I} as pairs of elements in GF(m), i.e. we
construct subsets of {< a, b > ta, b E GF(m)}. Given any polynomial f on GE(m),
we define a set Sf = {< a, f(a) >]a E GF(m)}. The sets we take are all of this
form, where f ranges over polynomials of degree at most log n. The following facts
can now be easily verified:
(1) The size of each set is exactly m.
(2) Any two sets intersect in at most log n points.
(3) There are at least n different sets (the number of polynomials over GF(m) of

degree at most log n is m l~ n§ ~ n).
It should be noted that all that is needed to construct these sets effectively is

simple arithmetic in GF(ra), and since m has a length of O(log log n) bits, everything
can be easily computed by a log-space bounded Turing machine.

The circuit

Each bit of the output, Anx, is simply the parity of the corresponding subset
of input bits. All the subsets are of size ra = (log n) d+a. Computing the parity of
this number of variables can be done in depth d + 4, and polynomial size (in n), by
a simple explicit construction.

PSEUDORANDOM BITS FOR CONSTANT DEPTH CIRCUITS 67

3. A M vs . a l m o s t - N P

The existence of this pseudo random generator has implications concerning the
class AM, which was defined by Babai [5].

An AM Turing machine is a machine that may use both randomization and
nondeterminism, but in this order only. It first flips as many random bits as necessary
and then uses nondeterminism. The machine is said to accept a language L if for
every string in L the probability that there exists an accepting computation is at least
2/3, and for every string not in L the probability is at most 1/3 (the probability is
over all random coin flips, and the existence is over all nondeterministic choices).
The class AM is the set of languages accepted by some AM machine that runs in
polynomial time. The randomization stage of the computation is called the "Arthur"
stage and the second stage, the nondeterministic one is called the "Merlin" stage.
For exact definitions as well as motivation refer to [5], [7], also see [131.

Let C be any complexity class (e.g. P, NP, . . .). For an oracle A, we define
the class C A to be the set of languages L that are accepted by some oracle Turing
machine M runing with the oracle A in the complexity class C. As in [7] we define
the class almost-C to be the set of languages L such that:

Pr[L E C A] = 1

where A is an oracle chosen at random.
The following theorem is well known ([15], [6]), and underscores the importance

of BPP as the random analogue of P:

Theorem. BPP-=almost-P

[7] and [13] raised the question of whether AM = almost-NP? This would
strengthen the feeling that AM is the probabilistic analogue of NP. Our results imply
that this is indeed the case.

Theorem 3. AM=almost-NP.

Proof. Using standard techniques it is easy to see that AM C almost-NP since a
nondeterministic Turing machine can use the oracle queries to simulate Arthur. We
will prove the other direction. We first state the following lemma which is similar to
the case of BPP vs. almost-P ([15], BG):

Lernm~ 3.1. I l L E almost-NP then exists a specific nondeterministic oracle Taring
machine M that runs in polynomial time such that for an oracle A chosen at random:

Pr[MAacceptsL] >_ 2/3

We will simulate this machine by an AM machine. The difficulty in simulating
this machine in AM relies in the fact that the machine may access (nondetermin-
istically) an exponential number of locations of the oracle, but AM computations
can only supply a polynomial number of random bits. We will use our generator to
convert a polynomial number of random bits to an exponential number of bits that
"look" random to the machine M.

Let the running time of M be n k. We can view the computation of M as a large

OR of size 2 nk of all the deterministic polynomial time computations occurring for

68 NOAM NISAN

the different nondeterministic choices. Each of these computations can be converted

to a CNF formula of size 2 nk over the oracle entries. All together the computation

of M can be written as a depth 2 circuit of size at most 22nk over the oracle queries.

Our generator can produce from O(n lOk) random bits 22nk bits that look random
to any depth 2 circuit of this size. So the simulation of M on a random oracle proceeds
as follows: Arthur will flip O(n lOk) random bits, and the M will be simulated by
Merlin; whenever M makes an oracle query, the answer will be generated from the
random bits according to the generator. Note that this is just a parity function of
some subset of the bits, which is clearly in P. Since the generator "fools" this circuit,
the simulation will accept with approximately the same probability that M accepts
on a random oracle.

Exactly the same technique suffices to show that for any computation in PH,
the polynomial time hierarchy ([20], [9]), a random oracle can be substituted by an
"Arthur" phase. Applying to this a result by Sipser [18] and Gacs showing that
BPP C Z2 N II2 allows simulation of the "Arthur" phase by one more alternation
and thus we get:

Theorem 4. almost-PH-=PH

4. F u r t h e r results

How tight are these results?

In order to produce n bits that "look" random to all polynomial size depth d
circuits our generator uses O((logn)C(d)) random bits, where c(d) is some function
of the depth. It is interesting to ask whether there is a generator that converts
O((logn) c) random bits for some fixed c to n bits that "fool" all constant depth
circuits. Such a result is, however, well beyond reach in the current "state of the
art". Any proof that a generator that uses only O((log n) ~ random bits produces
n bits that fool all depth d circuits would also imply a super logarithmic lower bound
for circuit depth (for the problem of "inverting" that generator). Thus the number
of bits we use is almost optimal in the "current state of the art".

Simulating l a rge r c i rcu i t s

The parameters in our results can be varied in order to get generators that look
random even to larger circuits. For example in order to "fool" all constant depth
circuits of size 2 ~lyl~ it also suffices to use a polylog number of random bits. In
particular, probabilistic constant depth circuits of size 2poly~o9 can be simulated in
DT I M E(2p~176).

PSEUDORANDOM BITS FOR CONSTANT DEPTH CIRCUITS 69

Better approximation

The parametes in our results can also be varied in order to get generators which
approximate the random distribution more closely. For example in order to achieve
a generator that approximates the probability of acceptance of a circuit to within

some (additive) exponentially small fraction, 2 - , it suffices to use n E random bits
for some c = E($).

Generators for other complexity classes

The technique described here, may be used to produce pseudo-random bit gen-
erators for any complexity class, given a function that is "hard" for that class. A
further paper [16] explores these possibilities. For example we can show that Yao's

result [21] that B P P C DTIME(2 n~) for every e > 0, follows from the much weak-
er hypothesis than the one required by Yao, namely that there exists a function in
E X P T I M E such that any polynomial size circuit that a t tempts to compute it errs
on some polynomially small fraction of the inputs.

We also show results to the effect that if such pseudo random generators do not
exist then some nontrivial simulation of Turing machine time by space is possible.
Specifically we show that if BPP is not contained in DTIME(2 hE) for every ~ > 0,
then there exists some c > 0 such that for any time bound T(n) >_ C n, any function
in DTIME(T(n)) has an algorithm for it that for infinitely many n runs in space
DSPACE(T(n) 1-~) on any x of length n. A stronger implication of this form was
proven by Sipser [19], but under an unproven assumption about certain kinds of
expanders.

These kinds of results can also be obtained in a unified fashion for all other
natural complexity classes. For example if there exists some function in PSPACE
that requires circuit depth of n e in order to compute it (with some polynomially small
fraction of error) then randomized circuits of poly-logarithmic depth can be simulated
(uniformly) by deterministic circuits of poly-logarithmic depth, in particular RNC C
DSPACE(polylog).

5. Acknowledgements

I would like to thank L~szl6 Babai for suggesting AM=almost-NP? as an ap-
plication of our result. I would like to thank Avi Wigderson for much help and
collaboration on this work.

References

[1] L. ADLEMAN: Two theorems on random polynomial time, 19th FOCS pp. 75-83, 1978.
[2] M. AJTAI: ~ formulas on finite structures, Annals of Pure and Applied Logic 24, pp.

1-48. 1983.

70 NOAM NISAN : PSEUDORANDOM BITS FOR CONSTANT DEPTH CIRCUITS

[3] M. AJTAI, and M. BEN-OR: A theorem on probabilistic constant depth computations,
16th STOC, pp. 471-474, 1984.

[4] M. AJTAI, and A. WIGDERSON: Deterministic simulation of probabilistic constant
depth circuits 26th FOCS, pp. 11-19, 1985.

[5] L. BABAI: Trading group theory for randomness 17th STOC, pp. 421-429, 1975.
[6] C. n. BENETT, and J. GILL: Relative to a random oracle A, p A r NpA ~ Co_NpA

with probability 1. SIAM J. Comp. 10, 1981.
[7] L. BABAI, and S. MORAN: Arthur Merlin games: a randomized proof system, and a

hierarchy of complexity classes, J. Computer Sys. Sci. 36, pp. 254-276, 1988.
[8] M. BLUM, and S. MICALI: How to generate cryptographically strong sequences of

pseudo random bits. 23rd FOCS, pp. 112-117, 1982.
[9] A. CHANDRA, D. KOZEN, AND L. STOCKMEYER: Alternation, J. ACM, 28, 1981.

[10] M. FURST, R. J. LIPTON, and L. STOCLMEYER: Pseudo random number generation
and space complexity, Information and Control, 64, 1985.

[11] M. FURST, J. SAXE, and M. SIPSER: Parity, Circuits, and the polynomial time
hierarchy, 22nd FOCS, pp. 260-270, 1981.

[12] S. GOLDWASSER, and S MICALI: Probabilistic Encryption, JCSS, 28, No. 2, 1984.
[13] S. GOLDWASSER, and M. SIPSER: Private coins vs. Public voins in interactive proof

systems, 18th STOC, pp. 59-68, 1986.
[14] J. HASTAD: Lower Bounds for the Size of Parity Circuits, Ph.D. Thesis, M.I.T., 1987.
[15] S. A. KURTS: A note on randomized polynomial time, SIAM J. Comp., 16, No. 5,

1987.
[16] N. NISAN, and A. WIGDERSON: Hardness vs. Randomness, 29th FOCS, 1988.
[17] J. H. REIF, and J. D. TYGAR: Towards a theory of parallel randomized computation,

TR-07-84, Aiken Computation Lab., Harvard University, 1984.
[18] M. SIPSER: A complexity theoretic approach to randomness, 15th STOC, 330-335,

1983.
[19] M. SIPSER: Expanders, Randomness, or Time vs. Space, Structure in Complexity

Theory, Lecture notes in Computer Science, No. 223, Ed. G. Goos, J. Hartmanis,
pp. 325-329.

STOCKMEYER: The polynomial time hierarchy, Theor. Comp. Sci. 3, No. 1, 1976.
C. YAO: Theory and applications of trapdoor functions, 23rd FOCS, pp. 80-91,
1982.

[22] A. C. YAO: Separating the polynomial time hierarchy by oracles, 26th FOCS, pp. 1-10,
1985.

[20l L.
[211 A.

Noam Nisan

Department of Computer Science
Hebrew University of Jerusalem
Israel

