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Summary. The effect of taurine on cell viability and metabolism of human 
colon and porcine renal cells was investigated during and after hypoxia. 
Taurine administered during hypoxia markedly reduced cellular deterioration 
due to hypoxia and reoxygenation and led to a significantly greater recovery 
of cellular function following the hypoxic insult. The responsible mechanisms 
for the beneficial effects were an improvement  in osmotic status and calcium 
homeostasis and an induction in cellular growth despite oxygen deficiency 
and reoxygenation. Free oxygen radical generation and lipid membrane  
peroxidation were not reduced by taurine. Taurine acted as a potent  endog- 
enous agent with multifactorial effects against cellular damage due to hypoxia 
and reoxygenation. 
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Introduction 

Since the discovery of taurine in 1827 by Tiedemann and Gmelin as a con- 
stituent of ox bile, this sulfur containing amino acid has been recognized 
as a biologically important substance, which exerts multiple actions on 
cerebral, cardiovascular, pulmonary, neuronal,  hepatic and renal tissues 
(Huxtable, 1992; Michalk et al., 1985; Satoh, 1994; Schuller-Levis et al., 1994). 
Taurine, 2-aminoethanesulfonic acid, is involved in the regulation of cal- 
cium homeostasis and osmotic balance, promotes the energy metabolism 
of the heart and acts as a protector against the so called "calcium paradox" 
of the heart. These functions of taurine suggest that it might be an en- 
dogenous protective agent against hypoxic and reoxygenation cellular 
deterioration (Minor et al., 1994; Nakamori  et al., 1990; Nakashima et al., 
1990; Schaffer et al., 1994; Trachtman, 1991 and 1992; Wingenfeld et al., 1994, 
1995). 
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The  aim of  this s tudy was to invest igate  whe the r  taur ine  is able to protec t  
h u m a n  colon and  porcine renal  tubular  cell cultures against  the cellular dete-  
r iora t ion due to hypoxia  and r eoxygena t ion  and to e lucidate  the mechanisms  
under ly ing  this action. 

Melhods  

Cell cultures 

Proximal porcine renal tubular cells from the cell strain LLC PK 1 (ICN Biomedical, 
Meckenheim FRG) and human colon cells of the cell strain HT 29 (American type 
culture collection, Rockville Maryland, USA) were cultured as monolayers either for 48 
hours in M 199 medium (LLC PK 1) or for 72 hours in Mc Coy 5, a medium (HT 29) 
with an admixture of fetal calf serum (100mlserum/1, serum diluted 1:4), penicillin 
(100 I.U./ml), streptomycin (100/~g/ml) and amphotericin B (250/~g/1). The cultures were 
incubated with 21% oxygen and 5% carbon dioxide. The temperature was kept constant 
at 37 C and the oxygen partial pressure was about 140mmHg. The cultures were fed three 
to four times a week. After an aerobic incubation, each renal cell monolayer contained 
between I and 2.5 million cells. Intestinal cell cultures contained between 4-5.5. million 
cells. 

Hypoxia and reoxygenation 

After a period of exposure to aerobic culture medium, the cells were transferred to either 
5ml Euro Collins solution (Glucose 39.27g/1, KH2PO 4 2.092g/1, KHPO 4 - 7.548g/1, KLC 
1.14g/l, NaHCO3 0.86g/1) or HKT solution (Custodiol R, KOhler Chemie, Ansbach FRG, 
NaC1 15mmol/1, KCL 9mmol/l, MgCI. 6H2 4mmol/1, CaC12 0.015retool/I, potassium 2- 
ketoglutaric acid I mmol/1, histidine .HCL.H20 198 mmol/1, tryptophan 2 mmol/1, mannitol 
30mmol/l). The preservation solution was rendered hypoxic by equilibration with 95% 
nitrogen and 5% carbon dioxide, resulting in an oxygen partial pressures below 8mmHg. 
The culture flasks were plugged with a seal screw cap, described previously (Wingenfeld 
et al., 1995), which allowed a long term gas flow with oxygen partial pressures less than 
20mmHg in the supernatant of the culture in order to simulate moderate or severe 
hypoxia. With a constant low gas flow (0.51/min) and defined supernatant volume, the 
flasks were placed in a water bath (4 C) simulating cold ischemia. After 5 hours (EC) or 
20 hours (HKT) the hypoxic preservation medium was removed and replaced by a 
crystalloid perfusion solution (Hank's balanced salt solution without calcium, glucose 
600ml/l, NaC1 80g/l, KC1 4g/l, KH2PO4 10g/l, Na2HHPO4 475mg/1, Sigma chemicals, St. 
Louis, USA). The cell cultures were incubated aerobically again for 30 minutes at a 
temperature of 37 C and an oxygen partial pressure of 140mmHg. During hypoxic 
storage, taurine (Sigma chemicals, USA) was added to the preservation solution yielding 
a final concentration of 0.1, 0.5, 1, 10 or 20mmol/1. Cultures preserved hypoxically without 
taurine addition served as controls. The reoxygenation buffer solution remained taurine 
free. Fig. l shows the experimental design. 

Measurement of  cellular integrity and energy metabolism 

Before each hypoxic preservation and reoxygenation experiment, 2-3 cultures were 
rinsed from the monolayer surface using trypsin and the cells were then counted in a 
Neubauer chamber to determine cell number. Viability rates were determined using the 
trypan blue exclusion test (Jauregul et al., 1981). After centrifugation and resuspension 
the percentage of remaining viable cells was determined by cell counting and the trypan 
blue exclusion test. As a measure of the metabolic status of cultured cells after 
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! I Aerobiosis I HyPoxic P~reservatio~ [ R e o x y g e n a t i o n  ' I 

LLC PK 1 monolayer  cel l  cu l ture 

HT 29 monolayer  cel l  cu l ture 

pO 2 140 mmHg < 8 mmHg or < 20 mmHg 140 mmHg 

Temperature 37 ° C 4 ° C  37 ° C 

M 199 Medium Euro Col l ins (E C) so lu t ion Hanks solut ion 

wi th FCS or HTK so lu t ion 

F I I  IF 

48 Hours 5 hours or 20 hours 30 min 

Taurine supplementat ion:  O, 0.1, 0.5, 1, 10 and 20 mmol/I  p reserva t ion  so lu t ion 

Fig. 1. Experimental design 

reoxygenation, the cells were treated with perchloric acid and neutralized extracts were 
assayed by means of high pressure liquid chromatography (HPLC). Before denaturation 
of the proteins with perchloric acid (ice bath, 0.25 ml 1M HC1Q), the protein content of 
each culture was measured using the method described by Bradford (1976). After hypoxia 
and reoxygenation, 1 ml of the supernatant of the cultures was removed for the deter- 
mination of lactate dehydrogenase (LDH, LDH Monotest, Boehringer Mannheim, 
Germany). 

Measurement of cell volume 

For the determination of the mean volume of the cells (LLC-PK1) a blood cell counter 
with computered volume analysis was used (Cobas Minos STX, Hoffmann La Roche, 
Switzerland). The data represent the mean cellular volume of 1.2 to 2.5 × 10 ~' cells. 

Measurements" of cellular calcium homeostasis 

Total intracellular calcium content was measured by modified flame photometry (EFOX 
5053), Eppendorf, Germany). To eliminate a contribution from extracellular calcium and 
to prevent contamination of the extracts, all solutions were pretreated with Tritriplex VI 
(EGTA, Merck, Germany). Furthermore cell cultures were concentrated by centrifuga- 
tion and cellular membranes were disintegrated by ultrasonic treatment. Calcium content 
was obtained from 2.5 to 7 × 106 cells. 

Assessment of cellular growth and protein synthesis' 

Cellular growth and DNA synthesis was determined by the use of the 5-bromo-2-deoxy- 
uridine test (5-BrdU Labelling and Detection Kit IIf, Boehringer Diagnostics, Mannheim 
Germany), a nonradioactive alternative for the [3H] thymidine incorporation assay. 5- 
BrdU, a pyrimidine analogue, is incorporated in place of thymidine into the DNA of 
proliferating cells. Cell cultures were incubated with 5-BrdU during 7 hours of hypoxia in 
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the presence or absence of 10mmol taurine/1 preservation solution. The reoxygenation 
period in this experimental group lasted 1 hour. The reoxygenation buffer solution 
contained no taurine. 

Measurement of malondialdehyde production as a parameter of 
oxidative cell injury 

Oxygen free radical induced cellular deterioration was approximated by HPLC separa- 
tion and the measurement of malondialdehyde-thiobarbituric acid adducts according to 
the method of Wong et al. (1987). 

Statistics 

Analyses of 5 to 8 cell cultures per group were used for the determination of each 
parameter. Statistical analyses were calculated parametrically by Students t-test in com- 
parison to the controls with different levels of significance (a: p < 0.05; b: p < 0.01; c: p < 
0.001). 

Results 

Protective effects o f  taurine 

Addit ion of taurine to the culture medium prevented the loss of cell viability 
following 5 hours of hypoxia (Table 1). Taurine t reatment  also led to a 
significant reduction in enzyme leakage during hypoxia and a marked  im- 
provement  in ATP  content following reoxygenation. Similar results were 
obtained with longer periods of hypoxia, as well as different human  cell 
culture lines (intestinal cells) and a different preservation solution (HTK). In 
addition, cell viability after combined hypoxia and reoxygenation were  signifi- 
cantly increased when taurine was added to the preservation fluid during 
hypoxia. Comparable  to the experiments with LLC PK 1 monolayer  cultures, 
enzyme leakage during hypoxia was significantly reduced (Table 2). Thus 
taurine administered during hypoxia protected the cells against hypoxia cell 
damage and improved posthypoxic recovery. 

Mechanisms o f  protection 

Osmoregulat ion 

In comparison to the aerobic controls, cellular volume increased during 
the period of oxygen deficiency. Addi t ion of taurine to the medium evoked a 
dose dependent  reduction in cell swelling. Surprisingly, taurine at concentra- 
tions as low as 0.5retool/1 reduced mean  cellular volume. Higher  concentra- 
tions of taurine caused a more  marked  reduction in the extent of osmotic 
disruption (Fig. 2). Taurine supplementat ion approaching the concentrat ion 
of 10mmol/1 completely prevented hypoxic-induced osmoregulatory deterio- 
ration. A similar effect was obtained by the addition of a supraphysiological 
concentrat ion of 10retool/1 glucose. 
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Table 1. Viability rates, leakage of lactate dehydrogenase 
(LDH)  and energy metabolism of porcine kidney cell cultures 
after aerobic incubation, 5 hours hypoxic preservation (pO2 
< 8 m m H g )  with Euro Collins solution and 30min reoxy- 
genation, with different taurine concentration in preservation 

medium 

Medium Cell L D H  Leakage 
taurine (mmol/1) viability (%)  (U/l) 

Hypoxia 
0 61 _+ 5 24 _+ 8.6 
0.1 62 _+ 5 26.9 _+ 3.1 
0.5 76 + 7 ~ 11.1 _+ 1.0 b 
1 65 --+ 2 13.5 ± 2.1 b 

20 81 --+ 3 c 11.6 ± 3.1 b 

Taurine Viability A T P  content 
(mmol/1) (%)  (nmol/mg protein) 

Hypoxia  and reogygenation 
0 63 + 3 38 _+ 17 
0.1 95 ± 1 c 115 + 24 c 
0.5 93 _+ 2 c 34 ± 7 
1 96 _+ I c 57 ± 9 ~ 

20 93 _+ 3 c 65 +_ 12 ~ 

n = 5-8 cultures per experiment,  mean values _+ SD; Students 
t-test. 
vs. untreated group: ap < 0.05, bp < 0.01, cp < 0.001. 

Table 2. Viability and LDH-leakage  of human intestinal (Ht 
29) cell cultures after 20 hours of cold hypoxia and 30 rain. of 
reoxygenation in H K T  preservation solutions with different 

taurine concentration 

Medium Cell L D H  leakage 
taurine (mmol/1) viability (%) (U/I) 

0 55 _+ 12 11.4 _+ 2.9 
0.5 66 _+ 6 19.2 ± 6.5 ~ 
1 75 ± 8 a 6.0 ± 2 . 4  
5 78 ± 5 ~ 3.8 ± 0.6 

10 82 +_ 20 5.3 +_ 0.8 c 
20 69 _+ 7 9.5 _+ 2.1 

n = 5-8 cultures per  experiment,  mean _+ SD; Students t-test. 
cs. untreated group: ap < 0.05, Up % 0.01, cp < 0.001. 

C a l c i u m  m e t a b o l i s m  

D u r i n g  h y p o x i a  w i t h  a c a l c i u m  f r e e  s o l u t i o n ,  t o t a l  i n t r a c e l l u l a r  c a l c i u m  c o n -  
t e n t  d e c l i n e d  to  l eve l s  2 5 %  of  t h e  a e r o b i c  c o n t r o l s .  D u r i n g  r e o x y g e n a t i o n  
u s i n g  m e d i u m  c o n t a i n i n g  c a l c i u m ,  a m a s s i v e  i n c r e a s e  in c e l l u l a r  c a l c i u m  
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content occurred (calcium overload). Taurine [0.5mmol/] reduced the loss 
of calcium during hypoxia and prevented calcium overload during reoxy- 
genation (Fig. 3). 

Protein synthesis and cellular growth 

During hypoxia and reoxygenation significantly higher rates of BrdU uptake 
and incorporation into cellular DNA occurred when taurine was added during 
the period of oxygen deficiency (Fig. 4). 

Oxidative cellular injury 

Surprisingly, in the presence of taurine the levels of MDA were significantly 
higher after reoxygenation, indicating elevated oxidation of cellular mem- 
branes occurs, presumably due to oxygen derived free radicals (Fig. 5). 

Discussion 

In the present study, the administration of taurine during the hypoxic period 
markedly reduced cell damage resulting from both oxygen deficiency and 
reoxygenation. Although taurine was only added during the hypoxic period, 
the effect extended into the reoxygenation period leading to a significant 
improvement in cellular recovery. Taurine was effective during short bouts, as 
well as long bouts of hypoxia. 

Potential mechanisms underlying taurine induced protection of cellular 
integrity: 

One factor influencing recovery from an ischemic-reperfusion insult is 
improved osmoregulation. Taurine was found to reduce cellular swelling dur- 
ing hypoxia and reoxygenation in a dose-dependent manner. At lower con- 
centrations, taurine could either exert a direct osmoregulatory effect by 
modulation of the activity of sodium or chloride transporters (Satoh, 1994; 
Schaffer et al., 1994; Windhager et al., 1996). Furthermore, other transmem- 
braneous electrolyte transporting systems, such as the sodium/potassium or 
sodium/H + transporters could have been influenced by taurine. Higher con- 
centration of taurine were presumed to reduce the osmotic swelling of the 
cells more directly by increasing osmolality of the culture or preservation 
medium (Huxtable, 1992; Trachtman, 1991, 1992). 

In the absence of extracellular calcium, taurine markedly reduced cellular 
calcium efflux during hypoxia and impeded calcium influx during reoxy- 
genation. Although it is widely accepted that taurine acts as a modulator of 
transmembraneous calcium currents (Schaffer et al., 1994), it still remains to 
be determined whether disturbances in the cellular membrane resulting in 
increased transmembraneous calcium flux or whether altered calcium trans- 
porter activity is responsible for taurine's modulations of calcium flux during 
hypoxia (Cheung et al., 1986; Greene and Paller, 1994; Kribben et al., 1994; 
Piper, 1989; Weinberg et al., 1990). Also unclear is the localization (cytosolic, 
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mitochondria l ,  membrane-assoc ia ted  or nuclear)  of the excess calcium 
(Silverman, 1993). Yet, the  cytoprotect ive effect of taur ine  in the  cell cul ture 
system seemed  to be only partly related to its action on calcium t ranspor t  
since the effect was only detectable  in the presence of a physiological calcium 
concentrat ion.  

One  of the pr imary cellular protect ive mechanisms  of taur ine  appea red  to 
be accelerat ion of cellular growth. The  analyses of B r d U  uptake  during 
hypoxia and reoxygenat ion  indicated that  taur ine  s t imulated pro te in  synthesis 
and cellular growth. It is not  yet  evident  if taur ine  adminis tered  during 
hypoxia,  improved  cell genera t ion  by itself or if different  mediators ,  e.g. 
cAMP,  c G M P  or IGF, are involved. The  data suggest a role of taur ine  as a 
factor for cell growth. 

In contrast  to these protect ive actions, taur ine  exer ted  a dele ter ious  effect 
on the cellular membrane ,  since M D A  content  was e levated after hypoxia and 
reoxygenat ion.  But  it should be kep t  in mind  that  cellular growth was signifi- 
cantly accelerated and that  apparent ly  more  cells were  probably  affected by 
oxidative stress and more  m e m b r a n e s  were inf luenced by free oxygen der ived 
radicals. Nevertheless  this adverse effect of taur ine  was counte rac ted  by the  
o ther  cytoprotect ive mechanisms.  

In conclusion the phylogenet ical ly  ancient  amino  acid, taurine,  seems to be 
a po ten t  physiological protect ive agent  responsible for cellular homeostas is  or 
enantiostasis during and after oxygen deficiency. 

The  authors  thank  Dr. T h o m a s  Minor  (Inst i tute for Exper imenta l  Medi-  
cine, Universi ty of Cologne)  for the  m e a s u r e m e n t  of M D A  and Mr. Norbery  
July (Inst i tute for Exper imenta l  Medicine,  Universi ty  of Cologne)  for 
H P L C  measu remen t s  as well as Mr. Hans  Gtinter  Herb  for skilfull technical  
assistance. 
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