
Math. Systems Theory 26, 237-269 (1993) Mathematical
Systems

Theory
�9 1993 Springer-Verlag

New York Inc.

State-Complexity of Finite-State Devices, State
Compressibility and Incompressibility

Jean-Camille Birget

Department of Computer Science and Engineering, University of Nebraska,
Lincoln, NE 68588-0115, USA
birget@cse.unl.edu

Abstract. We study how the number of states may change when we convert
between different finite-state devices. The devices that we consider are finite
automata that are one-way or two-way, deterministic or nondeterministic or
alternating. We obtain several new simulation results (e.g., an n-state 2NFA
can be simulated by a 1NFA with _< 8" + 2 states, and by a 1AFA with < n 2

states), and state-incompressibility results (e.g., in order to simulate an n-state

2DFA, a 1NFA needs > x/~ "-z states, and a 2AFA needs > c x / n states for
some constant c, in general).

1. Definitions and Notation

We consider several kinds of finite-state devices; all of them can recognize only
regular languages, but some may need fewer states than others to recognize the
same language. The most standard finite-state devices are the (one-way) determinis-
tic finite automata (abbreviated " IDFA," see the Appendix, [RS], and pp. 13-19
of [HU]), and the (one-way) nondeterministiefinite automata (abbreviated "1NFA,"
see [RS] and pp. 19-24 of [HU]). Here we use partial 1DFAs (i.e., the next state
could be undefined) and complete 1DFAs (there is always exactly one next state);
we always indicate which kind of 1DFA we are using. We also consider two-way
finite automata, deterministic (abbreviated "2DFA") and nondeterministic
(abbreviated "2NFA"); they can move their reading head to the left and the right.
Early references are [RS] and [Sh], where it is proved that two-way finite
automata recognize only regular languages (see also pp. 36-41 of [HU]). Later,
alternating finite automata were introduced. See pp. 127ff of [CKS] and [BL] for
one-way alternating finite automata (abbreviated "1AFA"); see [LLS] for two-way

238 J.-C. Birget

finite automata (abbreviated "2AFA"); our 2AFAs are two-way generalizations
of the 1AFAs of [CKS] and [BL]: we allow arbitrary boolean functions (instead
of just the AND and OR of [LLS]). We also consider V-1NFAs; these are like 1NFAs,
but they use a different accepting rule: an input is accepted iff all computation
paths on that input end in accept states. Precise definitions of the various kinds
of finite-state devices used in this paper are given in the Appendix.

Since we are interested in the number of states that a device needs to recognize
a language, we consider the following classes of languages:

For a positive integer n, and

DEVICE e {complete 1DFA, partial 1DFA, INFA, 2DFA, 2NFA, 1AFA },

we let In state DEVICE] be the set of languages (over all possible finite alphabets)
that are recognized by some automaton of type DEVICE with n states. For example,
[n state 1NFA] = {L/2 is a finite alphabet, L ~ 2;* and L is recognized by a
1NFA with n states}. It should be emphasized that we do not fix a particular
alphabet. We assume however that all our alphabets are finite subsets of some
fixed countable set; this never constrains us and it avoids possible set-theoretic
difficulties.

Let us define some operators that can be applied to any class C of languages:

The complementation operator co-(') is defined by

eo-C = {E* - L/the alphabet of L is E, and L e C}.

The reversal operator (')re* is defined by

C re* = {Lre'/L ~ C} (see pp. 71-72 of [HE]) .

The closure under length-preserving homomorphisms L.P.HOM(') is defined by

LP.HOM(C) = {q~(L)/L e C and q~ is a length-preserving homomorphism
defined on the alphabet of L}.

A length-preserving homomorphism (abbreviated l.p.hom.) is a function
q~: E* ---, A*, where 2; and A are finite alphabets, Such that:

(1) for all u, v s Z*: ~o(uv) = q~(u)q~(v), and
(2) for all u~E*: Iq~(u)l = lul.

Here l u] denotes the length of the word u. See pp. 60-62 of [HU] for some
applications of homomorphisms. Note that a length-preserving homomorphism
q~: Z* ~ A* is determined by its restriction Z ~ A (a letter-to-letter map).

In this paper we study how the number of states changes when we convert
one device into another. A result of the form "the IAFAs with <_g(n) states can
simulate all n-state 2DFAs" is an inclusion result (or a "compressibility" result,
when g(n) < n); we can also write In-state 2DFA] _ [g(n)-state 1AFA] (see, e.g.,

Corollary 2.4). A result of the form "a 2AFA needs >c~ /n states (for some con-
stant c > 0) to simulate an n-state 2DFA (in the worst case)," is an incompress-
ibility result; we can also express that fact by writing [n-state 2 D F A] _

[f(n)-state 2AFA] ~ f(n)_> cxfn (see Theorem 5.2). An early reference on that

State-Complexity of Finite-State Devices 239

subject is [MF]. In the present paper the number of states is used as the
only measure of complexity; this is motivated by the connection between the
number of states and the memory (or space) complexity. In [MF] other measures
are used as well (e.g., the number of transitions in a 1NFA).

2. Some Earlier Inclusion and Compressibility Results, and
Some Consequences

Theorem 2.1 (E. Leiss, J. Brzozowski, D. Kozen). For all n > 0:

[n state 1AFA] = [2 ~ state complete 1DFA] rev.

The left-to-right inclusion was observed by Kozen [Ko], [CKS]. The other
inclusion was proved by Leiss (see I-L1], where the theorem is stated), using a
construction of [BL]. In [BL] it is shown that n-state 1AFAs (reversed) are
equivalent to sequential circuits with n boolean state-variables; this also demon-
strates the practical importance of 1AFAs. Compare Theorem 2.1 with the
incompressibility results: Fact 3.2, Theorem 3.7, and Fact 3.8.

We have the following immediate consequences:

Corollary 2.2.

(1) [-n state complete 1DFA] ~ [l-log2 n7 + 2 state halting & sweeping 2AFA].
(2) In state 1AFA] _~ [2 n + 1 state 1NFA] n [2 n + 1 state VlNFA]

n [2" + 2 state halting-&-sweeping 2DFA].

In the above corollary we mention halting and sweeping two-way automata.
The following definitions are used (in all cases: deterministic, nondeterministic, or
alternating).

Definition. A two-way finite automaton is halting iff it has no infinite computa-
tion on any input. A two-way finite automaton is sweeping iff its head makes
turnabouts only at the endmarkers of the input tape, for all inputs and all
computations (see [Sill).

Proof of Corollary 2.2. (1) By Theorem 2.1, [-n state complete 1DFA] _~ [[-10g 2 n-]
state 1AFA]. Moreover, if a language L rev is recognized by a 1AFA A 1 with
k (=l-log2 n-I) states, then its reverse, namely L, is recognized by the following
sweeping and halting 2AFA A 2 (with left endmarker < and right endmarker >): on
an input word w, A z first reads <w> from left to right using a new state i; when
the right endmarker is found A 2 goes to the start states of A1, reads >, moves to
the left and simulates A 1 while reading <w from right to left (i.e., backward); when
the left endmarker is found and A2 is in an accept state of A 1 then A 2 reads <
(still from right to left) and goes to a new accept state f. In state f, A 2 reads all of
w> from left to right. Now, A2 accepts w iff A 1 accepts wreL

240 J.-C. Birget

(2) By Theorem 2.1, In state 1AFA] ~ [2" state complete 1DFAl rev. Moreover,
if a language L r~ is recognized by a 1DFA A with k (= 2") states, then its reverse,
namely L, is recognized by a 1NFA with k + 1 states (obtained from the state
graph of the 1DFA by reversing all the edges, choosing the start state of A as the
accept state of the 1NFA, and adding a new start state; this is a classical
construction). So, In state 1AFA] _~ I-2" + 1 state 1NFA].

Since A is a complete DFA, the language ~* - L ~e~ is also recognized by a
complete 1DFA B with k states (see p. 59 of [HU] for the classical construction).
Since Z* - L rev = (~* - L) ~e~, we can construct a 1NFA for Z* - L with k + 1
states, as above. Finally, by complementing this 1NFA we obtain a V1NFA. So,
[n state 1AFA] _ [2" + 1 state VlNFA].

The proof that 1-n state 1AFA] __%_ [2" + 2 state halting-&-sweeping 2DFA] is
very similar to the proof in (1). []

Theorem 2.1 provides a new and simple proof of the fact (first proved by
Kozen [Ko], [CKS]) that there exist languages which have a 1AFA with n states,
but whose minimum complete 1DFA has 2 2" states. Indeed, it is known that there
are languages L,, (over an alphabet of size 2) such that L~ v is recognized by a
1DFA with m states but such that the minimum complete 1DFA for L,, has 2"
states (see Propositions 1 and 2 of [L1]). Then, for m = 2", we get a language
L" ~ [m = 2" state complete 1DFA] rev = [n state 1AFA]; but L~ v needs a complete
1DFA with 2" = 22" states.

Theorem 2.3.

(1) [Sh] (improved) [n state 2DFA] _~ In" state partial 1DFA].
In state 2NFA] _ [2 ("-1)5+" state complete 1DFA].

(2) [HU] In state 2NFA] ~ In! (1 + e(n)) state INFA],
with lim e(n) = O.

(3) IV] In state 2NFA] _ [4" state V-1NFA].
(4) ILLS] (generalized) [n state 2AFA] ___ [2 ("+ 1)2, state complete 1DFA].

Proof (1) Shepherdson [Sh] proves that a 2DFA with n states is equivalent to
a partial 1DFA with n(n + 1)" states. His proof easily generalizes to nondetermin-
ism, using relations instead of functions: a 2NFA with n states is equivalent to a
partial 1DFA with (2 " - 1)2 "2 states. See the Appendix (Theorem A3.4) for the
improved version.

For (2) and (3) see respectively [HU] and IV].
(4) In ILLS] the result In state 2AFA] c_ [2 "2" state complete 1DFA] is proved

for a more special kind of 2AFA (where every state is either deterministic or 3 or
V, instead of an arbitrary boolean function of the states; and the reading head
moves only when it is in a deterministic state). See the Appendix for the proof in
the general case. []

In Section 4 we improve on (2), replacing n! (1 + e(n)) by 8" + 2. Also, compare
(2) and (3) with Theorem 5.1 (incompressibility result). We have the following (new)
result:

State-Complexity of Finite-State Devices 241

Corollary 2.4. For all n >_ 1 we have:

(1) In state 2DFA] _~ [(n + 2) log2(n + 2) + 1 state 1AFA].
(2) [n state 2NFA] _~ [n 2 state 1AFA].
(3) [n state 2AFA] __ [(n + 3)2 n+2 state 1AFA].

Comments. These results are close to optimal; compare (2) with Theorem 3.7,
and (3) with Corollary 3.9, which give incompressibility results.

Proof o f Corollary 2.4. (1) By Fact A3.1 in the Appendix we have [(n + 2) n+2
state partial 1DFA] re, _ [(n + 2) "+2 + 1 state complete 1DFA] reV. By Theorem
2.1, this is contained in [(n + 2) logz(n + 2) + 1 state 1AFA].

(2) By Fact A3.1 in the Appendix, In state 2 N F A] _ In state 2NFA] rev.
By Theorem 2.3(1), this is contained in [2 ("-1)2+n state complete 1DFA]rev_c
[2 n2 state complete 1DFA] r~v m~(by2.].) In 2 state 1AFA].

(3) By a proof similar to the one of Corollary 2.2(1) we have

[n state 2AFA] _~ [n + 2 state 2AFA]r%

By Theorem 2.3(4) the latter class is contained in

[2 ~"+3)2~ state complete 1DFA] 'e* ~ (by 2.1) [-(n -~- 3)2 "+2 state 1AFA]. []

Fact 2.5 [B3]. For all n > 0,

LP.HOM[n state 2NFA] = LP.nOM[n state 2DFA].

Theorem 2.6 [B3]. There are constants c >_ 1 such that, for all n,

In state 2AFA] _~ LP.HOM[en 2 state 2DFA],
[n state halting 2AFA] _c L.P.HOM[CR state 2DFA],
In state 1-pebble 2NFA] _~ LP.HOM[Cn z state 2DFA].

A 1-pebble 2NFA is a 2NFA with one marker (pebble) that can be picked up,
put down, and left in place, picked up again, etc., by the reading head. See [BH],
and also p. 73, ex. 3.19, of [HU], and [B3]. Compare Theorem 2.6 with the
incompressibility results in Corollary 5.3.

The closure under length-preserving homomorphisms has many interesting
properties; we see some in the next sections. In [-B3] it was observed:

(1) NTIME O(n)_ L.P.HOM(AC 1) (this follows from results of Book and
Greibach [BG]).

(2) Some NP-complete problems are contained in L.P.HOM(NC1).

(Here AC 1 and NC 1 are the well-known parallel-complexity classes.) From this
(and from Theorem 2.6 and Corollary 5.3) it can be seen that the closure under
1.p.hom can be much more powerful than nondeterminism.

The class L.P.HOM[n state 2DFA] can be characterized exactly by a machine
model (namely, nondeterministic single-tape Turing machines with n states, that
visit the same state at most once at the same position, and do not leave the input
portion of the tape). See [B3] and [H].

242 J.-C. Birget

3. Earlier Incompressibility and Nonclosure Results

Fact 3.1. For all n > 0 we have

I f [n state partial 1DFA] _ [fin) state 2NFA], then f(n) > n.

An example of a language whose minimum 1DFA has n states, and for which
every 2NFA must also have > n states, is L, = {a"-l} (a one-word language over
a one-letter alphabet). For a proof, see [B3].

Afortiori , by Fact 3.1, the conversions 1DFA ~ 2 D F A , 1 D F A ~ 1NFA,
2DFA ~ 2NFA, 1NFA ~ 2NFA, do not allow any state compression in general.

The language L, = {a "- l} (where n > 0) was used in [B3] to disprove a
conjecture of Meyer and Fischer [MF, p. 190]; they conjectured that a 1-pebble
2DFA needs > cn states (for some constant c > 0) to recognize {a"-~}; it turns
out that (ln n) 2 In In n(1 + e(n)) states suffice, where lira e(n) = 0 ("ln" is the natural
logarithm). The language {a"- i } also serves to disprove a conjecture of Chrobak
[C]; he conjectured that, for unary languages, 1AFAs and 2DFAs are polynomi-
ally equivalent, regarding their state complexity; but a 2DFA needs n states to
recognize {a"-l}, while a 1AFA needs only Flog2 n-] states (by Theorem 2.1); a
FI2-1AFA (in which, by definition, every computation first uses V-states, then
3-states, then halts) can recognize {a"-1} with (ln n) 2 In Inn (1 + e(n)) states (where
lim e(n) = 0); see [B3].

Theorem 2.1 applied to the language {a 2"-~} immediately yields:

Fact 3.2. For all n > 0 we have

I f [n state 1AFA] ~ If(n) state 2NFA], then f(n) >_ 2".

Compare this with Corollary 2.4.

Proof The language {a 2"-1} has a 1DFA with 2" states, thus (by Theorem 2.1)
a 1AFA with n states. On the other hand, a 2NFA needs > 2" states (see
[B3]). []

Theorem 3.3

(1) [SS] For all n > 0 we have

I f In state 2DFA] ~_ [fin) state 1NFA] w [f(n) state V-1NFA],
then f(n) > c~g for some constant c > 1.

(2) [C] For all n large enough we have

I f In state unary 2DFA] _~ [f(n) state unary INFA], then f(n) > e "~"~/~".

("Unary" means that the alphabet has just one letter.)
In Theorem 5.1 we improve Theorem 3.3(1) to f(n) > ,~2 "-2. Compare also

with Theorems 4.5 and 2.3(3).

State-Complexity of Finite-State Devices 243

Theorem 3.4 ([SS]; see [B6] for a new proof). For all n > 0 we have

I f [n state V-1NFA] _ [f(n) state INFA], then f(n) > 2".

A f o r t i o r i the conversion of an n-state 1AFA or 2AFA into a 1NFA
requires >_ 2" states.

Theorem 3.5 [Sill. For all n > 0 we have

I f In-state INFA] _ If(n) state sweeping 2DFA], then f(n) >_ 2".

Sakoda and Sipser [SS] conjecture that if In state 1NFA] ___ If(n) state 2DFA]
(not necessarily sweeping), then f(n) > p(n) for any polynomial p(.). This is still an
unsolved (and apparently very difficult) problem.

Theorem 3.6 [CS], [Ka]. For all n > 0

I f In state E2-1AFA] _~ [fin) state 2NFA], then f(n) _> c" for some constant
c > l .

A E2-1AFA is a 1AFA which only has V- and 3-states, and in which every
computation first encounters 3-states, then V-states, and then halts; see the
Appendix for more details. Theorem 3.6 also holds if "E2-1AFA" is replaced by
"l-pebble 2DFA" (this follows from Proposition 3 of [MF]).

Theorem 3.7 [L2]. For all n > 0 we have

I f [n state 1DFA] _~ If(n) state 1AFA], then f(n) _> n.

In words: in general a 1DFA cannot be compressed by converting to a 1AFA.
This is in contrast to Theorem 2.1, which says that the reverse of a 1DFA can
always be logarithmically compressed by converting to a 1AFA.

The examples of [L1] (referred to after Corollary 2.2) give the following
classical incompressibility result (see [MF]), with slightly improved bounds:

Fact 3.8. For all n > 0 we have

I f [n state 1DFA] rev c [f(n) state 1DFA], then f(n) _> 2".

By Theorem 3.7, 2DFAs, 1NFAs, and 2NFAs cannot be compressed either,
as one converts to 1AFAs. An interesting consequence of Theorem 3.7 is the
following new result:

Corollary 3.9. For all n > 0 we have

I f [n-state 2AFA] _~ [g(n) state 1AFA], then g(n) _> 2"-2

(This also holds when " 2 A F A " is replaced by sweeping-and-halting 2AFA.)

244 J.-C. Birget

Proof By Corollary 2.2, [2 "-z state 1DFA] _c In state 2AFA] (_[g(n) state
1AFA]). Then, applying Theorem 3.7 to [2 "-2 state 1DFA] ~ [g(n) state 1AFA]
we immediately get g(n) > 2"-2. []

Note. Corollary 3.9 is close to optimal; compare with Corollary 2.4.

4. New Inclusion and Compressibility Results

First we give some results involving length-preserving homomorphisms. Then we
use those results to improve the known results about the simulation of 2NFAs
and 2AFAs by 1NFAs.

Theorem 4.1. For every n > 0 we have:

(1) In-state 1NFA] _~ Ll'.HOM[2[-Iog2(n + 1)-] + 2 state V-1NFA].
(2) In-state 1NFA] ___ L.P.HOM[2[-Iog2 n-] + 1 state halting-&-sweeping 2DFA].

The V-1NFAs in (1) are very special: only their start state is nondeterministic (of
V-type); all other states are deterministic (so they are similar to the parallel
intersection machines of [SS]).

Corollary.
[n state 1AFA] _ L.P.HOM[2n + 4 state u

c7 L.e.ImM[2n + 3 state halting-&-sweeping 2DFA].

Proof of the Corollary. By Corollary 2.2, In state 1AFA] __c [2" + 1 state 1NFA];
by Theorem 4.1 this is contained in L.P.nOM[2[-Iog/(2" + 1 + 1)-] + 2 state V-
1NFA] and in g.e.HOM[2[1og2(2" + 1)] + 1 state halting-&-sweeping 2DFA]. The
corollary then follows. []

Proof of Theorem 4.1. Let L (_ Z*) be recognized by a 1NFA N = (Q, 22, c5, qo, F)
with J Q[= n. We first use a classical construction to obtain an alphabet A, a
language Lo -~ A*, and a length-preserving homomorphism h: A* ~ I2" such that
L = h(Lo). This construction also works if more general 1NFAs that have a set
of start states, rather than a single start state, are used.

We take A = {(p, a,q) e Q x 22 x Q/q~g(p,a)}; thus [AI = [61 _< I E['n 2 (so
the alphabet size grows only polynomially in n). We define h by h(p, a, q) = a. We
take Lo to be {(Pl, al, q0(P/, az, q2)"" (Pk, ak, qk) E A*/k > 1, Pl = qo (the start
state of N), qkeF , and ql = Pi+~ for i = 1 , . . . , k - 1} (u{e} i f q o e F).

Clearly, then, L = h(Lo). The language L o is a local language:

L o = AA* c7 A*B -- A'CA*

for some sets A, B _~ A and C _c A 2 (namely, in this case, A = A ~ {%} x Z x Q,
B = A c7 Q x Z x F, and C = {(p, a, q)(p', b, q') s A2/q r p'}). See pp. 26-29 of [E].
Note that Lo is recognized by the following partial 1DFA with n states: the set
of states is Q, the start state is %, the set of accept states is F (so far everything

State-Complexity of Finite-State Devices 245

is like in the original 1NFA N); the alphabet is A; the next-state (partial) function
3' is defined by 6'(r, (p, a, q)) = q if r = p (undefined if r ~ p).

Theorem 4.1 is proved by showing that Lo can be recognized:

(1) by a V-INFA with 2[logz(n + 1)7 + 2 states, and
(2) by a halting-&-sweeping 2DFA with 2Flog z n7 + 1 states.

We first prove (2).
Proof of (2). We may think of the set Q as a subset of {0, 1) k where

k -- I-log2 n7 (e.g., we view Q as {0, 1, . . . , n - 1}, represented as binary strings of
length [-logz n7). Then q = p iffat every position the binary digits in the representa-
tion of p, respectively q, are the same. Actually the alphabet A (~ Q • Z x Q)
really remains the same as before--although now we think of the elements of Q
as binary strings.

Let w e A* be an input string. The 2DFA sweeps over this string [-logz n7
times. Let us assume n > 2. In sweep number i (with 0 < i < ~-log2 n]) the 2DFA
checks that, for all pairs of adjacent letters (p, a, q)(p', b, q') in w, we have the ith
bit of q = the ith bit of p'. Sweep number i goes from left to right if i is even, and
from right to left if i is odd (recall that we start with i = 0). In sweep number i
only two states are used: (i, 0) and (i, 1). If i is even (left-to-right sweep) the state
remembers whether in the last letter (p, a, q) read, the ith bit of q is 0 or 1; if i is
odd (right-to-left sweep) the state remembers whether in the last letter (p', b, q')
read, the ith bit of p' is 0 or 1. This leads to 2Flog 2 n7 states. If I-log 2 n] is even
an additional sweep is needed, and an additional (accept) state is introduced to
make the reading head end up at the right end of the tape, in case the input is
accepted.

We need some special care at the ends of the input.
At the left end, we begin in the start state (0, 0), read the left endmarker and

stay in state (0, 0). If the next letter is (qo, a, q) (where q0 is the start state of N),
we go to state (0, 0th bit of q); the sweep then continues as stated before. If p v ~ qo
the 2DFA halts (and rejects). Similarly, when i is even, the ith sweep Starts at the
left end in state (i, 0), reads the left endmarker and stays in state (i, 0); then (qo, a, q)
is read, and the next state is (i, ith bit of q); the sweep then continues. When i is
odd and the left endmarker is reached (from the right) in state (i, ?), we read the
endmarker and go to state (i + 1, 0).

At the right end: when the right endmarker is reached in state (i, ?) (with i even),
the 2DFA reads the endmarker and goes to state (i + 1, 1) if 1 < i + 1 < flog2 n7,
or halts if i + 1 = Flog2 n7. At the right end of the tape, at the beginning of the
sweep number i (when i is odd), the 2DFA is in state (i, 1), reads the right
endmarker, and stays in state (i, 1). If the next letter is of the form (p, a, q) with
q e F, the 2DFA goes to state (i, ith bit of p) after reading this letter; if the letter
(p, a, q) is such that q ~ F, then in the first right-to-left sweep (i.e., i = 1) the 2DFA
halts and rejects.

The accept states are (I-log2 n7 - 1, 0) and ([log 2 n7 - 1, 1), if I-log2 n7 is odd;
in the even case a new accept state was introduced.

So far we assumed n > 2 (i.e., r l o g 2 n] > 2) . When 0 < n _ < 2 then the
previously mentioned n-state 1DFA recognizing L o can be used since, for n < 2,
we have n <_ 2[-log2 n7 + 1.

246 J.-C. Birget

Proof of (1). By (perhaps) replacing n by n + 1, we may assume that the
1NFA N has a single accept state fwith no out-edges (except if the empty word e is
accepted--this is dealt with separately later); so F = {f}. Now N has _< n + 1
states.

We think of Q as a subset of {0, 1} k, where k = [-logz(n + 1)-]. Let us assume
for now that n > 2, so k > 1.

The u for Lo is based on the same idea as the sweeping 2DFA that we
constructed earlier.

The set of states is {s o, sl} • {0, 1 , k - 1} x {0, 1}. The start state is So; s 1
is a sink state. The set of accept states is {(i,/~)/the ith bit of f is/3}, where f is the
unique accept state of N. If the empty word should be accepted, we make So an
accept state too. The state transitions of the V-1NFA are as follows (we write
s .(p, a, q) to denote the set of states reached from state s, when a letter (p, a, q) is
read):

s if p r qo (where qo is the start state of N),

So'(p, a, q) = {(j,/~)/0 _< j < k and thej th bit o fq is fl} otherwise.

The only nondeterministic state (of V-type) is So; all other states are deterministic.

sl"(p, a, q) = sl;

{Sl if the ith bit ofp is not ill,

(i, fll)'(P, a, q) = (i, ith bit of q) otherwise.

The easiest way to understand this V-INFA, and to check that it recognizes
L o, is to apply the subset construction to it, and thus obtain an equivalent 1DFA.
If a string w ~ A* does not start with (qo, ", '), this 1DFA will go to state {sl}, and
stay in it. After reading an initial segment. . . (-,-, q) of w, the state of the 1DFA
will either contain sl or it will be {(i, fl~)/O < i < k, the ith bit of q is ill}- If the
next letter does not start with q, the next state will contain Sl; if the next letter
is of the form (q, b, r) the next state will be {(j, f12)/0 <- j < k, the j th bit of r is/32}.
Finally when (.,., f) is encountered and sl has not been reached so far, the state
will become {(j, fl)/the j th bit of f is fl}, which is an accept state of the 1DFA.
Once s~ is reached, the future states of the 1DFA will always contain s~, and thus
cannot be accept states. (Note that in the subset construction for a V1NFA, the
accept states of the 1DFA are those sets that contain only accept states of the
V1NFA.) []

Remark. By using Theorem 2.1 we can prove the following result:

[n state 1NFA] ~ L.V.rIOM[[log2 n-] state IAFA].

This is weaker than Theorem 4.1(1) in that it uses " IA F A " instead of
"V-INFA"; but only I-log 2 n7 states are used instead of 2[-log2(n + I)-] + 2.

Proof of the Remark. If L is recognized by a 1NFA with n states, then L r~v has
a 1NFA with < n states (where we allow 1NFAs to have several start states). We

State-Complexity of Finite-St.ate Devices 247

can write L rev = q~(L~), where ~o is a length-preserving homomorphism, and L~ is
a "local" language, recognized by 1DFA with n states. (See the beginning of the
proof of Theorem 4.1, which also works for 1NFAs with several start states.) Then,
by Theorem 2.1, Lb rev is recognized by a 1AFA with I-log2 n-] states. Therefore
L = q~(L~ ev) 6 L.P.HOM[F1og 2/1-] state 1AFA]. []

Remark on the Conciseness of the Description in Theorem 4.1. The given n-state
1NFA N = (Q, E, 6, qo, F) has 161 edges, with 161 _< IEl 'n 2 (where n = IQI).

In Theorem 4.1 we write L (the language recognized by N) as h(Lo), where
h: A* ~ E * is a length-preserving homomorphism, and L o - A* is a "local"
language which has a 1DFA with n states. The alphabet A has size 161 _ I~:1" n z.

In Theorem 4.1(2), the halting-&-sweeping 2DFA has 2Flog 2 n-] + 1 states and
(161 + 2)(2Flog2 n-] + 1) edges. (The " + 2 " accounts for the endmarkers on the
tape.) So, the 2DFA has O(log n) times as many transitions as the given 1NFA.

In Theorem 4.1(1), the V-INFA has 2[-log2(n + 1)7 + 2 states and

161(2[-log2(n + 1)-] + 2)

edges. In other words, the V-INFA has O(log n) times as many transitions as the
original INFA.

We next prove the analogue of Theorem 4.1, for 2NFAs.

Theorem 4.2. For every n > 0 we have:

(1) In state 2NFA] ___ LP.nOM[-8n + 3 state V-INFA].
(2) In state 2NFA] ~ Le.nOM[8n + 1 state halting & sweeping 2DFA].

The V-INFAs in (1) are very special: only their start state is nondeterministic (of
V-type); all other states are deterministic (so they are like the parallel intersection
machines of [SS]).

By applying the subset construction for V-1NFAs, we obtain, as a consequence
of Theorem 4.2(1), [n state 2NFA] _ [28"+3 state 1NFA]. Later (Theorem 4.5) we
improve this to [n state 2NFA] ___ [8 " + 2 state 1NFA]. This improves the
2NFA-to- INFA conversion of [HU] (see Theorem 2.3(2)) by replacing n!(1 + e(n))
by 8" + 2.

Other consequences of Theorem 4.2 (and Theorem 4.1) are:

Corollary 4.3. For all n > O:

(1) In-state 2AFA] _~ [2 c"2 state 1NFA],
(2) [n-state halting 2AFA] _~ [2 ~" state INFA],
(3) In-state 1-pebble 2NFA] _ [2 ~"2 state 1NFA],

where c is a constant (> I).

Compare this with Fact 3.2 and Theorem 3.4.

248 J.-C. Birget

Proof of Corollary 4.3(1). First we use Theorem 2.6, then we apply Theorem
4.2(1) to the 2DFA that appears; this yields L.P.HOM[Cn 2 state V-1NFA]. Applying
the subset construction to the V-1NFA we get L.P.HOM[2 c"2 state 1DFA], which
is contained in [2 c"2 state 1NFA]. (Note that L.P.HoM[k state 1NFA] =
[-k state 1NFA].) Parts (2) and (3) of the corollary are proved in the same
way. []

Corollary 4.4. The four families L.P.HOM[n state 2DFA], L.P.HOM[n state V-1NFA],
LP.rIoM[n state halting-&-sweeping 2DFA], and [2" state 1NFA], are equivalent
up to linear changes in the parameter n.

The first of these families is exactly characterized by a machine model in [B3].

Proof L.P.HOM[n state halting-&-sweeping 2DFA] ~ L.P.HOM[n state 2DFA]
L.P.HOM[8n + 3 state V-1NFA], by Theorem 4.2(1). Also, by applying the subset
construction for V-1NFAs, we get

L.P.HOM[n state V-1NFA] ~ L.P.HOM[2 n state 1DFA] _~ [2" state 1NFA].

Finally, [2 n state 1NFA] _c L.P.HOM[2n + 1 state halting-&-sweeping 2DFA], by
Theorem 4.1(2). []

A last remark about Theorem 4.2(2), before we prove Theorem 4.2: we already
knew from Fact 2.5 that In state 2NFA] _~ L.P.HOM[n state 2DFA]; Theorem 4.2(2)
says that, in combination with length-preserving homomorphisms, sweeping-and-
halting 2DFAs are as powerful as general 2DFAs (up to a linear increase in the
number of states).

Proof of Theorem 4.2. Let L _~ Z* be recognized by a 2NFA N = (Q, Y., 6, qo, F)
with Q = {0, . . . , n - 1}; the tape has a left (and a right) endmarker ((resp. >); the
transition relation 6: Q x E ~ Q x { - 1 , + 1} indicates the possible next states
and directions of movement of the reading head; see the Appendix. The proof
scheme is similar to the one for Theorem 4.1. We give a language Lo over
some alphabet A, and a length-preserving homomorphism h: A* ~ E* such that
L = h(Lo); we have the additional property that L o is strictly locally 3-testable in
the (restricted) sense that Lo = D u (AA + ~ A+B - A'CA*), for some sets A, B,
D _ A and C _c A 3. (For more information on strictly locally testable languages,
see [MP]; see also [B5] for other applications of strict local testability.) Finally,
in order to prove Theorem 4.2 we show that Lo can be recognized by a V-1NFA
with 8n + 3 states, and by a halting-&-sweeping 2DFA with 8n + 1 states. Let us
first construct A, L o, and h.

Every letter a e Z induces the following binary relations on the set of states:

the left relation a = {(ql, q2) ~ Q • Q/(q2, - 1) e 6(q 1, a)};
the right relation fi = {(Pl, P2) E Q x Q/(p2, -b 1) E ~(pl, a)};

at the ends of the tape the letter a induces the relations

[(a ~] = {(Pl, P2) e Q x Q/(pla F* (ap2 }

State-Complexity of Finite-State Devices 249

and

[~a>] = {(ql, q2) ~ Q x Q/qla> ~ qa> and xqa> ~- qzxa),
for some q in Q and x in E}

(see Section A3 of the Appendix or [HU] for the definition of ~; the Appendix
also discusses [. . . -~] and [~ - "] in more detail).

The 2NFA starts its computation on input w ~ E* in the configuration qo<w>
(i.e., it scans the left endmarker); it accepts when it makes a transition <wq> ~- (W)qF
for some qF ~ F, q ~ Q.

The alphabet A is now defined as follows:

A = {f, a, g)/a ~ E, f _ fi, g ~_ fi, f and g are injective partial functions
from Q to Q, Dom g r ~ and Dom f ~ Dom g = ~ }

k.) A L k.) A R L) (Y~ ~ L),

where

A L = {(~, a, g)/a e Z, g ~_ [(am], g is an injective partial function,
and there is a state q in Dom g such that qo< Y <q},

A R = {(f, a, ~)/a e E, f ___ [~a>], f is an injective partial function, and there
is a state q not in Dom f such that qa> ~ a>qv for some qF E F}.

Terminology: A function f from Q to Q is partial if its domain Dora f is a (possibly
strict) subset of Q; for two relations R 1, R 2 w e write R1 - R2 if the graph of
R1 --- Q x Q is a subset of the graph of R 2.

The homomorphism h is defined by h(f, a, g) = h (~ , a, g) = h(f, a, ~) =
h(a) = a.

Intuitively, (f, a, g) consists of a letter a ~ E together with a choice of transitions
on a to be used in an accepting computation; g corresponds to the chosen
left-to-right moves, f to the chosen right-to-left moves; the special properties
required for f and g correspond to the fact that we may assume that an accepting
computation of a 2NFA is a path in the computation graph; there are no
branchings (.<, >., ~ . ~) and no confluences (>. , .< , ~ . ~) on a path. (Note:
A path is a walk in which no vertex is repeated.) See Appendix A3 for the definition
of "computation graph" and "accepting computation."

The locally testable language Lo should describe accepting paths of the 2NFA
for all possible accepted inputs. Since a word in Lo should describe a path, we
must rule out branchings (in fact, all cases of branching are already ruled out by
the definition of the alphabet A); and we must rule out confluence (two cases of
confluence are ruled out by the definition of A, a third case is of the form --*" ~) .
We must also rule out sinks and sources along the path (these are vertices where
the path would end or start inside the word). Finally at the left end of the input
we must enforce that the computation of the 2NFA starts in the start state qo and
handles the left endmarker correctly; similarly, at the right end we must deal with
the accept states and with the right endmarker. All these conditions on a

2 5 0 J . -C , B i r g e t

computation path are local. The formal definition of Lo is as follows:

Lo = {w e A*/w satisfies conditions (1)-(5) given below}.

(1) (No sink) For every subsegment (fl, al, gl)(f2, a2, g2) of w:

Range gl ~- Dom f2 u Dora g2,

Range f2 ~ Dom f l u Dora gl.

(2) (No source) For every subsegment (fl, al, gl)(f2, a2, g2)(f3, a3, g3) of w:

Dom f2 w Dora g2 ~ Range gl u Range fs.

By condition (1), this "_~" is actually an equality.
(3) (No confluence) For every subsegment (fl, al, g~)(f2, a2, g2)(f3, a3, ga) of w:

Range gl n Range f3 = ~ .

(4) (Left and right end) If Iwl -> 2, then the leftmost (resp. rightmost) letter of
w belongs to A r (resp. AR).

(5) If t wl -< l, then w E D, where D = (E u {~}) c~ L.

Lemma. For A, h, L o just constructed we have L = h(Lo).

Proof of the L emma. It is easy to see that if y ~ E* is accepted by the 2NFA,
then any loop-free accepting computation (path) of y can be described by a word
x a L o, and we have y = h(x). Conversely, suppose x belongs to L o. Because of the
local conditions (1)-(5) and the restrictions on the alphabet A, x must describe an
accepting path of the 2NFA on input h(x), so h(x) a L.

One subtlety should be mentioned: Although x e L o describes exactly one
accepting path of the 2NFA on input h(x), the word x (in addition) may also
describe some cycles, not connected to the path; see Figure 1. These cycles have
no influence on the acceptance of h(x) by the 2NFA. The local conditions (1)-(5)
and the definition of the alphabet cannot prevent such cycles. []

Proof o f (I) of Theorem 4.2, We construct a V-1NFA recognizing Lo; the idea
is similar to the previous construction of a V-1NFA for Theorem 4.1(1).

The set of states is

(So, ,, U +} • • (i}.
O < i < n - - 1

The intuitive meaning of a state

(d : ,d l , i)~{--+, -/-,} x (~'~, ~'-/*,_~,_T_7~} • {i}

is as follows: Suppose the V-1NFA is currently in configuration

�9 "" a j _ 2 ~ j _ l (d 2 , dl, i)ctj ' ' " ;

the current state is (d2, dl, i), and the reading head is under ctj. In this state,
d e = ~ iff %_ 2 is of the form ~j_ 2 = (fj- 2, a j_ 2, gj - 2) a A with i ~ Range gj_ 2;

State-Complexity of Finite-State Devices 251

< L

I ~ I I I
I I I I I

- ~ I 1 I I I

I ! i I
I I 1 I I - ~ I

I 1 I I I f I

I ! I I t
I I I I I I q~
I 1 I I I I

Fig. 1. Example of a path and isolated cycles described by a word in the local language L o of a 2NFA.

d 2 = & otherwise. (In words: d 2 remembers whether, in the pa th described by a
word w �9 A*, an edge points f rom the left to vertex i at posi t ion j - 1; the current
posit ion is j.)

Let aj_ 1 = (fj_l, a j -1 , g j _ ~) � 9 the coordinate dt of the above state is as
follows:

dl = T ~ iff i �9 Dora fj _ 1 k3 Dora gj _ i , and i �9 Range gj _ 1 ;

d 1 = T - / * i f f i � 9 f j - i w Dora gj-1, and i r g j -a ;
dl = :~--* iff i (~ Dora fj _ 1 w Dora gj _ i, and i �9 Range gj_ 1;
d 1 = ~_~ iff i ~ Dora fj _ l w Dora gj_ 1, and i ~ Range gj_ i.

So dl r emembers whether, in the pa th described by a word w �9 A*, an edge points
out of vertex i at posi t ion j - 1 and whether an edge points f rom the left to vertex
i at the current posi t ion j. We see below that the state contains enough informat ion
so that, together with the input letter a j, it determines the next state and it
determines whether the three rules (1), (2), (3) defining Lo are violated in vertex i
at posi t ions j - 1 or j.

The start state is s o, and s 1 is a sink state. The set of accept states is {sv}; if
the empty word should be accepted, s o is an accept state too. Formal ly , the state
transitions of the V-1NFA are as follows:

s o "(f, a, g)

s ~ if (f, a, g) r AL,

= ' {(d2, d l, i)/O < i < n - 1, and d 2 and d 1 are
{. obta ined f rom g as given below} otherwise;

252 J.-C. Bi rge t

here d 2 = - o if qo< ~-* (i, dz = -~ otherwise; and

T (- ' if i e Range g ~ Dora g,

t!_T _.it_---, if i e Range g - Dom g,
dt =]'-~ if i ~ D o m g - Rangeg,

-/* if i ~ Dom g to Range g.

So the start state is nondeterministic (in the
deterministic. For a e D - {e}:

S O " a = s F .

For all x e A:

V-sense). All other states are

S I ' X = S 1 -~ S F ' X .

For a state (d 2 , d l , i) (other than s o, sl, SF), and for x e AL w (D -- {e}):

(d2, d l, i) 'x = s r

For a state (d2, dl , /) (other than So, sl, SF), and for an input

(f, a, g) e A - (A L w (D - {e}) w AR):

sl if condition (1) or (2) or (3) is violated at i,
(d2, dr, i)-(f, a, g) = (d~, dl, i) otherwise,

where d~ is obtained from d I by dropping the out-edge information T or 5 , and
where

{ --* if i ~ Range g c~ (Dom f w Dora g)
~--* if i ~ Range g - (Dora f w Dom g),

d'l --- T 4* if i ~ (Dom f w Dora g) - Range g,

-b if i 6 Dom f w Dom g ~ Range g.

Suppose V-1NFA is currently in configuration ...~j_2Cq_l(d2, dl, i)0~j.-.;
the reading head is now under % = (f, a, g)EA. Condit ion (1) is violated if
dl e { T ~ , ~ -o} but iq~Dom f u Dora g (there is an edge pointing from the left to
vertex i at postion j but there is no edge out of this vertex; so i at position j is a
sink), or if i e Range f but d l e {-T--o, L ~ } (there is an edge from the right into i at
position j - 1, but there is no edge out of i; then i is a sink at position j - 1).

Condit ion (2) is violated if dl e {T-o, T~} (there is an edge out of vertex i at
position j - 1), but i 6 Range f (no edge goes into i from letter % on the right) and
d2 = ~ (no edge goes into i from the left); then vertex i at position j - 1 is a source.

Condition (3) is violated if dz = -o (and edge points from the left to vertex i
at position j - 1) and i e Range f (an edge points to i at position j - 1 from the
right); then there is confluence into i at position j - 1.

Finally, for a state (d2, dl, i) (other than So, S~,SF), and for an input
(f, a , ~) ~ AR:

(d2, dl, i)" (f, a, ~2~) = ~sl
if condition (1) or (2) or (3) is violated at i,

L s r otherwise.

State-Complexity of Finite-State Devices 253

The violation of conditions (1)-(3) is determined as before (except that now
g = ~ , which makes Dom g = (,~).

Proof o f (2) o f Theorem 4.2. We construct a sweeping and halting 2DFA
recognizing L o. This 2DFA, on input w E A*, makes n sweeps (or n + 1 if n is
even, in order to make the head end up at the right end of the tape in accepting
computations); n is the number of states of the original 2NFA. The sweeps are
numbered from 0 to n - 1 (or n); even-numbered sweeps go from left to right,
odd-numbered sweeps go from right to left. At the beginning of sweep number 0
the sweeping 2DFA checks whether the input is in D or begins with a letter in
AL; and at the end of sweep 0 it checks that the input's rightmost letter is in AR.
The main part of the computation of the 2DFA consists in checking whether the
local conditions (1)-(3) (in the definition of Lo) hold everywhere in the input.

Suppose that the set of states of the original 2NFA is Q = {0 n - 1}. In
sweep number i (0 _< i _< n - 1) the 2DFA checks whether conditions (1)-(3) hold
everywhere for state i; that is, everywhere in the input, i is not a sink nor a source,
and we do not have confluence toward i. To check all this, the sweeping 2DFA
uses the following set of eight states in sweep number i:

2 } • • {i},

when i is even (i.e., the sweep goes from left to right). The meaning of these states
and the state-transitions in this sweep are as follows: Suppose the 2DFA is in
state (d2, dl, i)~ {~ , ~ } • {$~, T7%$~,$-~} x {i}, and it is currently in con-
figuration -.-~j_z~j ~ 1(d2, dl , i)~j"" (during the left-to-right sweep i); the reading
head is now under ~j. In this state, d2 = -~ iff ~s-2 is of the form

~ j -- 2 = (f j -- 2 ' as - 2 , gJ - 2) ~ A

with i~ Range gj-2; d2 = ~ otherwise. (In words: d2 remembers whether in the
path described by a word w ~ A* an edge points from the left to vertex i at position
j - 1; the current position is j.) Let ~j_ 1 = (fs-1, as-1, gs-a)~ A; the coordinate d 1
of the above state has already been described in detail at the beginning of the
proof of (1) of Theorem 4.2. Intuitively, dl remembers whether an edge points out
of vertex i at position j - 1 and whether an edge points from the left to vertex i
at the current position j.

When i is odd (right-to-left sweep) the states used are the set

{i} x {4T, ~ , +T, ~-T) • {+ , ~) ;

the meaning is symmetric to the case when i is eyen.
During each sweep the 2DFA acts like a classical window automaton (as used

for strictly locally testable languages, see [MP]). The turns (at the ends of the
sweeps) are handled in the same way as in the proof of (2) of Theorem 4.1. So far
we have used 8n states, namely the set

U ({ - , § • {t--,, x
O<_i<_n-1

x {v-c, , - t } • {§ ,--}).

254 J.-C. Birget

The start state is (~,L7% 0). We use an additional (new) state as accept state. If
n is even this state is also used to make accepting computations of the 2DFA end
at the right end of the input. So the number of states of the 2DFA is 8n + 1.

It can be seen (in the same way as in the proof of (1) of this theorem) that the
information in the state, together with the currently read input letter ~j, is sufficient
to check rules (1)-(3), and to determine the next state. The 2DFA halts (in a
nonaccept state) as soon as it finds out that one of the rules is violated. This
completes the proof of Theorem 4.2. []

Theorem 4.5. For every n > 0 we have

[n state 2NFA] ___ [8" + 2 state 1NFA].

Comments. Compare this with Theorem 5.1 (to convert an n-state 2DFA into

an equivalent 1NFA we need >_ xf}"- I states in general); so, up to a linear change
in the parameter n, Theorem 4.5 is optimal. Compare Theorem 4.5 also with
Corollary 2.4 (which says that an n-state 2NFA can be simulated by a 1AFA with
n 2 states), and with Theorem 2.3(3).

Proof of Theorem 4.5. We apply the reachable subset construction to the V-INFA
of Theorem 4.2(1), in order to obtain a partial 1DFA recognizing Lo. The state-sets
we obtain that way are: {So} (for the start state), the accepting set {sv}, and sets
of the form P = {(d~), d~/), i)/O < i < n} with

d~)e(~ , ~}, d]i)e (~ "--+, ~ ' - ~ , ~ , ~'-~}.

Indeed we have

Claim. Each such set P has the special property that for each i, one and only one
value of (d~), d~)) appears in P (e.g., if (~ , T ~ , i) ~ P, then for this i no other (d2, d 1, i)
is in P).

Proof of the Claim (by induction on the length of the computation that leads to
P). The claim is true at the beginning of the computation; see the definition of
the set So" (f, a, g) in the construction of the V-INFA. Suppose that P is of the form
{(d~), d] i), i)/O < i < n}, as claimed, and that a letter (f, a, g) is read. Then the next
set is P. (f, a, g) = {(d~), d~), i)' (f, a, g)/O _< i < n} = {(d~ i), d~ i), i)/O _< i < n}, where
d~ i) and d'l (i) are uniquely determined according to the state-transitions of the
V-1NFA. Since there was exactly one (d~), d] ~)) for i, there will also be exactly one
(d~ ~), d'~ (1)) for i. This proves the claim. []

No other sets are needed; the next-state set will be made undefined when the
sink-state sl is reached in the V-INFA. Thus we obtain a partial 1DFA with 8" + 2
states, recognizing L o. Finally, since L = h(Lo) (where h is a length-preserving
homomorphism), we obtain a 1NFA with 8" + 2 states recognizing L (by replacing
each edge labeled, say x ~ A, in the DFA by an edge labeled h(x)~ E). []

State-Complexity of Finite-State Devices 255

Remark. If instead of the classical model of a 2NFA the 2NFAs as in [B1] or
[B2] are used (where the head stays between tape cells in a given configuration
and moves over a cell in a transition), the corresponding local language Lo is a
little simpler: it is 2-testable (instead of 3), and it is recognized by a V-1NFA (where
only the start state is nondeterministic) with 4n + O(1) states, and by a halting-
&-sweeping 2DFA with 4n + O(1) states. Also, such a 2NFA with n states can be
simulated by a 1NFA with 4" + O(1) states. Both models of 2NFA are equivalent
(up to doubling the number of states).

5. New Results on Incompressibility, and Lower Bounds

Theorem 5.1. For all n > 0 we have:

I f [n state 2DFA] _c [f(n) state 1NFA], then f(n) >_ ~ /2" -1
I f In state 2DFA] __ [g(n) state 1NFA] ~ [g(n) state V-1NFA], then

g(n) >_ v/2 "- a.

These results are still true when 2DFA is replaced by balting,&-sweeping 2DFA.

Comments. This improves the results of Sakoda and Sipser [SS]; see Theorem
3.3. Also, compare the incompressibility result, Theorem 5.1, with the inclusion
results, Theorem 2.3(3) due to Vardi [V] and Theorem 4.5.

Proof of Theorem 5.1. Suppose

[n state sweeping-&-halting 2DFA] c_ [f(n) state 1NFA];

applying L.P.HOM to this inclusion we obtain

L.P.HOM[n state sweeping-&-halting 2DFA]

L.V.HOM[f(n) state 1NFA] (= [fin) state 1NFA]).

By Theorem 4.1(2),

[2(, - 1)/2 state 1NFA] _ L.P.HOM[n state sweeping-&-halting 2DFA].

Together these incusions imply

[2<, - 1)/2 state 1NFA] ~ If(n) state 1NFA].

Thus 2 ~"- 1)/2 < f(n).
Moreover:

co-In state sweeping-&-halting 2DFA]

_ [n + 2 state sweeping-&-halting 2DFA],

where co- is the complementation operator (defined in Section 1). (Proof of this
inclusion: If L is recognized by a sweeping and halting 2DFA A then L is
recognized by the sweeping and halting 2DFA A' defined as follows: The states
of A' are the states of A together with two new states s and f, where f is the only

256 J.-C. Birget

accept state of A'. A' simulates A, but when a computation of A halts and rejects
at a position other than the right end of the tape, during a right-to-left sweep,
then A' goes to state s and finishes the sweep, then goes to state f and performs
a left-to-right sweep. If A halted during a left-to-right sweep, A' goes to state f
and finishes the sweep.) Thus, if

In + 2 state sweeping-&-halting 2DFA] _~ [g(n + 2) state V-1NFA],

then

[n state sweeping-&-halting 2DFA]

co-In + 2 state sweeping-&-halting 2DFA]

co-[g(n + 2) state V-1NFA]

-~ [g(n + 2) state 1NFA].

Now by the first part of this theorem, we obtain g(n + 2) > ~/2"-1 []

Theorem 5.2. For all n > 0 we have:

(1) I f In state 2DFA] ~ [f(n) state 2AFA], then f(n)_> c.~/n (for some
constant c > 0).

The result is also true if "2DFA" is replaced by sweeping-and-halting 2DFA.

(2) I f [n state 1NFA] _ [-g(n) state 2AFA], then g(n) >_ d - ~ n (for some
constant d > 0).

The result is also true when "1NFA" is replaced by V-1NFA or, afortiori, by IAFA.

(3) Statements (1) and (2) remain true if "2AFA" is replaced by 1-pebble
2NFA:

I f [n state 2DFA] ___ [f(n) state 1-pebble 2NFA], then f(n) _> c" ~ (for
some constant c > 0).

I f [n state 1NFA] _ [g(n) state 1-pebble 2NFA-], then g(n) >_ d. xfn (for
some constant d > 0).

(4) Statements (1) and (2) remain true when "2AFA" is replaced by halting
2AFA, and x/~ is replaced by n:

I f In state 2DFA] _~ If(n) state halting 2AFA], then f(n) _> c ' n (for some
constant c > 0).
I f In state 1NFA] ~_ [g(n) state halting 2AFA], then g(n) >_ d" n (for some
constant d > 0).

Comments. According to this result, 2DFAs and 1NFAs cannot be compressed
much by 2AFAs; but (by Corollary 2.2) 1DFAs can be compressed logarithmically
by 2AFAs.

Proof (1) [n state 2DFA] _~ [f(n) state 2AFA] _~ (by Theorem 2.6)

LP.HOM[C" (f(n)) 2 state 2DFA] _~ (by Theorem 4.5) [2 a'~e~"))2 state 1NFA]

State-Complexity of Finite-State Devices 257

for some constants c', d' > 1. Now, by Theorem 5.1 (which also holds if the 2DFA
is halting-&-sweeping), 2 d''(e~"))2 > 2~,-1)/2 and Theorem 5.2(1) follows from this.

(2) Since [n state 2AFA] is closed under the complementation operator co- we
have

[n state 1NFA] _ [g(n) state 2AFA] iff [n state V-INFA] __q [g(n) state 2AFA]

Moreover,

[n state V-1NFA] _ [g(n) state 2AFA]

___ (by Theorem 2.6) L.e.noM[c'-(g(n)) 2 state 2DFA]

___ (by Theorem 4.5) [2 d''~g~"))~ state 1NFA]

for some constants c', d' > 1. So [n state V-1NFA] ___ [2 d'~g~"))2 state 1NFA-]; thus,
by Theorem 3.4 [SS], 2 d''~g('))~ >_ 2".

(3) This condition uses literally the same proof as (1) and (2), with "2AFA"
replaced by "1-pebble 2NFA."

(4) This condition is also proved in exactly the same way as (1) and (2), with
"2AFA" replaced by "halting 2AFA," "(f(n)) 2'' replaced by "f(n)," and "(g(n)) 2''
replaced by "g(n)." []

Corollary 5.3. For all n >_ 1 we have

I f L.e.nOM[n state 2 D F A] _ [f(n) state 2AFA], then f(n)> c2 "/4 (for some
constant c > 0).

The same is t r u e / f " 2 A F A " is replaced by 1-pebble 2NFA.

Proof By Theorem 4.1 we have

[2(, - 1)/2 state 1NFA] ~_ L.P.HOM[n state 2DFA] ___ [f(n) state 2AFA].

By Theorem 5.2(2), f(n)> d 'x /2~- l) /2 > c '2 "/4. For 1-pebble 2NFAs we use
Theorem 5.2(3). []

A consequence of Corollary 5.3 is that n-state nondeterministic Hennie
machines, studied in [B3], are exponentially more powerful than 2AFAs. Hennie
machines [H] are nondeterministic single-tape n-state Turing machines which
never leave the input portion of the tape, and which never visit the same tape-cell
in the same state (during some accepting computation, on each accepted input).
In fact we have the stronger result that nondeterministic Hennie machines are
exponentially more powerful than deterministic ones:

Corollary 5.4. For all n >_ 1 we have

I f [n state nondet. H.M.] ~_ If(n) state det. H.M.], then f (n) > x / 2 " - 5

Remarks. "H.M." stands for Hennie machine, as just defined, "det" stands for
deterministic. In [B3] it was proved that

LP.HOM[n state 2DFA] = In state nondet. H.M.].

258 J.-C. Birget

Proof of Corollary 5.4. By the remark and by Theorem 4.1 we have

[2(, - 1)/2 state 1NFA] ___ [n state nondet. H.M.] _~ [fin) state det. H.M.].

However, the latter class is closed under complement (see Section 4 of [B3]), so
we have

[2 ("-1)/2 state V-1NFA] ~ [f(n) state det. H.M.]

c (by the above remark) L.P.HOM[f(n) state 2DFA]

_ (by Theorem 4.5) [8 f(") + 2 state 1NFA].

Then (by Theorem 3.4) 8 f~"~ + 2 _> 2 2~"-1)/2. Corollary 5.4 then follows. []

In exactly the same way we prove

I f [n state non-det. H.M.] _~ co-if(n) state nondet. H.M.], then f(n) > ~f2"- 5

Corollary 5.5. For all n > 1:

(a) I f [n state V-1NFA] ~ L.P.HOM[f(n) state V-INFA], then f(n) > n.
(b) I f L.P.HOM[n state V-1NFA] _~ [g(n) state V-1NFA], then g(n) > 2 2~"-3)/2.

This shows how "differently shaped" the classes In state V-1NFA] and
L.P.I4OM[m state V-1NFA] are: to fit the first into the second, no compression is
possible (m > n); to fit the second into the first, m grows by a double exponential

Proof (a) [n state u __%_ L.P.HOM[f(n) state V-INFA] _c [2 f(n) state 1NFA]
(by the subset construction). Then, by Theorem 3.4 [SS], 2f(")_> 2", and thus
f(n) _> n.

(b) By Theorem 4.1(1), [2 (n-2)/2 -- 1 state 1NFA] _c L.P.HOM[n state V-1NFA],
and the latter class is contained in [g(n) state u by assumption. So
[2 ("-2)/z- 1 state 1NFA] ___ [g(n) state V-1NFA]. Now, by Theorem 3.4,
g(n) _> 2 (2~"-2~/2-1). []

The next theorem does not add significantly to the previous results of this
section, but we include it because it uses a very different proof scheme.

Theorem 5.6. I f for all n, In state 2DFA] __ L.P.HOM[f(n) state 2DFA], then:

(a) f(n) _> (n - 2)/6 for all n,
(b) f(n) >_ n for infinitely many n.

Proof For (a) we use the previous techniques:

In state 2DFA] _ L.P.HOM[f(n) state 2DFA]

_ (by Theorem 4.5) [8 f(") + 2 state 1NFA].

Thus (by Theorem 5.1), 8 f(") + 2 > 2 (n-D/2. The result follows.

State-Complexity of Finite-StateDevices 259

The proof of (b) uses a descent argument. By iteratively applying the assump-
tion, we have, for all n and all k (varying independently), [n state 2DFA] _
L.P.nOM[fk(n) state 2DFA]. (Here fk is the composition of k copies of f.) Suppose
now, by contradiction, that f(n) < n - 1 for all n > n o (for some fixed y o ~ N); then
we have:

Claim 1. For every n > no, there exists K, < n -- n 0 such that fK"(n) < n o - 1.

Proof If n _> y o, then f(n) < n. As long as fk(n) > NO, we keep applying f, and at
every step the number strictly decreases: fk(n) > fk+ l(n) []

Claim 2. For all n > N o, [n state 2DFA] ~ L.P.HOM[No -- 1 state 2DFA] (where
N O is the above fixed number).

Proof By what we saw in the beginning of the proof of this theorem,

[n state 2DFA] c L.P.HOM[fK,(n) state 2DFA]

for all n; and, by Claim 1, fK"(n) < No -- 1. So Claim 2 follows. []

However, Claim 2 implies that all regular languages (when n ~ oo) can
be recognized by finite automata with a bounded number of states, which is
false. []

6. Conclusion

In this paper many upper bounds (inclusions, compressibility) and lower bounds
(incompressibility) are given; more results appear in [B6] and [B7]. However,
many problems about the state-complexity of finite devices remain open, for
example the Sakoda-Sipser conjecture (about the 1NFA ~ 2DFA conversion
[SS], [Sil]), and other problems stated at the beginning of [B3]. Another
long-term goal would be to extend these results to (possibly nonuniform) space-
complexity.

Appendix. Definitions of Various Finite-State Devices

In this appendix we give precise definitions of the various finite-state devices used
in the paper, their acceptance rules, and related notions; we also prove some
fundamental results. This makes the paper self-contained and also handles the
problem of the (usually minor) variations in the definitions that appear in the
literature.

A1. One-Way Deterministic, Nondeterministic, or Universal Finite Automata

We follow pp. 19-24 and 13-19 of [HU] (except that we also distinguish between
partial and complete 1DFAs.)

260 J.-C. Birget

Definition. A one-way nondeterministic finite automaton (1NFA) is a structure
N = (Q, E, 6, qo, F), where Q and ~: are finite sets (called "set of states," respec-
tively "input alphabet"), qo ~ Q (qo is called "start state"), and 6 is a function from
Q x E into P(Q), where P(Q) is the power set of Q (3 is called "next-state relation").

A partial one-way deterministic finite automaton (1DFA) is a 1NFA in which
6(q, a) contains at most one element of Q, for every q e Q, a ~ E. So here 6 is a
partial function from Q • Z into Q. A complete 1DFA is a partial 1DFA in which
6(q, a) has exactly one element, for every q ~ Q, a ~ z. So here 6 is a total function.

The state graph of a 1NFA is the directed labeled graph with vertex set Q,

and edges of the form p -~ q whenever q ~ 6(p, a).

A computation of a 1NFA N on input x ~ E* is a walk in the state graph,
starting with the vertex qo, such that when the labels of the edges of the walk are
concatenated x is obtained.

A word x 6 Z* is accepted by the 1NFA N iff there exists (q) a computation
of N on input x such that the last state of this computation belongs to F. The
language recognized by N is the set of all words ~ Z* accepted by N.

Definition. A one-way, universally accepting, nondeterministic finite automaton
(VlNFA) is a structure A = (Q, Z, 3, qo, F) which is exactly like a 1NFA; the
notions of state graph and of computation on an input x E Z* are the same as for
1NFAs. However, the definition of acceptance is different: a word x ~ Z* is accepted
by a VlNFA A iff for every (V) computation of A on input x, the last state of that
computation belongs to F. Here the logical subtlety that if there is no computation
of A on input x (i.e., no walk on A starting with qo can be labeled by x), then x
is accepted, should be observed. The language L recognized by a VlNFA A is the
set of words accepted by A. Observe that L is recognized by a VlNFA A iff E* - L
is recognized by the ordinary 1NFA obtained from A by replacing F by Q - F
(see Theorem 1.1 of [L3]).

Comment. VlNFAs are just as natural as 1NFAs but in formal language theory
they have hardly been used at all. In the control of concurrent processes VlNFAs
would be useful.

A2. One-Way Alternating Finite Automata

We closely follow [BL] and [L1] (where 1AFAs are called "boolean automata").
We need a preliminary definition: A boolean function on the set of variables Q is
a function from {0, 1} Q into {0, 1}; here {0, 1} Q is the set of functions from Q to
{0, 1} (and thus the set of boolean functions on the set of variables Q is denoted
by {0, 1}{~ For q ~ Q , we also denote by q the boolean function whose
disjunctive normal form is q; this is the function (i l , . . . , in) 6 {0, 1} n ~ iq ~ {0, 1},
assuming Q = {1 n}.

Definition. A one-way alternating finite automaton (1AFA) is a structure
A = (Q, E, 3, fo, F), where Q and E are finite sets (called "set of states," respectively
"input alphabet"), F is a subset of Q (called "set of accept states"), fo is a boolean
function on the set of variables Q (called "initial function"), and 6 is a function

State-Complexity of Finite-State Devices 261

from Q x E into {0, 1} {0' 1}Q (called " t ransi t ion function"). We extend 6 to a
function ~' from {0, 1} {~ x]E into {0, 1} {~ as follows:

6'{f, a) = f(6(q,, a) ,6(q. , a)),

where Q = {ql, . . . , q,}, [Q[= n. We further extend 6' to a function 6" from
{0, 1} {~ 1}Q x E* into {0, 1} {~ 1}Q by induction on the length of the input word:
6*(f, e) = f, and 6*(f, wa) = 6'(6"(f, w), a), for w e E*, a s E, f e {0, 1} {~ 1}Q.

A word w e E* is accepted by the 1AFA A iff h (v v) = 1, where h is the boolean
function 6*(fo, w) and VF is the characteristic vector of the subset F of Q (i.e.,
v v = (x 1 x,') where x i = 1 if qi ~ F and x i = 0 if qi ~ F).

It is useful in the study of 1AFAs to have an analogue of the not ion of
"computa t ion of A on input word w"; this is the not ion of computa t ion circuit.
The computation circuit of A on input word w = a a a z " ' a k (with a 1 ak ~ E,
k = 1w I) is the following acyclic (combinational) switching circuit: There are
1 + [Q[([w[+ 1) gates; we imagine the gates as drawn in columns 1 through
[w[+ 1, with IQ] gates per column; there is an addit ional output gate at the left
end of the circuit; every gate only feeds into gates in the neighboring column to
the left (i.e., the information travels from right to left). There is one gate for each
(q, i) e Q x {1 , . . . ,]w] + 1}, drawn in column i; for i < [wl the gate corresponding
to (q, i) implements the boolean function 6(q, ai). The gate corresponding to
(q, [w[+ 1) produces the constant value 1 if q e F , and 0 if q r F. Moreover , we
have an addit ional "ou tpu t -ga te" implementing the initial function fo. The
connections in the circuit are as follows: when i > 1, the gate (q, i) feeds into the
I Q] gates {(p, i - 1)/p e Q} (i.e., the gates in column i - 1) along connect ion edges
that point left; moreover, any gate (q, 1) feeds into the output gate (implementing
fo). The following is s traightforward to check:

Fact. The 1AFA A accepts w iff the computation circuit of A on input w, when
evaluated, produces a 1 at its output gate fo.

Finally, let us define impor tan t special classes of 1AFAs:

A 1AFA A = (Q, E, 6, fo, F) is a s (for a fixed integer k > 0) if and
only if:

(1) Every state q e Q is either an "existential s tate" (3-state) or a "universal
state" (V-state). By definition, q is an 3-state if, for every a e 2, there exist
a set of variables { q i l ' qim} --~ Q such that 6(q, a) = qi, v " " V qim; q is
a V-state if, for every a ~ E, there exists a set of variables {qj, qj~ _c Q
such that 6(q, a) = qj, /x . . . /x qj~

(2) The initial function fo has the disjunctive normal form qo (for some state
qo e Q, called " the start state"); moreover , qo is a q-state.

(3) For every word w e E*, the computa t ion circuit of A on w has the following
property: every path (of length [w[) in the circuit, starting at any gate
(q,]w[+ 1) and ending at the gate (qo, 1), can be factored into _< k
segments such that, within any segment, all the gates are of the same type
(i.e., within a segment all gates are 3 or all gates are V).

262 J.-C. Birget

We define II t , -1AFAs similarly: they differ f rom Zk- IAFAs only in the fact
that qo is now a V-state.

A3. Two-Way Deterministic or Nondeterministic Finite Automata

We follow pp. 36-42 of [H U] (except that we use endmarkers as in [-LLS], [SS],
[-Sil], or as for Turing machines).

Definition. A two-way nondeterministic finite automaton (2NFA) is a s tructure
N = (Q, Y~, 5, q0, F) where Q and Y. are finite sets (called "set of states," respectively
" input alphabet") , qo e Q (% is called "s ta r t state"), F _ Q (F is called "set of
accept states"), and 6 is a function f rom Q x (Y~ u {<, >}) into P(Q x { - 1, + 1})
(5 is called "next-s ta te relat ion"); here P(. . .) denotes the power set. A 2 N F A has
two addit ional special tape symbols, namely < and > (the left, respectively right,
endmarker) which do not belong to Z.

A two-way deterministic finite automaton (2DFA) is a 2 N F A for which 5(% a)
contains at mos t one element, for every q ~ Q, a e Z ~ {<, >}.

A current configuration of the 2 N F A N on input w e Z* is a string <uqv>, where
uv = w, q ~ Q (the current state), and the reading head is posi t ioned on the leftmost
letter of v (or on > if v = 5). We also allow a configurat ion q<w> (when the head
is posi t ioned on the left endmarker) , and the configurat ion <w>q (when the reading
head has moved off the tape on the right).

Suppose the current configurat ion of N on input w is <uqavl>, where a is the
leftmost letter of v v a ~ (i.e., let v = avl), and suppose (p, e) ~ 5(% a), e ~ { - 1, + I}.
If e = + 1, then a next configuration is (uapv~>. If e = - 1, let b be the r ightmost
letter of u (and write u = ulb), or let b = <if u = 5; then a next configurat ion is
<ulpbv>. If the current configurat ion is q<w>, and (p, + i)~ 5(q, <) then a next
configurat ion is <pw). If c 1 is a conf igurat ion of N on input w, and c z is a next
configuration, we write cl F cz; we also use the reflexive-transitive closure F* of F.

An input w e E * of a 2 N F A N is accepted iff qo<w> F*<w>f, for some f ~ F .
(Note that it is w that is accepted, not <w>, since the endmarkers are not considered
as inputs but are par t of the machine.)

I t is convenient, for nota t ional purposes, also to consider " f r agmen ta ry"
configurat ions of the form xqy, where q ~ Q, x e E * u <E*, and y e E * u E*>; in
other words, here we allow one or bo th of the two endmarkers to be absent. The
relations F and ~' can be applied to f ragmentary configurat ions as well (the
definition is the same as for the usual configurations).

The computation graph of a 2 N F A N on input w e Z* is the following directed
labeled graph:

the set of vertices is Q x {0, 1 I w[+ 2};
L (p, the edges are of the form (q, i) i + 1) whenever i < [w[+ 1, (p, + 1)

5(q, a), and of the form (q, i) a (p, i - 1) whenever i ___ 1, (p, - 1) ~ 6(q, a);
here a is the ith letter of w (or a = <if i = 0, or a = > if i = Iw[+ 1).

State-Complexity of Finite-State Devices 263

A computation of the 2NFA N on input w s E* is a walk in the computation
graph of N on w, starting with the vertex (qo, 0). The computation is accepting if
it ends in a vertex (f, Iwl + 2), for some f s F.

The following simple results about 2NFAs are used in this paper:

Fact A3.0. Every 2NFA with n states is equivalent to a 2NFA with n states which
has just one accept state. Moreover, if the former 2NFA is deterministic, then so is the
latter.

Proof When a 2NFA N starting in configuration qo<W> can reach a configura-
tion <w>f with f s F, then no further transitions are possible. Let fx be any element
of F. We now change N by replacing all elements of the form (f, + 1) in 6(q, >)
(where q e Q, f sF) , by (f~, + 1) (i.e., any transition <wq> t-<w>f is replaced by
<wq> ~- <w>fl, for the fixed element f~ of F). Now, repalce F by {fl}; the total set of
states Q remains unchanged. If N was deterministic, then the new automaton will
also be deterministic. It is straightforward to check that w e 2" is accepted by the
new automaton iff w was accepted by N. []

Fact A3.1. I f L ~_ E* is recognized by a 2NFA with n states, then L rev is also
recognized by a 2NFA with n states.

Proof We replace N = (Q, Z, 6, qo, {f}) (with single accept state, by Fact A3.0),
by N' = (Q, Z, 6', f, {qo}), with 3' defined by (p, e) ~ 6'(q, a) iff (q, e) ~ 6(p, a). (This
is the same idea as for reversing a 1NFA, but we do not need a new start state,
thanks to Fact A3.0.) []

Fact A3.2. I f L ~_ Z* is recognized by a 2DFA with n states, then L rev is recognized
by a 2DFA with <_n + 2 states.

Proof Let A 1 = (Q, Z, 6, qo, F) be a 2DFA, with endmarkers (and >, recognizing
L; by Fact A3.0 we may assume F = {fl}. A 2DFA for L r~ is A2, obtained from
At by adding two new states i and f2; the idea is that A 2 first sweeps over (w>
(where w e E* is the input) from left to right, in state i; then Az simulates A1 with
"left" and "right" (and also < and >) interchanged; finally (at the left end of w)
when Ax accepts, Aa goes to state f2 and again sweeps over <w> from left to right.
In more detail: A2 = (Q w {i, f2}, Z, 62, i, {f/}) where i and fz do not belong to
Q, and where 62 is defined by 6z(i, a) = (i, + 1) for all a e Z w {<}, and 6z(i, >) =
(p~ , -1) where p ~ s Q is such that (Pl, + 1) = 61(q0,<); next, for all q s Q ,
a c e we define 62(q,a) = (p , - d) whenever 61(q,a)= (p,d); at the right end
we have, for all q eQ, 62(q, ~)= (p , - d) whenever fix(q, <)= (p,d); at the left
end we have, for all q e Q , 62(q,<)=(p , - d) whenever 61(q, >) = (p, d) with
P v a fl; finally, 62(q, ()---(f2, + 1) i f 6~(q, >)= (f~, + 1); and 62(f2, a) = (1"2, + 1)for
all a E E w {<, >}. []

264 J.-C. Birget

Definition. The global state transitions of a 2NFA A on a word u � 9 w {<, >})+
are the following four relations on Q (see [B1], where however a slightly different
kind of 2NFA was used):

[-+u-+] __ Q x Q is the relation defined by (ql, q2) ff ['--+U-+'] iff q ,u k* uq2.
[~U] _c Q x Q is the relation defined by (qx, q2) e [~ u] iff (3q ~ Q)(qlu ff qu

and (30-�9 (i.e., there exists a computation of A
starting at the left end of u in state qx; during this computation, the reading
head of A stays on u, and eventually leaves u on the left end, in state q2)-

[u ~] c Q x Q is the relation defined by (ql, q2) e [u ~] iff vq~a Y vaq2,
where u = va, a �9 E w {<, >}.

[*-u*--] _c Q x Q is the relation defined by (q,, q2)�9 [~--U+--] iff (3qr x
(vq,a ~ qva and (3o- e E u {<, >})(aqva F- q2aqa)), where va = u, a �9 Z vo {<, >}.

We have the following fact (see [B1]).

Fact A3.3. I f u, v � 9 w {<, >})+, then we have, for the concatenation uv:

[-+uv-~] = [- , u - ~] ([~ v J [u ~ 3) * [- - , w] .

[~ u v] = [~ u] u [- - , u - - q (E ~ v] E u ~ J) * E ~ v] [~ - u ~] .

[u v ~] = [v ~] u [~ w] ([u ~] [~ v]) * [u ~] [- ~ w] .

[~ u v , - -] = [~ w -] ([u ~] [~ v]) * [~ u + -] .

Notation: Juxtaposition of relations denotes composition of relations (defined in the
usual way). The star *, applied to a relation, denotes reflexive-transitive closure.

Below, if R c Q x Q is a relation and q �9 Q, then (q)R = {s �9 Q/(q, s) �9 R}.
We now prove the following improvement of Shepherdson's theorem (of

[Sh]):

Theorem A3.4. I f L __g_ Z* is recognized by a 2NFA (or a 2DFA) with n states,
then L is recognized by a partial 1DFA with < 2 (n- 1)2+~ _ 2~._ ~F states (resp. <_ n ~
states).

Proof From a 2NFA A2 = (Q, Z, ~2, qo, F) we construct the following partial
1DFA A1, which recognizes the same language L:

State set of AI:

{(Px, f0/x e Z*, P~ = (qo)[-+<x~] _c Q, Px r 525, andf~ = [<x~] n (Q - Px)
• (Q - Px)}

(this is almost the same as Shepherdson's construction in [Sh]; the only
difference is that here fx is restricted to states in Q - Px).

Start state: (P~, f~).
Set of accept states: {(Px, fx)/x �9 E*, (qo)[--+<x>-~] n F # 525}.
Next-state function: for a current state (P~, fx) and letter a e Z, the next state

is (P~a, f~a) if Pxa r 525 (there is no next state if Px, = ~) .

State-Complexity of Finite-State Devices 265

We show in the next two lemmas that the next-state function (which is a
partial function) is well defined, i.e., that the knowledge of (P., fx) (here x is not
explicitly known) and a determines at most one state (P,~, f.o).

Lemma. Given (P~,f0 and a c e u {>}, the set (qo)[~<xa~] is uniquely de-
termined. In particular, P~, is unique (for a ~ Z) and [~<x>~] is uniquely determined
(for a = >).

Proof. We show that, for every q ~ Q, we can uniquely determine whether or not
q E (qo)[~<xa~] . By definition, q E (qo)[~<xa~] iff qo<xa t-* <xaq. During any
such computation of A2, the first time the reading head gets to the position of a
at the right end of <xa, the state is in P~. For any such computation (starting in
configuration qo <xa and ending in configuration <xaq), consider the last time that
the reading head visits the position of a in a state in Px; let ql e P~ be that state.
Now, our computation qo<xa Y <xaq can be broken into two parts:

(1) qo<xa Y <xqxa and
(2) <xqla ~-* <xaq.

Since in (2), no state in P~ occurs at the position of a, we have

(ql, q) e ([~ a] ([(x ~] n (Q - Px) x (Q - Px)))* [~a~]

= ([~ a] f ~) * [~ a ~] .

Thus we have q 6 (qo) [~<xa~] iff there exists

ql ~ P~ such that (ql, q) ~ ([~ a] f ,) * [~ a ~] .

Obviously, this condition can be checked if P~, f~, and a are known. []

Lemma. Given (P~, .Ix) and a ~ s u {>}, the relation f~, ~_ (Q - Px,) x (Q - Px,) is
uniquely determined.

Proof We show that, for every p, q ~ Px~, we can uniquely determine whether
(P, q)efx~. By the previous lemma, Px, is uniquely determined. By definition,
(p, q) ~ f~, iff p, q ~ Px, and <xpa Y <xaq. Observe that such a computation does
not use any state in Px at the position of a in <xa (otherwise q would belong to
Pxa)" It follows that (p, q)~ f ~ iff (p, q)e [a ~] ~ [*--a~](f~[~a])*fx[---,a~]; i.e.,
when [<x~] is used, we never need apply it to a state in Px. Therefore (p, q) e fx,
iff p, q r Pxa and (p, q)~ [a ~] u [*--a~](f~[=a])*fx[~a~]; this can be checked
if a, fx, and Pxa (and Px~ is determined by a, fx, Px) are known. []

From the lemmas it follows that A 1 is indeed a partial 1DFA. It can easily
be checked that w e Z* is accepted by At iff (qo)[~<x>--.] c~ F = Px~ c~ F ~ ~ ;
this is iff w is accepted by the 2NFA A 2. Finally, from the construction we can
see that the number of states of A 1 is

266 J.-C, Birget

/ \ n
This is obviously < (2 " - 1)2 (" 2)=. A more refined upper bound is n | | 2 (n- i)~.

- \ n / 2 J

Here the number of states of A= is [QI = n.
If'A2 is a 2DFA, then every f~ is a partial function on Q - {(qo)[~<x~]},

which is a set of n - 1 elements. In that case the number of states of the partial
1DFA A s is < nn"-1 = n". []

A4. Two-Way Alternating Finite Automata

A two-way alternating finite automaton (2AFA) is a structure A = (Q, ~, 6, fo, F)
where Q and Z are finite sets (called "set of states," respectively "input alphabet"),
F is a subset of Q (called "set of accept states"), fo is a boolean function over the
set of variables Q x { + 1} (called "initial function"), and ~ is a function from
Q x (2; w {<, >}) into the set of boolean functions over the set of variables
Q x { - 1 , + 1}; here, as for 2NFAs, < and > are the endmarkers of the tape (at the
left (resp. the right) end).

Just like for 1AFAs, we define the notion of a computation circuit C<w > of the
2AFA A on a tape <w> E <Z*> (where w ~ Y~* is the input): C<w> is an asynchronous
sequential circuit (not necessarily combinational this time) with 1 + [Ql(Iw] + 2)
gates. There is one gate (that we picture at the left end of the circuit) implementing
the boolean function fo; this gate has a single output port (on its left side) and I Q[
input ports. The other gates have labels of the form (q, i)c Q x {0, 1, . . . ,]w] + 1},
and are pictured in columns 0, 1 lwl, Iwl + 1, with]QI gates per column. A
gate (q, i) implements the boolean function 6(q, ai): {0, 1} Q• +1~ __, {0, 1} over
the set of boolean variables Q x { -1 , + 1}; here ai is the ith letter of the input
string w (and for i = 0, ai = <, and for i =]wl + 1, al = >). The gate (q, i) has 2.]QI
input ports labeled by the set of boolean variables Q x { - 1, + 1}. The input port
(p, - 1) (with p e Q) of gate (q, i) is connected to the output port of gate (p, i - 1);
note that a left-move leads from position i to position i - 1, and therefore the
input port (p, - 1) on (q, i) is used. Similarly, the input port (p, + 1) of gate (q, i)
is connected to the gate (p, i + 1). The gate (q, i) has a single output port (since
6(q, al) is a function into the boolean values {0, 1}); this port is connected to the
input ports labeled (q, + 1) of all the gates (p, i - 1) (as p ranges over Q), and to
the input ports (q, - 1) of all the gates (p, i + 1) (as p ranges over Q).

Remark. The gates in column 0 (where a o = <) and in column I wl + 1 (where
alwl + 1 = >) are a little special: In column 0, all input ports (q, - 1) (corresponding
to a left-move on the left endmarker <) are set to the boolean value 0; the output
ports in column 0 feed into the gate implementing fo. In column I wl + 1 the input
ports (q, + 1) are set to the boolean value 1 when q e F, and to 0 when q ~ F.

We also use the computation circuit C<w of the 2AFA A on a tape (w ~ (Y~*
(without a right endmarker). It differs from the circuit C<w> for <w> only by the
fact that column Iwl + 1 is absent. C<w has IQ] input ports (namely theright input

State-Complexity of Finite-State Devices 267

ports of column Iw[, corresponding to the set of boolean variables Q x {+1}),
and it has [Qh+ 1 output ports (namely one port on the left, at the fo gate,
and the I QI output ports at the right of column 1w I). (Note that the circuit
C(w> has no input ports, and it has just one output port, namely the fo gate on
the left.) Thus the circuit C<,~ (for weE*) implements a boolean function B<w:
{0, 1} IQI --* {0, 1} IQl+a (with [Q[boolean input variables and]QI § 1 boolean
output variables).

The input w e E* is accepted by A iff the computation circuit C<w> produces
a stable boolean value 1 at the output of the special leftmost gate (implementing
fo). See, e.g., [BS] for analysis of the stable values of an asynchronous sequential
circuit.

We now show the following extension of [LLS] for our more general 2AFAs.

Theorem A4.1. I f L ~_ E* is recognized by a 2AFA with n states, then L is
recognized by a complete 1DFA with <2 (n+ 1)2n states.

Proof From a 2AFA A z = (Q, Z, ~z, fo, F) we construct a complete 1DFA A1,
described as follows:

Set of states of Aa: {B<w/W s Y*} (where B<w is the boolean function defined
above).

Start state: B<.
Set of accept states: {B<w/the gate fo of C(w> outputs the boolean value 1}.
Next-state function: for a ~ E and a current state B<w, the next state is B<wa.

To see that the next-state function is well defined, we view B<w and a as black
boxes, as in Figure 2. The black box corresponding to a is made in the same way
as a column (corresponding to the input letter a) in the computation circuits C<w
or C(w>.

From the definition of the accept states of A1, it can be immediately seen that
A 1 recognizes the same language as A2. Also, clearly A 1 has _< (2 "+ 1)2~ = 2(,+ 1)2~
states, where n = [Q]. []

B~,

/IQI,

Fig. 2. Black boxes

?
!a
i
I

L.__

for B(w and a.

268 J.-C. Birget

References

[AU]

EB1]

[B23

[B3]

[B4]
[B5]

[B63

l-B7]

[BH]

[BG]
[BL]

[BS]

[CKS]

[CS]

[C]
[N
[n]

[HU]

[Ka]

[K~]

ILLS]

[L1]

[L2]

[L3]

IMP]
[ME]

[RS]

[ss]

A. Aho, J. Ullman, The Theory of Parsing, Translation and Compiling, Vol. 1, Prentice-Hall,
Englewood Cliffs, NJ, 1972.
J. C. Birget, Concatenation of inputs in a two-way automaton, Theoret. Comput. Sci., 63
(1989), 141-156.
J. C. Birget, Positional simulation of two-way automata: proof of a conjecture of R. Kannan,
and generalizations, J. Comput. System Sci. (special issue on STOC89), 45 (1992), 154-179.
J. C. Birget, Two-way automata and length-preserving homomorphisms, Report ~ 109, Dept.
of Computer Science, University of Nebraska (1990) (submitted).
J. C. Birget, The minimum automaton of certain languages (in preparation).
J. C. Birget, Strict local testability of the finite control of two-way automata and of regular
picture description languages, Internat. J. Aloebra Comput., 1 (1991), 161-175.
J. C. Birget, Partial order on words, minimal elements of a regular language, and state-
complexity, Theoret. Comput. Sci. (to appear).
J. C. Birget, Intersection and union of regular languages and state-complexity, Inform.
Process. Lett., 43 (1992), 185-190.
M. Blum, C. Hewitt, Automata on a 2-dimensional tape, Proc. 8th IEEE Syrup. on Switchin 9
and Automata Theory, 1965, pp. 155-160.
R. Book, S. Greibach, Quasi-realtime languages, Math. System Theory, 4 (1970), 97-111.
J. Brzozowski, E. Leiss, On equations for regular languages, finite automata, and sequential
networks, Theoret. Computer Sci., 10 (1980), 19-35.
J. Brzozowski, C. Seger, Advances in asynchronous circuit theory, Part 1, Bull. EATCS, 42
(1990), 198-249.
A. Chandra, D. Kozen, L. Stockmeyer, Alternation, J. Assoc. Comput. Mach., 28 (1981),
114-133.
A. Chandra, L. Stockmeyer, Alternation, Proc. 17th IEEE Syrup. on Foundations of Computer
ScL, 1976, pp. 98-108.
M. Chrobak, Finite automata and unary languages, Theoret. Comput. Sci., 47 (1986), 149-158.
S. Eilenberg, Automata, Languages, and Machines, Vol. A, Academic Press, New York, 1974.
F. C. Hennie, One-tape off-line Turning machine computations, Inform. and Control, 8 (1965),
553-578.
J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages and Computation,
Addison-Wesely, Reading, MA, 1979.
R. Kannan, Alternation and the power of non-determinism, Proc. 15th A CM Syrup. on Theory
of Computing, 1983, 344-346.
D. Kozen, On parallelism in Turing machines, Proc. 17th IEEE Symp. on Foundations of
Computer Sei 1976, pp. 89-97.
R. Ladner, R. Lipton, L. Stockmeyer, Alternating pushdown automata, Proc. 19th IEEE
Syrup. on Foundations of Computer Sciences 1978, pp. 92-106, and SIAM J. Comput., 13(1)
(1984), 135-155.
E. Leiss, Succinct representation of regular languages by boolean automata, Theoret. Comput.
Sci., 13(1981), 323-330.
E. Leiss, Succinct representation of regular languages by boolean automata, II, Theoret.
Comput. Sci., 38 (1985), 133-136.
E. Leiss, A class of tractable unrestricted regular expressions, Theoret. Comput. ScL, 35 (1985),
313-327.
R. McNaughton, S. Papert, Counter-free Automata, MIT Press, Cambridge, MA, 1971.
A. R. Meyer, M. J. Fischer, Economy of description by automata, grammars, and formal
systems, Proc. 21st IEEE Syrup. on Switching and Automata Theory, 1971, pp. 188 191.
M. Rabin, D. Scott, Finite automata and their decision problems, IBM J. Res. Develop., 3
(1959), 114-125; also in E. F. Moore (ed.), Sequential Machines: Selected Papers, Addison-
Wesley, Reading, MA, 1964.
W. Sakoda, M. Sipser, Non-determinism and the size of two-way automata, Proc. lOth ACM
Symp. on Theory of Computing, 1978, pp. 275-286.

State-Complexity of Finite-State Devices 269

[Sh] J.C. Shepherdson, The reduction of two-way automata to one-way automata, IBM J. Res.
Develop., 3 (1959), 198-200; also in E. F. Moore (ed.), Sequential Machines: Selected Papers,
Addison-Wesley, Reading, MA, 1964.

[Sill M. Sipser, Lower bounds on tlae size of sweeping machines, Proc. 11th A CM Symp. on Theory
of Computing, 1979, pp. 360-364; and ,L Comput. System ScL, 21 (1980), 195-202.

[Si2] M. Sipser, Halting space-bounded computations, Theoret. Comput. Sci., 10 (1980), 335-338
also Proc. 19th IEEE Symp. on Foundations of Computer Science, 1978).

IV] M. Vardi, A note on the reduction of two-way automata to one-way automata, Inform.
Process. Lett., 30 (1989), 261-264.

Received December 24, 1990, and in revised form August 15, 1991, and September 29, 1991, and in final
form March 23, 1992.

