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Cogrowth of groups and simple random walks

By

Worrgang Wozss,

Introduction. Let G be a finitely generated discrete group having the presentation
G = F;/N where F; is the free group on 2, ..., 2 (f = 2) and N is a normal sub-
group of F;.

Cohen [3] and Grigorchuk [5] independently introduced the notion of cogrowsth:

Let E, be the set of words w e F; of length |w| = n. If N is non-trivial then the
cogrowth coefficients yn = |By N N| (| 4] is the cardinality of the set A) satisfy
either
a) limyl” =y or

n—00
b) limpi2" =y and yap-1=0 VneN, and ye()2f—1, 2¢ —1].
0 —> 00
Cohen [3] calls the number # = log(yp)/log(2¢ — 1) the cogrowth of G with re-
spect to the given presentation.
In the results which are going to be proved in this paper the following is contained:

— If @ is infinite then y,/| Ey| (and in fact even y,/y") tends to zero as n — oo.
— If ¢ is finite then either

lim o] B = 1]6| o lim yau/| Bon| = 2|6
it —o

n—>0c0

in accordance with the two cases a), b) mentioned above.

Statement of results. Further notations have to be introduced : Let  be the natural
projection of F; onto G = F¢/N. If we F; then & = m(w). e denotes the empty
word, the unit element of F;. u, is the uniform distribution on £, i.e. u,(w) =
1/|Eyn| if we Ey and py(w) = O otherwise. Observe that |Ey| = 1 and |B,| =
2¢(2¢ — 1)n-1 for n = 1. ¢, denotes the projection of the probability distribution
pn onto G og () = > fhn ().

a(W)=wW

In a wider sense th;ui above, the cogrowth coefficients are considered as functions
on G: If % €@ then yy (%) = |E, N wN| where (w) = @. Thus y,(.) counts the
words of length # in the different cosets of N in F;, and y, (%) = | By | o (®).

The following Lemma generalizes Proposition 1 (resp. Theorem 1) of [3]:
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Lemma 1. If v is the number defined in the introduction, we Fy and & = n(w)
then either

a) lim y, (@)V" =y or

n—>co
b)  Hm yopiie (B)12% ==y and yoprjw-1(®) =0 VreN

n >0

in accordance with the two cases from the introduction.

Theorem 1.

I) If G is infinite then |yn(.)|2/y™ tends to zero as n — oo.
II) If @ is finite then Lim | yy(.)|2/| Bn| = V/p/[G] where p =1 in case a) and

n—o0

p = 2 in case b) from the introduction, resp. Lemma 1.

|.]2 denotes the lo-norm on G. Observe that ¢ = 2¢{ — 1 if ¢ is amenable (in
2t
— n
2t—17
and it seems to be more natural to study [ y4(.)]2/| Ex| instead of |y (.)[a/y":
yn(@)/| Ey| is the probability that a randomly chosen word of length n in Fy lies
in the coset wN, where 7 (w) = @.

particular if G is finite) : this was proved in [3] and [5]. In this case | B, |

Theorem 2.

1) If G is infinite then lim p, (®)/y* = 0 uniformly for @& e G.

n—00
IT) 1If G is finite then either
a) limy,(@)/|By| =1/|G| Y®eG or
N —>00

b)  lim yon+iw (®)/| Bansiwl| = 2/|G] VBe@

n—o0

in accordance with the two cases from Lemma 1.

Theorem 1, I) implies Theorem 2, I) and, vice versa Theorem 2, IT) implies Theo-
rem 1, II), as in case b) the set of all &% = n(w) € G for which w € F; has even length
is a subgroup of G of index 2.

By Theorem 2, yau/| Ean| (yn = ya(é)) always has a limit, and this limit is positive
if and only if G is finite.

Proofs. In the proofs the knowledge about random walks will be applied to the
simple random walk on G defined by o¢;. Identities between certain generating
functions will lead to the proposed results.

The convolution of two measures », T on a group is denoted by »¥T, »(® is the
n'th convolution power of », v(® is the Dirac measure at the group identity.
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Lemma 2. For 2z C let
(2t — 1)2 — 22 2tz

M@= giei—n 1ot ™ YO=g 715
Then
ZZ”M—V#OT}‘ 2) 2 (p(R)™ .
7=0

Proof. The following formula is well known [2, 4]:

1 2t—1
(1) #1*,“7»:‘27#12—1‘1— t*,unJrl for n=1,2,...

Consider the Markov chain on the nonnegative integers, called “random walk with

one reflecting barrier”’, with the following transition probabilities:

2t —1
2t

1
Py =1, Pk,k—1=§ and Py g1 =

for =1,
Py, =0 in any other case.
If gn,x = P{'} denotes the probability to reach the state k at the n'th step after

having started in 0, then formula (1) yields

(2) i = i?hz,k,uk
¥=0
and the following relations are satisfied (compare [2]):
go,0=1,
1 1
(3) nt1,0= 5 qn,1, In+1,1=Gn,0 + 57 4n, 2.
2t —1 1

In+1, k= Y, an1+2tan+1, k=2 .. ¢n+1,

gn, x>0 if and only if 0 <k <n and »n — k is even.
By (2) and a change of summation,

Ey”uﬁ”’=ZQk(y)ﬂk, where Qg (y Ey"q” for yeC.

Qo(y) is the generating function of the sequence (u{™(e)), which has been cal-
culated in [7]. Together with the relations (3) a recursion for @;(y) is obtained:

2t —1
t—1+4+ ) — @2t —1)y2’

Qoly) =

2¢ 2t
Q1(y) =7(Qo(y) —1), @y =7Q1(y) —2tQu(y),

1
57 Y Qr+r1(y) — Qx(y)

2t —1
+ Y YQr-1(y) =0.
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The solution of the recursion is

2t
Qrly) =5, Q@) (@y)* for k=12,
where
t— ) — (2t —1)y2
p(y) = ” :
Therefore
P 2t e 1
Zy" == Qo(y) D (p)" ptu — Qo) o
t—1 =0 2t —1
2tz
If py) =2 then y=1yp(z) = Wm and thus
ad 2t —1 *® 1
Pn= o > E) A o
D 1T T LTI
A short caloulation yields ——0 = (2
short calculation yields ————— = f(2).
YR 21 Qo)
Remark. As g, =0 if » — k is odd, also the following identity holds:
ey 1
ZzZn Uon = E‘uo + ]t Z (w (2n)

n=0

Lemma 3. If ze C and

(26— 1)2 — 22 . 2t —1
16 = grar— 1 —si’ O = ger— 1y — st

then

o0 oo

220D = b 9 2 o

n=0

Proof. The following formula holds [4]:

n
B2 = an wuzr Where ano=1/|B,| for »—=0,1,... and
F=0
t—1 . 2t —1
an’k:~t—/(2t_1)n_k if 0<k<nm, an,n:ﬁfi
for n=1,2,....
Then > 220y = > Ap(2) pak. where Ay(z) = > 22ay, 1 is easy to calculate:
n=0 k=0 n=k

Ao(z) =g(2) + h(z), Ar(z)=g(z)2?.
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Proof of Lemma 1. As the formula of Lemma 2 remains invariant under the
projection of F; onto ¢, we have

(=]

(@) S enon(@) = 2 oo(@) -+ 16) . (b)) VG,
n=0 n=0

The simple random walk defined by o1 is an irreducible Markov chain on @, thus
the number

(5) o = lim sup o{® (%)"/7 is independent of % and 0<<p <1 [9].

>0

i/o is the radius of convergence of Zyng(ln)(ﬁ;). Therefore the radius of con-

oo n=0
vergence of zz” 0y (@) does not depend on @. This means
n=0
(6) y = lim sup y, (@)/* VYdhed.
n—>o00

The following formula can be proved like (1.2} in [3]:
VY (B) ya (&) = Yiminta (@) .

Now, if in case a) lim y,(€)1/? = y then for n(w) =&

n—>o0

y = Hm (i) (B) yn-tw—2 (€)) /" < lim inf p, (@)1/7.

H—>00 1 —> 00
Together with (6) we obtain

lim yp, (@)1 = 5.

n—0
In case b), y2u—1(6) =0 VYre N. If yoyrjw-1(®) > 0 for some n then there is a
word v e wN of length 2n + |w| — 1, and w1y €N has odd length, a contra-
diction. Thus ysp4iwi-1(®) = 0 Vn e N and the same argument as above yields

lim yop+jew) (W)1/20 = y.

n—>00 .

Proof of Theorem 1, I). The simple random walk on G with law o1 is either
aperiodic or has period 2, because ¢; is symmetric. In the first case (case a) from
Lemma 1) the random walk defined by ¢{* is also an irreducible Markov chain on
the whole of ¢, which is aperiodic. In the second case, the support of o{¥) generates
a normal subgroup H of G of index 2, and the random walk on H defined by o{?
is irreducible and aperiodic (cf. e.g. [10]).

We shall distinguish between two cases according to transience or recurrence of

(2)
ot®.

Case 1: ¢{2 is transient. If g is the number defined in (5) then it is known [6, p. 85]
that

(7) §g—2n oM (€) < oo

n=0
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Now the remark before Lemma 3 is applied in combination with Lemma 3:

(8) §z2n oP(e) = h(z) + g(2)/2¢ + [(2) ¢ z )20 {20 (2) |
n=0

If 2= (2t — 1)/y then y(2) = 1/p [3, 5].
As the coefficients of the power series in (8) are nonnegative, (7) and (8) yield

> (2¢_1)\2n
Z(—“‘;‘—‘) U,(,L2)(é)<oo

n=0

implying

20 \{2r—1\m
Fya () |3/y2n = 2 — 1 ” 0P (@) >0 as n—oo.

Case 2: 0@ is recurrent. Then g = 1 and y = 2¢ — 1. If W e G, resp. @ e H ac-
cording to a) and b) then it is known [8] that

9) Z (6B (2) — o7 (@)) < oo
If % = & then we obtain from (8) for |z| < 1:

(10) S 20(6D (@) — oD (@)

#=0 co

=h(z) +9(2)2t +[(z)g Z ()27 (o™ (&) — 0P (D))

o7 is symmetric, therefore o2 is positive definite and ¢{? (8) = o® (). Again using
the nonnegativity of the coefficients, (9) and (10) yield for z = 1:

o0

2 (0(8) — 0P (@) < oo
n=0
implying
(11) P (@) — P W) -0 as n-—>oo0.

Suppose, lim a 2)(&) = d > 0 for a subsequence. Choose a finite subset B of G, resp.
E—

H having m > 1/d elements. Then by (11),
1 = lim 20(2) y=m-d>1,

k—>c0 weB
contradiction. Therefore,
lya(.) |[§/|E,ﬂ[2 = Uf,bz)(é) —~0 as n-—oo0.

Proof of Theorem 2, IT). In case a), the random walk on G with law o7 is aperiodic.
Therefore [1] for @ € G, 0" (%) — 1/|G| tends to zero exponentially fast, and using
Lemma 2 we see that

o

(12) ZOZ"(crn(é) — on(®)) = 2% + 1) 2, (@) (o1 (&) — o{® (@)

n=0
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has a radius of convergence greater than 1, as y(z) is increasing for z < [/Qf———l
and y(1) = 1, and as all operations of the proof of Lemma 2 may be applied to
the above series if |y (z)| is smaller than the radius of convergence of the series on
the right hand side of (12). Now ¢4 (€) — 64, (®) — 0 as #n —> co for each W e(,
and an argument similar to the one used in case 2 of the proof of Theorem 1, I)
leads to

(®)/| En| = o0 (@) - 1/|G| for ®eG as n-—>oco.

In case b), the random walk on H with law o{ is aperiodic and ¢{2" (&) — 2/|G|
tends to zero exponentially fast for e H, as |H| = |G|/2. oan1(®) =0 Vrne N
if @ € H, therefore (12) remains true when the sums are taken over all even n. Like
above we obtain

yon ()| Ban| —2/|G| for @eH as n—>oco.
Now choose oG — H. Then G — H = woH and for # ¢ H one has

oD (@g) — 62D (5 B) = Z o1 (@ @) (6™ (@) — oM (a5))
weH
which tends to zero exponentially fast.
If @ € G — H then 03, (#) = o{¥™ (%) = 0, and applying the same arguments as
above to

o0

Z—Ozzm’l(o'zn+1 (o) — oant1 (D))

— 1) 3 (P (0t 0) — ot i)

yields
yon+1(@)]| Bans1] —2/|@| for ®e@—H as n—>oo.

Finally, observe that w e F; has even length whenever n(w) = @ ¢ H and has odd
length otherwise.
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