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Cogrowth of groups and simple random walks 

By 

WOLFGANG WOESS, 

Introduction. Let  G be a finitely generated discrete group having the presentat ion 
G = Ft/N where F t  is the free group on xl . . . . .  xt (t ~ 2) and N is a normal  sub- 
group of  Ft .  

Cohen [3] and Grigorchuk [5] independent ly  introduced the not ion of  cogrowth: 

Let  En be the set of words w e F t  of  length I w I = n. I f  N is non-trivial then the 
cogrowth coe]/icients yn-~ I En n N I (I A I is the cardinali ty of  the set A) satisfy 
either 

a) lim~,~In = 7 or 
n --> o o  

b) 1;....,~/2n . . . .  /en = y  and ~2~t-l=0 V n ~ ,  and ? e ( V 2 t - - 1 ,  2 t - - l ] .  
% - - > 0 o  

Cohen [3] calls the number  ~ = l o g ( ? ) / l o g ( 2 t -  1) the cogrowth of G with re- 
spect to the given presentation. 

I n  the results which are going to be proved in this paper the following is contained:  

- -  I f  G is infinite then ~'n/I En ] (and in fact  even yn/? n) tends to zero as n --~ oo. 

- -  I f  G is finite then either 

l imrn/]E,  ] ---1/]G[ or lim?2n/IE2n] = 2/IG ] 

in accordance with the two cases a), b) mentioned above. 

Statement oI results. Fur ther  notat ions have to be introduced : Let  7e be the natural  
projection of  F t  onto G = Ft/N. I f  w e F t  then ~ = ~(w). e denotes the empty  
word, the unit  element of  F t .  /tn is the uniform distr ibution on En ,  i.e. #~ (w) = 
]/IEn ] if w ~ E n  and t tn(w)-~0 otherwise. Observe tha t  IE0[ = -1  and IEnl = 
2 t ( 2 t -  1) n-1 for n > 1. an denotes the  projection of  the probabil i ty distribution 

fin onto G: a n ( ~ ) :  ~ fin(W). 
~(w)=~ 

I n  a wider sense than  above, the cogrowth coefficients are considered as ]unctions 
on G: I f  ~ e G then ~n(w) -~ I En n w N  l where 7t(w) : ~.  Thus ~n(.) counts the 
words of length n in the different cosets of  N in Ft, and ~n (&) = ] En I an (~). 

The following L e m m a  generalizes Proposit ion 1 (resp. Theorem 1) of  [3]: 
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L e m m a  1. I /  y is the number de/ined in the introduction, w ~ F t  and Cv -= ~ (w) 
then either 

a) l im ~'n (~)l/n : V or 
n --> co 

b) lim ~'2n+lwl (&)l/2n : y and ~2n+lw[-l(W) : 0 Vn e [~ 
n-~oo  

in accordance with the two cases/rom the introduction. 

Theorem 1. 

I) I / G  is in/inite then II ~( , ) l ]2 /~  ~ tends to zero as n---> co. 

I I )  1/ G is ]inite then lim ]lyn(.)l[2/[En[ : ~P~[G I where p : 1 in case a) and 

p : 2 in case b) ]tom the introduction, resp. Lemma 1. 

][.[12 denotes the /2-norm on G. Observe t h a t  ~ - -  2t - -  1 if G is amenable  (in 
2t  

par t icular  if  G is finite) : this was proved  in [3] and [5]. In  this ease [ E .  ] - -  2 t - -  1 sn  

and it seems to be more na tura l  to s tudy  I] rn(.)]]2/[En [ instead of ]I $~(.)][2/~ n: 

~n((v)/[En [ is the probabi l i ty  t ha t  a r andomly  chosen word of length n in Ft  lies 
in the  coset w N ,  where ~ ( w ) :  g,. 

Theorem 2. 

I) 

11) 

I / G  is in/inite then lira ~( (v ) f~n  = 0 uni/ormly /or Cv e G. 
n ---> o o  

1] G i s / in i te  then either 

a) l i m ~ ( ~ ) / I E ~ ] = l / I G  I W, eG or 
n ..-> o o  

b) lim~2n+lwl(~v)/IE2n+]wll = 2/IG I V ~ e G  
n - - >  o o  

in accordance with the two cases/rom Lemma 1. 

Theorem 1, I) implies Theorem 2, 1) and, vice versa Theorem 2, I I )  implies Theo- 
rem 1, I I ) ,  as in case b) the set of  all @ = ~ (w) ~ G for which w ~ F t  has even length 
is a subgroup of G of index 2. 

B y  Theorem 2, ~'2n/I E2nl (?n = ?~ (~)) always has a limit, and this l imit  is posit ive 
if and only if G is finite. 

Proofs. I n  the  proofs the  knowledge abou t  r andom walks will be applied to the 
simple r andom walk on G defined by  a l .  Ident i t ies  be tween certain generat ing 
functions will lead to the  proposed results. 

The  convolut ion of two measures  v, T on a group is denoted by  v.T,  v(n) is the 
n ' th  convolut ion power of  v, v(0) is the Dir~c measure  a t  the  group identi ty.  
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Lemma 2. For z e C let 

(2 t - -  1)~ - -  z 2 

/ ( z ) =  2 t ( 2 t - - 1 )  4 - 2 t z  2 

Then 

2 t z  
and ~o(z)-- 2 t - - 1 4 - z  2" 

1 oo 
z"t . = +/(z)  y n) 

n = O  n = 0  

P r o o f .  The following formula is well known [2, 4]: 

1 2 t - - 1  
(1) ~l*/~n=~[/~n-14- 2 ~ - - t t n + l  for n = l , 2  . . . .  

Consider the Markov chain on the nonnegat ive integers, called " random walk with 
one reflecting barrier",  with the following transit ion probabilities: 

1 2 t - - 1  
P0, 1 = 1, P~, k-1 = ~ -  and Pk, k+l - -  2 t for k > 1, 

Pk,~= 0 in any  other  case. 
~( ' )  denotes the probabil i ty to reach the state k at  the  n ' t h  step after I f  qn, k = ~o,~ 

having s tar ted in O, then formula (1) yields 

n 

k = 0  

and the following relations are satisfied (compare [2]): 

qo, o = 1, 

1 1 
(3) qn+l, o = ~ - q n ,  1, qn~ l , l=qn ,  o + ~ [ q n ,  2, 

2 t - - 1  1 
qn+l,~-- 2t q n ' k - l +  2 tqn '~+l '  k ~ 2  . . . . .  n + l ,  

qn, k > 0 if and only if 0 --< k _< n and n - -  k is even. 
By  (2) and a change of  summation,  

~, yn tt~n) = Q~ (y) #~, where Qe(y) = n q~, e for y ~ C.  
n = 0  k = 0  

Qo(y) is the generating funct ion of  the sequence (#(ln)(e)), which has been cal- 
culated in [7]. Together  with the relations (3) a recursion for Q~ (y) is obtained:  

2 t - - 1  
Q0{y) = t - -  1 + ]/t 2 - -  ( 2 t - -  1 ) y 2 '  

2 t  2 t  
Q l ( y ) = y  ( Q o ( y ) -  l ) ,  Q 2 ( y ) =  y Q l ( y ) -  2tQo(y),  

1 2 t - 1  
2~ y Qk+l (y) - -  Q~ (y) + 2 t y Qk-1 (y) = 0.  
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The  so lu t ion  of the  r ecurs ion  is 

2 t  
Qe(Y) - 2 t  - 1 Qo(y)(q~(y))~ 

where  

q~(y) = 

Therefore  

t - -  Vt 2 -  ( 2 t - -  1)y2 

Y 

oo 

2 t  Qo(y) ~.  (cf(y))n /tn 
2 t - -  1 n=o 

I f  ~(y)  = z t h e n  
2 t z  

y = y ~ ( z ) - -  2 t - -  l + z 2 

for k =  1 ,2  . . . .  

a n d  t h u s  

co oo 

~ zn /tn _ 2 t  - -  1 n~=o 1 
~=0 2 t Q o ( ~ ( z ) )  = (~P(z))n/t~) + ~ [ / t o .  

2 t - - 1  

2 t Qo (~ (z)) 
- / (z) .  A shor t  ca lcu la t ion  yie lds  

1 
2 t - -  1 Q0(y)/ to.  

R e m a r k .  As qn,~ = 0 i f  n -  k is odd,  also t he  fol lowing i d e n t i t y  ho lds :  

r  co  

~.Z  2n/t2n = 1 
n = O  t~,=O 

L e m m a  3. I /  z ~ C and 

(2t  - -  1) 2 - -  z 2 

g(z) - -  2 t ( 2 t - - 1 ) - - 2 t z ~  ' 
h ( z )  = 

2 t - - 1  

2 t ( 2 t - -  1) - -  2 t z  2 

then 

• z2n /t~) = h(z) /to + g(z) ~ z~n /t2n . 
~ = 0  n = 0  

P r o o f .  The  fol lowing fo rmu l a  holds  [4]: 

- -  an,  k/t2k where  
k = 0  

t - -  1 / / (2t  l ) n - k  an ' k  - -  t ] 

for n = 1 , 2  . . . . .  

an, o =  l / l E n  I for n = 0 , 1  . . . .  

2 t - - 1  
if  0 < k < n ,  an, n - -  2 t  

a n d  

T h e n  
r  oo 

z2n ~t~ ) = ~ A k ( z )  /t2t~, where  A k ( z )  = ~ z2nan, l~ is easy  to ca lcu la te :  
n = 0  k = 0  n=k 

Ao(z)  = g(z) + h ( z ) ,  A~(z )  = g ( z ) z  2~ . 
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P r o o f  of  L e m m a  1. As the formula of Lemma 2 remains invariant under the 
projection of Ft  onto G, we have 

r  1 r  

(4) ~ z n ~ ( ~ )  = ~7 a0(~) +/ (z)~ ,  (~(z))~(,n)(~) W e a .  
n = O  n = O  

The simple random walk defined by al is an irreducible Markov chain on G, thus 
the number  

(5) ~ = l i m s u p a ~  ")(~)l/n is independent of@ and 0 < Q ~ I  [9]. 

1/~o is the radius of convergence of 2 n (n) y % ( ) .  Therefore the radius of con- 
oo n = 0  

vcrgence of ~ z n an (~) does not depend on ~. This means 
n = 0  

(6) y = lira sup ~n((v)l/n Y ~  e G. 
n --> c~  

The following formula can be proved like (1.2) in [3]: 

y~ (~) ~,. (~) =< ~,~+,,+2 (~). 

Now, if in case a) limTn(~)l/n = 7 then for ~r(w) = 
n --> oo 

7 = lira (Ylwl (~) ~?n-[w[-2/g))I/n ~ lim infyn (&)1In. 
n ---> 0o  n --> oo 

Together with (6) we obtain 

lim yn (~)l/n = y .  
n --> 0o 

In  case b), y2n- l (g)  = 0 V/e e N. I f  y2n+lwl-l(~)) > 0 for some n then there is a 
word v a w N  of length 2n + [ w ] -  1, and w - i v  a . N  has odd length, a contra- 
diction. Thus y2n+lwl-l(@) = 0 Vn ~ N and the same argument as above yields 

l i r a  y 2 n §  ( ~ ) ) , l / 2 n  ~ y .  

~ ---> o o ,  

P r o o f  of  T h e o r e m  1, I). The simple random walk on G with law ~1 is either 
aperiodic or has period 2, because al  is symmetric. In  the first case (ease a) from 
Lemma 1) the random walk defined by  a~2) is also an irreducible Markov chain on 
the whole of G, which is aperiodic. In  the second case, the support of r generates 
a normal subgroup H of G of index 2, and the random walk on H defined by ~(2) 
is irreducible and aperiodic (cf. e.g. [10]). 

We shall distinguish between two cases according to transience or recurrence of 
(7~ 2 ) .  

Case 1." q~) is transient. I f  ~ is the number defined in (5) then it is known [6, p. 85] 
tha t  

oo 

n = O  
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Now the r emark  before L e m m a  3 is applied in combinat ion with L e m m a  3: 

(8) Z 2n  a(n 2) (~) = h (z) + g (z)/2 t + /(z) g (z) ~ (~v (z)) 2n a(~ 2n) (~). 
n = 0  n = 0  

I f  z = (2t - -  1)/9, then  yJ(z) = 1/Q [3, 5]. 
As the coefficients of  the power series in (8) are nonnegative,  (7) and (8) yield 

~ / \ ~  2 t - - 1  ~n 

implying 
( 2 t  ~ 2 ( 2 t - - l / 2 n  

I[r.(.)lr~./r2~=\2t_l] \ ~ ] G~)(~)-+0 as n - + ~ .  

Case 2: a(~ 2) is recurrent .  Then Q = 1 and y = 2t - -  l. I f  ~ e G, resp. @ z H ac- 
cording to a) and b) then  it  is known [8] t ha t  

(9) ~ (a(~2+ (~) - a(~ 2n) (+)) < ~o. 
n = O  

I f  @ =k e then  we obtain  from (8) for Iz] < 1: 

(~0) ~ z2~(a~)(~) - a~)(~))  
~t=O co 

-= h(z) + g(z)/2t -+-/(z)g(z) ~ ( ~ f l ( Z ) ) 2 n ( a ( 2 n ) ( ~ )  - -  ai2n) (~)) 
~ = 0  

an is symmetr ic ,  therefore a (2) is posit ive definite and a~  ) (~) > a~  ) (&). Again using 
the nonnega t iv i ty  of  the  coefficients, (9) and (10) yield for z = 1 : 

oo 

~t=O 

implying 

(11) a(n2)(~)--a(n2)(@)-+O as n- ->c~ .  

Suppose, lim a(~ )(~) ---- d > 0 for a subsequence. Choose a finite subset  B of G, resp. 
~-->oo 

H having m > l id  elements.  Then by  (11), 

l > l i m  ~ a ~ 2 ~ ) ( ( v ) = m . d > l ,  
~ 

k ---> czo w ~ B 

contradiction.  Therefore,  

P r o o f  o f  T h e o r e m  2, II) .  I n  case a), the  r andom walk on G with law al  is aperiodic. 
Therefore [1] for + + G, a~n)(@) - -  1/I G] tends to zero exponent ia l ly  fast, and  using 
L e m m a  2 we see t h a t  

(12) ~ z~(~,~(~) - a~(+)) = -27 + l(z)~, (~(:))- @~)(~) - a?)(+))  
~t=O ~t=O 
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has  a r ad ius  of  convergence grea ter  t h a n  1, as F(z) is increasing for z < l / ~ -  1 
and  F(1)  = 1, and  as all opera t ions  of  the  p roof  of  L e m m a  2 m a y  be appl ied  to 
the  above  series i f  I F (z) I is smal ler  t h a n  the  radius  of  convergence of  the  series on 
the  r ight  hand  side of  (12). Now a , ( ~ ) -  a n ( w ) - - > 0  as n - + o o  for each @ e G ,  
and  an  a rgumen t  s imilar  to  the  one used in case 2 of  the  proof  of  Theorem 1, I) 
leads  to  

~n(~)llEnl=:~n(~)-->llIGI for ~ G  as n - ->oo .  

I n  case b), the  r a n d o m  walk on H wi th  law a l  2) is aper iodic  and  a ( 2 n ) ( & ) -  2/I G I 
t ends  to zero exponen t i a l ly  fas t  for ~ ~ H,  as I HI ~ I G]I 2" a2n-1 (~) ---- 0 Vn e 
i f  ~ E H,  therefore  (12) remains  t rue  when the  sums are t a k e n  over  all even n. Like  
above  we ob ta in  

r~,,(m)llE~,,I-~211O I for ~ H  as ~ - ~ o o .  

Now choose &0 ~ G -  H.  Then G -  H - ~  &0H and  for ~ ~ H one has  

~(~+~) (~0) - ~ + "  (~0 ~) = ~ ~ (~0 ~-~) (~7 ~ )  (~) - ~,(~)(~))  
u e H  

which tends  to zero exponen t ia l ly  fast.  
I f  ~ e G - -  H then  q2n (&) ~- (~2n) (~) = 0, and  app ly ing  the  same a rgumen t s  as 

above  to  
c o  

Z 2n+1  (0"2n+1 (1~0) - -  O '2 .+1  (W)) 
n = 0  

c o  

= 1(~)~  (~(~))2~+~(~+~)(~o)  - ai2~+" (~)) 
n = 0  

yields 

~2.+1(~o)llE2,~+~l~211Gl for  ~ e G - - H  as n - - > o o .  

F ina l l y ,  observe tha t  w ~ F t  has even length whenever  Jr (w) = ~ ~ H and has odd 
length  otherwise.  
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