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Periodic solutions of some forced
Liénard differential equations at resonance

By
J. MawaIN and J. R. WaRrD, Jr.

1. Introduetion. The study of the existence of 2z:-periodic solutions for Duffing
equations of the form

'+ ex' +glx)=ce(f) =e(t +2m)

where ¢ is arbitrary, g and e are continuous, and g is asymptotically linear in some
sense has been initiated by Lazer in [3] where he proved that sufficient conditions
for the existence were given by

27
fe®)dt=0, lim 27lg(x)=0, 2g(x)=0
0 2] —>o0

for |z| sufficiently large. Conditions of this type are referred to as resonance con-
ditions because they reduce in the linear case (g = 0) to the necessary and suf-
ficient conditions for the solvability of the resonant 2s-periodic problem

' +ex'=e(t), z(0)—x2n)=2(0)—2'(2x)=0.

Successive generalizations and extensions of Lazer’s result have been given by
Mawhin [6], Chang [1], Reissig [9, 10], Martelli [4], Martelli and Schuur [5], and
Gupta [2]. They deal in the most general case with equations of Liénard type of
the form

x”_}” f(x) x + g(t’ X, x,) = e(t)

and sharp results with respect to the linear situation are obtained only for Liénard
equations of the form

(1.1) & 4 [ (@) 2 + gt 2) = e(t).

The best known results for equation (1.1) are those of Reissig [9, 10] which insure
the existence of a 2s-periodic solution for (1.1) with f, ¢ and e continuous and e
having mean value zero when, for some R > 0, and all « with |z| = R either

(1.2) xg(tx) =0
or
(1.2%) xg(t,z) =0
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with in the second case the supplementary condition

(1.3) limsupalg(t,e) <g<<1,
|#] o0
uniformly in £e[0, 2 x].

In a recent paper of the authors [8] dealing with non-resonant situations for (1.1),
uniform conditions of non-resonance with the second eigenvalue of type (1.3) have
been replaced by more general non-uniform ones of the form
(1.4) limsupa-lg(t,z) < I'(t),

|z] =00

uniformly in ¢ € [0, 27], with some restrictions to the interaction of I’ (¢) with the
second eigenvalue 1 of the associated linear problem. We shall adapt in this paper
the methodology of [8] to prove existence theorems for the 2z-periodic solutions of
(1.1) which generalize the papers quoted above. Our main result (Theorem 1 of
Section 3) proves the existence of a 27-periodic solution for (1.1) with f continuous,
g Caratheodory and e Lebesque integrable under assumptions containing, as special
cases, the conditions (1.2") and (1.4) where I' is measurable and such that

(1.5) ry<t

for a.e. t € [0, 27], with strict inequality on a subset of [0, 2x] of positive measure.
A natural question is whether condition (1.3) or (1.4) can be replaced by the assump-
tion that the inequality holds when x — — oo but not necessarily as z -— + oo,
or vice versa. In Theorem 2 we deal with this question, where it is shown that the
answer is positive if I'(f) < 1/4 for a.e. ¢ € [0, 2x], with strict inequality on a subset
[0, 27] of positive measure. An example shows that this result is almost sharp.
Finally some of the above mentioned papers contain extensions of the results to
some systems of Duffing or Liénard equations. The corresponding generalizations
involving conditions of non-uniform type will be considered in another paper.

Let us end this introduction by mentioning that besides the classical spaces

C([0, 2a)), C¥([0, 2x]) and L*¥(0,27:) of continuous, k-times continuously differ-
entiable or measurable real functions whose k-th power of the absolute value is
Lebesque integrable, we shall use the Sobolev spaces W2:.1(0, 2x) and HI(0, 27)
respectively defined by

W2.1(0,2n) = {x:[0,27] — R:2 and 2’ are absolutely continuous on
[0, 27}},
and
H1(0,27) = {x:[0,2x) — R:z iz absolutely continuous on [0, 2 =]
and ' e L2(0,27)}
with respective norms

2n
l%lwz.xz z _fl%(k)(t)ldt
k=0 0
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and

2m)-t zfnx ® dt] * 4 (2m)1 jfi:ac’(t)]2 alt}ll2

0

l“’|H1={

In any normed space, the strong and the weak convergence of sequences will
respectively be denoted by — and —, and we shall use the fact that H1(0, 2x) is
compactly imbedded into C([0, 2]) and is a Hilbert space with inner product de-
fined by

(2, 9) g = (( 2n—1jx dt)(zn)lfy dt) [x

2. An inequality for some Liénard operators with periodie boundary eonditions. For
xe L1(0,2n), let us write
2n

=2y fa@)dt, &()=ax(t)—Z.
0
so that

F(t)dt=0.

O, 10

Let H1(0,27) = {xe H(0,27): & = 0}.
The following results extend Lemmas 1 and 2 of [8] to some resonant situations,
and may be of interest by themselves in some uniqueness questions.

Lemma 1. Let
I'e11(0,2n)
be such that, for a.e. t&[0,2x], one has
(2.1) rgn<t

with the strict inequality on a subset of [0, 2] of positive measure. Then there exists
6 =6(I") > 0 such that for all &e H1(0,27) one has

Bp(#) = (2n) 1[[ — I(t)&2(8)]dt = 8| #| 2.
Proof. Using (2.1) and Wirtinger’s inequality [7], we see that, for all £ € H1(0, 27),
we have
27
(2.2) Br(&) = (2m)L [[# ()2 — &2()]dt 20
' o

with moreover
(2.3) Br (%)
if and only if

Z(@) = Asin(t + p)

0

i
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for some 4 = 0 and ¢ € R. But then by (2.2) and (2.3) we get
2n 2n
0= [(1—I@)z2t)ydt= A2 (1 — I'(t))sin2(t + ¢)dt,
0 0
so that by our assumptions, 4 = 0 and hence # = 0. Assume now that the con-
clusion of the lemma is false. Then we can find a sequence (&) in H1(0, 27) and
#e A1(0,27) such that

(2.4) [i,,[m: 1, &,—%in C(0,2xn]), & —Fin H1(0,27),
and
(2.5) 0 < Br(@s) £1/n, neN¥*.

From Schwarz’ inequality in H1(0, 277), we deduce
[(En, D < |En|in | &0, neN¥,
and hence
n-—>o00

By (2.4) and (2.5), we obtain, for n — oo,

2n
(2.6) |&n|fn — @n)~t [ T &2(t)dt

0

and hence

ie.,
Br(®) <0.
By the first part of the proof, # = 0, so that, by (2.6),

I:Tcn|H1——>0,

a contradiction with the first equality in (2.4).

Lemma 2. Let I be like in Lemma 1, let 6 > 0 be associated to I' by that lemma
and let € > 0. Then for all pe L1(0, 2n) satisfying

@7) 5=0 and p()=I'()+e
a.e. on [0, 27, all continuous functions f: R - R and all xc W2.1(0, 2x) with
(2.8) 2(0) —2(2m) =2'(0) —2'(2x) =0,
one has
2n

(2.9) 2m)~t J (& — &) (2"@) + [ (@) 2’ (1) + pO) 2 () dt = (0 — &) | &|Fn.
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Proof. If x e W2.1(0,27) and satisfies (2.8), we obtain easily, integrating by
parts,

2n
(2 ﬂ)‘lof(f — &) (@) + ft)2'() + p@)x(?) df

2n
= 52 + @) [[@O) — pO ()]
> Bp(#) — e(27)1 }}-m)dt = (6 — &) | |3
0

3. Periodie solutions for a Liénard equation at resonance. Let f: R — R be con-
tinuous and let ¢: [0, 27] X R — R, (¢, 2) — ¢(t, ) be such that ¢(-, ) is measur-
able on [0, 2x] for each € R and g¢(s, -) is continuous on R for a.e. t [0, 2x].
Assume moreover that for each r > 0 there exists y, € L1(0, 27) such that

lg(t,z)| = pr(t)

for a.e. t€[0,2x] and all z € [—r, r]. We consider the following periodic bound-
ary-value problem for the Liénard equation
(3.1) () + [@®) 2 0) + gt x() = e(t), te[0,24],

z(0) —x2(2n) =2'(0) —2'(27) = 0.

We prove the following existence result for (3.1).

Theorem 1. Assume that there exists I' € L1 (0, 27) such that

(3.2) lim sup 9(2@ < TI'¢)

|| >0

uniformly a.e. in t€[0,27x) and such that
rey =1
for a.e. te[0, 2], with strict inequality on a subset of [0, 2] of positive measure.

Assume moreover that there exists real numbers a, A,r and Rwitha < Aandr <0< R
such that

(3.3) git,a) =4
for a.e. te[0,27] and oll x = R and
(3.4) git,z)=a

for a.e. t [0, 2x] and all x < r. Then the problem (3.1) has at least one solution for
each ee L1(0,2 ) such that

(3.5) a<i<Ad.
Proof. Define g1 on [0,2x] X R by
gi(t,x) =gt x) — (1/2) (@ + 4)
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and e; on [0,27] by
er(t) =e(t) — (1/2) (a + 4),
so that, for a.e. te[0, 2], using (3.3) to (3.5), we have

(3.6) g1t %) = (1/2)(4 —a) Z 0
if x= R,

(3.7) g1(6.2) < (1/2) (@ — 4) Z0

if <7, and

(3.8) (1/2) (@ — 4) < & < (1/2) (4 — a).

Clearly, the equation in (3.1) is equivalent to
(3.9) 2''(t) + fx () &' () + g1, 2 () = er (t).
Moreover, we have

limsupz~lg, (), 2) < I'(t)

2] >0

uniformly a.e. in ¢t €[0, 27] and if |z| = max (R, —r), then for a.e. t €[0, 27] we
have also

zlgi(f, ) 2 0.

Let 0 > 0 be associated to the function I" by Lemma 1. Then there exists r; > 0
such that for a.e. t [0, 2] and for all z with Ix] = r1, one has

(3.10) 0 =Zalg(he) < () -+ 0f2.
Define 41 on [0, 277] X R by
z-1g1(t, z) if |#|=zn

yilt, @) =7 gi(t, r)e + (1—zrY) () if 0Zz5n
it —r)e+ (1 +xrfHYI(®) if —rnn<2=0.

Then, by (3.10), we have
0 < yi(t2) = T'(6) + 8/2

for a.e. te [0, 2x] and all x € R. Moreover, the function
&, x) >yt )2

satisfies the Caratheodory conditions, and the function % defined on [0, 27] X R by
h(t, ) = g1(t, ) — y1(t, )2

is such that, for some « € L1(0, 27), a.e. £ [0, 2x] and all z € R, we have

(3.11) [kt z)| = aft).

Finally, equation (3.9) can be written as

(3.12) a"(t) + fe®)@'() + y1lt, 2(O) 2 (8) + h(t, 2 () = er (t).
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To apply Theorem IV.5 of [7] to (3.12) with the periodic boundary conditions on
[0, 27], we have to prove the existence of an a priori bound for the possible solutions
of the family of equations

2+ Af@e + (1 — DO x+ Ayi@ z)x + Ah{t, ) == Le,

BI3) L 0)—2@m) = 2(0) — #'@m) =0, Ae[o.d].

We refer.to [8] for checking that (3.12) can be put into the setting of the abstract
Theorem IV.5 of [7]. If x is a possible solution of (3.13) for some A &[0, 1[, then,
using Lemma 2, we obtain

2x
0= ﬂ)“lof [(Z —2@) (@) + A/ (=) 2 ()

+ Ay (t B () + Ah(E, @ (0)) — Aex (8))]dE
= (0/2)| i — (o] m + Jea|2) (| 8] 4 | #]co)
= (6/2) |3 — B &] + |&|m)

for B > 0 depending only on « and e;. Consequently,
(3.14) |3 < (28/6) (| ] + | &|m) -

Integrating the differential equation in (3.13) over [0, 2x], we obtain
(3.15) (1'— A)(2n) 1[1’ (tydt + A(27) lj[gtx ®)) — ey (t)] dt

and, without loss of generality, we can assume that

(3.16) I'>0.

If z(t) = R for all € [0, 2], then (3.6) and (3.8) imply that
(1—-ArR<0,

a contradiction with (3.16). Similarly, if z(f) < r for all ¢t € [0, 25], we reach a con-
tradiction. Consequently, there exists 7 [0, 2x] such that

r<<z(t)<< R,
and hence, if 7 is such that
z(t) =%,
then

ZT=x(T)==2(7)+ fx’(s) ds,
which implies
27 172
|| = max(R, —7) (2n)1/2(j (@'(s)) 2d3)

0
(3.17) __ma,x( ,— 1)+ 257 |&| g



344 J. MAwWHIN and J. R. WaARD, Jr. ARCH. MATH.

Combining (3.14) and (3.17) we deduce the existence of some g; > 0 such that
|2|m<o1
for all the possible solutions of (3.13) with A € {0, 1[. Consequently, for those pos-
sible solutions, we have
|#leo<gz, |7 |m<es
for some g2, g3 depending only on g1, and hence (3.13) easily implies that
|2 |2 < ea
for some g4 independent of 1 and «. This finally shows that
|2 <
for some g5 independent of 4 €10, 1[ and all possible solutions x of (3.13). Taking
Q= {xeCL([0,2a]): |2 < 05}
in Theorem IV.5 of [7], the proof is complete.
Remark 1. Theorem 1 generalizes the earlier results in the following ways:
a) Lazer’s theorem in [3] corresponds to f constant, e continuous, g continuous
and independent of {, a =4 =0, r= — R and

lim 2-1g(zx) =0.
|z} —>o0
b) Mawhin’s theorem in [6] corresponds to Lazer’s conditions except that f is an
arbitrary continuous function.
¢) Reissig’s theorem in [9] corresponds to f and e continuous, ¢ continuous and
independent of {,, a =4 =0, r= — R and
limsupzig(z)<<1.
@] =00
d) Chang’s theorem in [1] corresponds to f constant, e and ¢ continuous, a =4 =0,
r= — R and
lim #1g(t,z) =0
|#} —o0
uniformly in te[0, 27].
e) Martelli’s theorem in [4] corresponds to f, e, and ¢ continuous, a = 4 =0,
r= — R and

L ~1g(t -
llfff'ipx gt x) < 51
uniformly in [0, 2x].
f) Reissig’s theorem in [10] corresponds to f, e, and g continuous, ¢ = 4 = 0,
r=—R and
(3.18) limsupz-lg{t,z) =g¢g<<1,
|z] —o0
uniformly in te[0, 2a].
g) Gupta’s theorem in [2] corresponds to f constant, e and g continuous, a =4 =0,
r=— R and (3.18).
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Remark 2. We could have considered as well equations of the form
(3.19) e+ f(@)a -+ gt z, &') = e(f)

at the expense of assuming that (3.2), (3.3), and (3.4) for g(t, 2, y) hold uniformly
in y € R. Other sufficient conditions for the existence of a 2x-periodic solution of
(3.19) can be found in the paper [5] of Martelli and Schuur.

Remark 3. An analysis of the proof of Theorem 1 shows that conditions (3.3)
and (3.4) could have been replaced by the following more general one.
There exist y, I'e L1[0, 2 7] such
y() <liminfa-lg(t, z) <limsupatyg(t, x) < ()

2]~ 00 lz] —>o0
with 0 =y <T.
There exist real numbers a, A, r, R with a < A and r < 0 << R such that

(27)1 T:](t, z(t)dt = 4
0

for all xe W2:.1(0,2m) satisfying (2.8) such that

min z(t) = R
te[0,27]

and such that
@)1 [g(t () dt < a
0

for all xe W2:1(0, 2 ) satisfying (2.8) such that

max z(f) <.
tel0,2a]

Corollary 1. Assume that there exists I'e L1(0,2m) satisfying the conditions of
Theorem 1 and that

liminfg(t,z) = 4+ o0, limsupg(t )= — co

T—>—o00 T—>—00

uniformly a.e. in t € [0, 2x]. Then the problem (3.1) has at least one solution for every
ec L1(0,2x).

Proof. Let ec L1(0, 27) be given; then there exists B > 0 such that
glt,x) =¢
for a.e. te[0,2n] and all z = R and there exists r <C 0 such that
glt,x)=¢é

for a.e. £€[0,2x] and all z < ». The existence of a solution for (3.1) then follows
from Theorem 1.
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One might suppose that if (3.2) is weakened to hold only as x — — oo or only
as & — -+ oo then the conclusions of Theorem 1 still hold. This, however, is false.
If 1/2 << o < 1 then elementary calculations show that the differential equation

2

' — ol -

et e
M —zap =Y

has a non-trivial 2 z-periodic solution, and the equation
o o? ‘ )
' — a2 4 "(1__—2‘0;)?.’{’" == sin (¢)

has no 2m-periodic solution. Here ¥~ = max {z, 0} and 2~ = max {—, 0}, and
X =" —x".

The following result is thus almost sharp in that if in (3.20a) the number 1/4 is
replaced by any number larger than 1/4, the assertion is false.

Theorem 2. Assume that there exists I'e L1(0, 2 7) such that
(3.20) limsupz-lg(t, z) < I'(f)

T—>— 00
uniformly a.e. in t€[0,27) and such that
(3.20a) r'ey<1/4

for a.e. t€[0,2x], with strict inequality on a subset of [0, 27) of positive measure.
Assume moreover that there exists real numbers a, A, r, and R with a < A and
r<< 0 < R such that

(3.21) git,x) = 4
for a.e. t€[0,27] and all x = R and
(3.22) g, z) s a

for a.e. 1€[0,2m] and all x < r. Then the problem (3.1) has at least one solution for
each ec L1(0,2m) such that

(3.23) a<é<A.

For use in the proof of Theorem 2 we have two lemmas.

Lemma 3. Let o € R and
I'ell(a,0 + 27)
be such that, for a.e. te[o, x + 2] one has
(3.24) ') <1/4

with strict inequality on a subset of [0, 2x] of positive measure. Then there exisls
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and e; by
Q) = e(t) — (1/2) @+ 4).
We have
lim sup z-1g1 (¢, z) < I'(t)

Tr—>—00
uniformly a.e. in ¢ € [0, 2x]. Let § > 0 be the number associated to I" by Lemma 3.
Then there exists 71 > 0 such that for a.e. t€[0, 27] and all x with x < — rq,
one has

0=algi(t,2) < I'(t) + 02
and for # = r; one has
0=a1gi1(t,2).
Define y; and % on [0, 27z] X R as in the proof of Theorem 1 so that the differential
equation in (3.1} is equivalent to
(829) @) + f@) @) + yr(t o M) 2O+ h(t.2(1) = ex ()
with
0=yt o)
for a.e. t€[0,2x] and all zeR and
(330) 0= yi(tx)<I(t)+ 02

for a.e. t€[0,2a] and = < 0. Moreover, for some « e L1(0, 27), a.e. te[0, 2n],
and all ze R, we have

(3.31) |kt 2)| < a(t).

We apply Theorem IV.5 of [7] to (3.29) with periodic boundary conditions on
[0, 2x]. As in [8] we must prove the existence of an a priori bound in C1[0, 2x]
for the possible solutions of the family of equations
(3.32) 2 Af @+ (1 — Nz + Ayt x)e + Ah(t, z) = der,

2(0) —22a)=2'00) —2'2x) =0, 1e[0,1].

Suppose z is a possible solution to (3.32) and write  as z = x+ — 2~ where
ot = max {»,0} and x~ = max {—z,0}. We will first show that x~ is bounded in
H(0, 27). To this end let us first extend x(f), I'(f), h(t, z), p1(t. ), and e(f) 2x-
periodically in ¢ to all of R, so that I'(t + 2x) = I'(t) for all i e R, k(t 4 2n, 2)
= h(¢, z) for all (¢, x) € R X R, etc., using the same notation for the periodic exten-

sions as for the original functions. Then z(¢) is a 2x-periodic solution on R to the
differential equation

'+ Af@a + (1 — AWz 4 Ayt @)z + Ak, x) = dey(t).
Suppose first that x— has a zero in [0, 25] and let
a=min{{:2~(f) =0 and 0 <1 < 2n}.

Clear]y lx—]H1(0,2n) - |x‘|H1(a,u+2n) .
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Let [¢, d] be any component of the support of z~ in |«, « -+ 2x]. Then letting
y(t) = — x—(t) we have that y(t) solves

(3.33) Y'+ @Y + 1= Oy + Ayt )y + Akt y) = Lei(t)

on [¢, d] with y(c) = y(d) = 0.
Multiply each side of equation (3.33) by —y(f) and integrate over [c, d] using
y(¢) = y(d) = 0, obtaining
d

J@@? — 1t = HIE) 4 Ayt y@)]y2 ()

4

d d
= — [AR(t,y ) y(t)dt + A [er (B)y (t) dt

Since y(t) =0 we have by (3.30)
a d

(334 [ B+ 8202 dt < — 2 [ (Bt (@) + er(t) y(O)de .

4

@

Thus (3.34) holds for all components [c, d] of the support of % in [«, a + 27],
and (3.34) also holds for components of the complement in [«, & 4 277] of the sup-
port of y, since on those intervals y is identically zero. We thus have, by summing
over all such inequalities in [«, & + 2x], that for some ¢ > 0

[ ®)2— T+ 82)p20)dt < Clyle

and by Lemma 3

6/2lylH1(tx at+2n) = 0|?/|00
and hence there is a constant m > 0 such that
(3.35) Y| maten = |27 | m,em = m.

If 2~ has no zero in [0, 2x] then & = — z~ and #(f) << O for all ¢ € [0, 2x]. Since
I'(t) =1/4 <1 and 2 is a 2z-periodic solution one may now proceed as in the proof
of Theorem 1 to show the existence of a bound on |z|g: = |a~|m.

Using g1 (£, ) = y1(t, x)x + h(t, x) it is now convenient to write the differential
equation in (3.32) in the form

(3.36) '+ Af@)e + (L= D))+ Agat, x) = Aes(t).
Integrating (3.36) over [0, 2xz] and using the periodic boundary conditions we
have
27 2n
(3.37) (1 —2A) IOy x@)dt + A [ g1 (¢, =(2)) dt = L&y,
0 0
and hence

1—2) [ F@a@dti+ 4 | gi(t,x(t))dt
z(t)>0 z(t)>0
=Aa—(1—2) | THamdi—2 | gi(t,z(t)de,

TGRS z(t)<0
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and by (3.35) there is a number my > 0 such that
(3.38) A=A [ F'ya@dt+2 [ gt z@)dt <mi.
2()>0

z(t)>0

Now using (3.35) and (3.38) it is easy to show there is an mg > 0 with
2x
(3.39) [ =D @® )+ g1 (t, 2 @) | dt < ma,
0

independently of 0 < 1< 1.
Now since

'+ Af@)x’ = — (1 — AT — Ag1(t, x) + Aey(B)
we have by (3.39) and Lemma 4
!CIN?]Hl < k(mg + Iel‘p)

for some k> 0, independent of 1e]0, 1].

We may now use (3.37) as in the proof of Theorem 1 to show the existence of
a 7e[0,2n] with » < x(7) < R and hence that |x|g: < C; for some constant
C1 > 0. Using (3.32) one can now show, again as in Theorem 1, the existence of
a constant Cs > 0 with

| 7] < C2
independent of z and 1. Taking
Q= {xeCH0,2a]): || < Ca}
in Theorem IV.5 of [7], we may complete the proof.

Remark 4. Tt is clear that Theorem 2 remains true if the limit in (3.20) is taken
as ¥ —> + oo. Theorem 2 generalizes the earlier results of Lazer [3], Mawhin [6],
Chang [1], Reissig [11], Schmitt [12], and Ward [13], [14]. The conditions in Ward
[13], [14] are similar to those in Theorem 2 exeept that in [14], for second order
vector equations, and [13], for nth order scalar equations, the coefficient of 2’ (and
of higher derivatives) must be a constant; here we allow an arbitrary continuous f.
Moreover, the bound on z~1g(t, ) as * — — oo is improved to the almost sharp
result here; in [14] the bound was any « = 0 with a < (277)~2. The result in [14]
generalized those of [11] and [12]; the bound on a~1g{¢, #) as ® — — oo in [14] is
weaker than that needed to apply the result of [13] to second order scalar ordinary
differential equations.
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