
Arch. Math., Vol. 41,337--351 ( 1 9 8 3 )  0003-889X/83/4104-0337 $ 4.50/0 
�9 1983 Birkh~user Verlag, Basel 

Periodic  solutions of  some forced 
Li6nard differential  equations at resonance 

By 

J. MAWHI~ and J. R. WARD, Jr. 

1. Introduction. The study of the existence of 2~r-peciodic solutions for Duffing 
equations of the form 

x"  ~- cx '  ~- g(x) -= e(t) :-- e(t + 2~z) 

where c is arbitrary, g and e are continuous, and g is asymptotically linear in some 
sense has been initiated by Lazer in [3] where he proved that  sufficient conditions 
for the existence were given by 

2~ 

f e(t)dt = O , lim x - l g ( x )  : O , xg(x)  > 0  
0 [x[~r162 

for I x l sufficiently large. Conditions of this type are referred to as resonance con- 
ditions because they reduce in the linear case (g : 0) to the necessary and suf- 
ficient conditions for the solvability of the resonant 2 7~-periodic problem 

x " + c x ' = e ( t ) ,  x(0) - - x ( 2 ~ r ) =  x ' ( 0 ) -  x'(2zt) = 0. 

Successive generalizations and extensions of Lazer's result have been given by 
Mawhin [6], Chang [1], Reissig [9, 10], Martelli [4], Martelh and Schuur [5], and 
Gupta [2]. They deal in the most general case with equations of Li6nard type of 
the form 

x"  + / ( x ) x '  + g ( t , x , x ' )  : e(t) 

and sharp results with respect to the linear situation are obtained only for Li6nard 
equations of the form 

(1.1) x"  § / ( x ) x '  § g( t ,x)  = e(t).  

The best known results for equation (1.1) are those of Reissig [9, 10] which insure 
the existence of a 2~r-periodic solution for (1.1) w i th / ,  g and e continuous and e 
having mean value zero when, for some R > 0, and all x with [x I > R either 

(1.2) xg(t,  x) <--_ 0 

o r  

(1.2') zg(t,x) ~ o 
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with in the second case the supp lementa ry  condition 

(1.3) l im sup x-lg(t, x) g q < 1, 
Ixl-~oo 

uniformly in t e [0, 2 zr]. 

In  a recent  paper  of  the  authors  [8] dealing with  non-resonant  si tuations for (1.1), 
uni form conditions of non-resonance with the  second eigenvalue of type  (1.3) have 
been replaced by  more  general non-uniform ones of  the form 

(1.4) limsupx-lg(t,x) ~ /'(t), 

uniformly in t ~ [0, 2~r], wi th  some restrictions to the  interact ion of F(t)  with the 
second eigenvalue 1 of  the associated linear problem. We shall adap t  in this paper  
the  methodology  of [8] to prove  existence theorems for the  2 ~r-periodie solutions of  
(1.1) which generalize the  papers  quoted above. Our main  result  (Theorem 1 of 
Section 3) proves the  existence of a 2~r-periodic solution for (1.1) with / continuous, 
g Cara theodory  and  e Lebesque integrable under  assumptions  containing, as special 
cases, the  conditions (1.2') and  (1.4) w h e r e / '  is measurable  and such tha t  

(1.5) F(t)  =< 1 

for a.e.  t e [0, 27@ with str ict  inequal i ty  on a subset  of [0, 2z ]  of posit ive measure.  
A na tura l  question is whether  condition (1.3) or (1.4) can be replaced by  the assump- 
t ion t h a t  the  inequal i ty  holds when x -+ - -  co bu t  not  necessarily as x --> ~- c~, 
or vice versa. I n  Theorem 2 we deal with this question, where  it is shown t h a t  the 
answer is posit ive if F( t )  ~ 1/4 for a.e. t e [0, 2g] ,  with strict  inequal i ty  on a subset  
[0, 2 ~] of  posit ive measure.  An example  shows t h a t  this result  is a lmost  sharp. 
Final ly  some of the  above ment ioned  papers  contain extensions of the  results to 
some sys tems of Duffing or Li6nard equations.  The corresponding generalizations 
involving conditions of  non-uniform type  ~dll be considered in another  paper.  

Le t  us end this in t roduct ion by  ment ioning t h a t  besides the classical spaces 
C([0, 27~]), C ~ ([0, 2 ~]) and L ~ (0, 2 ~) of  continuous, k-t imes cont inuously d~iffer - 
entiable or measurable  real functions whose k-th power of  the  absolute value is 
Lebesque integrable,  we shall use the  Sobolev spaces W~,I(0, 2~) and  Hi(O, 2~) 
respect ively defined b y  

W 2,1 (0, 27c) ---- {x : [0, 27~] --> R : x and x'  are absolutely continuous on 

[0, 2~]}, 
and 

H 1 (0, 2 z~) == {x : [0, 2 ~r] -+ R : x is absolutely continuous on [0, 2 ~] 

and x ' e L S ( 0 ,  2~r)} 

with respective norms 
2 2~ 

I iw . . . .  0 
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and 

]XlH1 = (2n) -1 x( t )dt  + (2~r)-l J [x'(t)]2dt I . 
o 

I n  any  normed  space, the  strong and the weak convergence of sequences will 
respect ively be denoted by  --~ and --% and we shall use the  fact  t h a t  H i (0 ,  2~r) is 
compac t ly  imbedded  into C([0, 2~t]) and is a Hi lber t  space with  inner product  de- 
fined by  

2:t / 2~t \ 2~t 

(x, y)H1 --- ((27t) -1 yx( t )d t ) ( (27 t ) - l  ~oY(t)dt) + (2zt) -1 . fx ' ( t)y '( t)dt .  
o o 

2. An inequality for some Lifinard operators with periodic boundary conditions. For  
x e L 1 (0, 2 ~), let us write 

2~t 

2---: (2~r) - l ]x ( t )d t ,  2(t) = x ( t )  - - 2 .  
0 

so t ha t  
2xt 

y2( t )d t  -= O. 
0 

Let  /~1 (0, 2 ~) = {x e H 1 (0, 2 ~r) : 2 = 0}. 

The  following results ex tend  L e m m a s  1 and  2 of  [8] to some resonant  si tuations,  
and m a y  be of interest  b y  themselves  in some uniqueness questions. 

L e m m a  1. Let 

F ~ LI  (O, 2 ze) 

be such that, /or a.e. t ~ [0, 2 ~], one has 

(2.1) F(t)  < 1 

with the strict inequality on a subset o/ [0, 2 ~] o/posit ive measure. Then there exists 
(~ --  5(1") > 0 such that /or  all 2e /11(0 ,  2~)  one has 

2zt 

Br(2)  -= (2~) -1 ] [(2'(t)) 2 - -  -F'(t)22(t)]dt > ~ 1212H 1 �9 
0 

P r o o f. Using (2.1) and  Wir t inger ' s  inequal i ty  [7], we see tha t ,  for all 2 e / I 1  (0, 2 zt), 
we have  

2~t 

(2.2) B r  (2) > (2 zt) -1 ] [2'(t)] 2 - -  22 (t)] dt > 0 
0 

with moreover  

(2.3) Br(2)  = 0 

if  and  only if 

2(0 = A sin(t + el) 

22* 
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for some A > 0 and ~0 ~ R. But  then  by  (2.2) and (2.3) we get 
2~t 2~ 

0 : ] (1 - -  F(t)) ~2 (t) dt = A 2 ~ (1 - - / ' ( t ) )  sin2 (t A- q~) dt, 
0 0 

so tha t  by our assumptions, A ---- 0 and hence s : 0. Assume now tha t  the con- 
clusion of the lemma is false. Then  we can find a sequence (~n) in /~1(0, 2~) and 

~/~1 (0, 2 ~) such tha t  

(2.4) [~n[~p= 1, ~n-->~ in C([0,2~r]),  ~ n - - ~  in H l ( 0 , 2 7 t ) ,  

and 

(2.5) 0 < Br(~n) < l / n ,  n ~ ~ *  

From Schwarz'  inequali ty in H I (0, 27t), we deduce 

and hence 

]~1~ < l iminf  I ~n I ~ .  
n-->~ 

By (2.4) and (2.5), we obtain, for n - +  oo, 
2~t 

[ ~n ]~ , -> (27t) -15T'( t )x2(t)  dt 
0 

(2.6) 

and hence 

i.e., 

2~ 
IX[ 2 ,  =< (27I) - 1  .fF(t)~2(t)dt, 

0 

Br@) <--_ O . 

By the first par t  of the proof, ~ = 0, so that ,  by (2.6), 

I~n Iu,-->0, 
a contradict ion with the first equal i ty in (2.4). 

Lemma 2. Let I ~ be like in Lemma 1, let ~ > 0 be associated to 11 by that lemma 
and let e > O. T h e n / o r  all p E L 1(0, 2 ~) satis/ying 

(2.7) 1 5 > 0  and p ( t ) < = F ( t ) ~ - s  

a.e. on [0, 2zt], all cont inuous /unct ions / :  • --> R and all x e W2,1(O, 27c) with 

( 2 . s )  x (O)  - z ( 2 : ~ )  = x'(O) - x ' ( 2  ~ )  = o ,  

one has 
2r~ 

(2.9) (27t)-1S (2 --  2(t)) (x"(t) -~ / (x( t))x ' ( t )  Jr p ( t )x ( t ) )d t  > (~ -- e)121~1. 
0 
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P r o o f .  I f  x e Wu, I(0, 2~) and satisfies (2.8), we obtain easily, integrat ing by 
parts,  

2~  

(27t) -1 j '(s - -  2(t))(x"(t)  -4- ](x(t))x'(t)  + p( t )x ( t ) )d t  
0 

2n  

-~/322 + (2 zt) -1 j" [(2'(t)) 2 - -  p (t) 22 (t)] dt 
0 

2 z  

Br(~)  - -  e(270 -1 ~ ~ ( t ) d t  >= (d -- e ) l ~ ] ~ .  
0 

3. Periodic solutions for a Li~nard equation at resonance. L e t / :  R -+ R be con- 
t inuous and let if: [0, 2~] x R -+ R, (t, x) ~-+ g(t, x) be such tha t  g(., x) is measur- 
able on [0, 27~] for each x ~ R and g(t, .) is continuous on R for a.e. t ~ [0, 2~]. 
Assume moreover  tha t  for each r > 0 there exists ~'r ~LI (0 ,  27~) such tha t  

I g (t, x)  I __<_ ~,,(t) 

for a.e. t e [0, 2z~] and all x e [ - - r ,  r]. We consider the following periodic bound- 
ary-value problem for the Li6nard equat ion 

(3.1) x"(t) ~- / (x( t ))x ' ( t )  -f- g(t, x(t)) -= e(t) ,  t e  [0, 2zt], 

x(O) - x ( 2  zt) = x ' (o )  - x ' ( 2 n )  = o .  

We prove the ibllowing existence result for (3.1). 

Theorem 1. Assume that there exists F ~ L I ( 0 ,  2~) such that 

g (t, x) 
(3.2) lim sup - - - -  ~ F(t )  

uni/ormly a.e. in t ~ [0, 2 g] and such that 

F(t) <__ 1 

/or a.e. t ~ [0, 2~], with strict inequality on a subset o] [0, 2g]  o/ positive measure. 
Assume moreover that there exists real numbers a, A ,  r and R with a <= A and r < 0 < R 
such that 

(3.3) g(t, x) >= A 

/or a.e. t ~ [0, 2 ~] and all x ~ R and 

(3.4) g (t, x) ~ a 

/or a.e. t E [0, 2~] and all x <--_ r. Then the problem (3.1) has at least one solution ]or 
each e ~ L 1 (0, 2 ~) such that 

(3.5) a ~ ~ ~ A.  

P r o o f .  Define gl on [0, 27~] • R by  

gl( t ,x )  = g(t ,x)  --  (1/2) (a -{- A) 
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and ei on [0, 2 n] by  

el(t) = e(t) - -  ( t /2) (a  + A) ,  

so tha t ,  for a.e. t e [0, 2z r], using (3.3) to (3.5), we have  

(3.6) gi(t, x) > (1/2)(A - -  a) > 0 

if  x > R, 

(3.7) gi(t,x) < (1~2)(a--A) < 0  

if x ==_ r, and  

(3.8) (1/2) (a - -  A) ~ ei ~< (1/2)(A - -  a) .  

Clearly, the  equat ion in (3.1) is equivalent  to 

(3.9) x"(t) +/(x(t))x '( t)  + gl(t, x(t)) = el(t). 

Moreover,  we have  

lira sup x - i  gi (t, x) g I~(t) 
I ~ I ~  

uniformly a.e. in t e [0, 2~r] and if Ix] > m a x ( R , - - r ) ,  then  for a.e.  t ~  [0, 2~r] we 
have  also 

x - i  9i (t, x) > 0.  

Le t  ~ > 0 be associated to the function F by  L e m m a  1. Then there exists ri > 0 
such t ha t  for a.e.  t e [0, 2~r] and for all x with Ix I > r i ,  one has 

(3.10) 0 < x-igi( t ,  x) g I'(t) + (3/2. 

Define 71 on [0, 2 7t] X • by  

x - l g i ( t ,  x) if  ] x [ > r i  

7 i ( t , x ) =  r~-lgl(t, r l ) x+(1- -xr~ l ) lP( t )  if  O<_x<--ri 
r ~ l g l ( t , - - r i ) x + ( l + x r ~ t ) F ( t )  if  - - r i - - < x - - < 0 .  

Then,  by  (3.10), we have  

0 < 7i(t ,  x) < / ' ( t )  + ~/2 

for a.e. t ~ [0, 2zr] and all x ~ ~. Moreover,  the  funct ion 

(t, x) ~ 71 (t, x) x 

satisfies the  Cara theodory  conditions, and the function h defined on [0, 27t] X R by  

h ( t , x )  = g l ( t , x )  - -  7 1 ( t , x )  z 

is such tha t ,  for some ~ e Ll (0 ,  27t), a.e. t ~ [0, 2vr] and all x e R, we have  

(3.11) ]h(t, x)[ < o~(t). 

Finally,  equat ion (3.9) can be wri t ten  as 

(3.12) x"(t) + ](x(t))x'(t) + 71(t, x(t))x(t) + h(t, x(t)) = el(t) .  

ARCH. MATH. 
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To apply Theorem IV.5 of [7] to (3.12) with the periodic boundary conditions on 
[0, 2 ~r], we have to prove the existence of an a priori bound for the possible solutions 
of the family of equations 

x"  + i ] ( x ) x '  + (1 -- , ~ ) F ( t ) x - ~  ~ T i ( t , x ) x  + ~ h ( t , x )  - -  2 e l ,  
(3.13) 

z ( 0 ) - z ( 2 ~ ) = x ' ( O ) - x ' ( 2 ~ ) = o ,  t e [ 0 , 1 [ .  

We refer~to [8] for checking that  (3.12) can be put  into the setting of the abstract 
Theorem IV.5 of [7]. I f  x is a possible solution of (3.13) for some 2 e [0, 1[, then, 
using Lemma 2, we obtain 

2n 
0 = (2 ~)-~ ~ [(~ - ~(t)) (x"(t) + ~/(x(t)) x'(t) 

0 

-~- ~ ' l ( i ,  x ( t ) ) x ( t )  I-~ 2h(t, x(t))  - -  Xel( t ) )]dt  

> (,~/2)I~1~, - ( l ~ b  + 1~1~,)(1~I + I~l~o) 
> (~/2)I~lb - ,8(lzi + I~1.,) 

for/3 > 0 depending only on 0r and el. Consequently, 

(3.14) IXl21 ~ (2~/(~)([Xl -~ IX] it:~l) " 

Integrating the differential equation in (3.13) over [0, 2zr], we obtain 

2~t 2~t 
(3.15) (1 '~- 4)(27t)-f~I ' ( t )x( t )dt  + ,~(2~) -1 ~ [g(t, x(t))  - -  ez(t)]dt = 0 

0 0 

and, without loss of generality, we can assume that  

(3.16) F > O. 

I f  x(t)  > R for all t e [0, 2xt], then (3.6) and (3.8) imply that  

(1 - -  ~ ) ~ R  <-- O, 

a contradiction with (3.16). Similarly, if x(t)  <--_ r fo r  all t e [0, 2~], we reach a con- 
tradiction. Consequently, there exists ~ e [0, 2 g] such that  

r <  x ( ~ ) <  R,  

and hence, if u is such that  

z(u = ~, 

then 
u 

= x(7:) = x ( , )  + . fx ' ( s )ds ,  

which implies 

/ ~ \i/~ 
=< m a x  (R,  - -  r) + 

(3.17) = max(R, - - r )  d- 2 ~  lelH1. 
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Combining (3.14) and (3.17) we deduce the existence of  some ~1 > 0 such tha t  

Ix].,< Q1 
for all the possible solutions of  (3.13) with ~ e [0, 1[. Consequently, for those pos- 
sible solutions, we have 

for some 52, ~3 depending only on ~1, and hence (3.13) easily implies tha t  

[ X " ] L I <  Q4 

for some ~4 independent  of  ~ and x. This finally shows tha t  

[ x l c l <  ~5 

for some ~5 independent  of  2 e ]0, 1[ and all possible solutions x of  (3.13). Taking 

9 = {x e c1([0,  Izlc,< es} 
in Theorem IV.5 of  [7], the proof  is complete. 

R e m a r k  1. Theorem 1 generalizes the earlier results in the following ways:  

a) Lazer 's  theorem in [3] corresponds to / constant,  e continuous, g continuous 
and independent  of  t, a : A ~- 0, r ~- --  R and 

lira x -1 g (x) = 0. 
IxE-~oo 

b) Mawhin's  theorem in [6] corresponds to Lazer 's  conditions except t ha t  / is an 
arbi t rary  continuous function. 

c) Reissig's theorem in [9] corresponds to / and e continuous, g continuous and 
independent  of  t, a : A : 0, r : -  R and 

lim sup x - l g  (x) < 1. 
I~1-~oo 

d) Chang's  theorem in [1] corresponds to / constant ,  e and g continuous, a : A = 0, 
r ---- - -  R and 

lim x -1 g (t, x) ---- 0 
[xl -.oo 

uniformly in t e [0, 2 n]. 
e) Martelli 's theorem in [4] corresponds to /, e, and g continuous,  a - - - -A : 0, 
r ---- - -  R and 

1 
lim sup x - l g  (t, x) < 2 ~ + 1 

uniformly in t e [0, 2 ~]. 
f) Reissig's theorem in [10] corresponds to /, e, and g continuous, a : A : 0, 
r ---- - -  R and 

(3.18) limsupx-lg(t,x) <=q< 1, 
I*1-,oo 

uniformly in t e [0, 2 ~]. 
g) Gupta ' s  theorem in [2] corresponds to ] constant,  e and g continuous, a ~- A ~- 0, 
r : -  R and (3.18). 
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R e m a r k  2. We could have considered as well equations of the form 

(3.19) x " - ~ ] ( x ) x ' ~ g ( t , x , x ' ) = e ( t )  

at the expense of assuming tha t  (3.2), (3.3), and (3.4) for g(t, x, y) hold uniformly 
in y e ~. Other sufficient conditions for the existence of a 2~-periodic solution of 
(3.19) can be found in the paper [5] of Martelli and Schuur. 

R e m a r k  3. An analysis of the proof of Theorem 1 shows tha t  conditions (3.3) 
and (3.4) could have been replaced by the following more general one. 

There exist ~,, F ~ L 1 [0, 2 ~] such 

~,(t) ~ lira inf  x - l  g(t, x) ~ lira sup x - l  g(t, x) ~ F(t)  

with 0 = ? < F. 

There exist real numbers a, A ,  r, R with a ~ A and r < 0 < R such that 

2~ 

(27@ -1 f g(t, x(t)) dt ~ A 
0 

/or all x e W 2,1 (0, 2 ~) satis/ying (2.8) such that 

m i n x  (t) ~ R 
t ~ [0, 2~] 

and such that 

2n 

(2 ~ ) -1  f g (t, X ( t ) ) d t  ~ a 
0 

/or all x ~ W ~, 1 (0, 2 ~) satis]ying (2.8) such that 

max x(t) g r.  
te[0,2~] 

Corollary 1. Assume that there exists F ~  LI(O, 2~) satis/ying the c~uditions o/ 
Theorem 1 and that 

l i m i n f g ( t , x )  -~ ~- oo, l i m s u p g ( t , x )  -~ --  oo 
x - - >  - -  o o  x ~ - >  - -  c o  

uni/ormly a.e. in t ~ [0, 2g]. Then the problem (3.1) has at least one solutiou /or every 
e ~LI(0 ,  27~). 

P r o o f .  Let  e ~ Ll(0, 2~) be given; then there exists R > 0 such that  

g(t, x) >= 

for a.e. t e [O, 2 z] and all x ~ R and there exists r < 0 such tha t  

g (t, x) ~ g 

for a.e. t e  [0, 2~]  and all x ~ r. The existence of a solution for (3.1) then follows 
from Theorem 1. 
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One might  suppose t ha t  if  (3.2) is weakened to hold only as x ~ - -  r162 or only 
as x --~ ~- r t hen  the conclusions of  Theorem 1 still hold. This, however,  is false. 
I f  1/2 < ~ ~. 1 then  e lementa ry  calculations show t h a t  the  differential equat ion 

~2 
X " - -  ~ 2 X -  -~- X + ~ 0 

(1 - -  2 ~ )  2 

has a non-tr ivial  2 7e-periodic solution, and the equat ion 

~2 
x ' J -  ~ X -  ~ X + = sin(t) 

(1 - -  2 ~ ) 2  

has no 27c-periodic solution. Here  x* ~ - m a x  {x, 0} and x - =  m a x  ( - - x ,  0}, and 
X ~ X + - -  X--. 

The following result  is thus  a lmost  sharp  in t h a t  if in (3.20a) the number  1/4 is 
replaced by  any  number  larger t han  1/4, the  assertion is false. 

Theorem 2. Assume that there exists 1 ~ ~ L1 (0, 2 7~) such that 

(3.20) lim sup x - l g ( t ,  x) ~ F(t)  
x-->-- r 

uni /ormly a. e. in t e [0, 2 7~] and such that 

(3.20a) F(t)  ~ 1/4 

/or a.e.  te[0,27~],  with strict inequality on a subset o/ [0, 2~] o/ positive measure. 
Assume moreover that there exists real numbers a, A ,  r, and R with a ~. A and 
r < 0 < R such that 

(3.21) g( t ,x )  >=A 

/or a. e. t e [O, 2 g] and all x >= R and 

(3.22) g( t ,x )  ~ a  

/or a. e. t E [0, 2 ~] and all x ~ r. Then the problem (3.1) has at least one solution ]or 
each e ~ L 1 (0, 2 ~) such that 

(3.23) a _< ~ _< A .  

For  use in the  proof  of  Theorem 2 we have  two lemmas.  

L e m m a  3. Let :r ~ R and 

F ~ L l ( ~ , 0 r  ~ 2:~) 

be such that, /or a.e. t e [~, :r + 2 ~] one ha8 

(3.24) F(t)  ~ 1/4 

with strict inequality on a subset o/ [0, 27e] o/ positive measure. Then there exists 
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(3.20) lim sup x - l g ( t ,  x) ~ F(t)  
x-->-- r 

uni /ormly a. e. in t e [0, 2 7~] and such that 

(3.20a) F(t)  ~ 1/4 

/or a.e.  te[0,27~],  with strict inequality on a subset o/ [0, 2~] o/ positive measure. 
Assume moreover that there exists real numbers a, A ,  r, and R with a ~. A and 
r < 0 < R such that 

(3.21) g( t ,x )  >=A 

/or a. e. t e [O, 2 g] and all x >= R and 

(3.22) g( t ,x )  ~ a  

/or a. e. t E [0, 2 ~] and all x ~ r. Then the problem (3.1) has at least one solution ]or 
each e ~ L 1 (0, 2 ~) such that 

(3.23) a _< ~ _< A .  

For  use in the  proof  of  Theorem 2 we have  two lemmas.  

L e m m a  3. Let :r ~ R and 

F ~ L l ( ~ , 0 r  ~ 2:~) 

be such that, /or a.e. t e [~, :r + 2 ~] one ha8 

(3.24) F(t)  ~ 1/4 

with strict inequality on a subset o/ [0, 27e] o/ positive measure. Then there exists 
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and el by  

We have 

el(t) = e(t) -- (1/2)(a @ A).  

lim sup x -1 gl (t, x) g F(t) 
X - - > - -  o o  

uniformly a.e. in t e [0, 2~r]. Let  ~ > 0 be the number  associated t o / "  by  Lemma 3. 
Then there exists rz > 0 such tha t  for a.e. t e [0, 2u]  and all x with x < - - r l ,  
one has 

0 < x -1 gz (t, x) < F(t) § (~/2 

and for x > rz one has 

0 < x-1 gl(t, x). 

Define 71 and h on [0, 2at] x R as in the proof of  Theorem 1 so tha t  the differential 
equation in (3.1) is equivalent to 

(3.29) x"(t) -}-/(x(t))x'(t) + yl(t ,  x(t))x(t) + h(t. x(t)) = el(t) 

with 

0 ~ y l  

for a.e. t e [ 0 , 2 z t ]  

(3.30) 0 ~< yl  

(t, x) 

and all x e • and 

(t, x) < F(t) § 6/2 

for a.e. t z [0, 2 zr] and x < 0. Moreover, for some ~ e L 1(0, 2 ~), a.e. t e [0, 2 ~], 
and all x e ~, we have 

(3.31) Ih(t,x)l < ~r 

We apply Theorem IV.5 of  [TJ to (3.29) with periodic boundary  conditions on 
[0, 2ze]. As in [8] we must  prove the existence of  an a priori bound in C1[0, 2~] 
for the possible solutions of  the family of  equations 

(3.32) x"-}- ]~](x)x' + (1 --  ~)F(t)x -}- ~yl(t, x)x ~- ~h(t,x) = )~el, 
x ( O ) - x ( 2 ~ ) = x ' ( O ) - x ' ( 2 ~ ) = 0 ,  ,~e[0 ,1[ .  

Suppose x is a possible solution to (3.32) and write x as x = x + - - x -  where 
x+ = max {x, 0} and x - =  max  { - -x ,  0}. We will first show tha t  x -  is bounded in 
HZ(0, 2~).  To this end let us first extend x(t), F(t), h(t, x), yl(t, x), and e(t) 2~r- 
periodically in t to  all of  •, so tha t  F(t § 2~t) = F(t) for all t ~ R, h(t -f- 2z~, x) 
= h (t, x) for all (t, x) e R X R, etc., using the same notat ion for the periodic exten- 
sions as for the original functions. Then x (t) is a 2~-periodic solution on R to the 
differential equation 

x" + ,~/(x)x' + (1 - -  2) F(t)x  -f- 2y l ( t , x )x  § ~h(t,x) = 2el(t). 

Suppose first tha t  x -  has a zero in [0, 2~]  and let 

: r  and 0--<t--<2~t}.  

Clearly [x- ]m(0,2~)= Ix-!,1(~.~+2~). 
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(3.37) 

and  hence 

Le t  [c, d] be any  componen t  of  the  suppor t  of  x -  in [~, = ~ - 2 n ] .  Then  lett ing 
y (t) = - -  x -  (t) we have  t h a t  y (t) solves 

(3.33) y"-[- 2f(y)y '  + (1--  ,~)T'(t)y + ]tFl(t,y)y + Xh( t , y )=  2el(t) 

on [c, d] wi th  y(c) = y(d) = O. 
Mult iply each side of equat ion (3.33) by  --y(t)  and in tegra te  over  [c, d] using 

y (c) = y (d) = 0, obtaining 
d 

(y'(t)) 2 -- [(1 - -  ~t)/'(t) _L ~ ~)1 (t, y (t))] y2 (t) 

d d 
---- -- .[ ~h(t, y(t))y(t)dt + ~ S el (t)y(t)dt. 

C C 

Since y ( t ) ~  0 we have  b y  (3.30) 

d d 
(3.34) y(y'(t))u -- (F(t) + ($/2)y2(t)dt ~= -- 2y(h(t,  y(t)) + o(t))y(t)dt .  

C C 

Thus  (3.34) holds for all components  [c, d] of  the  suppor t  of  y in [:r r162 + 2~z], 
and  (3.34) also holds for components  of  the complement  in [:r ~ + 2~r] of  the sup- 
por t  of  y, since on those intervals  y is identically zero. We thus  have, by  summing  
over  all such inequalities in [~, ~ ~- 2 r@ t h a t  for some C > 0 

.[ (y'(t))2 _ (F(t) + (~/2)y2(t)dt ~ C lYlco 

and by  L e m m a  3 

 /2]y < c l y l c .  

and hence there  is a constant  m > 0 such t h a t  

(3.35) = 

I f  x -  has no zero in [0, 27r] then  x ~ - -  x -  and  x(t) ~ 0 for all t e [0, 27r]. Since 
_F(t) g 1/4 ~ 1 and  x is a 27r-periodic solution one m a y  now proceed as in the  proof  
of  Theorem 1 to show the existence of a bound on ]xl ,~  = [x - [ ,~ .  

Using gl (t, x ) -~  ~l(t ,  x)X-~ h(t, x) i t  is now convenient  to write the  differential 
equat ion in (3.32) in the form 

(3.36) x" + ~[(x)x'-~- (1 - -  ,~)F(t)x-~ ]tgl(t,x) ---- ,~el(t). 

In tegra t ing  (3.36) over  [0, 27r] and  using the periodic bounda ry  conditions we 
have  

2z 2z 
(1 - -  2 ) y F ( t ) x ( t ) d t  + ~ Sgl(t, x(t))dt = 2~1, 

0 0 

( 1  - -  2) S F(t)x(t)dt + Z S gl(t,x(t))dt 
• > 0 x(t) > 0 

= ~ e 1 - - ( 1 - - ~ )  f I ' ( t ) x ( t )d t - -~  S gl(t,x(t))dt, 
�9 (t) ~_o x(t) ~_o 
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and by  (3.35) there is a number  ml > 0 such tha t  

(3.38) ( 1 - - ~ )  f F(t)x(t)dt-~-2 f gl(t,x(t))dt<--_ml. 
x(t)>0 x(t)>0 

Now using (3.35) and (3.38) it is easy to show there is an m2 > 0 with 
2 n  

(3.39) j ' ](1 - - ) . )F(t )x( t )5-~gl( t ,x( t ) ) Idt<=u2,  
0 

independently of 0 --< 2 < 1. 
Now since 

x" -~- )~/(x) x' = - -  (1 - -  ~) F(t) -- ~gl (t, x) § 2. el (t) 

we have by  (3.39) and Lemma 4 

for some k > 0, independent  of  2 ~ [0, 1[. 
We m a y  now use (3.37) as in the proof  of Theorem 1 to show the existence of  

a ~e [0 ,  2~]  with r <  x(T) ~ R and hence tha t  Ixl~l  =< C1 for some constant  
C1 > 0. Using (3.32) one can now show, again as in Theorem 1, the existence of  
a constant  C2 > 0 with 

Ixlcl< c2 

independent  of  x and 2. Taking 

in Theorem IV.5 of  [7], we m a y  complete the proof. 

R e m a r k  4. I t  is clear t ha t  Theorem 2 remains true if the limit in (3.20) is taken 
as x -~ + oo. Theorem 2 generalizes the earlier results of  Lazer [3], Mawhin [6], 
Chang [1], Reissig [11], Sehmit t  [12], and Ward  [13], [14]. The conditions in Ward  
[13], [14] are similar to those in Theorem 2 except tha t  in [14], for second order 
vector  equations, and [13], for n th  order scalar equations, the coefficient of  x' (and 
of higher derivatives) mus t  be a constant ;  here we allow an arbi t rary  con t inuous / .  
Moreover, the bound on x-lg(t, x) as x - > -  c~ is improved to the almost  sharp 
result here; in [14] the bound was any  :r => 0 with cr (2z) -2. The result in [14] 
generalized those of [11] and [12]; the bound on x-lg(t, x) as x - ~  --  c~ in [14] is 
weaker than  tha t  needed to apply the result of [13] to second order scalar ordinary 
differential equations. 
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