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1. Introduction 

In [2] we observed that among the three requirements characterizing well-posed 
minimization problems, namely, existence and uniqueness of solutions and con- 
vergence of minimizing sequences, the uniqueness condition is not as essential as 
the other conditions. We introduced several variants of this notion and related 
them by proving, in particular, that Hadamard well-posedness is essentially 
equivalent to Tykhonov well-posedness. 

It is the purpose of this paper to follow a similar line of thought in the special 
framework of metric spaces and to prove verifiable criteria for well-posedness in 
our generalized sense. In metric spaces (and, more generally, in uniform spaces, 
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but we refrain from adopting such framework although only minor changes would 
be necessary) we dispose of the concept of Hausdorff (or metric) continuity for 
multifunctions, This notion differs from the classical notions of upper and lower 
semicontinuity of multifunctions, so that the notion of well-set minimiz- 
ation problem introduced here does not coincide with the notion studied in [2]. 
Recall that a multifunction F: X + Y from a topological space X to a metric 
space (Y, d) is said to be metrically upper continuous or upper hemicontinuous 
(u.h.c.) or upper-Hausdorff-continuous at x o if for each 8 > 0 there exists a 
neighborhood V of xo in X such that for each x e V and each y e F(x)we have 
d(y, F(xo)) < e, or F(x) c B(F(xo), ~), where for y e Y and a subset Z of Y we set 
d(y, Z) = inf{d(y, z): z e Z} and B(Z, r) = {y e Y: d(y, Z) < r} for r e R. The multi- 
function F is said to be lower hemicontinuous (1.h.c.) at xo if for each ~ > 0 there 
exists a neighborhood V of xo such that F(xo) c B(F(x), e) for each x ~ V. 

The minimization problem 

(Po) minimize Jo(x) for x e Ao, 

where A 0 is a nonempty subset of a metric space (X, d) and fo is a !ower 
semicontinuous function from X into ~ = R w { _+ oo} with m ,= inffo(Ao) > -- 0% 
is said to be metrically well-set if the multifunction assigning to every ~ the set S t 
of approximate solutions is u.h.c, at e -- 0, where S~ = {x s Ao: fo(X) _< m + e}. In 
other words, (Po) is metrically well-set if for any minimizing sequence (xn) of (Po) 
we have limn~ ~ d(x,, So) = 0. As kindly pointed out by the referee this condition 
is not new but corresponds to a concept often used in the Russian literature (see 
for instance [5] where it is exploited in connection with the regularization method 
of Tykhonov). This condition is easily seen to be weaker than the condition of 
well-posedness in the generalized sense imposed by Furi and Vignoli [8], [9], 
namely, that any minimizing sequence is compact (and weaker than the generaliza- 
tion to nets considered by Coban et al. [4]). In particular it does not imply that 
the set of solutions is compact. We devote Section 2 to a characterization of this 
notion in terms of compactness concepts (Theorem 2.5). We relate this condition 
of well-posedness to the Hadamard requirement of stability of the set of solutions 
to problems with perturbed data j~, Aw depending on a parameter w, We establish 
some connections with the notions introduced in [2]. In fact since here we deal 
with metric notions of upper semicontinuity and not topological ones our results 
seem to be more remote to [2] than to other contributions we have been 
acquainted with since we write the first version of this paper (i.e., [17], [4], [21], 
and [22]). However, here X is not supposed to be complete and since we do not 
suppose uniqueness we cannot make use of the argument that a decreasing 
sequence of closed subsets of a complete metric space whose diameters tend to 
zero converges to a singleton as in [8], [9], [17], [21], and [22]. Sti!l our 
comparison with Hadamard well-posedness given in Section 3 is quite simple and 
natural (see Theorem 3.1). 

Besides the examples we provide, the work of Chavent (see [3] and its 
references) for instance shows that dropping uniqueness is not a spurious gen- 
eralization but has real-world applications. 
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2. Metrically Well-Set Problems and Their Characterizations 

The following formal definition is a rephrasing of the notion given in the 
introduction. 

Definition 2.1. The problem (Po) is said to be metrically well-set or M-well-set 
if the multifunction T: R ~ A o given by T(r) = f o  1(_ o% r) n Ao is u.h.c, at m = 
inf fo(Ao). Equivalently, (Po) is M-well-set if for any minimizing sequence (x,) we 
have d(x,, So) ---' O. 

Since T is u.h.c, whenever it is u.s.c., a T-well-set problem in the sense of [2] 
(i.e., T is u.s.c, at m) is M-well-set. When (Po) has a unique solution the two 
definitions coincide. Moreover, in this case (Po) is well-posed in the sense of [8] 
(i.e., the diameter 6(T(r)) of T(r) converges to 0 as r tends to m+); the converse is 
true when (X, d) is complete. Then (Po) is well-posed iff any minimizing sequence 
is a Cauchy sequence. 

More generally, when the solution set S o = A 0 • f o  a(m) is compact,  (Po) is 
M-well-set iff it is T-well-set. The following lemma gives a partial generalization 
of this observation (recall that in the following fo is 1.s.c. and hence S o is closed 
in Ao). 

Lemma 2.2. Suppose the open balls of (A o, d) are connected and the boundary c3So 
of So in A o is compact. Then (Po) is M-well-set iff(Po) is T-well-set. 

Proof. When the balls of a metric space (Z, d) are connected, for any nonempty 
closed subset Y of Z and any x e Z \  Y we have 

d(x, Y) = d(x, ~Y) 

since for each r > d(x, Y) the ball B(x, r) meets Y and Z \  Y, and hence meets ~? Y. 
Let us prove that when ~?Y is compact, for any open subset V of Z containing Y 
there exists r > 0 with B(Y, r) c V. Otherwise, we can find a sequence (x,) in Z \  V 
with x~ e B(Y, l/n); then we have d(x,, cgY) < 1/n. As ~Yis compact (x,) has a cluster 
point ~ in 0 Y. Since Z \  V is closed we get ff e (Z\  V) c~ 0 Y, a contradiction, Taking 
Z = A o, Y = So we get that, for any multifunction T: N ~ A o with T(m) = So, T 
is u.s.c, at m when it is u.h.c, at m. [] 

In general, the notion of an M-well-set minimization problem is less restrictive 
than the notion of a T-well-set minimization problem even for a strongly structured 
class of problems such as linear programming problems or quadratic programming 
problems. 

Example 2.3. Let X = N 2, A o = {(xl, X2) ~ [~2, 0 ___~ X 1 ~ 1, X 2 ~" 0}, SO that 
f (xD x2) = xl, so that T(0) = So = {0} x N+, and T(r) = [0, r] x N+ for rE [0, 1] 
so that T is u.h.c, at 0 but not u.s.c, at 0. 

Example 2.4. Let X be a Hilbert space with scalar product (-].) and let Q: X ~ X 
be a symmetric continuous linear operator with fo(x)= 1/2(Qxlx)> 0 for each 
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x e X. Using the Lax-Milgram lemma on ker Q• and the fact that a positive 
semidefinite nondegenerate operator Q is coercive (or positive definite in the sense 
that there exists e > 0 such that (Qv[v) > ellvli 2 for all v in X) it is easy to show 
that the problem (Po) of minimizing fo over A o := X is M-well-set iff the range of 
Q is closed. It is T-well-set iff it is generalized well-posed in the sense of Furl and 
Vignoli [8], [9] iff it is well-posed in the sense of Tykhonov [23] iff :Q is an 
isomorphism. 

The regularization method of Tykhonov can be seen as a restiction to a class 
of perturbations which is sufficiently narrow to yield a continuous dependence of 
some solution on a parameter, even for the ill-posed problem of minimizing 

fo(x) = 1/211Qx - bll 2, 

where Q is as above and b e X (see, for instance, [23] and Theorem 46E of E25]). 
The following characterization is parallel to the one presented in [21, it is 

similar to the characterization of [8i, the difference lying in the fact that here the 
solution set is not supposed to be compact. Let us recall that Kuratowski's measure 
of noncompactness of a subset Y of X is the infimum K(Y) of the family of r~  [~+ 
such that Y can be covered by a finite family of subsets of diameter less than r. 
Following [6] we call precompact a filter base .~ on X such that for any ~ > 0 
there exists B e ~ and a finite covering of B by balls of radius e. The punctured 
(resp. hollow) minimizing filter base ~o (resp. 2o) is given by 

N0 = {T(r)\int So: r > 0} 

(resp. 2o = { r ( r ) \S0:  r > 0}), with S o = {x e A o: fo(X) = m}, m = inf fo(Ao). 

Theorem 2.5. The following implications hold for the assertions listed below: 

(a) ~ (b) <=~ (c) ~ (d) ~ (e). 

When (Ao, d) is complete we have (c):=-(d). When the closed (or open) balls of Ao 
are connected we have (e) ~ (a); if moreover, (A o, d) is complete all these assertions 
are equivalent: 

(a) ~o is precompact. 
(b) 2o is precompact and the boundary 3S o of So in A o is precompact. 
(c) lim~o+ ~:(T(m + ~)\So) = 0 and So is precompaet. 
(d) (Po) is T-well-set and OSo is compact. 
(e) (Po) is M-well-set and OS o is precompact. 

Proof The implications ( a ) ~  (b) and (b)<*-(c) follow from the definitions since 
to(Y) _< ~c(Z) when Y ~ Z and since for any e > 0 the inclusion So ~ T(m + ~) holds, 
S O and T(m + ~) are closed in A o so that we have 

T(m + g)\int So = (T(m + ~)\So) w OSo. 

Since •(Yw Z)=max(~c(Y), ~(Z)) and ~(Z)=  0 iff Z is precompact, (c) is 
equivalent to the fact that lim~.o+ ~c(T(m + E)\int So) = 0 which is equivalent to (a). 
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By Theorem 1.4 of 12], (d) is equivalent to the compactness of ~o. By using 
Proposi t ion 7.1 of [6], this implies that  ~o is precompact .  The converse is true 
when X is complete. 

Now let us suppose that  (e) holds and the closed (or open) balls of A o are 
connected. Let us prove that  (c) holds. Given ~ > 0 we can find fl > 0 such that  
T(m + fl) c B(So, c~/2); moreover ,  we can find a finite subset {xl , .o . ,  xk} of ~S o 
such that  the family {B(xz, e/2): i = 1 . . . .  , k} is a covering of ~3So. Then for any 
r ~ [0, fl] and any x e r(m + r)\So we can find i e {1 , . . . ,  k} such that  x e B(x~, ~) 
since d(x, c3So) = d(x, So) < e/2 so that  there exists y e ~So with d(x, y) < c~/2 and 
some i e  {1 , . . . ,  k} with d(y, xi) < ~/2. Thus ~:(T(m + r)\So) _< 2c~ for r e  [0, fl] and 
(c) holds. The last claim follows from the preceding ones. [ ]  

3. Comparison with Hadamard Well-Posedness 

The classical definition of well-posedness in t roduced after H a d a m a r d  pertains 
to the not ion of per turbat ion  of (Po)- A perturbation of (Po) is a quadruple  
(W, Wo, F, f ) ,  or  in short  (F, f ) ,  where Wo is a point  of a topological  space W, 
F: W ~ X is a multifunction, f :  W • X ~ ~ = ~ u { + ~ } is an extended real- 
valued function such that  F(wo) = Ao, fwo = fo, where fw is given by fw(X) = f(w,  x) 
for x e X. The performance function is given by 

p(w) := inf{fw(x): x e F(w)} for w e W, 

the solution and the approximate solution multifunctions are defined respectively by 

S(w) := {x ~ F(w): fw(X) = p(w)}, 

w)..= {x e F(w): L(x) _ p(w) $ r} 
for w e  W, r e  a + ,  where for r e  ~, sE ~+\{0},  r 4 s is defined by r $ s = r + s for 
reff.~, r S s =  + ~  for r =  + ~ ,  r ~ s = - s  -1 for r = - ~ ,  and r S s = r  for 
r e ~, s = 0. We assume throughout  that  m = p(wo) is finite and we set So = S(wo) 
as before. 

The family (fw)w~ve is said to converge uniformly to )Co as w tends to w o (and 

we write (fw) -~ fo) if for each r > 0 there exists W~ in the family sff(Wo) of 

neighborhoods  of Wo such that  for any w e W~, x e X we have 

--(--fo(x)) + r < fw(x) <- fo(x) 2r r. 

Let us call (Po) H,,-well-set (or metrically well-set in the sense of  Hadamard) if 
for any per turbat ion  (F, f )  of (Po) with F u.h.c, and t.h.c, at Wo, and (fw) converging 

uniformly to fo, (fw) 2-' fo,  the corresponding solution multifunction S is u.h.c, at 

w o. The problem (Po) is called H,,s-well-set if for any per turbat ion (F, f )  of (Po) 

with F u.h.c, and 1.s.c., and (fw) converging uniformly to )Co, (fw) -~ )Co, the solution 

multifunction S is u.h.c, at Wo. It will be said to be O,,-well-set if S is u.h.c, at Wo 
I1 

whenever F is constant  and (f~) ~ fo. The following result extends Proposi t ion 1 
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of [22] as here uniqueness is omit ted;  moreover ,  convergence of the constraint  is 
different. 

Theorem 3.1. We have the following implications Jbr (Po): 

Hms-weIl-set ~ Hm-well-set ~ Ore-well-set ~ M-well-se~. 

I f  f o is uniformly continuous around Ao, then all these assertions are equivalent. 

Proof. The first implicat ion follows f rom the fact that  any 1.h.c. mult i funct ion is 
1.s.c. The  second implicat ion is obvious.  Let us prove  the third by setting, for 
W = R+, Wo = O, F(w) = Ao for each w e  W, and for (w, x ) e  W x X, 

f(w, x) = rnax{f0(x ), m + w}, 

where m = inf fo(Ao). Then, for w ~ W, S(w) is the set of w-approximate  solutions 
of (Po). Moreover ,  f (0 ,  x) = fo(x) and, for any (w, x) s W x X, 

fo(x) <_ f(w, x) <_ fo(x) ; w, 

so that  (fw) Z, fo. Since (P0) is Ocwell-set ,  S(w) = T(m + w) is u.h.c, at wo and (Po) 

is M-well-set. 
N o w  let us suppose )Co is uniformly cont inuous a round  A o and (Po) is 

M-well-set. Let us observe that, for any  per turba t ion  (F, f )  such that  (fw) --' Jo and 

F is u.h.c, and 1.s.c., the per turba t ion  function p is u.s~c. (in fact l.s.c, of F and u.s.c. 
of f at (w o, Xo) for some Xo ~ S(wo) would suffice). 

Given e > 0, let us find V ~ Y(Wo) such that  S(w) c B(S(wo), e) for w e V. As 
(Po) is M-well-set  we can find 6 > 0 such that  

T(m + 6) = {x ~ Ao: fo(X ) ~ P(Wo) + 6} c B(S(wo) , e/2). 

As fo is uniformly cont inuous a round  Ao we can find cz s [0, e/2] such that  

[fo(x) - fo(x')l <_ 6/4 

whenever x ~ Ao, x' ~ B(x, cO. Let V e  ~4r(wo) be such that  

i fo(x) - fw(x) l <_ 6/4 

for w ~ V, x ~ X and such that  

p(w) <_ P(Wo) + c~/2, F(w) c B(F(wo), e/2) 

for w e V. Then  for each w E V and each x ~ S(w) we can find some x' ~ F(wo) such 
that  d(x, x') < c~ so that  

fo(X') <_ fo(X) + 6/4 < f~(x) + 6/2 = p(w) + 6/2 < p(wo) + 6. 

By our  choice ofb,  we obtain x' ~ B(S(wo), e/2) and, as d(x, x') < e/2, x E B(S(wo)I ~). 
[ ]  

Let us observe that  the preceding p roof  shows tha t  when fo is uniformly 
cont inuous a round  Ao the p rob lem (Po) is M-well-set iff (Po) is Hmp-well-set in the 
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following sense: for any per turba t ion  (F , f )  such that  (fw) ~ fo, F is u.h.c, and p 

is u.s.c, at w 0, the mult i funct ion S is u.h.c, at w o. 
In the following variants  the s t rong requirements  of  the uniform continuity 

o f fo  or  uni form convergence of (fw) are relaxed but  the continuity assumpt ion  of 
F is stronger.  These result are more  powerful  than  Theorems  3.1 and 3.4 of  [11], 
respectively, since the mult i funct ion S is u.s.c, at Wo whenever  S is u.h.c, at w 0 and 
S(wo) is compact .  The  solution set S(wo) is compac t  when (Po) is well-posed in the 
sense of  [8] and [11] which is s t ronger  than M-well-setting. The p roof  of  the first 
var iant  is similar to the p roof  of Theo rem 3.1 of  [11] and is omit ted;  the second 
one requires more  adjustments.  

Theorem 3.2. Let (F, f )  be a perturbation of (Po) such that F and p are u.s.c, at 
w o. Suppose (fw) converges uniformly to fo and fo is uniformly continuous on bounded 
subsets of X. Then, i f(Po) is M-well-set, the multifunction S is u.h.c, at w o. 

Theorem 3.3. Let (F, f )  be a perturbation of (Po) such that F and p are u.s.c, at 
wo and So is bounded. Suppose that for each w ~ W the level sets of fwlAo are connected. 
Suppose that (fw) converges uniformly to fo on bounded subsets of X and fo is 
uniformly continuous on bounded subsets of X. Then, if (Po) is M-well-set, the 
multifunction S is u.h.c, at Wo. 

In practice the assumpt ion  on the level sets Offw is checked by means  of a convexity 
or quasi-convexi ty proper ty .  

Proof. Suppose  this is not  the case. Then  we can find e > 0 and a net ((wi, xl))i~r 
in the graph  of S with liml w i = Wo, d(xi, So) >_ ~. As F is u.s.c, at w o, we m a y  
suppose d(xi, F(wo)) < ~/2 for each i s I, so that  there exists x'ij E A o = F(wo) with 
d(xi, xl) < e/2 and limi d(xi, xl) = 0. Then we have d(xl, So) >_ el2. 

Let us first suppose there exists a cofinal subset J of  I such that  (xi)j~ s is 
bounded.  Then (x))j~j is also bounded  and 

lim sup fo(x)) = lim sup fo(xj) = lim sup f ( % ,  x j) = lim sup p(wj) <_ m. 
J J J ] 

As (Po) is M-well-set  we obta in  d(x), So) ~ O, hence d(xj, So) ~ 0, a contradiction.  
As F is u.s.c, at w o, using [7] we have 

lira ~:(F(w)\F(wo) ) = O, 
W ~ W O  

so that  if J = {i~I:  xi~F(Wo)\F(wo)}, where W o ~ ~A/'(wo) is such that  

~c(F(Wo)\F(wo) ) <_ 1, 

(xj)j~ s is bounded  and  J is not  cofinal. Then  K = {i ~ l \ J :  x i ~ Ao} is cofinal. Let 
x o be any  element of  S O and for k ~ K let 

rk = max{p(wk), f(Wk, XO)}, 

L k = {XE Ao: f (wk,  x) <__ rk}. 
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Then Lk\B(So, 0 contains x k and is closed. Since Lk is connected the sets 
cl B(So, e/2) and Lk\B(S o, ~) cannot  cover  L k. Therefore,  there exists 

z k ~ L k c~ B(So, e)\B(So, e/2). 

As So is bounded,  (zk) is bounded  so that  

lim sup fo(zk) = lim sup f(w),, zk) <_ lim sup rk <_ p(wo) 
k k k 

as ( f (w> Xo))k~ converges to fo(xo) = p(wo) and lim SUPk p(wk) <-- p(Wo)~ NOW since 
(Po) is M-well-set  we get d(Zk, So) ---' 0, a contradiction.  [ ]  

Example  3.4. Let (E, d) be a metric  space and let C be a closed subset of  E. 
Suppose that  for some z o e E the best approx ima t ion  p rob lem 

(Po) minimize{d(zo, x): x ~ C} 

is M-well-set and the sets {x e C: d(z o, x) <_ r} are connected for each r e ~+ .  Then 
for any topological  space W, and w o E W, and any cont inuous  m a p  z: W --, E with 
z(wo) = z o, any u.h.c, and 1.s.c. mult i funct ion F: W - +  E with F(w) = C, the best 
approx imat ion  mutt ifunction S: W --* E given by 

S(w) = {x ~ F(w): d(z(w), x) = d(z(w), F(w))} 

is u.h.c, since the per formance  function p(w)= d(z(w), F(w)) is u.s.c, and the 
objective function fo( ')  = d(zo, ") is Uniformly continuous.  

Let us now discuss the assumpt ions  of Theorem 3.1 and present some 
comments .  

R e m a r k  3.5. We can supplement  Theorem 3.1 with a result similar to Propos i t ion  
2.9 of [2]. Suppose F: W - ,  X is such that  F(wo) r ~ and for any uniformly 
cont inuous function )Co: X - - ,  ~ such that  the p rob lem (Po) is M-well-set the 
solution mult ifunction S is u.h.c, at w o. Then F is u.h.c, and 1.s.c. at w o, To  see 
that  F is u.h.c, at w0 it suffice to take for fo a constant  function, 

N o w  let us suppose that  F is not l.s.c, at Wo: there exist some Xo ~ F(wo), r > O, 
and a net (wi)~ I with limit wo such that  d(xo, F(wl))>_r for each i s L  Let 
fo(X) = min(r, d(x o, x)) then the associated p rob lem (Po) is M-well-set and we get 
a contradict ion with our  assumpt ion  as S(wo) = {Xo}, S(w~) = F(wi) for i~  L 

The uniform continuity assumpt ion  of the objective function fo cannot  be 
d ropped  in Theorem 3.1 as is shown by the following example.  

E x a m p l e  3.6. Let W = R + ,  X = ~2,  and  F(w) = w • [0, 1 + i /w] for w > 0 and 
F(0) = {0} x [0,  + ~ ) ,  f(w, x) = fo(x) for (w, x) ~ W • X with 

fo(xl ,  x2) = x2 - (x2 - 1)+(x, + 1), 

where r + = max(r,  0) for r etR. Then p(w) = 0 for any w ~ W and S(0) = {(0; 0)}, 
S(w) = {(w, 0), (w, 1 + l/w)} for w > 0 so that  S is not  u.h.c, at wo. The  p rob lem 
(Po) is M-well-set, F is u.h.c, and  1.s.c. but  fo is not  uniformly cont inuous on X. 
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The fact that the solution multifunction S need not be u.h.c, if (Po) is not 
M-well-set is illustrated by the following example. 

Example 3.6. Let W =  [0, 1], X = N, F(0) = N+, F(w) = [w, 1/w] for we(0,  1], 
f (w,  x) = fo(x) = min(x, 1/x). Then S(0) = {0}, S(w) = {w, 1/w} for w e (0, 1] so that 
S is not u.h.c, although fo is uniformly continuous, F and p are continuous 
(p(w) = w). Here (Po) is not M-well-set. 

4. Firmness and WeU-Posedness 

A characterization of well-posed minimization problems in terms of firm functions 
has been given by Vainberg [24] and has been extended to sequences of minimiza- 
tion problems by Zolezzi [26]. Let us extend these characterizations to our 
framework in which uniqueness is dropped and compactness conditions are 
relaxed. 

Recall that a function c: ~+ ~ ~+ is said to be firm (or forcing [15], or 
admissible [26]) if any sequence (t.) c N+ such that c(t.) ~ 0 has limit 0. Let us 
call a family (Cw)w~w of functions from R+ into R+ firm (at w0) if any sequence 
(t.) of N+ for which there exists a sequence (w.) in W with lim, w. = w o, 
lim. cw.(t.) = 0 has limit 0. Obviously, if cw = c for each w e W, (%) is firm iff c is 
firm. Some criteria ensuring that a family (c~,) is firm will be presented later. 

Given the parametrized optimization problem 

(Pw) minimize fw(x) for x e F(w) ~ X,  

where W, X, F, f~ are as above, let us set 

%(0 = inf{I fw(x) - p(w) l: x e F(w), d(x, S(wo)) = t}. 

The following is a variant of Theorem 1 of [26]; observe that in contrast with 
this result we have a complete characterization; moreover, assumptions (1) and 
(2) of [26] are dropped. 

Theorem 4.1. Let W, X,  F, (f~,), and (Cw) be as above. Then the followin9 assertions 
are equivalent: 

(a) For any function e: W ~ N +  with limw~woe(w)= 0 the multifunction 
w --* ~(w)(W) is u.h.c, at Wo. 

(b) (Cw) is firm. 

Proof (a) =~ (b) Let (t.) and w. be sequences in P = (0, + oe) and W, respectively, 
such that lim. w. = w0, lim. cw.(t.) = 0. By definition of cw. we can find x.  e F(w.) 
such that d(x., S(wo) ) = t. and 

] f~.(x.) -- p(w.)[ < %~ + 2-". 

Let e: W ~  N+ be given by e(w) = 0 for w e  W\{w. :  n e N * } ,  w = w o, and 

e(w) = {sup %.(t.) + 2-":  h e N * ,  w. = w} 
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for w ~ {w.}, w # w o, so that lim~_. ~o ~(w) = 0 and x. s S~two~(w.) for each n ~ N*, 
Thus, the sequence (t.).~N. = (d(x., S(wo))).~u. has limit 0 and (%) is firm. 

(b) ~ (a) Suppose e: W ~ N+ is such that lim,~_~wo e(w) = 0 but  w ~ S ~ ( w )  
is not  u.h.c, at wo: we can find e > 0 and sequences (w.).~ N, (x.)n~ u in W a n d  X, 
respectively, with lira. w. = Wo, x,, s ~(~.)(w.) for each n ~ N and d(x., S(wo)) _> 
for each n. Setting t. = d(x., S(wo)) we get 

Cw,,(t.) <_ I L . (x . )  - p(w.)] _< ~(w.) 

so that (c,~) is not  firm, a contradiction. D 

Remark  4.2. When p is cont inuous at Wo (this is supposed in assumption (2) of 
[26] for W = N w { + oo}, Wo = + oo) the preceding conditions are equiva!ent to 

(c) the family (d~) defined as 

dw(t ) = inf{lf~(x) - p(Wo)f: x E f(w), d(x, S(wo) ) = t} 

is firm. 

The following lemma makes clear the connections of what  precedes with Theorem 
1 of [26]. 

Lemma 4.3. Let (cw)~ w be a family of functions from ~+ into R+ indexed by a 
topological space W. Suppose w o ~ Whas a countable basis of neighborhoods (W~.)~N. 

(a) I f  (ew) is firm, then the functions ~ and ~ defined as 

O(t) -- lira inf %(s), 
(s, w)~(t, wo) 

~(t) = lim inf Cw(t ) 
W-~w0 

are firm. 
(b) I f  ~ = infw~ ~v Cw is firm, then (Cw) w~ w is firm. 

Note that ~ is epi-Iimit inferior of the family (Cw)w~W as w-4 w o. 

Proof. (a) As ~ < 0 is suffices to prove that ~ is firm. Let (t.) be a sequence of ~ + 
such that  lira. O(t.) = 0. Then for each n 6 N we can find % ~ IV. and s. in N + with 
Is. - t.I _< 1/n such that %,,(s,) <_ O(t,) + 1/n. Therefore, lira. Cw.(S.) = 0 hence 
s. ~ 0 and t. --, 0, 

(b) Given (t.) c ~ + and (w.) c W with lim. w. = wo, lim. c,~~ = 0 we have 
~(t.) < %,,(t.), hence lim. ~(t.) = 0 and t. ~ 0. D 

Under  a weak equicoercivity assumption we have a converse of assertion (a) 
of  the preceding lemma. 

Lemma 4.4. Let (Cw)w~ w be a family of functions from ~+ into ~+ such that there 
exist ~ > O, A > O, and a neighborhood W o of Wo in W such that ew(t) >>- t for any 
we  W o, t > A. Then, if ~ given as in the preceding lemma is firm, the family (cw) is 
f i rm .  
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Proof  Let (t.) c N+, (%) c W be such that  l im. w. = Wo, l im. cw.(t,,) = 0. Let 
no ~ N be such that  w. ~ Wo and c~,,(t.) < ~ for n > no. Then  for n >_ no we have 
t. ~ [0, A] and we can find an infinite subset K of N such that  (tk)k~K converges 
to some ~ in [0, A]. Then ~(~ _< lira infk~K Cwk(tk) = 0, hence ~(~ = 0. As ~ is firm 
we get ~ = 0. As any subsequence of (t.).~N can be substi tuted to (t.) in what  
precedes we get t, ~ 0, [3 

Theorem 4.5. The problem (Po) is M-well-set  iff there exists a nonemp~y closed 
subset B of  A o and a nondecreasing f irm function c on E + such that c(0) = 0 and 

fo(X) - m > c(d(x, B)) for  each x e Ao 

with equality when x ~ B. Then B is the set o f  solutions to (Po). 

Proof. Let 

c(t) = inf{Ifo(x) - m I :x  ~ A o, d(x, So) = t}. 

Suppose (Po) is M-well-set. Take  B = So. If (t,) is a sequence of N+ such tha t  
c(t,) -~ O, we can find (x,) in Ao with d(x,,  So) = t,, f ( x , )  ~ m, As (Po) is M-well-set, 
we get t, ~ 0, so tha t  c is firm. 

Conversely,  when c is firm, for any minimizing sequence (x,) we have 

fo(X) - m > c(t.) 

for t. = d(x.,  So), hence t. ~ 0 and (Po) is M-well-set. [ ]  

In [12] a more  precise s tudy of such kinds of results is given in the case A o 
is a convex subset of a no rmed  vector  space X and fo is s tarshaped or convex. 
Let u s t u r n  to a criterion which uses similar assumpt ions  (compare  with Theorem 
5.13 of [12] and  Theorems  6 and 7 of  [26]). 

Proposit ion 4.6. Suppose X is a Banach space, A o, fo is convex and l.s.c, and its 
domain D has a nonempty interior. Suppose the set S o o f  minimizers o f f  o is nonempty 
and there exists a f irm function c: ~+ ~ R+ such that for each x in the domain of  
the subdifferential Ofo o f  fo and each z o ~ So we have 

sup{(x*,  x -  Zo): x * e  8fo(x)} > c(d(x, So)). (*) 

Then (Po) is M-well-set. 

Proof  Replacing c with c' given by c'(r) = inf{c(s): s _> r} and c' with c" given by 
c"(r) = sup{c(s): s < r} we m a y  suppose c is nondecreasing and 1.s.c. Let  us prove  
that  

fo(x) -- m > c(�89 So)) (**) 

for each x ~ X. We may  suppose  x ~ D. Observ ing  that  the epigraph E of fo has 
a n o n e m p t y  interior as fo is cont inuous on the interior int D of D we m a y  even 
suppose that  x e int D since for any x s D there exists a sequence (x., r.) with limit 
(x, fo ) and (x.,  r . ) ~ E  so that  (**) holds if it holds for x replaced with x. .  Given 
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x s int D let (t.) be a sequence in (�89 1) with limit �89 for each n c N we can find 
z. s So with Hx - z.lt <- 2t.d(x, So). Let y.  = t . x  + (1 - t.)z., so that 

Hx - y.]l --- (1 - t.)llx - z.l[ _< 2t.(1 - t.)d(x, So), 

d(y. ,  So) ~ d(x, So) - d(x, y.) >_ (1 - 2t,,(1 - tn))d(x, So) >_ �89 d(x, So). (***) 

As z. e So c D, x e int D we have y. ~ int D and fo is cont inuous at Yo, hence 
subdifferentiable at y.  with 8fo(y.) weak*-compact .  

Let y,* ~ Ofo(Yn) be such that  

(y* ,  y~ - z~) = sup{(y*,  y , , -  z . ) :  y* ~ 0fo }. 

Then by (.), (**), and (***) we get 

fo(x) - m ~ fo(X) -- fo(Y,) 

_> (y .* ,  x - y . )  

>_ t - l (1  - t , ) (y* ,  y ,  -- z , )  

_> t -  1(1 - t.)c(d(y., So)) 
_> I - ~ ( 1  - t.)c(�89 d(~, So)). 

Taking the limit as n ~ + oo we get (**). [ ]  

Example 4.7. Let f be as in Example 2.4, f ( x )  = t /2(Qxtx) ,  where  X is a Hilbert 
space and Q: X- - ,  x is a semidefinite positive symmetric cont inuous !inear 
opera tor  with closed range. Then there exists cr > 0 such that  (Qxlx)  > 7.d(x, So) 2 
for each x e X, with So = ker Q, so that for each x e X and each xo ~ So we have, 
with c(t) = et  z for t s N+,  ( f (x) ,  x - xo)  = (Qxlx)  >_ c(d(x, So)). It  follows that (Po) 
is M-well-set. 
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