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  ODUCrlON 

The process of analyzing the individual concentration time data obtained from 
each subject enrolled in an experimental pharmacokinetic study is very familiar to 
pharmacokineticists. With the aid of available computer programs, the data are 
analyzed to obtain estimates of pharmacokinetic parameters for each subject, and in a 
subsequent statistical analysis, summary statistics such as the mean and standard 
deviation are calculated for the patient population. The statistical considerations 
involved in this data analysis process are relatively straightforward and violations of 
the underlying statistical model are usually not severe and can be handled by the use 
of appropriate weighting procedures. The ease of data analysis in the experimental 
setting is due, in large part, to the quality and quantity of data obtained for each 
subject in the experiment. Blood samples for determination of serum drug 
concentrations are obtained over a wide range of concentrations, at carefully selected 
time points, and experimental conditions are maintained across the study population. 
Thus, conditions are optimized so that accurate and precise parameter estimates for 
each subject may be obtained. 

Observational data, on the other hand, is characterized by a lack of control over 
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the frequency and timing of sampling. The data may arise during the routine clinical 
care of patients or during Phase III or Phase IV trials so that a limited number of 
samples are available. In some cases only one or two samples are obtained, and the 
timing of samples may not be optimal for yielding precise parameter estimates in each 
individual. Moreover, in the event of only one sample per patient, individual 
estimates of pharmacokinetic parameters are not attainable. Because of these 
limitations, the analysis of observational data must be approached cautiously and 
specialized data analysis methodologies must be employed. 

In Chapter 1, the three types of population parameters of interest were 
discussed: fixed effect parameters (0) describe the relationship between various 
independent variables and pharmacokinetic parameters, and the random effect 
parameters f~ and 02 provide estimates of the typical magnitude of interindividual 
variability in a pharmacokinetic parameter across the members of a population and the 
typical magnitude of residual variability consisting of combined intraindividual and 
measurement error variability, respectively. 

One approach to the analysis of observational data involves the use of a mixed 
effect model, a model that mixes the influence of fixed effects and random effects on 
the observed plasma concentration, allowing certain parameters describing these 
influences to be simultaneously quantified, NONMEM is a Fortran 77 computer 
program that analyzes a general mixed effect model; specific adaptations for analysis 
of concentration time data are also available. NONMEM allows a general, correlated 
error structure with varying error magnitudes, for both interindividual and residual 
variability, that can be a function of the data and the fixed effect parameters as well as 
random effect parameters. The analysis of data using NONMEM requires the 
development of a pharmacostatistical model for each of the three types of population 
parameters to be estimated. This chapter provides an overview of the modeling 
process required for analyzing observational pharmacokinetic data using NONMEM. 

PHARMACOSTATISTICAL MODELING 

A complete pharmacostatistical model must be specified explicitly prior to 
analysis using a mixed effect model. This pharmacostatistical model includes a 
pharmacokinetic model for generating predicted drug concentrations as a function of 
individual pharmacokinetic parameters, and additional models for the mean and 
magnitude of variability of the pharmacokinetic parameters and the magnitude of 
residual variability. These models depend on population parameters, 0, f~, and erL 
The models can be divided into two basic types: structural models, including the 
pharmacokinetic model and regression formulae for investigating the effect of various 
fixed effects (coefficients = 0) on pharmacokinetic parameters; and statistical models 
for variability, including both interindividual variability (variance = f~) and residual 
variability (variance = 02). 
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P harmacokinedc Models 

Pharmacokinetic models describe concentration time data. Such models 
generate predictions of  concentrations at appropriate times as a function of  their 
(pharmacokinetic) parameters, doses, times of  observation, etc. The specification of 
the pharmacokinetic model employed in the analysis of experimental data is relatively 
straightforward since the method of drug administration is standardized and 
concentrations are generally obtained following a single dose, or over a single dosing 
interval while the patient is at a steady-state condition. An example of this process is 
illustrated in Figure 1 in which the concentrations obtained following a single 
intravenous bolus dose have been fit to the one compartment model described in 
Equation 1, 

^ D 
Cpt = V e'K't (I) 

^ 

where, Cpt  is the expected plasma concentration at time, t, following the 
administration of a single intravenous bolus dose, D, and K and V are the true kinetic 
parameters for the individual. In the process of fitting the data, of course, values for 
the parameters, volume of  distribution, V, and the first order elimination rate 

Cp 

| 

Figure 1. Fit obtained using a one 
compartment model to fit concentration 
time data observed following intravenous 
bolus administration of a drug. The Cp 
designates the actual measured concen- 
trations and c~p represents the concentrations 
predicted by the "true" pharmacokinetic 
model. 
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constant, K, would be selected to minimize the difference between the observed value 
and that predicted by Equation 1. 

One of the challenges arising in the analysis of observational data has been the 
specification of the pharmacokinetic model. Observational data is collected under a 
variety of circumstances; data may be collected at steady-state and non-steady-state 
conditions, concentrations may be obtained over several dosing intervals, dosing 
intervals may be irregular and missing doses are a common problem in the clinical 
setting. As a result, the pharmacokinetic model is cumbersome and difficult to 
formulate. The model must be written in a recursive format so that the solution can 
be advanced from one dosing or blood level event to the next, in time order, so as to 
generate predictions of drug concentrations at times of corresponding measured 
values. In the past, the data analyst was responsible for providing the program 
subroutine, PRED, which specified the pharmacokinetic model to be used for the 
NONMEM analysis. This task represented a significant obstacle to widespread use 
of the program. Recently, this task has been made considerably easier with the 
release of PREDPP, a library of pharmacokinetic models for use with NONMEM. 1 
PREDPP contains subroutines for analyzing data with either one or two compartment 
linear models using either first order or zero order drug administration. These models 
encompass the majority of situations encountered in pharmacokinetic studies. In 
addition, general linear and non-linear models are available for more complex data 
analysis tasks. 

Regression Models 

The primary objective of the analysis of either experimental or observational 
data is to determine the typical (mean) values for pharmacokinetic parameters in a 
patient population and identify independent variables affecting these parameters to a 
clinically significant degree. This evaluation has traditionally been carried out via 
regression of individual parameter estimates on independent variables such as age, 
weight, creatinine clearance, gender, and so forth. 

This process can be illustrated by considering an experiment designed to 
investigate the relationship between renal function, as estimated by creatinine 
clearance, and the total clearance of a drug. Drug clearance and creatinine clearance 
would be determined for each subject in the experimental group using an appropriate 
experimental methodology. The resultant data would appear as in Figure 2, and 
linear regression analysis would be performed using Equation 2. 

C1 = Ol + 02- CrC1 (2) 

where, CrC1 is the observed creatinine clearance, the intercept, 01, is the drug 
clearance expected in a patient with no renal function, and 02 is the proportionality 
constant relating creatinine clearance to expected drug clearance, ~1. 
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Figure 2. Linear regression analysis of drug 
clearance versus creatinine clearance (CrC1). 
Typical values of drug clearance are generated for 
an individual or group of individuals with a given 
creatinine ,clearance. The discrepancy between the 
true value for drug clearance (C1) and the typical 
value dl necessitates the use of a statistical model 
for intemldividual variability. 

The influence of  multiple independent variables on pharmacokinetic parameters 
can also be determined by incorporating additional terms into the regression formula 
to yield, for example, Equation 3. 

CI = 01 + 02" CrC1 + 03 �9 AGE + 04. WT (3) 

Likewise, categorical variables can be incorporated into the regression formula to 
evaluate the effect of  all-or-none phenomena as in Equation 4. 

C1 = (el + 02. CrCI + 03 �9 AGE + 04" WT) �9 (1-CHF �9 05) (4) 

where, CHF is an indicator variable which has the value unity if  the patient has 
congestive heart failure and zero if the patient does not have the disease, and 05 
represents the fractional increase or decrease in clearance associated with the presence 
of  congestive heart failure. Indicator variables are useful for factors that are 
categorized, e.g., "present" versus "absent." While this does not usually present a 
problem in evaluating the effect of  gender, it can present problems in evaluating the 



30S Grasela, Jr., and Sheiner 

effect of disease states with a range of severity. Careful consideration is required in 
determining the severity of disease that must be present before the patient is classified 
as having the disease "present." 

The specific regression formulas used for investigating the influence of patient 
factors can be as complicated as necessary to appropriately model the effect of the 
factor on pharmacokinetic parameters. The models do not necessarily have to be 
linear or additive; further illustrations of regression modeling in population analyses 
are available.1 The interested reader is referred to the NONMEM documentation for 
additional examples and implementations within the NOMEM program. 1 

Statistical Models 

When data collected from an experimental pharmacokinetic study is to be fit to a 
pharmacokinetic model, a number of statistical assumptions are implicit. These 
assumptions concern the nature of the errors that arise between the measured drug 
concentrations and the predicted drug concentrations generated by the 
pharmacokinetic mode]. In using ordinary least squares to fit data, it is assumed that 
the errors are additive, independent, and the same typical size. Although these 
assumptions are frequently violated, particularly the assumption regarding the typical 
size of the errors, the quality and quantity of data available for each individual usually 
allows reasonable estimates of pharmacokinetic parameters. When the typical size of 
the errors varies in a known way, weighted least squares can be used to adjust for 
this. Unlike experimental data, however, observational data lack design restrictions 
regarding data quality, quantity, and organization (See Chapter 1 for further 
discussion). The lack of these characteristics produce violations of the above 
assumptions to the extent that traditional weighting schemes may be inadequate, z 

The statistical model required for a NONMEM analysis of observational data 
allows explicit statements regarding the underlying distribution of the random error 
terms for interindividual and residual variability. In order to illustrate these 
components of the statistical model we can consider this problem from the perspective 
of the individual analyses discussed above. In the case of interindividual variability, 
and using Figure 2 as an example, the model focuses on the errors between 
"observed" values of clearance in each subject and the expected value of clearance for 
an individual obtained from his creatinine clearance and the regression formula in 
Equation 2. In the case of residual variability, and using Figure 1 as an example, the 
statistical model focuses on the errors between observed drug concentrations and the 
corresponding concentrations predicted by the pharmacokinetic model given the 
individual's pharmacokinetic parameters. 

The requirement for an explicit statistical model for both interindividual and 
residual variability can be appreciated if one considers the differences between the 
analysis of individual data and data analysis from a population perspective. In fitting 
data from an individual, the parameter values of the pharmacokinetic model are 
chosen such that the deviations between the observed concentrations in the individual 
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and those predicted by the model are minimized. This is the process illustrated in 
Figure 1 where (Cp-C~p) 2 is the quantity minimized, and dp is understood to be the value 
of Cp when the individual's true parameters are used in Equation 1. 

When data are analyzed from a population viewpoint using a mixed effect 
model, the concentration predicted by the pharmacokinetic model is generated using 
the typical values of pharrnacokinefic parameters for the population. These are the 
values generated by the regression formulae, e.g., Equation 2, given the values of the 
independent variables. As a result, the discrepancy between the measured and 
predicted value has two components. The first component is the difference between 
the measured drug concentration in an individual and the predicted drug concentration 
that would be obtained if the individual's true pharmacokinetic parameters were 
known and used in the pharmacokinetic model to generate the predictions. This 
represents residual variability and is the difference minimized in the case of fitting 
individual data. The second component is the difference between the concentrations 
obtained using the individual's true parameters and those obtained using the 
pharmacokinetic parameters of the regression formulae, such as Equation 2. This 
difference represent intefindividual variability and is unique to population analysis. 
The two components of the residual differences encountered in population analysis 
are graphically illustrated in Figure 3. The statistical models to be specified for MEM 
analysis can be thought of as models for residual variability and inter-individual 
variability. 

C p - f ( p )  f ( p ) - f ( ' ~ )  
"Residual Error" "Correction" 

~ " " - -  f (P) l ........ 

t Cr CI 

Figure 3. In a population analysis, the discrepancy 
between the measured and predicted drug 
concentrations can be dissected into two distinct 
components: residual variability, the difference 
between the observed, Cp, and expected 
concentrations, f(P), where P is the individual's 
true pharmacokinetic parameter, and intefindividual 
variability, the difference between expected 
concentrations obtained using true parameters (P) 
versus typical values (~) from regression formulae. 
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Interindividual Variability. The regression formula in Equation 2 and the 
estimates for the intercept, 01, and the slope, 02, provide a mechanism for predicting 
the typical value of clearance in a patient or group of patients with a given creatinine 
clearance. In any specific individual, the typical value of drug clearance predicted for 
that individual using his creatinine clearance will not exactly equal his observed drug 
clearance. This discrepancy can be expressed as: 

Cl = ~l + n (5) 

where C1 represents the true value of clearance for the individual, ~1 is, as noted 
above, the typical value predicted by Equation 2 for a given creatinine clearance, and 
TI represents the persistent difference between these values. The distribution of the 
~'s, for various individuals represents the distribution of their true clearances about 
the typical (predicted) value, and the mean squared value of ~ in the population, ~ ,  is 
the variance of ~ and represents the magnitude of interindividual variability in 
clearance that has not been explained by the regression formula in Equation 2. 

In addition to the known patient factors, such as age, weight, creatinine 
clearance, etc., which can affect a pharmacokinetic parameter one can consider a 
number of unknown factors, such as diet, genetic influences and environmental 
exposures which unpredictably affect drug clearance in the individual and result in the 
discrepancy between the true and typical values. In formulating the statistical model 
for interindividual variability, the discrepancy, ~q, is assumed to be a random variable 
that has a symmetric distribution with a mean of zero and variance, 0~ (see Figure 4). 
For every individual in the population a different 11 arises from this distribution, 
interacts with the typical value, and generates the true value. It is this interaction 
between ~ and the typical value that must be modeled. 

One of two basic statistical models are almost always used to model the 
interaction between ~q and the typical value. Equation 5 represents an additive model 
in which 11 simply adds to the typical value, and the variance of the parameter remains 
constant over the range of the independent variable. This presumes that the 
distribution of true values around the typical value has a constant degree of 
variability. Alternatively, one can write a model that has the variance about the typical 
value increasing with increasing values of the parameter. An example is the constant 
coefficient of variation model described in Equation 6: 

C1 = r + C1. rl (6) 

In this model the variance of C1 increases with increasing values of C1 (it is CI  2 �9 0) 2 tO 
be exact). These models and the relationship between the variance of the parameter 
and its typical value implied by their use are illustrated in Figure 5. 

The selection of a model for interindividual variability for a specific data 
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Figure 4. For each individual in the population, an 
rl arises from a symmetric distribution with a mean 

of zero and variance of 0~ 2. This rl interacts with 
the typical value to generate the true value and the 
nature of this interaction must be included in the 
pharmacostatistical model 

analysis problem should be based on the expected pattem of variabiiity. If  the 
population is reasonably homogeneous, an additive model is probably appropriate. 
If, however, there is a large degree of  variability, either in the range of  the 
independent variables affecting a parameter or in the true parameter values 
themselves, the use of  the constant coefficient of variation model is probably more 
appropriate. It is also possible to formally compare the fit obtained with each model. 3 
These basic models for interindividual variability can be further modified to account 
for differences in the magnitude of  variability for different patient groups. For 
example, the interindividual variability in clearance may be greater in patients in an 
intensive care unit than in patients treated on a general medical service. The interested 
reader is referred to the NONMEM documentation for additional examples and 
implementation within the NONMEM program.l 

Residual Variability. In the analysis of  concentration time data from an 
individual, the measured drug concentrations will vary around the predicted 
concentration time curve as shown in Figure 1. The concentration of  a drug 
measured at a given time following a dose is a function of  the individual's 
pharmacokinetic parameters, such as clearance and volume of  distribution, and a 
number of  factors which can be considered to act in a random manner. These 
unknown and unpredictable influences include the variability introduced by the drug 
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CL = ~'L+ q; CL = C"~L+ CLq 

Or CI Cr Cl 

Figure 5. Basic statistical models for interindiviclual 
variability. 

assay during the determination of the drug concentration, variability introduced by 
errors in the recorded time of sampling, and pharmacokinetic model misspecification. 
This latter problem can arise from a number of sources including intraindividual 
variability in pharmacokinetics, and selection of an inappropriate or incomplete 
pharmacokinetic model. Intraindividual variability in pharmacokinetics can result 
from true day to day variability in drug elimination efficiency. A linear 
pharmacokinetic model may have been used to model the concentration time profile of 
a drug but elimination may be nonlinear with concentration dependent clearance. 
Finally, a simple one compartment model may be inadequate. Enterohepatic 
recirculation of drug may be occurring or samples may have been obtained during an 
unappreciated distribution phase following rapid intravenous administration of drug. 
Each of these factors will add to the variability in the observed drug concentrations 
and produce discrepancies between observed and predicted values. These 
discrepancies can be expressed as 

A 
Cp = Cp + e (7) 

A 
where, Cp represents the measured drug concentration, Cp is the corresponding 
concentration predicted by the pharmacokinetic model, (using the true individual 
parameters) and e represents the difference between these values. The variance of e 
(its mean squared value), c 2 , provides an estimate of the typical magnitude of 
squared residual variability. 

In specifying the model for e it is assumed that the unknown influences, i.e., 
those not incorporated into the pharmacokinetic model, are random and that they arise 
from a symmetric probability distribution as illustrated in Figure 6. From this 
distribution, with a mean of zero and a variance of c 2, a different value for e arises for 
each measured concentration in each individual in the population. This value of e 
interacts with the expected concentration to generate the measured concentration. The 
statistical model for residual variability describes the nature of the interaction between 
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Figure 6. In modeling residual variability, errors 
between the measured and expected concentrations, 
obtained using the individual's true pharmacokinetic 
parameter, p, are assumed to arise from a symmetric 
distribution with a mean of zero and a variance of o 2. 
The statistical model for residual variability defines the 
nature of the interaction between the error and the 
expected value to yield the observed value. 

the error term e and the expected drug concentration. 
Similarly to interindividual variability, one of  two basic models for e usually 

suffices. Equation 7 represents an additive model in which e adds to the expected 
drug concentration, and the variance of Cp, ~2, remains constant over the range of 
expected concentrations. Alternatively, the variance of  Cp may increase with 
increasing values of  the expected concentration. Equation 8 is an example of a 
constant coefficient of variation model, applied to residual variability. 

A A 
Cp = Cp + Cp-  e (8) 

As in the model for 0, the selection of a particular model for e should be based on the 
expected pattern of  errors. The relationship between the variance of  Cp and the 
expected drug concentration implied by the use of basic models for residual variability 
are illustrated in Figure 7. 
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Figure 7. Basic statistical models for residual 
variability. 

SUMMARY 

The analysis of observational data using a mixed effect model is more complex 
than the traditional approach to pharmacokinetic parameter estimation. Structural and 
statistical models must be explicitly formulated and implemented within the computer 
program NONMEM. This presents some unique challenges in the selection and 
evaluation of alternative models for the evaluation of interindividual and residual 
variability. 
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