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By 

ADAM KLEPPNER in College Park, Maryland 

Introduction 

In  the study of representation of locally compact groups, one finds tha t  
projective representations arise as a natural and inescapable generalization. 
A first step in the study of projective representations of a group is the deter.  
mination of all possible multipliers (factor systems) on the group. In this paper 
we shall determine the multipliers on a large class of locally compact abelian 
groups (theorem 7.1). What  they are is easily described: each multiplier is 
similar to a continuous bilinear function on the group with values in the group 
of complex numbers of absolute value 1. For the case of finite abelian groups 
this is a result of SCHUR [11], and for abelian Lie groups this result was no 
doubt known to W~.YL (see [13]) and can be found explicitly in [1] and [4]. 
But  here these particular results will be found as a special case of a more 
systematic and general treatment.  

The method of determlning these multipliers is in essence simple. H ~o is 
a multiplier on the locally compact abelian group O, the function co(2) (x, y) 
= ~(x,  y) co(y, x) -1 is a continuous bilinear function on G with values in the 
group of complex numbers of absolute value 1 (shortly, co(2) is a bicharacter 
of 0). Moreover, a multiplier is trivial if and only fl it is symmetric. This 
implies tha t  the maple ~ co(~) defines an isomorphism of the group HI(G) into 
the group ~1 (G) of anti-symmetric bicharacters. In  the case tha t  x-> x I is 
an automorphism of G then every anti-symmetric bicharacter can be written 
in the form ~(x, y) ~(y, x) -1 for some bicharacter ~ and i t  easily follows from 
this tha t  each multiplier on G is similar to a bieharacter. This also leads to the 
determination of the group H~(G). If  x --> x s is not an automorphism the situa- 
tion is more complicated, and most of this paper is devoted to an a t tempt  to  
c/rcumvent this difficulty. 

Because of the fact tha t  for each multiplier co, oJ(I) is a bieharacter, it  is 
natural to  study the group of bieharacters. Thus the first 6 sections of this 
paper are devoted to a study of the elementary algebraic and topological prop. 
erties of groups of bilinear functions, and to questions of extension. There 
are some interesting open questions about these groups which tend to indicate 
tha t  locally compact abelian groups can be viewed properly only in the setting 
of some much larger (and as yet  undetermined) class of topological abelian groups. 

Multipliers are discussed first in § 7 where the relevant definitions will be 
found. 
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Because this paper is almost entirely concerned with abelian groups we 
shall write "group" for "abelian group;" any nonabelian groups will be 
specified as such. All the groups will be written multiplicatively, with the 
exception of such groups as R and Z which are customarily written additively. 
The identity will be denoted by e or 1, or 0 for Z and R, with e being used for the 
most part  if the group is abstractly given and 1 for groups of functions. T is 
the group of complex numbers of modulus 1. For  each group G, G ̂  is its char- 
acter group, provided with the usual topology, with the character function 
being denoted by (x, 7)  or ( r ,  x).  All groups are assumed to be Hausdorff. 
The words "homomorphism," "isomorphism," etc. refer only to maps with the 
usual algebraic properties; any topological properties will be explicitely men- 
tioned. 

The material in this paper is taken from the author's thesis, submitted to 
Harvard University and written under the direction of Professor G. W. MACKEY. 
I t  iS a pleasure to acknowledge his advice and encouragement. 

1. Elementary facts 
Let  G1, G s and H be locally compact groups. A map ~ : G 1 × G 2 -+ H is 

bilinear if ~(xlx2, Yl) : ~(x~, Yl) cf(x~, Yl) and rf(x 1, YlY~) : (~(Xl ,  Yl) Of(X1, Y~) 
for all xl, x~ E G1 and Yl, Y~ E G~. Let  B(G1, G~) denote the set of all bilinear 
functions on G 1 × G~ with values in T which are continuous as functions on 
G 1 × G~. If  G 1 : G 2 : G put  B(G 1, G~) : B(G); B(G) is the group of bicharae- 
ters of G: B(G1, G2) is a group under pointwise multiplication of its elements. 
Let  Horn(G1, G~) denote the group (under pointwise multiplication) of all 
continuous homomorphisms of G 1 into G~. For ~0 E B(G1, G2) and x E G1 let 
~* (x) be the map y -~ ~ (x, y) of G 2 into T and let ~* denote the map x -* ~* (x). 

Proposition 1.1. For each x E G1 and ~ E B(G1, G~), rf* (x) E G~ and 7~ - ,  ~* 
is an isomorphism o/B(G 1, G~) on Hom(G 1, G~). 

Proof: The continuity of ~* (x) follows from the continuity of ~; thus 
~* (x) E G~. Because ~ is bilinear ~0 -~ ~0" is a homomorphism of G 1 into G2 h. 
¢* = 1 if and only if ¢* (x) = 1 for all x E 01 and this happens if and only if 
(ep*(x),y) = 1 -= ~f(x, y) for all x, y E G 1 × Gg, that  is, if and only if ~ = 1. 
Hence ~ ~ ~* iS an iSomorphism. For the continuity of ~0" it  is enough to 
consider neighborhoods of the identity in G~. A basis for these neighborhoods 
iS given by  the sets W(C, V) of all ~ E G~ such that  (7,  C~C V where C is 
a compact subset of G~ and V a neighborhood of the identity in T. I t  follows 
(el. [6], lemm~ 5F,  p. 12) tha t  the set of all x E G1 such that  ~*(x) E W(C, V) 
is open and tha t  ~* iS continuous. For  0 E Horn (G1, G~) let 0 ° (x, y) = (0 (x),y). 
0 ~ is bilinear and 0 ~* = 0. Once it  has been shown that  0 ° is continuous it  will 
follow tha t  ~ ~* is an isomorphism of B(G~, G~) on Hom(G~, (7~). For the 
continuity of @ let x, y be an arbitrary point of G~ × G~ and let V be an ar- 
bi trary neighborhood of 1 E T. Let  V~ be a neighborhood of 1 E T such that  
]7~C V. Because O(x) iS continuous there exists a compact neighborhood U~ 
of the identi ty in G~ such tha t  (0(x), U~)C Vr Because 0 is continuous there 
exists a compact neighborhood U~ of the identi ty in G~ such tha t  O(U~)C 
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cW(U~,  V~)v~ W({y}, V~). We now have O°(xUl, yU~)= (O(xU1),yU~) 
= <0(x), y> <0(U1), y> <0(x), V~> <0(U1), U~>C O°(x, y) V~C O°(x, y) V a n d  0 ° 
is continuous. 

Frequent use will be made of this isomorphism. To avoid unduly compli- 
cated notation we shall identify the groups B(G1, G2) and Hom(G1, G~). 
However, if we wish to emphasize the fact tha t  we are treating ~ E B(Ox, G~) 
as an element of Hem (G1, G~) we shall write ~ (x) or ~ : G 1 -+ G~. 

If  ~ :  G 1 -~ G~ then ~:  G~-~ G~, where ¢ is the transpose of q, and as 
a bilinear function ~ (y, x) = ~0 (x, y). The map ~0 -+ ~ is clearly an isomorphism 
of B(G 1, G~) on B(G~, G1). If G 1 = G~ = G the automorphism ~ -~ ~ of B(G) 
gives rise to two important  subgroups. Let  A (G) denote the set of all ~0 E B(G) 
such that  ~0(x, y) = ~0(y, x) -I.  A (G) is a subgroup of B(G) for i t  is the kernel 
of the endomorphism ~0-~ ~ of B(G). I f  ~ EA{G) we say that  ~ is anti- 
symmetric. Similarly we define S(G) to be the subgroup of symmetric bilinear 
functions - those ~ such tha t  ~(x, y ) =  ~0(y, x) for all x, y E G × G. If  G 
happens to be real Euclidean space then A (G) and S (G) correspond to groups 
of anti-symmetric and symmetric bilinear forms. In analogy with the de- 
composition of such a form into symmetric and anti-symmetric parts we might 
t ry  to write every element of B(G) as a unique product of an element of A (G) 
with an element of S(G). The first difficulty is that  these two groups may have 
a non-trivial intersection. In fact, 

Proposition 1.2. A (G) ~ S(G) = A (GIG 2) = S(G/G ~) where G ~ is the group 
o/all  x 2/or x E G. 1) 

Proo]: q~ EA(G) f~ S(G) if and only if ~(x, y) = ~(y, x) -1 = ¢(y, x) for  
all x, y E G ×  G. Thus ~o(x,y)= ± 1  and ~o(x ~ , y ) =  q ( x , y ~ ) = l  for all 
x, y E G ×  G. Because ~ is continuous T ( z , y ) = l = ~ o ( y , z )  for all zEG2. 
Thus ~0 defines a bilinear function q~' E A (G/G ~) such that  ~(x, y ) =  ~0' (~, ~) 
where x -+ ~ is the canonical map of G on GIG ~. Conversely, if q)' E A (GIG ~) 
then ~definedby qo(x, y) = ~0' (~, ~)is inA (G).Forall~'  E B(G/G~),qJ( ~, Y)= ±1.  
Thus A(G]G 2) = S(G]G ~) and ~0 defined above is also in S(G). 

Corollary 1. A(G) ~ S(G) = {1} i / and  only if G ~ is dense in G. 
Corollary 2. I] O is connected A (G) ~ S (G) = {1}. 
For ff G is connected G is the direct product of vector group and a compact 

connected group. In  both of these groups the map x -> x ~ is surjective. Indeed 
this is clearly so for the vector group while for compact connected groups this 
is shown by B R ~ C O ~ R  ([3], prop. 1, p. 17). 

Continuing with the analogy of bilinear forms on Euclidean space, for 
q~ E B(G) define ~0' by: q~' (x, y) = (q~(x, y) q~(y, x))l/~ and ~"  by:  ~"(x,  y) 
= (q~ (x, y) q~ (y, x)-1)11 ~'. Now ~v' (x, y) = ~' (y, x), ~o" (x, y) = ~0" (y, x) -x and 

= ~o' ~".  Unfortunately neither ~0' nor ~"  need be bilinear, for ~'(xy,  z) 
= (q~(xy, z) q~(z, xy))l/~ -- (~(x, z) ~(y, z) q~(z, x) q~(z, y))l/~ = (q)(X, Z) ~(Z, X)) 11' 

1) Let H be a closed subgroup of the locally compact group (~. Lifting each bilinear 
function on G/tt to G gives an isomorphism of B(G/H) with a subgroup of B(6f) which we 
dentify with JB(Ct/H). This will be discussed in more detail in § 3. 



(~ (y, z) ~p (z, y))Xlz = .4- ~' (x, z) ~' (y, z), the sign depending on how the square 
roots were chosen. I t  is in general not possible to choose the square roots in 
such a fashion tha t  ~' is bilinear. Similar remarks hold for ~".  

For ~ E B(G) define ~(2) by: ~(2)(x, y) = ~(x, y) ~(y, x) -1 = ~ - X ( x ,  y). 
~(2) EA((7) for all ~EB(G)  and if q~EA(G), qv( S)= ~s while if ~ES(G),  
~(s) = 1. Let  B(S) (G) denote the group of all ~0(~). 

Proposition 1.3. A necessary and sufficient condition that B(G)= A(G)S(G)  
is that every egement ol B (s) (O) have a square root in A (G). 

Prool: Suppose B((7) = A ((7) S((7). If  ~ E B((7) set ~ = 010s where 0lEA ((7) 
and Os~S((7). Then ~0(s) = 0~. Conversely, if ~v(s) = 03 for some 0 EA((7) 
then ¢0 -1E S((7), for ~O-l(x, y) = ¢(x, y) O-l(x, y) = V(x, y) ~(3)-10(x, y) × 
× O(x, y) = q~(y, x) O(y, x) -1 = q~O-l(y, x). The decomposition ~ = (~v0 -1) 0 
is the required decomposition. 

Corollary. I f  x -~  x s is an automorphism of (7 then B((7) = A((7) × S(G). 
In  this ~ase A(G)f~ ~((7) = {1} and every element of A((7) has a square 

root. In  fact if ~ EA((7) then 0 defined by O(x ~, y) = q~(x, y) is also in A((7) 
and ~ = 0 2. 

Similarly we could define ~v[21 by: ~[21(x, y) - ~0(x, y) ~v(y, x) =- ~ ( x ,  y). 
If  BIS]((7) is the group of all ~v[2l then BIll((7) is a subgroup of S(G). Another 
necessary and sufficient condition that  B (G) = A ((7) S ((7) is tha t  every element 
of B[21((7) have a square root in S((7). BIll(G) and B(~) ((7) are respectively the 
ranges of the endomorphisms ~ ~v~ and ~0-+ ~ - 1 ;  the kernels of these 
endomorphisms are the groups A ((7) and S((7). 

We next consider certain continuity properties of bilinear functions. 
Proposition 1.4. Let (71 and G~ be locally compact groups and let q~ be a bilinear 

function on (71 × (Tt which is continuous in each variable separately and contin- 
uous, as a function of two variables, at the identity in (71 × (7~. Then q~ is contin- 

Proof: Let  x, y be an arbitrary point of (71 × (73 and let V be a neigh- 
borhood of 1 ~ T. Let V 1 be a neighborhood of 1 E T such that  V~ £ V. Because 
~v is eontinuons at the identity in (71 × (7~ there exist neighborhoods U~ of 
e ~ O  1 and U S of e~(7 S such that  ~0(U~ × Us)< V~. We can choose U~ small 
enough so tha t  ~0(x, Us)C V1 and U~ small enough so that  q~(Ul, y)C Vr 
Now q (x U a, y Us) = ~ (x, y) ~ (x, Us) ¢ (U I, y) ~ (U~ × U~) < ~ (x, y) V~ ~ (x, y) r 
and q is continuous at  x, y. 

Proposition 1.5. Let (71 and G~ be locally compact ~roups and let ~ : (7~ × 6t2~ T 
be a Bard bilinear function. Then q~ is continuou~ in each variable separately. 

Proof: Let E be a Borel subset of T. For each x ~ (71, ~-z(E) f~ {x} × G 3 is 
aBorelsubset of (71 x (Ti.The set of al ly ~ (73 suehthat  x, y ~ ~-l(E) ¢~ {x} × (Ta 
is therefore a Borel set of (7~ and y ~ ¢(x, y) is measurable in y for each x. 
Because measurable characters are continuous, ~(x, y) is continuous in y for 
fixed x. Similarly, ~ (x, y) is continuous in x for fixed y. 

I t  should be noted tha t  the hypotheses of these last two propositions are 
stronger than needed, in tha t  local compactness was not used in the proof of 
proposition 1.4 while all tha t  is needed for the proof of proposition 1.5 is the 
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measurability of ~ in each variable separately. However, it is in the form given 
here that  these results will be used. 

I t  will follow from these two propositions and the results of § 7 that when- 
ever ~v is a Borel function ~v(z) is continuous. Whether ~ itself is continuous is 
an open question. Of course, asking whether every Borel bfiinear function is 
continuous is the same as asking whether every bilinear function continuous in 
each variable separately is actually continuous. This is certainly not the case 
for all groups. For example, let E be a non-normable locally convex vector 
space and let x', x-~ x' (x) be the canonical bilinear form on E ' ×  E. Then 
x', x-~ expx'(x) is only separately continuous. For locally compact groups 
Professor Mackey has kindly pointed out that this question has an affirmative 
answer in an important case. 

Proposition 1.6. Le~ G1 and G 2 be locally com~w~ groups such that G2 A is a- 
c o m ~ .  I f  q~ : G I × G s ~ T i8 bilinear and vontinvmu~ in each variable separaSdy, 
then q~ i~ coutinuous. 

Proo]: Let W (C, U) be an arbitrary neighborhood of the identity in G2 A. 
Let U 1 be a closed neighborhood of 1 E T such that U 1 Ui-IC U. Then 
W(C, U1) W(C, U1)-IC W(C, U). For each y E G~ let V~ denote the set of all 
x E G1 such that ~ (x, y) E U1. Because ~ is separately continuous, each V, is 
closed in G 1. Then F = ~eGe F~ is also closed and V - q71(W(U, U1) ). Because 

G~ is ~-compact a countable number of translates of W(C, U1) covers G~. 
Hence a countable number of translates of F covers G 1 and F has positive 
Haar measure. Hence F F -1 contains a neighborhood _N of e E G1 ([12], p. 50). 
If x E N  then ~(x) E W(C, UI) W(C, U1)-IC W(U, U) and ~ :O l -~O ~ is 
continuous at the identity in G 1. Thus ~ is a continuous homomorphism and 
by proposition 1.1 it is a continuous bilincar function. 

2. A Topology for B(G1, G~) 
Let G 1 and G~ be locally compact groups. If A is a subset of G 1, B a subset 

of G~ and C a subset of T, let W (A, B, C) denote the set of all ~ E B(GI, Gt) 
such that ~(A × B)C C. As a basis for the neighborhoods of the identity in 
B(G 1, (7t) we take all sets of the form W (C 1, C 2, U) where C 1 and C s are compact 
subsets of G 1 and Gs respectively and U is a neighborhood of the identity in T. 
I t  is easily verified that the topology determined by this neighborhood system 
is compatible with the group structure. 

This topology is equivalent to the compact-open topology and if we regard 
each ~ E B(G1, Gs) as being an element of Hom(G 1, G~) then W(C 1, C z, U) is 
just the set of all ~ E Horn (01, 02 A) such that ~v (C1) is contained in the neigh- 
borhood W(C m, U) in G~. This topology is always complete ([2], Chapt. X, 
§ 1, thdor~me 1). I t  will be assumed from now on that B(G 1, ~ )  is provided 
with the topology just described. 

The determination of the topological structure of B(G 1, O~) is complicated 
by the fact that this structure depends heavily on the algebraic structures of O I 
and G~ as well as on their topological structures. There are, however, some 
general facts which can be noted. In the first place the map ~ -~ ~ is clearly a 
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homeomorphism as well as an isomorphism of B(G1, G2) on B(G2, G1). Tlfis 
observation quickly yields the following fact. 

Proposition 2.1. Let G be a locally compact group. Then A (G) and S(G) are 
closed subgroups of B(G) and there is a continuous isomorphism of B(G)/S(G) 
(rezp. B(G)/A (O)) on B(~)(G) (resp. B[~I(G)). 

Proof: The map ~-+ ~ - 1  is a continuous homomorphism of B(G) on 
B(~) (G). The kernel of this map is just S(G), which is therefore dosed. Simi- 
larly, the map ~-~ ~ defines a continuous isomorphism of B(G)/A(G) on 
Bt~}(a). 

Proposition 2.2. If  G 1 and G~ are a.compact then B(GI, G~) is metrizable. 

Proof: Suppose G 1 - 5 C; and G, ~ C' k' where each C; and C~' is a --}~I =k=l 
compact set. If Un is a basis for the neighborhoods of 1 C T then the countable 
collection (W(C/, C~', U,)} forms a basis for the neighborhoods of the identity 
in B(G~, G~) which is therefore metrizable. 

If either G 1 or G 2 is not a-compact then B (G1, G2) need not be metrizable. 
Theorem 2.1. a) If  G 1 and G~ are discrete then B(G1, G2) is compact. 
b) I] G 1 and Gu are compact then B(G1, G2) is discrete. 
e) I] G 1 and G 2 are generated by compact neighborhoods o/their identities, then 

B (G1, Gz) is locally compact. 
Proof: a) For each x, y E G1 × G2 set T~, ~ = T and P = / ~  T~, ~. Then 

;v, yEGI × Gi 
B(G1, G2) is a subgroup of P and the topology on B(G1, G~) is the inherited 
product topology. B(G1, G2) is closed in P for if ~ C B(G1, G2), let U be an 
arbitrary neighborhood of 1 E T and let xl, x~ be arbitrary points in G 1 and 
Yl, Y~ arbitrary points in G 2. There exists 0 E B(G1, G~) such that  qJO-l(xl, Yl), 
qJO-l(x~, Y2), qJO-l(xl, Y2), q~O-l(x2, Y~) and q~O-l(x~x2, y~y2)-~ are all in U. 
The product of these five numbers is in U 5. Thus ~ is bilinear and B(G~, G~) 
is closed in P.  Because P is compact, B(G~, G~) is compact. 

b) Let  U be a neighborhood of 1 E T which contains no subgroups other 
than {I}. Then W(G~, G~., U) is a neighborhood o~ the identi ty in B(GI, G~). 
If ¢p ~ W(G1, G~, U) then for each x ~ G~, ~(x, G~) is a subgroup contained in U. 
Hence ~(x, G~)= {1} for each x E G r Thus ~ -  I, W(C~, C~, U ) =  {1} and 
B ( G~, G~) is discrete. 

e) If  G~ and G~ are generated by compact neighborhoods of their identities 
then G~ = G~ × R ~ × Z ~, and G~ = G~ × R n. × Z ~ where R is the real line, 
Z is the integers and G~ and G~ are compact groups ([12], p. 110). I t  will be 
proved in § 4 that  B is "bilinear;" thus B(G~, G~) = B(G~, G~) × B(G~, R'*) × 
× B (G~, Z~,) × B (R n,, G~) × B (R n,, R n.) × B (R n,, Z m.) × B (Z u,, G~) × B (Z ~ ,  Z ~,) × 
× B(Z ~,, R~,). B(G~, G~) is discrete, as just shown. B(G~, R',) = Hom(G~, R n.) 
= {1}, since R" contains no non-trivial compact subgroups; similarly, B (R n~, G~) 
= {1}. B(G~, Z m,) is the product of m e copies of G~ ̂  and B(Z m ,̀ G~) is the 

' A  product of n h copies of Gu . Also, B(R n', R ~') = R n,n., B(R n,, Z" , )= R n~m., 
B(Z m,, R n') = R ~ '"  and B(Z m,, Z m,) = T ~m'. Thus B(G~, G~) is a product of a 
finite number of locally compact groups and is therefore locally compact. 
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Corollary. I / ( 7  is either discrete or compact B(a)((7) and B[a]((7) are dosed 
subgroups of B ((7). 

There are other conditions under which B((71, (73) is locally compact; for 
instance, B ( G, Z) = G ̂  is always locally compact. In  general, though, B ( G1, (73) 
is not  locally compact. 

Let  (71 and Gl be locally compact groups. For each x, y E (71 × (Ta the map 
-~ ~ (x, y) is a character of B (G 1, (73). The map which assigns to x, y this 

character is bilinear and thus gives rise to a homomorphism of G 1 ® (73 into 
(B(G 1, Gz)) ̂ . If  G 1 and Gz are discrete then by  the definition of the tensor 
product the correspondence between characters of (71 @ Ga and bilinear maps 
on (71 × G~ gives rise to a canonical isomorphism of (a  1 ® (73) ̂  and B((71, Gs). 
Thus in this case the homomorphism mentioned above is an isomorphism of 
G 1 @ G~ on (B(G 1, G~)) ̂ . Using this isomorphism we can obtain further in- 
formation about B(G 1, G~). 

Proposition 2.3. I[ G 1 and G a are discrete and torsion free B(G1, G2) is com. 
pact and connected. 

Proof: That  B(G1, G~) is compact follows from thin. 2.1. In order tha t  
B(G 1, G~) be connected it is necessary and sufficient tha t  B(G 1, Gg) ̂  -~ (71® (Ta 
be torsion free, and for this it is sufficient tha t  G 1 and (Ta be torsion free. 

A partial converse to this result is the following. 
Proposition 2.4. I[ either G I or (Tz is divisible (not assumed discrete) then 

B(G1, Ga) is torsion free. 
Proof: Suppose that  (71 is divisible and that  ~" = 1 for some ~ E B(G1, (Ta). 

Choose x, y E (71 × (73 and choose x 1 E (71 such that  x~ = x. Then ~(x, y) 
= ~ (x~, y) = ~n (x~, y) = 1. Thus ~0 = 1. 

3. Extensions 

Proposition 3.1. Let G" be a closed subgroup of the locally compad group (7 
and set (7"= GIG'. Let H be an arbitrary locally coml~w$ group. Then there 
exists an exact sequenc~ 

1 -~ B((7", H) -* B((7, H) -~ B((7', H) 

where the injection is a homeomorphism and the h o ~ p h l s m  on the right is 
continuous. Moreover, the image of B((7", H) in B(G, H) is closed. 

Proof: Since B(G", H) =-- Hem((7", HA), etc. the existence of the sequence 
follows from the welt-known properties of Hem. To verify the topological 
properties of the maps involved, denote the bases for the neighborhoods of the 
identities in B((7", H), B((7, H) and B((7', H) by W", W and W' respectively. 
Let  p be the canonical map of (7 on (7". Let  W(C1, CI, U) be a neighborhood of 
the identity in B((7, H). Then W" (p(C1), Cj, U) isa neighborhood of the identi ty 
in B((7",H) and if q~E W"(p(C1),Ca, V ) then rpopEW(Cl ,  Ca, V ) and 

-+ ¢ o p is continuous. Let  W" (C 1, C a, U) be a neighborhood of the identi ty 
in B((7", H). There exists in G a compact set C~ such tha t  C 1 = p(C~) ([12], 
p. 19). The image in B((7, H) of W"(C 1, C a, U) contains the intersection of the 
image of B(G",H)  with W(C~,Ca, U ) and ~ - ~ o p  is bicontinuous. If  

Math. Ann. 158 2 
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W'(Cx, C2, U) is a neighborhood of 1 E B(O', H) then W(CI, C~, U) is a neigh- 
borhood of 1 E B(G,H) and the restriction map carries W(C1, C2, U) into 
W'(C x, C~, U). That  the image of B(G", H) in B(G, H) is closed follows from 
the fact tha t  this image is complete. 

Recalling tha t  for any two locally compact groups (7 and H, B(O, H) is 
bieontinuously isomorphic to B(H, G), we obtain the following diagram: 

1 1 1 

1 ~ B(G") -+ B(G", G) ~ B(G", O') 

1 -+ B(G, G") -+ B(G) -~ B(G, O') 

1 -~ B(G', G") -~ B(G', G) -~ B(G') 
Diagram 1 

which is commutative, and in which the rows and columns are exact as indi- 
cated, the injections are homeomorphisms and the remaining homomorphisms 
are continuous. This diagram is symmetric about its main diagonal (under the 
map q0-+ ~3). I t  will be convenient to identify the groups in the first row 
(resp. column) with their images in the second row (resp. column). From this 
diagram we can extract  the sequence 

r 

1 ~ B(G") -+ B(G) -+ B(G')  

in which B(G") can be identified with a closed subgroup of B(G) and the map 
r:B(6t)-+ B(G') is continuous. This sequence is in general not  exact and 
questions of extension are essentially questions in the homology of this 
sequence. 

Proposition 3.2. I] the diagram below is exact then 

1 1 1 

1-+ B(O") ~ B((7", G)-~. B(G", G')--> I 

4 4 

1 ~ B(G,  G") -,,. B(G) -)- B(G,  G') 

-.. B(O', O") ~ B(G', O) -~ B(a') 

1 
Dlagr~aa 2 
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B(G", G) B(G, G") is a closed subgroup of B(G) identical with the kernel of the 
map r : B(G) -~ B(G'). 

Proof: Suppose ~ ] G ' ×  G ' - -  1. Set ~o1-~ qJIG× G'. Because 
q~ol] G' × G' = 1 and by  the exactness of the third column ~01 EB(G", G'). 
By the exactness of the first row ~0ol can be extended to a map v 1 E B(G", G) C 
C B(G). Because ~ and Vl both extend ~0ol, ~0~-lE B(G,G"). Thus 
cf = vlq~T~ 1 E B(G", G) B(G, G") and ker(r)C B(G", G) B(G, G"). Clearly 
B(G",G) B(G,G")Cker(r); thus these groups are identical. Because r is 
continuous, ker (r) is closed. 

Proposition 3.3. Assume diagram 2 is exact. I f  q~ E A (G) f~ ker(r) (rasp. 
~v ~ S (G) f~ ker (r) there exists v E B (G) such that 9v(2) -1E A (G) (rasp. ~vz[~]- 1E 
E S(G)); v may be chosen either in B(G", G) or B(G, G"). 

Proof: As in the proof of the proposition above we set q~ol = qJ I G × G" 
and find vl E B(G", G) such tha t  ~0~ -1 E B(G, G"). In  the same way we set 
~10 = ~0 I G' × G and find ~2 E B(G, (7") such tha t  ~0v~ 1 E B(G", G). I t  now 
follows tha t  ~ v~ -1T~ -1E B (G", G) B (G, G") ; in fact, ( ~ - 1 )  vi-1 E B (G", G) B (G", G) 
= B(G", G) while (~1-1)T~-1 E B(G, G") B(G, G") = B(G, G"). Suppose 
qo ( A(G). Then ~lo(x,y) = q~ol(X, y)-i  for x ,y  EG× G'. This means we can 
choose T~ so tha t  ~ (x ,  y ) =  ~l(x, y) - i  for all x, y E G × G. Thus ~ 0 ~ v ~  ~ 
= ~ ( ~ - 1 )  = ~0~)-~ = ~v~)- l .  Because ~, v~, v~ are all in A (G)it  follows tha t  
q~v(~)-IEA(G)f~B(G")=A(G") and tha t  ~ 0 ~ ) - I E A ( G "  ). Similarly, if 
q~ E S(G) then we can choose ~ so tha t  #~ = ~ and ~9T1"-1"~£ -1 ~--- ~OTi ~']-1 
: c~[22]--1E S (G"). 

These last two results describe, in a particular case, the possible different 
e.'ctensions of a bilinear function, when any a t  all exist. An extension need not 
always exist and determining which bilinear functions can be extended is 
difficult. There are, however, some cases in which a complete answer can be 
given. 

Theorem 3.1. Let G' be an open subgroup of the locally compact group G and 
let H be a locally compact group. I f  H is discrete and torsion [ree, or if both G and 
H are discrete and GIG' is torsion/tee, then each qo E B(G', H) can be extended to 
G x H .  

Proof: If H is discrete and torsion free then H A is compact  and connected, 
hence divisible ([3], proposition 1, p. 17). By  the lcmma of Alexander each 
q~ : G' -+ H A can be extended to a continuous homomorphism 0 : G -+ H A and 
0 E B(G, H) is the desired extension of ~. I f  O and H are discrete then because 
B(G, H) and B(G', H) arc compact  the problem of showing tha t  the restriction 
map B(G, H) -> B(G', H) is onto is by  duali ty the same as showing tha t  the 
transposed map  B(G', H) ̂  -~ B(G, H)  ̂  is 1 -- 1. Using the fact  mentioned in 
the last section tha t  BIG', H) ̂  = G' ® H and B(G, H) ̂  = G @ H we see tha t  
this map  is just the canonical map  G' ® H ~ O ® H and because O/O' is torsion 
free this map  is 1 - 1 ([5], exp. 11, thin. 4). 

Corollary. I~ GIG' is discrete and torsion free then diagram 2 above is exact. 
I f  also (7 is discrete then diagram 3 below is exact. 

2* 
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I t  can be shown, if only O]O' is discrete and torsion free and H is arbitrary,  
tha t  all q0 in a dense subgroup of B(G', H) can be extended. 

1 1 1 

1 -~ B(O")  ~ B(O",  O) -~ B ( a " ,  O') -,. 

1-~ B(G, G") ~ B(G) ~ B(G, G') ~ 1 

1 ~  B(G', G")-~ B(G', G) ~ B(G') ~ 1 

1 1 1 

Diagram 3 

I t  will be shown in § 6 tha t  for many  groups G' if GIG' is discrete and 
torsion free, then each ~ E A (G') has an anti-symmetric extension. 

The situation is entirely different if GIG' is not torsion free; extensions do 
not always exist and specifying which of them can be extended is very difficult. 
There are some special cases which can be noted, however. Let  G~ denote the 
subgroup of G of all x such tha t  x" = e and G" denote the subgroup of all x n. 

Lemma 3.1. Let G be a locally compact group o/exponent 2 and let H be a 
closed subgroup. Let H* be the conjugate o / H  in G A. Then G i8 bicontinuously 
isomorphic to H X (H*) A. 

Proo/: First  suppose G is a discrete group of exponent 2. G is a vector space 
over the field of 2 elements and H is a subspace, Thus H admits a supplement, 
i.e. there exists a subgcoup K such tha t  G = H x K and H ~ K = {e}. Next  
suppose G is compact. Since G ̂  is discrete, H* admits  a supplement K such tha t  
G ̂  = H* × K.  Because K -~ GA/H * = H A, G ̂  is isomorphic to H* × HA; 
thus (7 is isomorphic to H × (H*) A. Finally let G be an arbi trary locally compact 
group of exponent 2 and let G O be a compact open subgroup. Let  A be the set 
of all finite subsets of G - G o (set complement) and for each ~ E A let G~ be the 
group generated by  G o U ~. Each G~ is a compact open subgroup of G and 
G -- l ~  G~, where the maps involved are the inclusion maps. For each a set 
H~ = H f~ G~. Each H~ is a closed subgroup of G~ and H = U mH~. By the 
previous results each G~ is isomorphic to H~ × (H~*) A. I f  g < fl the isomor- 
phism which carries G~ onto H~ × (H~*) ̂ is just  the restriction to G~ of the iso- 
morphism which carries G# onto H# x (H~) ̂ . Thus G = l ~  q~ is isomorphic to 
~ H ~  × (~*)^ = ~ g .  × ~ (H~*) = H × (~*)^. 

ProlaOSition 3.4. Let 0 b~e a locally compact group, let H be an open ~abgroup 
and let ~ E A(I t )  f~ S(H). In  order that there exist q/ E A(G) ~ S(G) which 
extends ~ iS is neze~sary and au]fivient that q~ (x, y) = 1/or all x, y E (H f~ G ~) × H. 

Proo]: If  q¢ E A (G) ~ S(G) then ~'(x, y) = ± 1 for all x, y; in particular, 
¢ '  (x z, y) -- 1 for all x 2, y and the condition is necessary. For  the sufficiency 
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note first tha t  by  the continuity of ~ and because H is open, ~ (x, y ) =  1 
= ~ (y, x) for all x, y E (H f~ G 2) × H.  Thus ~ can be identffied with a function 
in A (H/(H ~ G~). Because H is open, H G  i is an open subgroup of G and under 
the homomorphism G ~ G/G 2, H is mapped  onto the open subgroup HGZ/G 2. 
The algebraic isomorphism of H/(H f~ G 2) onto HGi/G z is continuous. H/(Hf~ G z) 
= K × D, where K is a compact  group and D is discrete ([3], th6or~me 2, p. 41). 
Let K '  be the inverse image of K in H. K '  is open in H and hence in G. Under  
the map  G ~ G/G ~, K'  is mapped onto K'  G~/G ~. This is an open subgroup of 
HG~/G ~. The restriction to K of the isomorphism of H/(H f~ G ~) on HGZ/G 2 
maps K on K' Gi/G~; because this map is continuous and 1 -- 1, it is a homeo- 
morphism. Thus the map of H/(H f~ G 2) on HG~/G ~ is a homeomorphism. This 
means we can identify H/(H ~ G ~) with a subgroup of GIG 2. GIG ~ is a group 
of exponent 2 and by  the preceding lemma H/(H ~ G ~) is a direct factor of 
GIG 2. Thus ~ can be extended to an anti-symmetric function on all of GIG z and 
then lifted to G to give the desired extension ~'.  

Proposition 3.5. Let G be a discrete y.group all elements of which have order 
<= p'~ and let H be a subgroup which contains all elements of order ~ pn-1. Let 
q~ E B(H).  In  order that there exist an extensio~ qD' E B(G) o] q~ it is necessary 
and sufficient that q~((H f~ G ~) × g~) = {1} = ~(H~ × (H A G~)). 

Proof: I f  ~0'EB(G) and y ~ = e  then ~ ' (x  ~ , y ) = l = ~ ' ( x , y ~ )  and the 
condition is necessary. For the sufficiency let x 0 be any element of G not in H 
and let K be the group generated by  H and x 0. Then x~ E H and ~ (x~0, H~) = {1}, 
i.e., ~(x~0 ) E H$ = ((g^)~) - = (H^) ~, since H ^ is compact. Thus there exists 
~'0 E H ^ such tha t  yo r = ~(x~0 ). Define q~(x'~u, v) = q~(u, v) (y'~, v)  for all 
u ,v  E H  × H. Then ~ is an extension to K × H of ~. Note tha t  K ~  G~ 
= H f~ G ~ and tha t  K~ = H~. Indeed for all y E G, y~ has order g p ' -X and is 
in H while if XoU E K~ for some u E H,  then xou E G~ C G~,-~ C H and u E H 
implies tha t  x 0 ~ H which is a contradiction. Every  element of K -- H can be 
written in the form Xbo u with u E H and 1 ~ b < p. Because b and p~ are 
relatively prime there exists u~ E H such tha t  u~ -- u and xbou = (XoU~)~. But  
(x o ul) b has order p if and only if xou has order p. Thus we have found 
q~ E B (K ,  H) such tha t  ~ ( ( K  f~ G~) × H~) = (1} = ~ ( K ~  × ( g  f~ G~)). I n  
~ust the same way we can extend ~1 E B (H, K)  to a map  ~2 E B (K) such tha t  
~ ( ( K  f~ G~) × Kr)  = ~ ( K r  × ( g  f~ Gr)). We can now apply Zorn's lemma 
to find an extension ~ '  E B (G). 

4. Projective and injeetive limits 

Let Hi  be a closed subgroup of the locally compact group Gi, i = 1, 2. 
By the results of the last section it is possible to identify B(GJHi)  with a 
closed subgroup of B(G~); more generally, i t  is possible to identify B ( G J H  1, 
GJHt) with a closed subgroup of B(G 1, Oi). This subgroup is the set of all 
qJ E B(G1, Gs) such tha t  q(x, y) = 1 if either x E//1 or y E Hi.  There is a con- 
tinuous map  (the restriction map) of B(G 1, GI) into B(H1, Hi). The image of 
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B(G1, Gz) under this map is the set of all ~ E B(H1, Ha) which can be ex¢ended 
to at×  a~. 

Proposition 4.1. Let G~, i----1 . . . . .  4 be locally compact groups and set 
G' -- G I × G 2, G" = G 3× G 4. Then B(G', G") --- B(GI, Gs) x B(G 1, G4) × 
× B((73, (73) × B((73, (7,). 

Proo]: Let  B~  be the subgroup of all ~ C B(G', G") such tha t  ~(x, y) = 1 
if x E (7~ or y E (7~, i = 1, 2, ~ = 3, 4. Each Bt~ is a closed subgroup and the inter- 
section of any one of these groups with the product of the others is the identity 
subgroup. BlS= B((7'/(71, (7"/(7a)= B((7~, (74) similarly for the others. If  
q) E B(G', G") then ~ = ~laq02a~01a~ua, where ~ ~ B~. In fact, define ~la(x, y) 
= ~(e, x; e, y) for x, y E G2 × G4 and similarly for the others. Thus B(G', G") 
is the direct product of the Bt~. 

This result clearly extends to any finite number of factors. If we regard 
each element of (7' and (7" as a 2-component vector, then each ~0 E B(G', (7") 
can be described by the matrix (~t~); if x = (xl, x2) and y = (Yl, Y~) then 
~(x, y) = ./-/. ~ij(xi, y~). ~ is described by the transposed matrix (~.~) 

~,$ 

Corollary. I/qJ E A (G') then q~ E A ((7t), i = 1, 2 and ~2 = ~9211, i f  99 ~ S ( G ' )  
then ~fi~ E S((Ti) and ~1~ ~= q)~l. 

Thus the anti-symmetric bicharacters are described by anti-symmetric 
matrices. This is in strict accord with the behaviour of bilinear forms over real 
vector spaces. 

The locally compact group G is the projective limit of the groups (G~)~ A 
if each G~ = G/g~ where g~ is a closed subgroup of (7 and (g~)~A is a filtered 
decreasing family converging to e ~ (7 according to the filter of neighborhoods 
of e. 

Suppose also that  the locally compact group H = ~m_mH~, i ~ I.  The set 
A × I becomes directed by setting ~, i </5,  ] if ~ < /5  and i < ]. We identify 
the groups B(G=, H~) with subgroups of B((7, H). If  ~, i < fl, i then B(G~, Hi) 
cB(G~,H~). If a , i < y , k  and / 5 ,~<y ,k  then B((7~,H,)\JB(G~,H~)C 
< B((7~, H~). 

Proposition 4.2. I 1 G = I~(7~ and H-~-~,_mH~ are compact then B(G, H) 
= r~___B((7=, H,). 

Prool: B(G, H) and each of the groups B((7~, Hi) are discrete. All tha t  need 
be shown is tha t  B(G, H) = O B(G~, H,) ; tha t  is, i t  must be shown that  for 

each ~ ~ B((7, H) there exists g~ and h,, where H~ = H[hi, such that  ~ is con- 
stant  on the cosets of g~ × h~ in (7 × H. Let ~ ~ B((7, H) and let U be an open 
neighborhood of 1 ~ T which contains no subgroups other than the identity. 
For each y ~ H  there exists a subgroup g~(~) such that  q~(g~(~), y)C U. g~(~) 
is compact; hence ¢ (g~ (~)) is a compact and thus equicontinuous subset of H ^. 
Thus there exists a neighborhood V~ of y such that  ~0(g~) V~)C U. A finite 
number of these neighborhoods cover H. Let  g~, be the intersection of the cor- 
responding g~ (~). For  all y ~ H, q~ (g~,, y) C U and because ~ (g~,, y) is a subgroup, 
~(g¢, y) = {1} for all y ~ H. We can repeat this procedure with H and find 
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a subgroup h i, such tha t  9(x, hi. ) = {1} for all x E G. Thus 9 E B(G~., He) 
and B(G, H) = ~B(G~ , ,  H~). 

Coronary 1. B(G)= ~mB(G~). 
For the diagonal of A × A is cofinal in A × A. 

Corollary 2. A (O) = ~_mA (G~) and S(G) = li_mS(G~). 

Corollary3. I f  G = H G~ and H = H H~ are compact then B(G, H) 

= IIH. B(G~, H,). 
g 

I f  G = li_~mG~ is locally compact but  not compact, then it is not generally 
true tha t  B(G) = ~B(G~) .  For instance, let H = l imH~ be a compact non- 
discret~ group and set G = H x H A. Then G = li_mH~ × H A. The bilinear 
function (xl, Yl), (x2, F~) -~ (Yl, x2), xi E H,  Yi E HA, i = 1, 2, is not constant 
on the cosets of any  of the subgroups (h~ × H A) X (h~ × HA), where H~ = H/h~. 
In  this connection the follo~4ng question arises. Suppose G = l ~ G ~  is a 
union of compact open subgroups, for instance, this is so if G is a pr imary 
group. Then is i t  t rue tha t  U B(G~) is dense in B(G) ? 

Suppose now tha t  G = ~ G~, where each G~ is an open subgroup of G, 
and tha t  H is an arbi trary locally compact group. For each a let b~ denote the 
subgroup of all 9 E B(G, H) such tha t  9(G~ × H) = {1}. Each b~, being the 
kernel of a restriction map, is a closed subgroup. I f  ~ < 7, fl < Y, then 
b r C b~ r~ b~. Moreover, every neighborhood of the identi ty in B (G, H) contains 
one of these groups. In  fact, let W(C1, C2, U) be a neighborhood of the identi ty 
in B(G, H). Then C1C G~ for some ft. For if x E C1 then x E G~(~) for some index 
~(x). Because G~(~) is open there exists a neighborhood Vx of x such tha t  

n 

Vx C G~ (~). A finite number  of these neighborhoods cover C 1. Thus C 1 C ~ G~ C G~ 

for certain indices a h . . . . .  gn and fl > ~ i = 1 . . . . .  n. Now b~ C W (G~, C2, U) C 
C W(C 1, C~, U). Taking into account the fact tha t  B(G, H) is complete we 
have proved 

Proposition 4,3. I f  G = ~_mG~, where each G~ is an open locally compact 
subgroup, and if H is an arbitrary locally compact group, then B(G,H) 
= li_mmB(G,H)/b~, where b~ is the group of allpEB(G,H ) such t h a t p ( q ~ X  H ) 
= {1}. 

Unfortunately, B(G, I-I)/b~, is in general isomorphic to only a proper sub- 
group of B (G,, H), the discrepancy arising from the fact tha t  not all 9 E B (G~,, H) 
can be extended to the whole of GH. There are, however, certain cases in which 
this difficulty does not occur. 

Proposition 4.4. I /  G = l~G= is locally compac~ and if H is discrde and 
torsion free, or if (7 and H are discrete and each G/G~ is torsion free, then B(G, H) 
= H, Lm_mB(G~, H). 

Proof: What  must  be shown is tha t  the map  9 ~ 9 1 G ~ ×  H of B(G,H) 
into B(G~, H) is surjective, tha t  is, t ha t  every 9 E B(G~, H) can be extended 
to all of G × H. But  this follows, under the conditions stated, from theorem 3.1. 

Proposition 4.5. I l G = I_I G~ is discrete, then B(G, H) = / / B ( G ~ ,  H). 
= E A  ¢~ 
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Prool: We can write G = ~ G  I, where the index set {f} is the set of all 
finite subsets of A and Ol --- ~e/~l G~. Since G 1 is a direct summand of G each 

E B (61 t, H) can be extendedto G × H. Thus B (G, H) = ~ m  B(Gs, H) = / / B  (G~, H). 

Using this result and proposition 4.2 it is easy to construct a group G such 
tha t  B(G) is not locally compact. For  each ~ in an infinite set let H~ be a non- 
trivial cyclic group of finite order n and set H = J[I H~. H A= 1-f H~ and 

B(H, H A) is a closed subgroup of B(H × HA). I t  is easily computed that  
B(H~, H~) is also a cyclic group of order n. Now B(H, H ̂ ) = H I I  B(H~, Hg) 

is a full direct product of infinite discrete groups and is not locally compact. 
If  H = / / H ~ ,  where there are uncountably many groups H~ (this is just the 

case that  H × H A is not a.compact), then B(H × H ̂ ) contains as a closed 
s u b g r o u p / 7  H~ which is not metrizable, i.e. does not satisfy the first axiom 

of countability. 
Suppose that  G = / / G ~  is compact. If  we regard each element of G as a 

vector whose ~th component x~ is in Ga, then each ~0 E B (G) is described by a 
matrix (~,~) where ~ E B(G~, G~)is such that  ~((x~), (y~)) = / / ~  cf~,~(x~,y~). 

Almost every element in the matrix is the trivial bicharaeter, tha t  is, every 
element not in a certain finite submatrix is 1. Similarly, if G = / / G ~  is discrete, 

each ~ E B(G) is described by a matrix ( ~ )  such that  ~ ~ B(G~, G~). 
In  this case there is no other restriction on the matrix elements. If  ~ -- (¢~)  then 

= ( ~ . )  is the transposed matrix. Thus ~ = ( ~ )  ~ A(G) (msp. S(G)) if 
and only if ~ = ~-1  (resp. ~ ?  = ~ ) .  

5. Some particular groups 

We shall use the following notation: 
Z --  group of rational integers 
R - -  additive group of real numbers 
Q - additive group of rational numbers 
Z~--  group of p-adic integers 
Z(p  ~) - -  group of all p nth roots of unity, p a prime, n = 1, 2 . . . .  
Z (r) = Z/rZ -- cyclic group of order r 

1. Connected groups. Let G be compact and connected. G A is discrete and 
torsion free. If  ~v E B(G) then q~(G) is a finite subgroup of GA; thus ~(G) = (1} 
and ~ = 1. Hence B(G) = {1}. The most general connected locally compact 
group is of the form R ~ × G, where G is compact and connected. B (R n × G) 
= B(R n) × B(R n, G) × B(G, R n) × B(G). Because G is compact and R = R A 
has no compact subgroups other than the identity, B(G, R n) = B(R n, G) = {1}. 
Thus B(R~ x G) = B(R-) .  

B(R)isisomorphictoRunderthemapa -~ ~awhere ~a(x, y) = exp 2~iaxy.  
By the results of the previous section B(R n) = R n' under the map which 
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makes correspond to each n × n matrix a = (a~.) the bilinear function ~a, 
where 

~ ( x  1 . . . . .  x ,  ; Yl . . . . .  y,) -- e x p 2 g i  ~ atjxty~ 
i.j 

~a is symmetric (anti-symmetric) if and only if a is  symmetric (anti-symmetric). 
Let  (7' be the connected component of the identity in G and assume tha t  (7 

is a union of compact open subgroups. This is equivalent to assuming that  (7^ 
is totally disconnected, for the connected component of the identity in (7^ 
is the intersection of all the compact open subgroups of G ̂  and its conjugate 
in G is thus the union of all the compact open subgroups of (7, i.e. (7 itself. 
If ( 7 " =  GIG' then ( 7 " ^ c G  ^ is totally disconnected and B(G', (7") 
= Horn((7', ( 7 " ^ )  = (1). Thus diagram 1 of § 3 becomes 

1 1 

1-+ B((7") -~ B((7", (7) ~ 1 

4 
1 ~ B((7', (7") ~ B((7) - .  B((7, a') 

4 
1 -~ B ( G ' , ( 7 )  ~ 1 

From this it follows that  B(G', G) = {1} and that  B(G") = B(G, (7") = B(G). 
Moreover, A ( G ) =  A(G"),  S(G) = S(G") and every element of A(G) has a 
square root in A (G) if and only if every element of A (G") has a square root. 

2. Cyclic groups, every bicharacter of Z is of the form n, m ~ e x p 2 ~ i ~ n m  
where 0 g a ~_ 1, i.e., B(Z) = T. Clearly B(Z) = S(Z).  Every  bicharacter 
of Z(r) is of the form n, m ~ e x p 2 z i ( a m n ] r ) w h e r e  ~ is an integer rood r. 
Thus B(Z(r))  = Z(r). Again B ( Z ( r ) ) =  S(Z(r)). 

3. Z(p~).  For these groups as well as others the following result is useful. 

Proposition 5.1. I f  G 1 is a divisible group and G 2 a torsion group, then 
B(al ,  a~) = {1}. 

Proo/: Let  ¢ be any element of B(G 1, G~) and x, y an arbitrary point of 
(71 × G~. If  y" = e choose x 1 E (71 such that  x~l -- x. Then ~ (x, y) -- ~ (X~l, y) 
= ~ ( x l ,  y n ) = l a n d ~ = l .  

Since all the groups Z(p~),  p =  2 , 3 , 5 , . . .  are divisible and torsion, 
B(Z(p~) ,  Z(q~)) = (1} for any primes p and q. Z (p  ~) is an example of a group 
such that ,  except for the trivial bicharacter, no bicharacter on any subgroup 
can be extended to the whole group. 

4. Q and Q/Z. Q/Z also satisfies the conditions of the proposition; thus 
B(Q/Z) = {1}. Inserting this result and the fact tha t  B(Z)  = T into diagram 1 
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of § 3 gives the diagram 
1 1 

1 -~ B(Q[Z, Q) ~ B(Q]Z, Z) 

1 ~ B(Q, Q/z) ~ B(Q) ~ B(Q, Z) 

1 ~ B (Z, Q/Z) -,. B (Z, Q) -> T .  

I t  follows from the same proposition that  B(Q/Z, Q) = {I} and we can extract  
from this diagram the sequence 

1 ~ B(Q) -~ B(Q, Z) = Q 

Q^, being compact and connected, is divisible. By the lemma of ALEXANDER 
([12], p. 94) each homomorphism of Z into Q^ can be extended to a homo- 
morphism of Q into Q^. Thus B(Q) = Q^. The correspondence is the following: 
if ~ E Q^ then t r  E B (Q) is the map r, s -~ exp 2 ~ i  (~, r )  s, where ~ : Q-~ [0,1 ]. 
~vEA(Q) if and only if for all r, s E Q ×  Q, (~ , r )  s : - ( ~ , s ) r .  Every 
element of A (Q) has a square root in A (Q). 

5. Z~,. Z~, = li~nZ(p'~). Thus B(Z~,)= ~mB(Z(p~)) = ~__mZ(p '~) : Z(p~). 
Because B(Z(p")) = S ( Z ( f ) ) ,  B(Z~)= S(Z~,). 

6. B(~)(G) and A ( G )  

As we mentioned in the introduction, the favorable case for computing 
multipliers occurs when x ~ x 2 is an automorphism, for in this case we are sure 
tha t  B(z) (O) = A ((7). In general, B(~) (G) is a proper subgroup of A (G), but  
there is a weaker assertion, to which this section is devoted, which still permits 
the computation of multipliers. 

For  each locally compact group G denote by Q (G) the assertion: 
For each q~ E A(G) there exists O E B(G) such that q~O(~)-I= (~ E S(G). 

This is just the assertion that  A ((7) = B(~) (G) (A (G) A S (G)). I t  follows from 
the results of § 5 that  Q(G) is true if (7 is compact and connected, cyclic, or R n. 
Q (G) is also true if x -+ x ~ is an automorphism of (7. 

Lemma 6.1. I f  Q(G1) and Q(G~) are true, then Q(G 1 × G~) is true. 
Proof: If  ~ E A(G) then ~ = (~ j )  where ~ E  A(Gt), i = 1, 2, ~1~ B(G~,G~) 

and ~ I _  ~12. Choose 0t E B(G~) such tha t  ~ 0 ~  - ~ =  a~ ~S(G~), i = 1, 2. 
Let 0 ~ B(G~ × G~) be described by the matr ix 

O=  O, / "  
Then 

and Q(Ol × OI) is true. 

~0-1=( all a,1) ES(O1G~) 

Corollary. I] 0 is a com~ct Lie group then Q (G) is true. 
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For  such a group has the  form T"  × @1 where G 1 is a finite group;  and  G 1 
is a direct  p roduc t  of cyclic groups. 

L e m m a  6.2 I f  G is a compact group, Q (G) is true. 
Proo]: G = ~_m_mG~, where each G~ is a Lie group. I f  T E A (G) then  ~0 E A (G~) 

for some ~. Hence  there  exists 0 E B(G~) such t h a t  ~0(s) -1 E S(G~)CS(G). 
Corollary. I / G  is generated by a compact neighborhood of the identity, Q (G) 

is true. 
Such a group has  the  fo rm G 1 × Z ~ × R", where G 1 is a compac t  group.  
W e  nex t  t u r n  our  a t t en t ion  to  discrete groups.  Here  we m a k e  use of the  

fact  t h a t  if G is discrete,  B(G) ̂  = G® G. L e t  ]a or ~: x ®  y - > y ®  x be the  
involut ion on G ® G. The  t ranspose  of ] is the  m a p  ~ -+ ~. Denote  b y  (G ® G)a 
(resp. (G ® G)s) the  subgroup  of an t i - symmet r ic  (resp. symmetr ic )  tensors,  
t h a t  is the  kernel  of the  m a p  u-~u(~u) (resp. u->u( ju) - l ) .  Let (G® G)[ ~] 
(resp. (G ® G)(S)) be the  range  of u -~ u(ju) (resp. u ~ u(ju)-~). 

L e m m a  6.3. I f  G is discrete, (G® G)( s)* = S(G), ((7® G)[s] * = A(G), 
(G ® G)* = B (s) (G), ((7 ® G)a* = B[S](G), (G ® G)(s) (G ® G) ~ = (G ® G)IS]((7® G) s 
= (A(G) ~ S(G))*. 

Proof: cf E (G® G)( ~)* ¢~ for all u EG® G, (u(iu)  -1, qJ) = 1 ,~ (u, q)) 
= (~u, ~ ) ,  all u ~* ~ = 95. The  proofs of the  nex t  three  s t a t emen t s  are similar. 

EA (G) f~ S(G) ¢~ ~ EA (G) and  ~s = 1~* ~ ES(G) and  Ts = 1 ~- ~ EA (G) f~ B ((7)s ¢~ 
¢~ ~ E S (G) f~ B (G)s. Thus  (A (G) f~ S (G))* = A (G)* (B  (G)s)* = S (G)* (B (G)~)* 
= ((7 ® G)tsl ((7 ® G)s = (G ® G)(~) (G ® O) s. 

L e m m a  6.4. I f  G is discrete, Q (G) is true. 
Proo/ : Since always,  A ( G) ~ B(s) ( G) ( A ((7) f~ S ( G)) we mus t  show b y  dual i ty  

t ha t  (G® G)[ 2] ~ (G® G ) j ~  (G ® G)(s) (G ® G)S.Ifu E (G® G) ,~  (G® G)(s) (G® G) s 
then  u = v(jav)-lw 2, v, w E (7 ® G. There exists a fmite ly  genera ted  subgroup H 
of G and vl, w I E H ® H such t h a t  v = zcav 1, w = z~aw 1, where z~a is the  canonical  
m a p  H ® H -+ G ® G. I f  we set  u I = vl(~v~)-~w~ then  because iaga = ga?H, 
~au~ = u. u E (G ® G)~ implies t h a t  ~ a ( ~ u ~ )  u~ -1) = O. There  exists a finitely 
generated subgroup K D H such t h a t  ~ ~ ((j~ u~ ) u~  1) = 0, where gH ~:  H ® H -+ 
-+ K ® K i s  the  canonical map .  Set u s = ~/ /gu~.  Then  (~us)u~  ~ = 0 and  also 
u s = vs(]gvs)-~wUe where v s = g//Kv~, w s = g ~ w ~ .  Fu r the r  u = ~ u  s, v = g ~ v  s, 
w = ggw~ where ~K : K ® K ~ G ® (7 is the  canonical map .  B y  the  corollary to  
t emma  6.2, Q(K) is t rue .  Thus  (K ® K)tS] = (K ® K)~ ~ (K ® K)(s) (K ® K)  ~ 
and  u s is of the  fo rm t(]~t) for  some t E K ® K.  Hence  u = g~u~  = ~ ( t )  ( Z ~ K t )  
= g ~ t  (?aZ~Kt) ~ (G ® G)[sl and  this p roves  the  lemma.  

I t  can be shown more  general ly t h a t  if (7 has  a compac t  open subgroup  
then  B(s) ( G) (,4 ( G) f~ S ( G) ) is dense in A ((7). 

L e m m a  6.5. Suppose that G is a union of compact open ~ubgrou~s. Let K 
be the connected comlmnent of the i~nt i ty  and let P~ be the 2-primary coralmnent 
of G/K ([3], ch. 3). I] Q(Ps) is true, then Q(G) is true. 

Proof: B y  the  results  of § 5, B(G) = B((7]K). G]K is a local direct  p roduc t  
of i ts  p r i m a r y  componen t s  ([3], eh. 3, th~or~me 1). I n  par t icular ,  i t  is a direct  
p roduc t  of P~ and  a group in which x -~ x z is an  au tomorph i sm and  for  which 
Q is t rue.  B y  l e m m a  8.1 Q(G]K) is t rue.  Thus  Q(G) is true. 
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Corollary. With G and Ps as above, Q(G) is true i / P ,  is a direct product o] 
a com1~t group and a discrete group. 

Let G be an arbitrary locally compact group and let K be the connected 
component of the identity. Let  U be the union of all the compact open sub- 
groups in (7 0 = G/K. Then Go/U is a discrete torsion free group. If  it  were true 
that  each ~0 E B (U) could be extended to all of G O × Go, then the results of 
§ 3 could be used to show that  Q (Go) and hence Q (G) were true whenever Q(U) 
were true. Thus to show that  Q is true for all groups there remains the problem 
of showing Q is true for all 2-primary groups and for extensions by discrete 
torsion free groups. However, we are unable to answer these problems one way 
or the other. 

For  2-primary groups the question of whether B(2) (G) is closed can be 
worded in the following way. Let  {G~},EA be the set of all compact open sub- 
groups of G. Let  { 0 ~ } ~  be a net such that  O~)]G~ × G~ = 1. If  for each a 
it  is possible to choose 0'~ such that  0', (2) = 0~ ) and 0"-~ 0 E S(G) then B(2) (G) 
will be closed. However, this direct approach seems to involve a question of 
extending symmetric bilinear functions, and this is difficult. 

We sum up the results concerning Q in 
Proposition 6.1. If  either 
a) (7 is discrete, 
b) G]K is a union of compact open subgroups and the 2-primary component 

of G is a direct product of a compact group and a discrete group, where K 
is the connected component of the identity in G, 

c) x ~ x * is an automorphism of G, 
d) O is a direct product of groups of the above 3 types, 

then A ((7) = B(*)(O) × (A (O) f~ S (G)). 
I t  can also be shown tha t  if (7 has a compact open subgroup, GIG 2 is dis- 

crete and B(B)(G) is closed then A ( O ) =  B(*)(G)(A(G)f~S(G)) .  In fact, if 
GIG ~ is discrete, A(G) f~ S(G) is compact so that  B(*)(G) (A(G) ~ S(G)) is 
closed if B(~} ((7) is closed. If we use the assertion mentioned after lemma 6.4 
that  B(z) ((7) (A ((7) f~ 3((7)) is dense in A (O), the result follows. 

7. Multipliers 

A multiplier o~ on the locally compact group G is a Borel function G × G -+ T 
satisfying: 

(i) co (e, x) = o~ (~, e) = 1, all x E a 
(li) eo(xy, z) eo(x, y) = ¢o(x, yz) oJ(y, z), all x, y, z E G × G× G. 
Two multipliers ~o and T are similar, ~ ,., v, if there exists a Borel function 

: 6/-+ T such tha t  T(x, y) = ~(x) ~(y) ~(xy) -1 co(x, y). If o~ is the multiplier 
which is identically 1, T is said to be trivial. Under pointwise multiplication 
the product of two multipliers is again a multiplier and with this operation the 
set of all multipliers on G forms a group M (G). The trivial multipliers form a 
subgroup and the factor group of M ((7) by the group of trivial multipliers is 
denoted by  Hs(G). I f  a~ E M(G) its image in Ha(G) will be denoted by  6 ;  thus 
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60 ~ ~ if and only if ~ = f. For each 60 EM(G) let ~ be the multiplier ~(x,  y) 
---- 60(y, x). Note that  ~-1 = (60-1)^. A multiplier 60 is symmetric if 60 = ~.  For  
co 6 M(G) set 60(~) : co~  -1. 

Lemma 7.1. For each 60 E M (G), 60(~} E A (G). 
Proo]: The bilinearity of 60(3} has been noted by C~r~BI ([4]) and OSIMA 

([10]) and follows from the equation: 

60(~) (xy, z) = 60(xy, z) 60(z, xy) -1 : 60(xy, z) 60(x, y) 60(x, y ) - i  o~(z, xy)  -I  

= o~(x, yz) 60(y, z) 60(zx, y)-I 60(z, x) -1 

---- 60(x, yz) 60(y, z) 60(x, z) 60(x, z) -1 60(xz, y)-I  60(z, x) -1 

= 60(x, yz) 60(y, z) o~(x, z) 60(x, zy) -1 60(z, y)-~ 60(z, x) - i  

---- 60(~) (x, z) 60(2) (y, z) .  

The anti-symmetry of co(S) is clear. Because 60 is a Borel function, 60(3) is also 
a Borel function. By  proposition 1.5 60(3) is continuous in each variable sepa- 
rately. I t  follows from a theorem of WIGN~R ([1 ], theorem 1) tha t  there exists 
a possibly non-measurable multiplier 60' ( that  is, a function satisfying (i) and 
(if)) and a function ~ : G -~ T such that  w' is continuous on a neighborhood of 
the identity in G × G and such that  60 (x, y) = O (x) e (Y) Q (xY) - t  60' (x, y). Now 
w' (x, y) 60' (y, x) -1 = o~ (x, y) co (y, x) -1 is continuous on a neighborhood of the 
identity. Thus by proposition 1.4, w(2) is continuous. 

Lemma 7.2. 60(2) = 1 i /and  only i/60 is trivial. 
Proo/: If 60 is trivial then clearly 60(2) = 1. If  60(~) = 1 then 60 is symmetric. 

As indicated by M~cx~Y ([7], § 2) to each multiplier 60 there corresponds a 
group G ~ (generally non-abelian) which is an extension of T by G. G ~ consists 
of all pairs (2, x), 2 E T, x E G, with multiplication defined by  (2, x) (p, y) 
= ( 2 t t 6 0 ( x , y ) , x y  ). The product of Haar  measures on T and 6/ defines a 
measure on G ~ to which Wefts converse to IIaar's theorem can be applied to  
give a locally bounded topology on G% That  this topology is actually locally 
compact was shown in the separable case by  Mackey. In  the general case this 
follows by noting that  T is a closed normal subgroup of G ~ and G~]T is bi- 
continuously isomorphic to G. According to a theorem of G~AsoN ([9], 
Chap. II ,  theorem 2.2) every topological extension of a locally compact group 
by a locally compact group is itself locally compact. (The groups here are not  
necessarily abelian.) Thus G ~ is locally compact. The group G ~ is abelian if and 
only if 60 is symmetric. By a result of C~ABI ([4], proposition 18.4, corollary 3) 
every locally compact abelian extension of T splits and this implies tha t  60 is 
trivial. 

This lemma gives a useful criterion for determining when a multiplier is 
trivial: it i8 trivial i / and  only i] it is 8ymmetrlc. 

The map 60 -~ 60(z) of M (G) into A ((7) is clearly a homomorphism and by 
the lemma above 60 -~ 60(3) defines an isomorphism e~ -~ 6o(3} of He(G) into A ((~). 

Lemma 7.3. The image el Ha(G) under the map 60 -+ 60(3) contains the sub. 
group B(a) (0). 
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Proo]: This follows immediately by noting tha t  each ~ E B(G) is a multi- 
plier, i.e. B(G) C M(G). Under the map w --> w(Z) B(G) is carried onto the group 
B(~) (O). 

There are several interesting consequences of this observation. I f  ~ is a 
Borel measurable bilinear function, i t  is a multiplier; hence ~(2~ is continuous. 
I f  ~ E S(G) it is a symmetric and hence trivial multiplier. This means there 
exists a Borel function ~: G-~ T such tha t  ~(x, y) = 8(x) O(y) ~(xy) -1 for all 
x, y E O × (7. In  particular, ff q~ E A ((7) f~ S((7) then ~(x, y)2 = 1 for all x, y E 
E (7 × (7. This means tha t  ~2(x) Qg.(y) ~O2(Xy)_l = 1 for all x, y E G × (7, i.e. Q2 is 
a eharaeter of (7. Thus each qJ E A (G) ~ S(G) is the square root of a character;  
however, it is not true tha t  the square root of every character can always be 
chosen to give a bilinear function. 

The problem of computing multipliers reduces now to the question of 
identifying the subgroup of A (G) onto which H2((7) is mapped. We consider 
first a special ease. 

Lemma 7.4. Let (7 be a locally compact group o/ exponent 2. Then each multi- 
plier on (7 is similar to a bicharavter. 

Proo[: G = (71 × G2, where the discrete group (71 is a direct sum of groups 
of order 2 and the compact group G~ is a direct product of groups of order 2. 
We can write G 2 = li_m_m(7~, where each (7~ is a finite group of exponent 2. 
Repeated application of theorem 9.6 of [7] shows tha t  each multiplier on a 
finite group is similar to a bieharacter. Let  co be a multiplier on G~ and let L 
be a finite dimensional o~-representation, tha t  is, L is a continuous map of (7 
into the group of unitary operators of a Hilbert  space ~ ( L )  such tha t  L~L u 
= m (x, y)L~ ~, all x, y E (7. L defines a continuous homomorphism L'  of (7 into 
~ ( L )  - -  the projective uni tary group of ~ ( L ) .  This group is a (non- 
abelian) Lie group and there is a neighborhood of the identi ty in ~P~f (L)  
which contains no subgroups other than  the identity. This implies tha t  L '  
defines a homomorphism L "  of G~ into ~ ( L )  for some a, i.e. if G~ = G2/g ~ 
then L '  (g~) = {1}. By theorem 2.2 of [7], L "  defines a projective representation 
L + of (7~ with a multiplier a, The multiplier a is similar to a bieharacter ~ on G~ 
and ~ lifted to G is similar to o~. This construction is due to C. M o o ~  and can 
be used to compute multipliers on any  not necessarily abelian compact group. 

Let  ((Ta}~ A be the set of all finitely generated subgroups of G 1. Each G~ is a 
finite subgroup of exponent 2 and (7 = ~ G~. The index set A is the set of all 
finite non-empty subsets of a basis of G 1 and is directed by setting fl ~ ~ if and 
only if fl C ~. Thus for each ~ there exist only finitely many  indices fl ~ ~, 

and we can write A = y An, where g E An if and only if ~ is a set of n distinct 

elements. I f  ~ ~ A~+~ and if ~1, fl~ E A~, fll < ~, fl~ < ~ then (7~, and (7~, generate 
(7~. Furthermore,  if g > fl E A~ and a > ~ E A1 and fl :~ y then y ~ fl = 0, 
a = ~ f~ ~ and this implies tha t  (7~ = G v × (7~. Since (7~ is a finite group of 
exponent 2 every multiplier on G~ is similar to a bicharaeter. 

Let  ¢o be a multiplier on G~ and let ~o~ denote its restriction to (7~. I f  ~ E A1, 
O~ is a group of order 2 and m is trivial. Thus for each a E A1, there exists a 
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function Q~ on G~ such that  o~(x, y) = ~(x)  ~ (y)  Q~,(xy) -1 for all x, y E G~ × G~. 
We now make the following inductive hypothesis: For some n > 1 and all 

E y A~. there exists a function ~ on G~ and ~ E B(G~,) such that  

1) m~(x, y) = e~(x) ~ (y)  ~ ( x y )  -1 ~ ( x ,  y) for all x, y EG~ × G~ 
2) if fl < ~ then e~ = e~ I G~. 

This last condition implies tha t  if ~, fl E U Aj and if x E G~ ~ q~ then e~(x) 
1 

= e~(x) for there exists 7 < a, • < fl such that  x E Gr and e~(x) = er(x) 
= e ~ ( x ) .  

Let  a E A~+I and choose fl E A1, 7 E An such that  G~ = G~ x G r, tha t  is, 
fl < a, 7 < a, flf~ 7 - - 0  and fl ~J 7 = a. Define a function Q~ on G~ by: 
~(xl ,  x2) = O~(xl) Or(x2) if x 1 E Gg, x~ E Gr. The bilinear function ~r such tha t  
cot( x, Y) = Or(x) Or(Y) Or(xY) -1 q;r( x, Y) can be extended to a bilinear function 
0 on G~ by defining O(xlx2, yly2)--q)r(xs, y2) where xl, y 1 E G~× Gg and 
x~, y~ E Gr × Gr. The multiplier x, y -> co~(x, y) ~ (x )  -1 ~ ( y ) - i  O~(xy) O(x, y)- i  
reduces to 1 on both Gg and G r. By the corollary to theorem 9.5 of [7] the 
multiplier above is the extension ~0 to G~ of a bKinear function q~' E B (Og, Gr), 
where q~'(xlx~, YlY~) -- q~(xl, yg.). Set ~0~ = ~00. Then w~(x, y) = Q~(x) ~ (y )  
q~(xy) -~ q~(x, y) for all x, y E G~ × G~. The functions ~0~ and ~= satisfy con- 
dition 1) of the inductive hypothesis. Suppose (~ < a. Then either 6 = ~ or 

< 7- In the first case ~ [G~ = ~ [Gg = ~g (this follows from the definition 
of ~) .  In  the second case, ~ I G~ = ~rlG~. By  2) of the inductive hypothesis, 
0r[ G~ : Q~. We can now conclude that  1) and 2) hold for all n. 

I t  follows that  for all x E G, if x E G~ ~ G~, then ~ (x) = ~ (x). Thus we can 
define a function ~ on G by setting ~ (x) = ~ (x )  if x E G~ and be certain tha t  
is well defined. Finally we have that  co(x, y) ~(x) -~ q(y)-~ ~(xy) is a bilinear 
function, for if x E G~, y E G~, then both x and y are in some G~, ~ > ~, fl, and 
o~(x, y) e(x) -~ e(y) -~ e(xy) = cot(x, y) er(x)-i  er(y)-~ 9v(xy) = q~r(x, y) and ~0 r 
is bilinear. 

Thus each multiplier on G 1 and G2 is similar to a bieharacter. I t  follows again 
from the corollary to theorem 9.5 of [7] tha t  each multiplier on O 1 × O a = G 
is similar to a bicharacter. 

The next  step is reducing the study of multipliers on an arbitrary locally 
compact group to those on groups of exponent 2. This is accomplished in the 
following two lemmas. 

Lemma 7.5. Let co be a multiplier on the locally compact group G such that 
co(~) E A (G) ~ S (G). Let K be the connected component o] the identity in (~ and 
assume either G/K is separable or G[(G) ~ is discrete. Then there exists a closed 
subgroup H o /O  and a multiplier co' on G/H such that G]H has exponent 2 and 
co ~ co" o ~, where 19 is the natural map o] q × (7 on G]H × G/H. 

Proo]: Because co(~) E A (O) ~ S(G) there exists a Borel function ~ : G -~ T 
such that  co(~)(x, y) = ~(x) ~(y) q(xy) -~, i.e. such tha t  co(x, y) = q(x) ~(y) 
~(xy) -~ co(y, x). Because the multiplier x, y ~ co(x, y) co(y, x) is symmetric, 
it is trivial. Hence there exists a Betel function ~ : G - ~  T such tha t  
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co(x, y) co(y, x) = T(x) 3(y) 3(xy) -1. Thus co(x, y)~ = ~3(x) ~3(y) Q3(xy) -1. This 
implies tha t  co is similar to a multiplier oh such tha t  col(x, y)2= 1 for all 
x, y 6 G × G. In  fact, coh(x, y) = (Q3(xy) Qv(x) -1 ~3(y)-I)I/~ co(x, y), where the 
square root is chosen in any  Borel measurable fashion. For this evl, co* (x, y) 
= col(Y, x) = col(x, y ) - i  and coh(x, y) coh(y, x) = oh(x, y) col(Y, x) -1. The left side 
of this last equation is symmetric and hence trivial, while the right side is 
continuous and bilinear. Thus oh (x, y) oh (y, x) -1 = Q1 (x) Q1 (Y) ~1 (xy)-*, where 
~1: G-~ T is a Borel function such tha t  x, y - ~ , ( x ) Q I ( Y ) q l ( x Y )  -1 is a con- 
tinuous hilinear function assuming only the values :h 1. This implies tha t  q~ 
is a character of G. 

Let  H denote the set of all x E G such tha t  o h (x, y) = oh (y, x) for all y E G. 
H is also the set of all x E G such tha t  ~, (x) ~, (y) = 91 (xy) for all y E (7. This 
means, because x, y-> Q,(x) ~1 (Y) Q, (xY) -1 is continuous and bilinear, tha t  H 
is a closed subgroup of G. Because ql (x~) ~, (Y) ~1 (x~Y) -1 = (~1 (x) ~1 (Y) ~1 (xy)-l) 2 
= 1 for all y E (7, (G) a C H and G/H has exponent 2. 

For  all x, y 6 H × H, col (x, y) = oh (y, x) ; thus co 11H is symmetric and hence 
trivial. Thus there exists a Borel function 3 1 : H - ~  T such tha t  oh(x, y) 
= 31(x)31(y)v,(xy) -1 for all x , y  6 H  × H. Because co, assumes only the 
values ± 1, 3~ is a character of H. By the theory of duality there exists a 
character 3' of G which extends T1 ~. Define T~ by:  3~ (x) = 3' (x) 1/~, where the 
square root is chosen in any Borel measurable fashion, but  with the restriction 
tha t  3~(x) = v~(x) for x ~ H. Set ev~(x, y) = 3~(xy) 3~(x) -~ 3~(y)-* oh(x, y). Then 
coa(x, y)~ = 1 for all x, y ~ G × G, co~(x, y) = co~(y, x) for all x, y E H  × G and 
coa(x,y) = 1 for all x , y  ~ H ×  H.  This implies T ×  H is in the center 
o f G  ". 

Let  L be an irreducible eva representation of G. Because co~(x, y) = 1 for all 
x, y 6 H × H, L~L~ = I ~  for x, y ~ H × H.  Let  {r~} be a Borel set of eoset 
representatives of H in G such tha t  e ~ {r~} (such a set clearly exists if G](G) ~ 
is discrete, while if G]K is separable then G]H = (G]K) (H]K) (because H 

(G) ~ DK) is separable and a Borel cross section exists by lemma 1.1 of [8]). 
Define a representation L ° as follows: L ° = L® for x ~ H,  L°~ = Lr~, and 
L°~r~ = L~L~ = L°Lr~ for each ~ and all x 6H.  I f  x ~ H and yr~, y ~ H, is any 
element of G, then o o /9 / - ,oLo  o o = = L°~L~,, = L~vr~. Thus the multiplier L~ Lv,~ 
coa of the representation L ° has the fOllowing properties: 1) ev a ~ co~ ~ o)1 ~ co, 
2) coa(x, y) -- eva(y, x) - 1 if x E H. This last property implies tha t  ev a is con- 
s tant  on the H × H cosets in (7 × G. In  fact, if a, b 6 H  × H then co,(ax, by) 
= coa(a, x) coa(ax, by) = co,(a, xby) coa(x, by) = co,(x, by) = coa(x, yb) co,(y, b) 
= coa(xy, b) coa(x, y) = co,(x, y). Thus there exist~ a multiplier co' on G/H such 
tha t  coa = co' o p and this proves the lemma. 

Col~llary. I]  co(a) 6 A (G) ~ S(G) then co is similar to a bicharac~er. 

Lemma 7.6. l e t  G be a loc~ly ¢omI~ct group, let K be the connected corm- 
Iaonen$ oJ the iden$ity in q and assume either G/(G) ~ is discrete or G/K is ~eparable. 
I]  Q(G) i~ true, i.e. i /  A ( O ) =  B(~)(G)(A(G)f~S(O)),  then every multiplier 
aa O ~ dmilar to a bicharacZer. 
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Pro#: Let  m be a multiplier on G. Because o~ 9) E A (G) there exists 9 E B(G) 
such tha t  (o~9 -1) E S(G). w~o -1 is also a multiplier on G and by the corollary 
above there exists 0 E B(G) such that  o~9 -1 ~ 0. Thus ~o ~ 90. 

Corollary. Under the conditiv~s above, H~ ( G) = B ( G) / S ( G). 
Proo]: The kernel of the map which sends each T E B(G) into the simi- 

larity class ~ E H~ (G) is just S (G). I t  follows from the preceding lemma tha t  
the image of B(G) under this map is all of H~(G). 

The results so far of this section together with proposition 6.1 yield the 
following theorem. 

Theorem 7.1. Let G be a locally compact abelian group and let X be the connected 
component o/the identity in G. Assume either G/K is separable or that G/(G ~) is 
discrete. I/either 

a) G is discrete, 
b) G/K is a union o/compact open subgroups and the 2-primary component 

of G/K is a direct product of a compact group and a discrete group 
c) x -~ x ~ is an automorphism of G, 
d) G is a direct product o t groups of the above 3 types, 

then every multiplier on G is similar to a bicharacter of G. Under these conditions, 
H~(G) = B(G)/S(G). 

Recall that  there is a continuous isomorphism of B(G)/S(G) on B(~)(G) 
and that  this isomorphism is bicontinuons if G is compact or discrete. Moreover, 
if x ~ x  2 is an automorphism of G then B ( G ) = A ( G ) ×  S(G) and H2(G) 
= A (G) ; in particular, in this case every multiplier on G is similar to a unique 
anti-symmetric bicharacter. This theorem also gives a natural way of topolog- 
izing H2(G), by providing it with the quotient topology on B(G)/S(G). 

8. Concluding remarks 
This theorem does not describe all multipliers on all locally compact groups. 

Undoubtedly the restrictions imposed in some cases tha t  GIG ~ be discrete, or 
G/K be separable which insures the existence of certain Borel cross sections, are 
inessential. The other restrictions, which insured that  Q is true, may  be 
necessary for the method of proof used here, or at  least some restrictions may 
be necessary. However, it  seems likely that  a better method of proof should 
be available to show tha t  every multiplier on every locally compact group is 
similar to a bicharacter. Possibly the simplest group to which the theorem 
does not  apply and for which not all the multipliers are known is a local direct 
product of countably many cyclic groups of order 4 with respect to their open 
subgroups of order 2. 

There are also some interesting problems about bilinear functions left 
unanswered here. For instance, if G' is an open subgroup of G such tha t  GIG' 
is torsion free then can every bicharacter of G' be extended to G ~. 

The group B(G) is a topological group with sufficiently many characters. 
In the case G was discrete we made strong use of the fact that  the characters 
of B(G) could be identified to elements of G ® 0, and, in fact, tha t  G ® G was 
the dual of B(G) .  I t  would be desirable to have a theory of topo]ogical tensor 
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products  such tha t  B(G) is the dual, or possibly the  complet ion of the  dual, 
of a sui tably topologized tensor  product .  I f  such a theory  existed, in a workable 
form, perhaps the method  used to  show Q(G) is t rue if G is discrete, could be 
extended to  all locally compact  groups. We have been able to  construct  such 
a theory,  bu t  in a crude and  not  too usable form. I t  seems likely tha t  before a 
sat isfactory theory  of topological tensor products  could be constructed,  one 
would need an extension of the  Pont r jag in  dual i ty  theory  to  a class of groups 
which would contain all the  groups B(G). 
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