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Abstract. Numeration systems, the basis of which is defined by a linear 
recurrence with integer coefficients, are considered. We give conditions on the 
recurrence under which the function of normalization which transforms any 
representation of an integer into the normal one--obtained by the usual 
algorithm---can be realized by a finite automaton. Addition is a particular 
case of normalization. The same questions are discussed for the representation 
of real numbers in basis 0, where 0 is a real number > 1, in connection with 
symbolic dynamics. In particular it is shown that if 0 is a Pisot number, then 
the normalization and the addition in basis 0 are computable by a finite 
automaton. 

1. Introduction 

Numbers are used through a symbolic expression and the way they are represented 
plays an important role in computer science, in arithmetics, and in coding theory. 
The research of numeration systems adequate to specific problems, and in which 
the arithmetical operations can be accelerated, is far from being achieved. The 
interest for parallel architectures has led to algorithms like the "weak addition" 
[1] where an integer has several representations. 

In this paper we study numeration systems, the basis of which is not a 
geometric progression but a sequence of integers given by a linear recurrence 
relation, whose paradigm is the sequence of Fibonacci numbers. These numeration 
systems have also been considered in [8] and [16]. In the Fibonacci numeration 
system every integer can be represented using the digits 0 and 1. The representation 
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is not unique, but one of them is distinguished, the one which does not contain 
two consecutive l's (see [19] and [,13]). 

More generally, let U be a strictly increasing sequence of integers such that 
1 belongs to U. By the greedy algorithm every integer has a representation in 
basis U, that we call the normal representation. Normalization is the function which 
transforms any representation on any alphabet into the normal one. The addition 
of two integers represented in basis U can be performed that way: just add the 
two representations digit by digit, which gives a word on the double alphabet. 
Then normalize this word to obtain the normal representation of the sum. Thus 
addition can be viewed as a particular case of normalization. 

Our purpose is to study the process of normalization in numeration systems 
where the basis is defined by a linear recurrence relation with integer coefficients. 
We call these numeration systems linear numeration systems. 

Finite automata are a "simple" model of computation, since only a finite 
memory is required. It is known that in the standard k-ary numeration system, 
where k is an integer >2,  addition and more generally normalization on any 
alphabet are computable by a finite automata (see [-7] and [-11]). A function 
computable by a finite automation is usually called a rational function. In previous 
works we considered particular cases of linear numeration systems which gen- 
eralize the Fibonacci numeration system and we showed that normalization is 
computable by a finite automaton [,9], [10]. In this paper we use different.methods. 
First we prove that if the set of normal representations is recognizable by a finite 
automaton, then normalization is computable by a finite automaton if and only 
if the set of words having value 0 in basis U is recognizable by a finite automaton 
(Proposition 2.3). To every word we associate a polynomial. Then we consider 
words which can be associated to polynomials belonging to the ideal generated 
by the characteristic polynomial P of the linear recurrence. Obviously every word 
of this set is equal to 0 in basis U. We give a construction which links recogniz- 
ability by a finite automaton and division of polynomials by P. We prove that 
the set of words associated to the ideal (P), on any alphabet, is recognizable by a 
finite automaton if and only if P has no root of modulus 1 (Theorem 2.1). If the 
set of all words equal to 0 is recognizable by a finite automaton, then the set of 
words associated to (P) is also recognizable (Proposition 2.6). Thus if P has one 
root of modulus 1, then there exist alphabets on which normalization is not 
computable by a finite automaton. 

In a similar manner we discuss the representation of real numbers in basis 0 
were 0 is a real number > 1. The normal 0-representation of a real number is 
called O-development or O-expansion in the literature [18]. 

The notion of normalization is defined for 0-representation as above. If 0 is 
an algebraic integer, then a construction similar to the one given for the integers 
links the recognizability of the set of infinite words equal to 0 to the property of 
the minimal polynomial of 0 of having no root of modulus 1 (Theorem 3.1). 

A symbolic dynamical system is a closed shift-invariant subset of A N, the set 
of infinite sequences on an alphabet A. The O-shift is the closure of the set of 
infinite sequences which are 0-developments of numbers of [,0, 1[,. It is thus a 
symbolic dynamical system. A symbolic dynamical system is said to be of finite 
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type if the set of its finite factors is defined by the interdiction of a finite set of 
words. It  is said to be sofic if the set of its finite factors is recognized by a finite 
automaton.  

The nature of the 0-shift is related to the arithmetical properties of 0. Let 0 
be an algebraic integer > 1; 0 is a Pisot number if its conjugates have modulus 
< 1; 0 is a Salem number if its conjugates have modulus _ 1, and it is not a Pisot 
number; 0 is a Perron number if its conjugates have modulus < 0. If 0 is a Pisot 
number, then the 0-shift So is sofic [15]. If So is sofic, then 0 is a Perron number 
(see [-14]). 

We prove that if the set of 0-representations of 1 is recognizable by a finite 
automaton,  then the 0-shift is a sofic dynamical system (Theorem 3.2). Then 
normalization is computable by a finite automaton if and only if the set of infinite 
words equal to 0 in basis 0 is recognizable by a finite automaton (Proposition 3.5). 

Thus normalization in basis 0 is computable by a finite automaton on any 
alphabet if and only if the minimal polynomial of 0 has no root of modulus 1 and 
if ~,_>o s,O-" = 0 implies ~',,_>o s ,~ -"  = 0 for every conjugate ~ of modulus > 1 
(Theorem 3.3). As a consequence, if 0 is a Pisot number, then normalization in 
basis 0 is computable by a finite automaton on any a l p h a b e t - - a n d  addition 
also--(Corollary 3.6). If 0 is a Salem number, there exist alphabets on which 
normalization is not computable by a finite automaton.  

The integers and the golden mean (1 + ~/5)/2 being Pisot numbers our results 
cover most standard numeration systems. 

2. The Integers 

2.1. Representation o f  Integers 

Only positive numbers are considered. Let U = (u,),> o be a strictly increasing 
sequence of integers with Uo = 1. Every positive integer N can be written with 
respect to the basis U, i.e., it is possible to find n _> 0 and integers do, . . . ,  d, such 
that N = dou, + "'" + d, uo by the following algorithm (folklore): Given integers x 
and y let us denote by q(x, y) and r(x, y) the quotient and the remainder of the 
Euclidean division of x by y. Let n >_ 0 such that u, _< N < u, + 1 and let d o = 
q(N, u,) and r o = r(N, u,), d i = q(r i_ a, u,_ i) and ri = r(r i_ 1, u,_ i) for i = 1 . . . .  , n. 
Then N = dou . + ...  + d, uo. 

For  0 <_ i <_ n, d i < Un_i+ l /Un_ i ;  thus if the ratio u,+ a/u . is bounded by a 
positive constant K for all n _> 0 (K minimal), then 0 _< di _< K - 1. The set A = 
{0, 1 . . . . .  K - 1} is called the canonical alphabet of digits associated to the basis 
U, and (U, A) is the canonical numeration system associated to U. 

The word d o . . . d  . of A* obtained by this algorithm is called the normal 
representation of the integer N in basis U. It  is denoted by ( N )  = do.. .  d,. The 
normal representation of 0 is the empty word e. 

More generally, a numeration system is given by a strictly increasing sequence 
U = (u,)n> o of positive integers, with u o = 1, called the basis, and a finite subset 
C of N, the alphabet of digits. A representation of an integer N in the system 
(U, C) is a word d o . . . d  . of the free monoid C* such that N = dou, + "'" + d,u o. 
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The normal representation of an integer N has maximal length among the 
representations of N not beginning by a 0. It is also the greatest (for the 
lexicographical ordering) of all the representations of N of this same length in 
basis U. Given (U, C), the mapping ~: C* ~ N  is defined by ~ ( d o . . . d , ) =  
dou . + ... + d,u o. The normalization v c is the mapping which associates to a word 
f of C* the normal representation of the integer represented by f :  

Vc: C* ~ A* 

f ~ (re(f)) .  

Normalization is linked to the problem of addition of two integers written in 
basis U. To add two integers N and P with representations f = f o ' " f k  and 
9 = 9o""  9j respectively in (U, A) we add f and 9 digit by digit from the right and 
without carry. L e t f  | 9 = fo '  "" f k - j -  1(fk-j + 90) ' "  (fk + 9~) (if k > j). Then f �9 g 
is a word written on the alphabet {0 . . . . .  2K - 2}. The addition of N and P reduces 
to the normalization o f f  | 9. 

In this paper we study numeration systems where the basis is defined by 

Un+m=alUn+m 1+'"+amUn,  a i ~ Z ,  l <_i<_m, a m r  

These systems are called linear numeration systems. The ratio u,+ a/U, is bounded 
for all n > 0 and the canonical alphabet is included in {0 . . . . .  K -  1} with 
K < max(a 1 + "" + am, max{(ui+t/ui)lO < i < m -  2}). If m = 1 and a x > 2 the 
system is the standard al-ary numeration system with A = {0 . . . . .  aa - 1} for 
canonical alphabet. 

Example 2.1. 
Fibonacci numbers 

Un+ 2 ~ Un+ 1 ~- Un, 

u o = 1, ul = 2 .  

The canonical alphabet 
{0, 1} are the following: 

21 13 8 5 3 2 1 
1 0 1 1 1 1 
1 1 0 0 1 1 
1 1 0 1 0 0 

1 0 0 0 0 1 1 
1 0 0 0 1 0 0 

The Fibonacci numeration system ~ is defined by the sequence of 

is {0, 1}. The representations of the integer 24 in ~ on 

The normal representation of 24 is 
integer in ~,~ is the one that does not contain two consecutive l's (see [-19]). 

1000100. The normal representation of an 

2.2. Normalization o f  Finite Words 

In this section we first show that if the set of normal representations of integers 
is rational, then normalization in basis U is computable by a finite automaton if 
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and only if the set of words equal to 0 is recognizable by a finite automaton 
(Proposition 2.3). 

First let us give some definitions. More details can be found in [7] and [2]. 
Let M be a monoid. The family Rat M of rational subsets of M is the least family 
of subsets of M containing the finite subsets and closed under product, union, and 
the star operation. 

A subset L of M is recognizable if there exists a finite monoid N, a morphism 
q~ from M into N, and a subset P of N such that L = (p-l(p). 

A finite automaton ~ = (E, Q, I, T) is a directed graph labeled by letters of 
the alphabet E, with a finite set Q of vertices called states. I c Q is the set of initial 
states, and T c Q is the set of terminal states. A path in d is said to be successful 
if it starts in I and terminates in T. The set of successful paths is the behavior of 
d .  A word w of E* is recognized by d if it is the label of a successful path of d .  
A subset of E* is recognizable if it is the behavior of a finite automaton on E. The 
recognizable subsets of E* are exactly the rational subsets of E* by the Kleene 
theorem (see [7]), and we use both denotations. 

Let E and F be two alphabets. A transducer ~-- is a finite automaton with 
edges labeled by couples of E* x F*. A relation R c E* x F* is rational if and 
only if it is the behavior of a transducer. The composition of two rational relations 
is again a rational relation. A function (p: E* ~ F *  is computable by a finite 
automaton or rational if its graph ~b is a rational relation. From now on we use 
the word rational. 

A transducer with initial function is a transducer Y- = (E* x F*, Q, c~, T) where 
is a partial function from Q into N(E* x F*). The behavior of a transducer of 

this kind is defined as follows. A pair (f, 9) �9 E* x F* is recognized by ~-- if there 
exist i �9 Q and t �9 T, such that e(i) = (u, v) is defined, f = uf', 9 = vg', and ( f ' ,  9') 
is the label of a path from i to t. The behavior of a transducer with initial function 
is a rational relation. 

We assume that the characteristic polynomial P(X)=  X " - a l X  "-1 . . . .  
- am of U has a real root 0 > 1 which dominates strictly the modulus of its 
conjugates. A is the canonical alphabet and L ( U ) ~  A* is the set of normal 
representations of the integers in basis U. 

If c > 0 is an integer, let C = {0 . . . .  ,c}, ~ = { - c ,  . . . ,  c}, and Z(U, c)= 
{f  = f o ' " f , � 9  (~*[fou, + " "  + f~uo = 0} be the set of words on C equal to 0 in 
basis U. Let Vc: C* --. A* be the normalization function on C*. The index C in Vc 
is dropped whenever the context is clear. 

Some technical results are needed. 

Lemma 2.1. I f  L(U) and Z(U, c) are rational, then the normalization v is a rational 
function. 

Proof Let f = f o " ' f n  and g = go'' 'gk be two words of C* with n > k. 
Denote f O g  = f o ' " f , - k - l ( f ~ - k  -- go) ' " ( f ,  -- 9k) �9 C*" Then we have ~3 = 
{ ( f ,g ) �9  C* • A*Ig�9 f O g � 9  c)}. 
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Let S be the graph of @: 

[(a?C ( ( ) ) *  (a?C (( ))*1[ b~ )1" S =  a , e ) , a  w e,a), - a  ( ( a , b ) , a - b  , a, C 
S is a rational subset of (C* • C*) • 5*. Let us consider the set 

S' = S ~ ((C* • L(U)) x Z(U, c)) ~_ (C* x A*) x 5*. 

Then f is the projection of S' on C* • A*. As L(U) and Z(U, c) are rational, 
(C* • L(U)) • Z(U, c) is a recognizable subset of (C* x A*) • C* as a cartesian 
product of rational sets (see [2]). Since S is rational, S' i~ a rational subset of 
(C* x A*) x 5*. So, f being the projection of S', f is a rational subset of C* • A*, 
that is, v is a rational function. [] 

Note that if v is a rational function, then its image L(U) is a rational set. To 
prove that if v is rational, then Z(U, c) is rational, it is necessary to give a precise 
characterization of normalization. 

Let E and F be two alphabets. The length of a word f is denoted by 
[f[.  Recall that a relation R_= E * x  F* is length-preserving if, for every 
(f, g) ~ R, If[  = [g[ (see [7]). This is equivalent to R _ (E x F)*. Eilenberg and 
Schiitzenberger have shown that a length-preserving rational relation of E* x F* 
is a rational subset of (E x F)* [7]. 

Definition 2.1. A relation R __ E* • F* is said to have bounded differences if there 
exists k ~ N such that, for every (f, g)~ R, I[ f I - I  g I] -< k 

The set of words on E of length <k  is denoted by E -<g. 

Proposition 2.1 [11], [12]. A rational relation R of E* • F* which has differences 
bounded by k is equal to the behavior of a transducer if- = (E x F, Q, ~, T) with 
edges labeled by elements of E • F, equipped with an initial function ~: Q-~ 
(E <-k x e)w (e x FZk). 

For the sake of completeness, we give here the proof of this result, which relies 
upon a key lemma of [7]. 

Lemma 2.2 [7]. For every S ~ Rat(E x F)* and every word w ~ E* there exists a 
family {Sx[x ~ E Iwl} of rational sets of (E • F)* such that 

S(w, 1)=  U (x, 1)S~. x~glwl 
If u = (f, g)~E* x F* we note [ul = ( I f l ,  Igl). Denote D k = (E<kx e) u 

(e x F<-k). Observe that an element u of E* x F* with length difference k can 
be uniquely written as a product u = u'u" with u' ~ D k and u" ~ (E x F)*. 

Proof of  Proposition 2.1. It mimics the proof of the theorem of Eilenberg and 
Schiitzenberger [7] and goes by induction on the star height of R. If R is of star 
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height 0, it is a finite union of pairs  with length difference k, each one being the 
p roduc t  of an element of Dk and of an element of  (E x F)*. Assume now that  the 
propos i t ion  holds for every ra t ional  relation of star height h, and  let R be of star 
height h + l .  R is a finite union R U * "'" * = u o R l u  I Ur_lRrUr, with the ui's in 
E* x F* and the Ri's in Rat(E* • F*) of  star  height at mos t  h. E lementary  
length considerat ions show that  every Rg has to be length-preserving, and thus 
R~ ~ Rat(E x F)* and therefore R* e Rat(E • F)*. F r o m  L e m m a  2.2, R*ur is a finite 
union of elements of  the form vH, with H ~ Rat(E • F)* and v ~ E* • F*, and  
[ v l = [ Ur [. I terat ing this procedure  for i going f rom r to 1 shows that  the monomia l  
uoR*ul  "'" u,_ 1R*u~ and thus R is a finite union of elements of  the form wL, with 
L ~ Rat(E x F)* and I w[ = ]Uo'"u~].  Since w has length difference k and m a y  be 
writ ten as w = w'w", with w' e Dk and w" ~ (E • F)*, R is a finite union of elements 
of  the form w'L', w '~  D k and L ' ~  Rat(E • F)*. Since L '  is the behavior  of a 
t ransducer  with edges labeled by elements of E • F, the result follows. [ ]  

Returning to the linear numera t ion  systems we have 

Proposit ion 2.2. Normalization in basis U, restricted to words not beginning by O, 
has bounded differences. 

Proof. L e t f b e  a word  of(C\{0})C* of length n + 1. Then  re(f) < cu, + ...  + cu o. 
Let 01 = 0, 02 . . . . .  0t be the roots  of  P, with multiplicity #1 = 1, ]A 2 . . . . .  ]A 1. So 

u, = O"Pl(n) + O"2Pz(n) + " "  + O']Pl(n), 

where Pi(n) is a po lynomia l  of  degree <# i ,  1 < i < 1. As 0 is the dominan t  root  of  P, 

lim --u" = Pl(n) = constant  2. 
n_.+~ O n 

So, for every e > 0, 3N >_ 0 such that  n > N ~ u ,  < 20"(1 + e) and 20" < 
u,(1 + e). Let 

x = C(Uo + "'" + u,) = C(Uo + "" + uN-1) + c(uN + "'" + u,). 

Then 

c(uN + " '  + u,) < 2c(1 + e)(0 N + .-. + 0") 

< 2c(1 + e)(1 + ...  + 0") 

on+ 1 
< 2c(1 + e) - -  

0 - - 1  

< ,~0 "+j  

with 

c(1 + e)7 
J=  l~176 0 - 1  J +2" 
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S o  

c(un + . . .  + u,) < u,+~(1 + e). 

Since C(Uo + "'" + uN-~) is constant,  there exists a constant  p > 0 
x < U,+p. Thus, for every word  f of  (C\{0})C*, [ v ( f ) [ -  [ f [  < p - 1. 

such that  
[ ]  

We are now able to prove  

L e m m a  2.3. I f  the normalization v: C* -~ A* in basis U is rational, then Z(U, c) 
is rational. 

Proof. If  v: C* ~ A *  is a ra t ional  function, then ~ = {(f, g ) e C *  • 
C*lTr(f)=rc(g))  is a ra t ional  subset of C * x  C* and Z(U, c ) =  { h e C * l h =  

f G 9, ( f  9) e v-"z~o v). Denote  R = ~ ~ (C\{0)C*)  • (C\{0}C*). As g is the 
intersection of a ra t ional  and of a recognizable subset of  C* x C*, R is a ra t ional  
relation. Since v has bounded  differences, R also has bounded  differences (by k). 

Let Y be the t ransducer  defined in Propos i t ion  2.1. F r o m  Y a finite 
(a, b) 

a u t o m a t o n  5 ~ is constructed as follows. I f  p ~ q, with a and b in C, is in ~--, an 
a - b  u 

edge p ~ q is created in 5 p. If e(i) = (u, e) is defined in Y-, an edge e o ~ i is created 

in 5 P and eo is an initial state of 5~. If  e(i) = (e, v) is defined in Y ,  an edge e I ~ i 

is created in 5 ~ and el is an initial state of  5 ~. The  terminal  states of  5 ~ are those 
of ~--. Then (v, w) e R if and only if v @ w is recognized by 5~. Thus,  Z(U, c) is 
rational.  [ ]  

F r o m  Lemmas  2.1 and 2.3, we obta in  the following. 

Proposit ion 2.3. I f  the set of normal representations L(U) is rational, then the 
normalization Vc: C * - ~  A* is a rational function if and only if the set Z(U, c) of 
words of C* equal to 0 in basis U is rational. 

I t  is no tewor thy  that  there exist functions v which are rat ional  and such that  

the set Z = { f O g l ( f ,  g ) e  v'-'~5~ ~176 is not  rational,  as shown by the following 
example.  

Example  2.2. Let v: {0, 1}* ~ {0, 1}* be the m o r p h i s m  defined by v(0) = e and 
v(1) = 1. Deno te  by If[1 the number  of  1 in f .  Then 

Z = {h = f O g e  { - 1 ,  0, 1}*[[f[  1 = [g[a} = {he { - 1 ,  0, 1}*[[h[, = [h[-1} 

which is not  a ra t ional  subset of { -  1, 0, 1}*. 

2.2.1. Recognizability and Division. Define a mapp ing  between words  of C* and 
polynomials  of Z [ X ]  by f = f o ' " f ,  e C*~--~ F(X) = fQX" + . ' .  + f~, fi e C. The 
Gaussian norm of F is l[ F It = maxi = o ...... l f/I- This gives a correspondence  between 
words  of  C* and polynomials  of Z [ X ]  of no rm at  mos t  c. 
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Let us denote by (P) the ideal of Z[X]  generated by P, and by I(P, c) the 
trace on C* of (P), that is, 

I(P, c) = { f  = fo "" " f , e  C'IF(X) = foX"  + "'" + f ,  e (P)}. 

This set is strictly included in Z(U, c). 
In this section we give a construction which links the recognizability of 

I(P, c) by an automaton to the Euclidean division of polynomials of (P) by P. 
Let f = uvw. Then u is a left factor, v is a factor, and w is a right factor of f .  

The set of left factors of elements of a language L is denoted by LF(L). 

Proposition 2.4. The set I(P, c) is recognizable by a finite automaton if and only 
if the number of remainders of  the Euclidean division by P of polynomials associated 
to words of LF(I(P, c)) is finite. 

To recognize a word f of I(P, c) we divide by P the polynomials associated 
to longer and longer left factors of f.  The remainders obtained at each step are 
considered as the states of the automaton, and thus the automaton is finite if and 
only if the number of these remainders is finite. 

The remainder R(F, P) of the Euclidean division of F by P is a polynomial 
of degree at most m - 1. To R(F, P) is associated the word rp(f) = ro ( f ) ' " r , , _  l( f) ,  
whose letters ri(f) are the coefficients (possibly equal to 0) of the polynomial 
R(F, P). We say that re(f)  is the remainder of the division of f by P. 

The right congruence modulo I(P, c) is denoted by ~ z(e,c), that is, i f f  and g 
are two words of C*, then 

f ~i(P,c)g ~ VheC*, f h e I ( P ,  c) iff ghe I (P ,  c). 

Lemma 2.4. I f  f and g belong to LF(I(P, c)), then 

f "~ I(P, c) g r re(f) = rp(g). 

Proof. Let F and G be the polynomials associated to the words f and g 
(i) If rp(f) = re(g ) there exists a polynomial H e Z[X]  such that F = G + PH. 

Thus for every word y of C*, F X  lyl + Y = GX lyl + P H X  lyl + Y belongs to (P) if 
and only if GX lyl + Y is in (P). Hence f "~lW.c)g. 

(ii) Since f is in LF(I(P, c)) and g ~ iw, c)f, there exists y e C* such that f y  and 
gY belong to I(P, c). Then F X  Myl + Y = P H  and GX 4yl + Y = PK,  with H and K 
in Z[X].  We get (F - G)X fyl = P(H - K) so F - G e (P), because am ~ 0. Thus 
rp(f) = re(g ). [] 

Proof  o f  Proposition 2.4. It is a classical result that I(P, c) is recognizable by a 
finite automaton if and only if the right congruence modulo I(P, c) has finite index 
(see [7]). The words of C* which do not belong to LF(I(P, c)) are put in one single 
right class modulo I(P, c). From Lemma 2.4 there exists a bijective correspondence 
between the right classes modulo I(P, e) and the remainders of the division by P of 
the words of LF(I(P, c)). [] 
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When the number of remainders by P of the words of LF(I(P, c)) is finite, the 
explicit construction of the minimal finite automaton d = (C, Q, i, i) which re- 
cognizes I(P, c) follows from the above construction. 

(i) The (finite) set of states Q is equal to the set of remainders by P of the 
elements of LF(I(P,  c)), that is, the set of right classes modulo I(P, c): 
Q = {[f]1(P,c) = rp(f)l f ~ LF(I(P,  c))}. 

(ii) The initial state i is equal to {[s]i(e,c)}. 
(iii) The terminal state is defined by: {[vJm,,c)lv ~ I(g, c)} = {[e],(p,c)} = i. 

a 

(iv) The transitions are of the form I f  Ira',c) ~ [fa]i(e,~) where a e C. 

Example 2.3. Let P(X) = X 2 - X - 1 be the characteristic polynomial of the 
Fibonacci sequence. Take C = { -  1, 0, 1}. We denote [.3 instead of [. ]i(v,c)- The 
following finite automaton recognizes I(P, c): 

1 - 1  

o 

o 

Since the polynomials considered belong to Z [ X ]  we have 

Corollary 2.1. The set I(P, c) is recognizable by a finite automaton if  and only if 
the coefficients of  the quotient by P of  the words of  LF(I(P,  c)) are bounded. 

Proof. Let f = f o "  ' f ,  be a word ofl(P,  c). Let Q(X) = qo X ' - m  + " .  + qn-m be 
the quotient of the Euclidean division of F(X) = fo X"  + ... + f ,  ~ Z [ X ]  by P. For 
every k ~ [0, hi, denote by f(k) the word fo '"  "fk and by F (k) the associated 
polynomial. Then 

F(k)(X) = )Co x k  + "'" + fk 

= P(X)(qo X k - m  + "'" + qk-m)  q- q k - m + l  X m - I  

+ (--qk- , ,+laa + qk_m+2)X m-2 

+ ( - -qk-m+laz  -- qk_~+2al + qk_m+3)X " - 3  + " "  

+ (- -qa-m+lam-1 -- qk-~+2am-2 + "'" + qa) 

and thus the remainder of the Euclidean division of F (a) by P is 

R(k) (x )  = qk_m+ t X  m-1  q- ( - - q k _ m +  taj. q- qk_m+ 2 ) X  m-  2 -[- . . .  

+ ( - - q k  re+lain-1 --  q k - m + 2 a m - 2  -}- "'" + qk)" 

Let r (k) = r(o k) ' ' '  r~ )_ 1 be the word corresponding to the polynomial R (k). Let 6 be 
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the mapping 6: Z"  -* Z m, 

a, 0 F  
\ qk / \ r ~ - ~ , ]  - - a i m - ~ - - a m - 2  . . . .  a~ i / \  qk / 

Since the matrix is invertible, 6 is bijective. 
Thus the coefficient qi's of the quotient are bounded if and only if the r~k)'s 

are bounded for every k. As these are elements of Z, the number of different 
remainders is finite if and only if the coefficients of the quotient are bounded. 

[] 

This result leads to the following question: What are the polynomials P such 
that the division by P of a polynomial F in the ideal (P) and of norm at most c, 
gives a polynomial with all coefficients bounded by a constant depending only on 
P and c? 

We thus have 

Definition 2.2. A polynomial P of C[X] satisfies the bounded division property 
(in short BD) if, for every c > 0, there exists a constant fl(P, c) such that, for every 
polynomial F of C[X],  F = PQ, Q e C[X],  IfFIj -< c, implies IIQIr </~(P, c). 

Proposition 2.5 [4]. The polynomials satisfying the BD are exactly the polynomials 
having no root of modulus 1. 

To prove this statement we first give a technical lemma about the Gaussian 
norm. 

Lemma 2.5. Let F and G be polynomials of C[X], with degree n and k respectively. 
Then IIFG]F < (1 + min(n, k))lIFJl'lIGll. 

Proof. Let F(X) = fo + f l X  + ... + f ,X"  and G(X) = go + g iX  + " .  + gk xk. 
Then FG(X) = ~7 +k hiX i with hi = ~ '=o  f~-jgj, so Ihil < (1 + min(n, k))lrFll'HGll. 

[] 

' The degree of a polynomial F is denoted by d(F). 

Proof of  Proposition 2.5. (1) Let P1 and P2 be polynomials satisfying the BD. 
Then P = P1P2 satisfies the BD. To see that, let c > 0 and F be a polynomial 
equal to PQ, where Q e C [ X ] ,  such that IIFI[ -< c. Then lIP1PzQll <_ c. Since P1 
satisfies the BD, IIPzQI[ < fl(P1, c), and so [IQH < fl(P2, fl(P1, c)) since P2 satisfies 
the BD. 

(2) If P = PIPz satisfies the BD, then P~ and P~ satisfy the BD. Let P~ be a 
polynomial and P = PaP2 satisfying the BD. Let c > 0 and Q such that IIP~QI] < c. 
Let d 2 = degree of P2. Then 

[IPQII = [IPxP2QII < (d2 + 1)liP211" IIP, QII < c(dz + 1)lIP211 
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(Lemma 2.5). Since P satisfies the BD, we have IIQII ~ fl(P, c(d2 -[- 1)lIP211), which 
depends only on Pa and c, since P and P2 depend only on Pa. Thus Pa satisfies 
the BD. Similarly P2 satisfies the BD. 

It  follows from (1) and (2) that  the set of polynomials  satisfying the BD is 
composed of  products  X - ~, where ~ ~ C such that  X - e satisfies the BD. So it 
is enough to consider X - ~. 

(3) Case I~1 > 1. Let F(X)  = fo + f a X  + " "  + f , X "  such that  IIFII - c and 
F = (X - e)Q. Then 

( X X2 ) n-a 
F 1 F 1 F 1 + + + ~ g k X  k 

X ~ a 1 - X /~  ~ ~ 
- -  ~ k = O  

with 

1 k 1 
= - -  "~)~fk = .  qk "2"0 - i ~ 

Then 

1 1 c 
I q k [ < ~ [ e ~  - �9 

i _>o l~ l  I I ~ 1 - 1  

- .  X n (4) Case I~1 < 1. If  F fo + "  + f" , its reciprocal polynomial  is F = 
fo X"  + ...  + f ' .  First notice that if F = PQ, then F = / 5  0.  Take P(X) ' - -  (X - e). 
Then F(X) = (1 - eX)O.(X). Since LIFLI = IIfl[ and I~1 < 1, we may  use the previous 
case ,  a n d  Ilall = 11(711 < c/(1 -I~1). 

(5) Case I~1 = 1. First we show that  this case reduces to the case e = 1. Let 
X = au and Q(X) = F(X) / (X  - ~z). Then Q(c~u) = F(~zu)/(o:u - cr = (1/cz)(F(au)/ 
(u -- 1)). Let H be the polynomial  defined by H(u) = F(~:u). Since I~1 = 1, HHII = 
I lf l l .  Let V(u) = H(u)/(u - 1). Then IIVII = IIQH. So we consider the case X - 1. 

Let t be an integer >_ 1 and 

Bt(X ) =  - I  - X . . . . .  X t-a + X z + ... + Xz t -a .  

1 is a root  of this polynomial ,  let Q(X) be the quotient  of Bt by X -  1. The 
coefficient of X t in Q(X) is equal to t - 1 and so II (2 II -> t - 1. Thus X - 1 does 
not  satisfy the BD. [ ]  

F r o m  the characterization given in Proposi t ion 2.5 we deduce 

Theorem 2.1. The set o f  words o f  C*, the associated polynomial o f  whieh belongs 
to (P), is recognizable by a finite automaton for  every positive integer c if and only 
if P has no root o f  modulus 1. 

Proof. For  a fixed c, I(P, c) is recognizable if and only if the coefficients .of the 
division by P of words_of LF(I(P, c)) are bounded  (Corollary 2.1). Thus I(P, c) is 
recognizable for every c > 0 if and only if P satisfies the BD, that  is, if and only 
if P has no root  of modulus  1 (Proposi t ion 2.5). [ ]  
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Example 2.4. The Fibonacci polynomial P ( X ) =  X 2 -  X -  1 has no root of 
modulus 1, thus I(P, c) is recognizable for every c __ 1. 

Example 2.5. Let u.+ 2 = Un+ l + 2u. and P(X) = X 2 - -  X - -  2 = (X + 1)(X - 2) 
be its characteristic polynomial. We can verify that 

I(P, 3) c~ (-- 1)(3(- 3))* 1(3(-  3))*2 = {( - 1)(3( - 3))P1(3(-- 3))P21p > 0}. 

Since this set is not rational, I(P, 3) is not rational either. 

2.2.2. Rationality o f  the Set o f  Words Equal to 0 in Basis U. We now prove 
that if the set Z(U, c) of words of C* equal to 0 in basis U is rational, then 
I(P, c) is also rational. If F ( X ) =  foX"  +-- .  + f , ,  Fly denotes the value 

fou, + . . .  + f ,  Uo = rc(fo.. " f,). 

Theorem 2.2. I f  P has one root of modulus 1, then there exists c o > 0 such that, 
for every c >_ Co, the normalization v c is not rational. 

This is a consequence of the following. 

Proposition 2.6. Let c > 0 be a fixed integer. I f  Z(U, c) is rational, then I(P, c) is 
rational. 

We need two lemmas. It is assumed that P is the minimal polynomial of the 
linear recurrence, that is, U is not degenerate. 

Lemma 2.6. Let f be a word of LF(I(P, c)). Then [f]i0,,c) c [f]zw,~). 

Proof. Clearly, LF(I(P, c)) is included in LF(Z(U, c)). Let f and g be two words 
of LF(I(P, c)) equivalent modulo I(P, c), let F and G be the associated polynomials. 
Then there exists a polynomial Q such that F = PQ + G, and then, for every y of 
C*, F X  Irl + Y = GX lyl + PQX lyl + Y. Thus (FX lyl + I01v = 0 if and only if 
( GXIrl + Y)[v = 0 so f "~z(v.c)g. 

Lemma 2.7. An equivalence class modulo Z(U, c) can contain only a finite number 
of classes modulo I(P, c). 

Proof. Let us suppose that there exist infinitely many different classes modulo 
I(P, c) with representatives f l ,  fz . . . . .  in the same class modulo Z(U, c). Thus there 
exists an infinity of words wl, w2 . . . .  such that fiw~ ~ I(P, c) and fjwi r I(P, c) for 
i # j ,  else we would get flwl and f~wi~I(P, c), which would imply F ~ -  Fje(P),  
and then f/'~1~e,c)fj, contrary to the hypothesis. For  every i and j we have 
fi "~ztv, c)fj, so n(flwl) = 0 and g(fiwi) = 0, thus n((fj - -  f k ) 0  Iw'l) ---- 0 for every i, j, 
k. So fj  - fk e I(P, c) since P is the minimal polynomial of the linear recurrence, 
a contradiction. []  
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Proof of  Proposition 2.6. If Z(U, c) is rational, then the number of classes modulo 
Z(U, c) is finite. From the above lemma, the number of classes modulo I(P, c) is 
finite and I(P, c) is rational. []  

The proof of Theorem 2.2 easily follows from Propositions 2.3 and 2.6. 

Example 2.6. Normalization in basis u, + 2 = Un + 1 ~- 2U, is not rational on any 
alphabet C containing {0, . . . ,  3} (see Example 2.5). 

Since we do not know whether the rationality of I(P, c) implies the rationality 
of Z(U, c), the question whether P has no root of modulus 1 implies that 
normalization in basis U is rational on any alphabet is still open. 

3. The Real Numbers 

3.1. Representation of  Real Numbers 

Let 0 > 1 and x > 0 be two real numbers. Every infinite- sequence of positive 
integers (z,),~o such that x = ~,_>o z,O-" is a P-representation of x. A particular 
P-representation called the P-development or the P-expansion can be computed by 
the following algorithm (see [18]). Denote by [y] and by {y} the integer part and 
the fractional part of a number y. Let Xo = Ix] and ro = {x), and,' for i >_ 1: 
X i = [Ori_l] and r i = {0ri_l}. Then x = 2k>O Xk O-k" 

For i _> 1, xi < 8. If 0 ~ N, the canonical alphabet is A = (0 . . . . .  0 -- 1} and if 
0~N,  A = {0 . . . . .  [0]}. We write x = Xo.XiX2"" where x o is the integer and 
. x l x2 . "  is the fractional part of x. The 0-development of x is the normal 
0-representation of x and it is greater in the lexicographical ordering than any 
0-representation of x. 

It is clear that if 0 = to.tit2.. ,  is the 0-development of 8, then 1 = O.totl '" .  
The sequence to t i . "  is denoted by d(1) and by extension is called the 8- 
development of 1. Let x~ [0 ,  1[ of 0-development O.xix2. . . .  The sequence 
XlX2"''E A N is also said to be the 0-development of x. 

Let C be any finite subset of the integers. As for the integers the normalization 
function Vc: C N ~  A TM, where A is the canonical alphabet, maps a sequence (y,), 
of numerical value x in basis 0 onto the 0-development of x. 

Let Do be the set of 0-developments of numbers of [0, 1[, and let 
d: [0, 1] ~ D o w {d(1)} be the function mapping x ~ 1 onto its 0-development d(x) 
and 1 onto d(1). The closure of D o is denoted by So. Then So is a subshift of A N and 
S o = D o u {d(1)}. The subshift S o is called the P-shift (see [3] and [5]). So is a system 
of finite type if the set of finite factors F(So) is defined by the interdiction of a finite 
set of words. So is a sofic system if F(So) is recognizable by a finite automaton. 
Recall that the 0-shift So is a system of finite type if and only if d(1) is finite [15]. 
So is a sofic system if and only if d(l) is eventually periodic [3]. 

Example 3.1. Let 0 = (1 + ~ ) / 2 .  Then d(1)= 11. Let 0 = (3 + x/~)/2. Then 
d(1) = 21 '~ 
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3.2. Normalization of  Infinite Words 

In this section we characterize the numbers  0 such that  normal iza t ion  in basis 0 
is ra t ional  on any alphabet .  

Let  us fix some definitions. An infinite pa th  in a finite a u t o m a t o n  ~r = 
(E, Q, I,  T) is successful if it starts in I and goes infinitely often th rough  T. The  
infinite behavior of an a u t o m a t o n  is the set of all its successful paths.  A subset of  
E N is said to be recognizable if it is the infinite behavior  of  a finite au tomaton ,  
that  is, if it is Biichi-recognizable (see [7]). 

A relation R c E N x F N is rational if it is the infinite behavior  of a transducer.  
A function ~o: E N ~ F N is rational if its g raph  is a ra t ional  relation. 

3.2.1. Recognizability and Division. As for the integers we first consider the set 
of infinite words  on ~N equal  to 0 in basis 0, 

z(o, c) = {s = (s.)._~o ~ ~NIY~._~o s.O-" = 0}. 

To every infinite word  s = (s,),___o of ~N is associated a formal  power  series 
S(X) = ~'.,>_o s ,X" in Z [ [ X ] ]  whose Gaussian norm is []S[I = sup,_>o[S,[ < c. 

A const ruct ion similar to the one given in the case of  finite words  links the 
recognizabil i ty of Z(O, c) and the division of polynomials  by the polynomia l  X - 0. 
Let  us denote  by LF(Z(O, c)) the set {w E C*[3s E C N, ws ~ Z(O, c)}. Let f = f o " '  f~ 
and  g = g o " "  9k e C*. f and  g are said to be right congruent modu lo  Z(O, c) if, for 
every s E C N, fs ~ Z(O, c) if and only if gs ~ Z(O, c). Let F(X) = foX"  + "'" + f ,  and 
G(X) = goXk + . . . +  gk. Denote  by  to(f) (resp. to(g)) the remainder  of the 
Euclidean division of F (resp. G) by X - 0. 

Lemma 3.1. I f  f and g belong to LF(Z(O, c)), then 

f ~z(o,c) g ~ ro(f) = ro(g). 

Proof. Let f = f o " "  f .  and g = g o " '  gk be two words  of C*. Suppose n > k. Let  
F and G be the associated polynomials .  Then  F -- G E (X -- 0) if and only if 
ff -- X"-k(~ e (1 -- OX). 

(i) If  to(f) = to(g), t hen /v  _ X , - k G  s (1 -- OX), and there exists H ~ Z[X]  such 
that  F = X " - k G  + (1 -- OX)H. Thus, for every s s  C N, s = (Sn),>__ o, we have 

S 0 S 1 
f o + ' " + f " +  + + 1 (  g 9  So sl 

-0._k 

1 gk + 0~o+1 + + " "  
- 0 . _ ~  go + " "  + b~ b ~  

and fs  ~ Z(O, c) if and  only if gs ~ Z(O, c). 
(ii) Let s e 12 N such that  fs and gs ~ Z(O, c). Then  

L SO Sl gk So S1 
f o + ' " + - + 0 , ~ ~ 5 +  + . . . .  g o + ' " + ~ / ~ - g X ~ / ~ 5 +  + + ' " = 0  

SO (1~ - -  x n - k G ) ( O  - 1) = 0 and to(f) = ro(g). [ ]  
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Proposition 3.1. Let 0 be a real number > 1. The set Z(O, c) of words of ~N equal 
to 0 in basis 0 is recognizable by a finite automaton if and only if the number of 
remainders of the Euclidean division by the polynomial X -  0 of polynomials 
associated to words of LF(Z(O, c)) is finite. 

We need a lemma on recognizable sets of infinite words. 

Lemma 3.2. Let S be a recognizable subset of E N. The right congruence modulo S 
has finite index. 

Proof. Let d = (E, Q, I, T) be an automaton whose infinite behavior is equal 

to S. Let f e E* and I ( f )  = {q ~ Q[ 3i ~ Ii ~ q}. An equivalence relation, denoted 

by - ,  is defined on E* by f = g if and only if I ( f )  = I(g). Then = is finer than 
~s :  for every s of E N, f s E S  if and only if there exist i~1 and q e I ( f )  such that 

the path i ~ q _L, ... goes infinitely often through T. I f f  - g, then q ~ I(g), and so 

there exists j e I such that the infinite path j L q --%--- is successful if and only if 

the infinite path i ~ q Z, . . .  is successful. As the relation - has finite index, ~ s  

has also finite index. []  

Proof o f  Proposition 3.1. If Z(O, c) is recognizable, then the equivalence ~ zt0,c) 
has finite index. Conversely, if the number  of remainders is finite, then the number 
of classes modulo Z(O, c) is finite. We define, as in the previous section, a finite 
automaton ~ = (C, Q, i, Q) by: 

(i) The (finite) set of states Q is {[f]z~0,c) = ro( f ) l f  ~ LF(Z(O, c))}. 
(ii) The initial state i is equal to {[e]z(0,c) } = 0. 

(iii) Every state is terminal. 
a 

(iv) The transitions are of the form [f]zt0,c) --* [fa]z(o,~) where a ~ C. 

The infinite behavior of ~ is equal to Z(O, c): 

(a) Let s = (s,)e Z(O, c). Then, for every n > 0, 0s~ s" [So'"S,]zto,~) is a path 

in & and s is the label of an infinite successful path in M. 
(b) Conversely let s = (s,),_o be the label of an infinite successful path 

origining in the initial state 0 of ~ .  Thus, for every n > O, s o + s i x  + 
�9 " + s . X " = ( 1 - O X ) ( q o + q l X + ' " + q . - 1 X " - l )  + e , X ,  where e, is 
the remainder. So e, = 0"% + . . .  + s,. As the remainder is bounded, 
lim._.~o [So + "'" + s,O-"[ = 0 and so S(O -1) = O. [] 

This construction also yields 

Corollary 3.1. I f  c >_ [0] and Z(O, c) is recognizable, then 0 is an algebraic 
integer. 
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Proof. Let d(1)= (t.)._>x be the O-development of 1. Then ( - 1 ) t l t 2 . . . ~  Z(O, c). 
From the above construction there exist n and p such that the states e . - -  
[(-1) t l""t .]z to ,c)  and e.+p = [(-1)q'"t .+p]z(o.c)  are the same. Since e. = 
- 0 "  + t~O "-~ + "" + t. and e.+p = - 0  "+p + tl On+p-1 -k- "'" d- tn+p, 0 is the root 
of a monic polynomial of Z[X] .  []  

Thus we can restrict ourselves to the case where 0 is an algebraic integer. 

Proposition 3.2. Let 0 be an algebraic integer > 1. The set Z(O, c) is recognizable 
by a finite automaton if and only if the number of remainders of the division by the 
minimal polynomial M of O of polynomials associated to words of LF(Z(O, c)) is finite. 

Proof. Two polynomials F and G of Z [X]  have same remainder by M if and 
only if they have same remainder by X - 0. []  

From Proposition 3.2 we deduce 

Corollary 3.2. I f  Z(O, c) is recognizable, then,for every (s,).>_ o E Z(O, c) and for every 
root ~ of modulus > 1 of M, Y',,>_ o s, ~-~ = O. 

Proof. Let d be the degree of M. For every n > 0, s o X" + -'- + s, = MQ + R 
where Q is a polynomial of degree n - d and R is the remainder of Euclidean 
division by M. Thus s o + sl~ -1 + ... + s ,~-"  = ~-"R(~). As the number of re- 
mainders is finite and I~1 > 1,Z._>o s .~-"  = lim,_.~o Is o + sl~ -1 + . . .  + S,~-nl = O. 

[]  

As above, the number of remainders is finite if and only if the coefficients of 
the quotient are bounded since the polynomials belong to Z[X-]. 

Corollary 3.3. The set Z(O, c) is recognizable if and only if the coefficients 
of the quotient by M of the words of LF(Z(O, c)) are bounded. 

This leads to 

Definition 3.1. A polynomial P of C[X]  satisfies the bounded division property 
on series (in short BDS) if, for every c > 0, there exists a constant fl(P, c) such 
that, for every S e C[ [X]] ,  IISII -< c, S(2) = 0 for every root 2 of modulus < 1 of 
P, S = P T  with T e  C[ [X]] ,  imply IITII -</~(P, c). 

Clearly, if a polynomial satisfies the BDS, then it satisfies the BD. The 
converse is also true. 

Proposition 3.3. The polynomials satisfying the BDS are exactly the polynomials 
having no root of  modulus 1. 



54 C. Frougny 

Lemma 3.3. Let F be a polynomial of C[X]  and let S be a formal series 
of C[[X]]. Then IIFS[I < (d(F) + 1)llFll �9 IISll. 

i Proof. Let T = (tn) = FS. Then ti = ~ j=o  f l - j s j .  [] 

Proof o f  Proposition 3.3. As in the proof  of Proposi t ion 2.5, if P1 and P2 are 
two polynomials  of C[-X], PI  and Pz satisfy the BDS if and only if P1P2 satisfies 
the BDS, with the help of Lemma 3.2. 

So we consider polynomials  of the form X - ~. Let c > 0, S = (X - ~)T, and 
[[S[I<c. Put  S = ~ , > _ o s n X "  and T=~n_>otnXn.  So, for every n > 0 ,  t n =  
- (1 /~)  Z7=o Sn-,/~i" 

(1) [~1 > 1. Then  Itnl -< c/(r~l - 1). 
(2) I~l < 1. We have t, = -(1/~"+l)(So + sl~ + " "  + s,~"). Since S(~) = ~i>_o 

s ~  i = 0, t, =(1/~"+1)(s,+1~ "+1 + s ,+z~ "+2 + " ' )  = s ,+l  + s , + ~  + " "  
and so It, I < c ~ i>o l , l i  = c/(1 - I a l )  because lel < 1. 

(3) [el = 1. The counterexample given in the proof  of Proposi t ion 2.5 leads 
to the conclusion. [ ]  

We thus get 

Theorem 3.1. Let 0 be an algebraic integer > 1 and let M be its minimal polynomial. 
The set Z(O, c) is recognizable for every c if and only if M has no root of modulus 
1, and if, for every infinite word s = (sn)n>o of Z(O, c), we have ~n>_O Sn ~-n = O for 
every root ~ of modulus > 1 of M. 

Proof. (1) If, for every c, Z(O, c) is recognizable, then, for every s E Z(O, c), the 
associated series S verifies S(~-1) = 0 for every root  ~ of modulus > 1 of M 
(Corollary 3.2) and thus S(fl) = 0 for every root  fl of  modulus  < 1 of AI. By 
Proposi t ion 3.2 and Corol lary 3.3, ~3 satisfies the BDS and so M has no root  of 
modulus  1. 

(2) Conversely, the results follows from Proposi t ion 3.2. [ ]  

Corollary 3.4. I f  O is a Pisot number, then, for every c > 0, Z(O, c) is recognizable. 
I f  0 is a Salem number, then there exists Co > 0 such that, for every c > Co, Z(O, c) 
is not recognizable. 

3.2.2. O-Representations of  1. Let 0 be a real number  > 1, c > [0], and let 
E(O, c) = {(s,),> 1 ~ CNI1 = ~n_>x SnO-"} be the set of all 0-representations of 1 on 
the alphabet  C. Clearly, ( -  1)E(0, c) = Z(O, c) c~ ( -  1)C y. So if Z(O, c) is recogniz- 
able, then E(O, c) is recognizable, which is true in part icular  if 0 is Pisot  (see [17] 
where this result is proved by different methods). Actually, the construct ion given 
above in Proposi t ion 3.1 for the set Z(O, c) is easily transferred to the set ( -  1)E(0, c). 

Proposition 3.4. The set E(O, c) is recognizable if and only if the number of 
remainders of the division by X -  0 of polynomials associated to words of 
LF((-1)E(0, c)) is f inite.  
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Theorem 3.2. Let  c >_ [0]. I f  E(O, c) is recognizable, the O-shift is a sofic system. 

Proof. Let ~ be the a u t o m a t o n  of remainders  which recognizes - 1E(0, c). Since 
(t ,) .>l is the 0-development  of 1, ( - 1 ) q t 2 " ' "  is a successful pa th  in ~ .  Thus,  for 
every n >_ 1, 0 t-~)tl...~, = - 0  . . . .  e. where e. + t ~ O "-1 + + t,. 

On the other  hand,  f rom the compu ta t ion  of the 0-development  of  1 we obtain  
t 1 = [ 0 ] ,  r I = { 0 }  . . . . .  t n = [ 0 r n _ l ]  , r n = { 0 r n _ l } .  Thus  r,  = 0" -- t,O "-x  . . . . .  

tn = --en. 
So the n u m b e r  of  these r,  is finite. Let N > 1 and  p > 1 be the smallest  integers 

such that  r N = rN+ p. Thus  tN+~ = tN+p+X and rN+~ = rN+p+~ .... Hence 
d(1) = t t . . .  tN(tN+ ~'''tN+p)`0, i.e., d(1) is eventually periodic. F r o m  a result of [3] 
if follows that  the 0-shift is a sofic system. [ ]  

I t  is known that  if d(1) is eventually periodic, then 0 cannot  have a real 
conjugate  > 1 (see [5]). 

Corollary 3.5. Let  c > [0]. I f  E(O, c) is recognizable, then 0 is a Perron number 
with every conjugate o f  modulus < 2, without a real conjugate > 1 and such that i f  
1 = ~,,>_1 s, 0-~, with s, < c, then 1 = ~>_1 s . ~ - " f  or every conjugate ~ o f  modulus 
>1 .  

Proof. I f  the 0-shift is sofic, then 0 is a Pe r ron  n u m b e r  [14], with every conjugate  
of modulus  < 2  [15]. The  same p roof  as for Corol la ry  3.2 implies that,  for every 
conjugate  ~ of modu lus  > 1, if (s . ) ,>l~ E(O, c), then 1 = ~ , >  1 s ,~-" .  [ ]  

R e m a r k  3.1. There  exist Per ron  numbers  0 which are not  Pisot  numbers  such that  
E(0, [0]) is recognizable, as it is shown in the examples  below. 

Example  3.2. Let  0 be the dominan t  root  of  the po lynomia l  X 4 -  3 X  3 -  

2X 2 -  3. It  is a Pe r ron  n u m b e r  which is neither Pisot  nor  Salem. We have 
d(1) = 3203. We show that  E(O, [ 0 ] ) =  (3202)'32030`0 w (3202)`0, which is a re- 
cognizable set. Let  s =(s,),_>l be an infinite word  of {0 , . . . , 3}  N such that  
~(s) = ~ .>  1 s.O-" = 1. If  SlS2S3S 4 > lex 3203, re(s) > 1, because the 0-development  
3203 is greater  in the lexicographical  ordering than  any  0-representat ion of 1. Next  
if sls2sas 4 <lex 3202, then re(s) < 1. The  conclusion follows. 

Example  3.3. Let  0 be the dominan t  root  of  the po lynomia l  X 4 - 2X 3 - 2 X  2 - -  

2X + 1. 0 is a Salem n u m b e r  and  d(1) = 2(211) ̀ ~ Then E(O, [0]) = 2(211)`0: let 
s = (s,),_> 1 be an infinite word  of {0, 1, 2} N such that  n(s) = ~,>_1 s. 0-~ = 1. I f  
sls2 s3 s4 > le~ 2211, then n(s) > 1. If  sis 2 s 3 s 4 < lex 2211, re(s) < 1. Then there remains  
only a finite n u m b e r  of  cases to consider. 

3.2.3. Application to Normalization in Basis O. F r o m  the above  results we deduce 
that  if Z(O, c) is recognizable,  then S o is sofic, and so the set of  0-developments  D o 
is recognizable. Using the same tools as in Propos i t ion  2.3 we are able to show 
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Proposition 3.5. The normalization Vc: C N ~ A TM is rational i f  and only if  Z(O, c) 
is recognizable. 

First  we show 

Lemma 3.4. I f  the set Z(O, c) is recognizable, then v is rational. 

Proof. The graph  o f v  is f = {(s, t ) ~ C  N x AN[t~Do,  s -- t sZ (O ,  c)} where s - t 
denotes the infinite word  (sn - t,)n_>o, with s = (s~),_>o and t = (t,),>_o. Let d = 
(A, Q1,11, T1) be the a u t o m a t o n  recognizing D o and ~ = (~, Q2,12, T2) be the 
a u t o m a t o n  recognizing Z(O, c). F r o m  ~ an a u t o m a t o n  Se on C x A which 
recognizes words  (s, t) E C N x A N such that  s - t ~ Z(O, c) is constructed as follows: 

z (a, b) 
for every edge p ~ q of  ~ ,  z s C, a finite set of  edges p ~ q for every a in C and 

b in A such that  a - b  = z is defined in 6C The  states of  b ~ are kept  for 
~ :  6~ = (C x A, Q2, I2, T2). Then  the infinite behav iour  of ~ is Li,f(6 e) = 
{(s, t )~ C N x A N I s -  t~Z(O,  c)}. 

To  recognize f, only the couples (s, t) of  Li.f(A e) such that  the second 
c o m p o n e n t  t belongs to Do, are retained. Let ~ be the following a u t o m a t o n  on 
C x A :  

= ( C x A ,  Q1 x Q2,11 x12 ,  T 1 x T2), 

\ ( a , b )  . . e  ( a , b )  
where the edges are: (Pl, P2) --* tql, q2) is an edge if and  only up1  ~ ql in ~ and 

b 
P2 ~ q2 in d .  Then  

Linf(C~) : {(s, t )~  C N x ANI(s, t) E L i n f ( ~  ) and t ~Linf(d)} = 

and thus v is rational.  [ ]  

As in the case of  integers we need a precise character izat ion of normalizat ion.  

Definition 3.2. A rat ional  relation of E N x F N has a bounded delay if it is the 
infinite behavior  of  a t ransducer  ~ - - =  (E x F, Q, ct, T) with edges labeled by 
elements of  E x F, equipped with an initial part ial  function ~: Q ~ (E <-k x ~ ) u  
(e x F<-k). 

A function of infinite words  has a bounded delay if its g raph  has a bounded  
delay. 

Proposition 3.6. I f  the normalization v in basis 0 is rational, then it has a bounded 
delay. 
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Proof. Let R = v"C~ov; it is a ra t ional  relat ion of C N x C N. If  R has an un- 
bounded  delay, every t ransducer  which recognizes R has a loop, the label of  which 
is not  length-preserving [12]. Thus  there exists a couple (ufs, vg t )e  R with u , f ,  v, 
g e C*, s, t e C N such tha t  I f  [ ~ I gl, and (uf 's,  vg~t) e R for every n > 0. 

So rc(uf's) = n(vgnt). Suppose that  I f l = J, I gl = p, p > J- m s t ra ightforward 
compu ta t i on  gives 

~(t) = O"POz(u) -- ~z(v) + r~(f)O-rul(1 + " "  + 0 - t (" -  1)) + rc(s)O-j, 

--  rc(g)0-1vl(1 + - . .  + 0-P<"- 1~)] 

so lim~_~ o~ rift) = ~ ,  which is impossible  since re(t) < c/(O - 1). [ ]  

L e m m a  3.5. I f  the normalization v: C N ~ A N is rational, then Z(O, c) is recogniz- 
able. 

Proof. Z(O, c) = {s - t l (s, t) e R = v"~o v}. Since R is a ra t ional  relation of boun-  
ded delay, it is the infinite behavior  of a t ransducer  of  the previous type. 
F r o m  this t ransducer  we construct  a finite a u t o m a t o n  St whose infinite behavior  
is equal  to Z(O, c), as in L e m m a  2.3. [ ]  

The  previous results can be put  together  into the following statement.  

T h e o r e m  3.3. The normalization v c in basis 0 is rational on any alphabet C if  
and only if  the minimal polynomial of  0 has no root o f  modulus 1 and if  [sn[ _< c, 
~n>_ o sn 0-~ = 0 imply ~n>_ o s~ ~-~ = O for  every conjugate ~ of  modulus > 1. 

Corollary 3.6. Let  0 be a Pisot number. For every alphabet C, the normalization 
v c in basis 0 is rational (and in particular the addition also). 

Corollary 3.7. Let  0 be a Salem number. There exists an integer Co such that for  
every integer c >_ c o the normalization v c in basis 0 is not rational. 

Example  3.4. Let  0 = (1 + x//-5)/2. Then  0 is a Pisot  number ,  the 0-shift is of  finite 
type since d(1) = 11. Normal iza t ion  is ra t ional  on any  alphabet .  

Example  3.5. Let  0 = (3 + x/~)/2. The  minimal  po lynomia l  of  0 is X 2 - -  3X + 1 
and 0 is a Pisot  number .  Since d ( 1 ) =  21 ~', the 0-shift is a sofic system and 
normal iza t ion  is ra t ional  on any  alphabet .  

Example  3.6. Let  0 be the dominan t  roo t  o f  the po lynomia l  X ~ - -  2 X  3 - -  2 X  2 - -  

2X + 1. 0 is a Salem number  and d(1) = 2(211) ~'. There  exists c o such tha t  for 
every c > c o normal iza t ion  on C is not  rational.  
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4. Back to the Integers 

To a number 0, such that the 0-shift is sofic, is associated a linear recurrence. This 
defines a linear numeration system for the integers, the set of normal forms of 
which is strongly related to the set of 0-developments of real numbers. 

Let 0 be an algebraic integer > 1, such that So is a sofic system, and let d(1) = 
to ' "  tN(tN+ 1"'" tN+p) '~ be the eventually periodic 0-development of 1. From 

O = t o + ~ + ' " + ~ f i + \ O n + l + ' " + ~ g - 4 ~  1 + ~  + 0z-~+""  

we deduce that 0 is a root of the polynomial P of Z [X] :  

P(X) = X n+p+l - to X N + p  . . . . .  t p _ 2  X N + 2  - ( t p _  1 + 1)X N+I 

- -  ( tp  - -  t o ) X  N . . . . .  ( tN+ p - -  tN). 

If P is irreducible over Z[X] ,  then it is the minimal polynomial of 0 and so 0 is 
the dominant  root of P, because it is a Perron number. If P is reducible, then it 
could happen that 0 is not the dominant root of P. In the following we omit this 
case. 

To P is associated a linear recurrence on Z, of order N + p + 1, with P as 
characteristic polynomial: for k > O, 

Uk+N+p+ 1 = tOUk+n+ p -'[- . . . . ~_  t p _ 2 U k + n +  2 "q- ( t p _  1 q- I )Uk+N+ I 

+ ( tp  - to )Uk+N + ' + ( t N + p  - tN)uk 

with Uo = 1 and u~ for 1 _< i _< N + p such that the sequence U = (u.). > o is strictly 
increasing. U is said to be associated to O, and defines a linear numeration system 
associated to the O-shift. 

Remark 4.1. If the 0-development of 1 is fni te  d(1) = to. . .  tN, we get 

Uk+N+ 1 = toUk+ N + . . .  _[_ tNU k 

with the convention p = 0. 

Proposition 4.1. Let 0 be an algebraic integer such that 

d(l) = t o ' "  t~c(tN + 1"'" tN+ y .  

The sequence defined by 

U k + N + p +  1 = t o U k + N +  p q- . . .  q- t p _  2Uk+N+ 2 "4- ( t p _  1 -~- I )Uk+N+ 1 

+ ( tp  - -  to)Uk+ N d- "'" + ( t n +  p - -  tN)U k 

for k >_ O, with u o = 1 and initial conditions such that the sequence U is strictly 
increasing, induces a linear numeration system such that the set L(U) of normal forms 
of the integers is rational. More precisely, there exists b >_ 0 such that 

L(U) = L(Do)B, 

where B is the set of normal forms of length <_ b. 
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Proof. (1) In  the p roof  of  Propos i t ion  2.2 it is established that  u, ,-~ 20" when 
n ~ oo. So there exists a sequence (e.),__o of  positive integers, decreasing toward  
0 and a positive number  b > 0 such that, for every n > b, u. = 20"(1 + e.). Let us 
show that  L(U)~_L(Do)B. Let f ~ L ( U ) .  If  I f [  < b, by definition f e L ( D o ) B .  If  
] f l  > b, f = f o " "  Jr., n _> b, with fo # 0. Let K = ~(f). Since f is in normal  form 
u. < K < u.+ 1 and K -- fou .  is normal ly  represented by f l""  "f,.  By induction 
f l  "" f .~L(Do)B.  Denote  0 = (ti)i~_o with tN+jp+k = tN+k for 1 < k <_ p , j  >_ O. I f f  
is not  in L(Do)B, then there exists a prefix of f equal to to . . .  t i -  l(ti + h), h >_ 1, 
0 < i _< n - b. We would then get 

K = ~z(f) > toU, + "'" + t i - a u , - i + l  + (ti + 1)u._i. 

But 

toU n + " "  + t i -  lUn- i+  1 + (t i + l )Un- i  

= 2(to0"(1 + en) + "'" + t i_10"-i+l(1 + e,_i+l)  + (t i + 1)0"-i(1 + e.-i)) 

_> 2(1 + e,+O(toO" + " "  + ti_lO "-i+1 + (ti + 1)0 "-I) 

> 2(1 + e,+l)0 "+1 

since to ta""  >lext~ti+l - '-  . So K > u,+ 1, which is impossible. 
(2) As above, for every n > b, u, = 20"(1 - e,), where (e.)._o is a decreasing 

sequence of  positive numbers  of limit 0. Let us suppose that  f ~ L(Do)B. If  [ f [  _< b, 
then f e b  and f ~ L ( U ) .  If  [ f [  > b, f = f o ' " f ~  with n > b and fo # 0. Suppose 
that  f is not  in normal  form; let g be the normal  form o f f .  If  [ f [  = [g[, then 
g > lex f.  Let g = g o " "  g,. There exists i, 0 < i _< n, such that  g o ' "  9~- 1 = f o " "  f~- 1 
and gi > fi. Let K = n ( f i ' " f , )  = n(gi"" g,). As g is in normal  form, K = giu . - i  + r, 
with r < u, - i .  Since f i + l " " f , ~ L ( O o ) B ,  by induct ion f i + l " " f . ~ L ( U ) ,  and so 
K '  = n(f/+ 1 . . . f , )  < u,_i. We thus get K = f lu ,_  i + K',  which is in contradict ion 
with K = giu,_i  + r, r < u,_ v 

If  [ g [ > [ f [ ,  then n ( g ) = n ( f ) > u , + l .  Since f ~ L ( D o ) B ,  we have f =  
t o .- �9 t j_ l(tj - h) f , '  h _> 1, 0 _< j _< n - b, with f ' e  L(Do)B. By induct ion n( f ' )  < 
u,_j+ 1. Thus  

~z(f) <_ toU . + .. .  + t j_~u._j+ 1 + t ju ,_ j  

= 2(to0"(1 - e.) + - "  + tj_ x0"-J+ 1(1 - e , - j + 0  + tj0"-J(1 - e"-J)) 

< 2(1 -- e,+O(toO" + .. .  + tj_lO " - j + l  + tjO "- j)  

< 2(1 -- e . + 0 0  "+1 

since to t1 . . .  >loxtiti+l . . .  . So K < Un+l, which is impossible. [ ]  

F r o m  Proposi t ion  2.1 we derive 

Proposition 4.2. I f  the O-shift is~a sofic system, then normalization in basis U, where 
U is associated to O, is rational i f  and only if  the set o f  words equal to 0 in basis U 
is recognizable. 

In  [10] we have proved by combinator ia l  methods  that  normalizat ion in basis 
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U and in basis 0 is rational on any alphabet for a special type of linear recurrence: 

bin+ m : aUn+m_ 1 -I- "'" q- r 1 -~- bu., 
a>b>_l,  u i = ( a + l )  i, O < i < m - 1 .  

In that case, the dominant root  0 of the characteristic polynomial happens to be 
a Pisot number [6]. 
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