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Abstract. There is an algebra of commutative differential-difference operators which is very useful 
in studying analytic structures invariant under permutation of coordinates. This algebra is generated 

._ 0 k ~ 1-0j) (i = 1, . . ,N,  where (ij) denotes the transposition of by the Dunkl operators Ti . -  7x, + ,j#i x,-xj, 
the variables xi xj and k is a fixed parameter). We introduce a family of functions {p~ }, indexed by m- 
tuples of non-negative integers a = ( a l , . . . ,  am) for m<~N, which allow a workable treatment of 
important constructions such as the intertwining operator V. This is a linear map on polynomials, 
preserving the degree of homogeneity, for which TiV = V ~ i -= 1, , N, normalized by V1 = 1 

O x i '  " " " 

(see DUNKL, Canadian J. Math. 43 (1991), 1213-1227). We show that Tips = 0 for i > m, and 

A1 !A2!. .. Am! E A~p~, 
V(x~ . . . .  X~mm) -- (Nk + 1)A, (Nk - k + 1)A2--. (Nk - (m - 1)k + 1)~ p~ + 

where (A1, A2, �9 �9 A,~) is the partition whose parts are the entries of c~ (That is, A1/> A2/> .-- Am >~ 0), 
/3 ---- (ill,...,/3,n), ~iml /3i = ~i~=1 ai and the sorting of/3 is a partition strictly larger than A in the 
dominance order. This triangular matrix representation of Vallows a detailed study. There is an inner 
product structure on span{p~} and a convenient set of self-adjoint operators, namely ZlPi, where 
PiPo~ := P(~1,...,~+1 ........ ). This structure has a bi-orthogonai relationship with the Jack polynomials in 
m variables. Values of k for which V fails to exist are called singular values and were studied by DE 
JEV, OPDAM, and Dtmr.L in Trans. Amer. Math. Soc. 346 (1994), 237-256. As a partial verification of a 
conjecture made in that paper, we construct, for any a = 1,2, 3 , . . .  such that g c d ( N -  m + 1, a) < 
< ( N - m +  1)/m and m<~N/2, a space of polynomials annihilated by each Ti for k = 
= - a / ( N -  m + 1) and on which the symmetric group SN acts according to the representation 
(N - m, m). 

When spaces of functions in several variables have an analytic structure which 
is invariant under permutation of coordinates, there is often a connection to a 
commutative algebra of differential-difference operators. Examples of such 
structures are orthogonal decompositions with respect to the measure 

H JXi --xjl2ke-lXl2/2dx on  R N, 

l ~i<j<~N 
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or eigenfunctions of the differential operator 

0 0 

A + 2k Z Ox~ Ox:. 
l<~i<j<~N x i  - -  Xj  

The algebra of  operators is generated by the Dunld operators [3], 

0 1 - (ij) 
r, z 

jr 

(i = 1 , . . . ,  N,.where ((j) denotes the transposition of the variables Xi,  Xj and k is a 
fixed parameter, often positive). On the one hand, these operators make it easy to 
construct a complete set of commuting invariant (symmetric) differential 
operators, but on the other hand, it is difficult to work with the effect of the 
operators on actual polynomials. In this paper we introduce a family of functions 
which allow a workable treatment of important constructions such as the 
intertwining operator V. This is a linear map on polynomials, preserving the degree 
of homogeneity, for which TiV = V b-~: i = 1 , . . . ,  N, normalized by V1 = 1. This 
operator was introduced for arbitrary finite reflection groups by the author in [4]; 
later the "singular" values of k, those for which V fails to exist, were studied by 
DE JEU, OPDAM, and the author [8]. These values have an interesting representation- 
theoretic interpretation. When V can be realized as an integral transform, it is a 
fractional integral for several variables. This was done by the author [6] for the 
case N = 3, the smallest nonabelian group, by analysis on the unitary group in 
complex 3-space. 

In this paper a more algebraic approach is taken. We construct a family of 
functions, {p~}, indexed by m-tuples of nonnegative integers, a = (ax, O L2 ,  �9 �9 �9 , O ~ m )  

for m<<.N. We show that Tip~ = 0 for i > m, and 

O q ! ~ 2 !  �9 �9 " O ~ m !  
o~ m 

V(x~' . . . x  m ) = (Nk + 1);~, (Nk - k + 1)~2-.. (Nk - (m - 1)k + 1)~  p~  

+ Z A(/3, a)pfl, 
fl 

where (A1, Az , . . . ,  Am) is the partition whose parts are the entries of a ,  (that is, 
AI ~ A2 ~ . . .  ~ Am >i 0),/3 = (fiX,--., tim), ~i%1 t i  = Eim=l Oq and the sorting of/3 
is a partition strictly larger than A in the dominance order; also (t): = 
= t ( t + l ) . . . ( t + j - 1 ) ,  the Pochhammer symbol. This triangular matrix 
representation of V allows a detailed study. A key device is the operator TiPi 
where PiP(al,...,~,,) =P(~l,...,~i+l,...,~m)" The introduction of the formal map 

: p~ H x ~ . . .  X~m ~ / ( a i ! " "  a,,!) leads to a complete eigenfunction decomposition 
of V~. The eigenfunctions have several interesting properties: the coefficients do 
not depend on N, the operators {Tip i} commute with V~ and there is an inner 
product structure for which they are self-adjoint, and there is a bi-orthogonal 
relation to complex analytic polynomials in variables Z l , . . . ,  Zm with the inner 
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product 

( f  , g ) ~  

_"" "'"d~ e-'~ ""e-*~ 1-I le*~176 
l <~ j<l<.m 

The Jack polynomials form an orthogonal basis for the symmetric polynomials 
(see BEERENDS and OPDAM [2]); this leads to useful evaluation results for the 
aforementioned eigenfunctions. SAm [13] has found the structure constants of an 
inner product defined in terms of {p~} and their generating function for the non- 
symmetric Jack polynomials. Results of the present paper link these polynomials 
to the generalized Hermite polynomials studied by BAKER and FORESTER [1]. 

In section 1, the polynomials p~ are defined, the action of the Dunkl operators 
is worked out in detail, with the aid of product formulas. In section 2, the 
eigenfunction decomposition of V~ is produced; this requires some very involved 
induction procedures, and heavy reliance on the triangular nature of {TiPi} with 
respect to associated partial orderings. 

In section 3, the results on eigenfunctions are used for a new proof of a formula 
of Dtm~ and HArmON [7] for the evaluation of g(T1,.. . ,  TN)g(xl,..., XN) where g 
is the Garnir polynomial associated to a partition of N (essentially, a product of 
alternating polynomials, one for each column of an associated tableau). Also an 
irreducibility property is proven for the space of eigenfunctions of V~ with given 
eigenvalue and this leads to an orthogonality result in the next section. 

In section 4, the orthogonality structure associated with Jack polynomials is 
introduced and is used to define an inner product on the span of {Pa}. When the 
parameter k is positive, the inner products are positive-definite, and there is a 
boundedness property for V, namely, i f f is  a homogeneous polynomial on R N, then 

sup IVf(x)] <~ sup If(x)] (where Ixl =- (Y~,ig) g) 
Ixl=l Ixl=t 

(DvN~ [5]). Also, there is a description of the inner product used by Sahi, and its 
relation to V~ and to the Hermite-type polynomials. 

In section 5, a part of the conjecture made in [8] about singular values is 
verified: if l<~m<.N/2 and a = 1 , 2 , 3 , . . ,  such that g c d ( a , N - m + l ) <  
< (N - m + 1)/m, then there is a space of polynomials (defined in terms of 
P(a,a...,a)) realizing the representation (N - m, m) of the symmetric group, which 
are annihilated by each T,, when k = - a / ( N  - m + 1). 

The eigenfunctions of V~ have coefficients in Q(k); conjectures are made about 
the poles of these coefficients in terms of hook-length products of tableaux. There 
are indicators to subsequent research on complete orthogonal decompositions and 
norm formulas. This will provide orthogonal polynomials whose symmetrizations 
are the Jack polynomials. 

Notation used throughout: 

�9 Z+={0 ,  1, 2, 3, . . .}, Jffm= {a = (OZl, . . .  ,O~m): oL i E Z + } ,  m ~--- 1 ,2 ,3 , . . . ;  
�9 for a ~ ~f'm, Ja] : =  ~ i m l  OL,, OL! : =  Him=l Ogi! , 
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Wm, n = e W i n :  = n ) ,  
Y P  = {A C ~/'m : A1 >t A2 >/ " '" >t Am >t 0} (partitions with m or fewer parts); 

�9 for a E ~Azm, o~ ~ denotes the sorting of a into a partition, that is, 
a~ >t a ~ . . .  ~> a~, and (a~, o @ . . . ,  a~,) is a permutation of (al ,  a 2 , . . . ,  a,n); 

�9 �9 for A, ~. E X P, the dominance ordering is defined by A >-_/z if and only if 
~-'~J=l )ti~> ~ = 1  ~i, 1 <~j<.m; 

�9 a l s o A > - p m e a n s A > - p a n d A # # ;  
�9 for a C ~ m  and aj~>l,  let 6jc~ = ( c q , . . . , a j -  1 , . . . , a m )  C ~AZm; 
�9 for x = ( x l , . . . ,  Xm) E R m, and a e ~AZm, the monomial (basis element for 

polynomials) x ~ := x 1 x z - . . x , ,  , i j 
�9 for a polynomial p(x), the transposition ( i j ) p ( x ) : = p ( . . . , x j , . . . , x i , . . . )  

(acts on the variables); 
�9 for a polynomial p(x) expressed in some basis {g~} as p(x) = ~ c~,g~(x), 

let cof(p, g/~) := e~ denote the coefficient; 
�9 for n = O, 1 , 2 , . . . ,  the Pochhammer symbol (shifted factorial) is defined by 

(a)o = 1, (a)n+l := (a),(a + n); for A E "/~Pm and a parameter k, the generalized 
shifted factorial is 

m 

(a)A;k := 1-[(a -- ( i -  1)k)A,; 
i=1 

�9 vector spaces are over the field Q(k); "generic values" specifically exclude 
negative rational numbers; 

�9 the cardinality of a set f~ is denoted by 4Pfl, and for a,b  E Z, 
a A b := min(a, b). 

1. The Fundamental Polynomials 

The symmetric group SN acts on R N by permutation of coordinates. For a 
parameter k we define the first-order differential-difference ("Dunkl")  operators 

0 1 - (ij) l<~ i<~N.  

jr 

The commutativity of {Ti : 1 ~ i <.N} was proved in (DuN~ [3]). The polynomials 
underlying the analysis of {Ti} and V are defined by a generating function. 

1.1 Definition. For i = 1 , . . .  ,N  and n = 0, 1 , 2 , . . . ,  the polynomialp~(xi,x) is 
defined by 

N oo 
~ i ( x , r )  : :  (1 -- xir) - 1 H ( 1  -- xjr) -k = ~_~pn(Xi,x)r n. 

j= 1 n=0 

If  k = - m  for some m = 1,2, 3 , . . . ,  then ~ i  is a polynomial of degree Nm - 1 
and pn(x~,x) = ( - N m  + 1)n/n! :/: 0 for n = 0, 1 , . . .  ,Nm - 1 at x 7 (1, 1 , . . . ,  1). 

If k + 1 ~ - Z + ,  then pn(Xi,X) = (k + 1),,In! :/: 0 at x = (0, 0 , . . . ,  1 , . . . ,  0). Also 
p,,(xi,x) is symmetric in the variables {xj : j  # i}. 
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1.1 Proposition. Tjp,(xi,x) = 6ij(Nk + n)pn_~(xi,x), for 1 <~i,j<.N, n E Z+. 

Proof For j r i, 

_ k r  k ( 1 1 ) N 
Tj~i(X , r) -- 1 x j r  ~ i  -}- - -  xj  - xi  -1 - x , r  1 - x j ;  1 - I ( 1  ~,r) -~ 

l=1  ( ,r %) 
= 1 xjr 1 -- ~,~i O. 

Also, 

T i ~ i - r  2 0 o~ ( k + l ) r ~  k Z  1 ( 1 
~ r r ~ / e i  . . . .  i ~ -  - ~ - 1 - xir j~=i xi xj 1 rxi 

- r 2 + k ~ 1 ~ i  
rxi j~i 

N 

1 1-i( 1 __ rxl)_ k 
1--  rxj t=l 

----~'i( ( k + l ) r + k Z r l  = ( N k + j r  / 1)r~i.  

TiPn(Xi,X) is the coefficient of r ~ in 

0 ~ = ~-'~p,,(xi,x)(Nk + 1 + n)r ~+1. [] r N k + l + r ~ r  ~'i 
n = 0  

We establish a product rule for Ti with emphasis on certain invariance relations. 

1.2 Lemma. For any two polynomials f , g on R u and 1 <~i<<.N, 

Ti(fg) = f(Tig) + (Tif)g - k Z ( f -  (ij)f) g - (ij)g 
j r  X i - -  Xj  

1.3 Lemma. Suppose fl ,f2, . .. ,fro are polynomials satisfying (ij)fl = fl if l r i 
and l 7k j, then 

m 
T, IH2 Ym) = ~ l r , ~ l  I-[z  - ~ ~ I~ - lil)~)l~ -liz)~l I-[~ 

l=1 sr  l~i  Xi - -  X1 sr 

Proof For labeling convenience, assume that i = 1, and then induct on m. 
Suppose the formula holds for 1 4m<~n; by the product rule 

Ti(fI-" "fnfn+i) = ( T I ( A "  "fn))fn+I -k (fl"" "fn)Tlfn+l 

- k j ~  1.  x - ~  - ( ( f l" 'x j  "fn)-- ( l j ) ( fa '"  "fn))(fn+,--(lj)f ,+,).  

In the sum, only the j = n + 1 term can be nonzero by the invariance property of 
fn+l; and this term is exactly 

- k ( f l  - (1,n + 1)fl)(fn+l - (1,n + 1)fn+l)" (f2"" "fn)/(Xl - Xn+l). [] 



186 C. E DUNKL 

1.4 Coro l la ry .  For a subset J = { j l , j 2 , . . .  ,jm} C { 1 , 2 , . . .  ,N} and I q~ J, 

Tt P~i (xJi, x = O, for  every o< E .Arm. 

Proof  Apply the lemma with j~ i =p~i(x j l ,x ) , f s  = 1 if s r J;  each t e r m  in the 
formula 1.3 evaluates to zero (indeed, Ttj~ = Ttl = 0 and (j~ - (lj)ft) = 0 for all 

j 7 s  [] 

1.5 L e m m a .  Let nl, n2 E Z+, 1 ~ i < j <. N, then 

- (pn~(X,,X) -(ij)p,~(X,,X))(pn2(Xj, X ) -  (~])p,2(Xj,X))/(Xi- Xj) 
n2--1 

= Z [Pnl+nz-l-s(Xi,X)ps(Xj,X) -- ps(Xi,X)Pnx+nz-a-s(Xj,X)]. 
s=0 

The right-hand side is symmetric in (nl, n2) and the summation can be taken over 
the range 0 <~ s <. (nl - 1) A (n2 - 1). 

Proof  Denote the expression to be evaluated by 

a ( n l ,  n2) = (p.l (~,) - p . l  (xj) ) (P.2 (xi) - p.2 (zj) ) / (xi - xj) 

(suppressing the argument "x" ) .  Denote  

Q'(ml,  m2) :=  Pma (xi)Pm2 (Xj) -- Pro2 (xi)pm, (Xj) 

for  ml,  m2 E Z+. We will show that Q(nl,  n 2 ) -  Q(nl + 1, n2 - 1 ) =  Q'(nl, nz - 1) 
for the case nl i> nz. Express 

OG Oo 

~ g ( x , r )  = ~ p . ( x . x ) r "  = (1 - rxg) -1 ~ ~r}kl(x)r l 
n=0 /=0 

with each ~.}k) being a symmetric  polynomial  in ( X l , . . . ,  XN). Then 

pn(Xi) = ~ x~i-sTr~ k) = XiPn-l(Xi) -1- 7r (k). 
s =0  

Thus 

pn(Xi) -- pn(Xj) = xipn-1 (Xi) -- Xjpn-1 (Xj). 

Substituting this formula for n = n2 and n = nl + 1, we obtain 

Q(nl,n2) - Q(nl + 1,n2 - 1) 

= ( ~ ) [ ( p , , ( x i ) - - p n , ( X j ) ) ( x i P , 2 - 1 ( X i ) - - x j p , 2 - ~ ( X j ) )  

- ( x , p . ,  (x , )  - x jp .1  (xj))(Pn2-1(x,) -- Pn2-, (xj))] 

= Q'(nl ,n2 - 1). 
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Since Q(nl + n2, 0) = 0, we have 
n2-1 

Q(nl,n2) = Z ( Q ( n t  + s, n2 - s) - Q(nl + s + 1,n2 - s -  1)) 
s=0 

n2--1 

= Z 0 %  + s ,n~  - s - 1) 
s=0 

n2--1 

= Z Q ' ( n l  + n 2 -  1 - t ~ t )  
t=0  

(setting t = n2 - 1 - s). If nl < n2 the same argument shows the validity of the 
formula with the upper summation limit replaced by nt - 1. In this case consider 

n2-1 n2-1 

o ' ( . 1  + . 2  - 1 - s , s )  - -  Z o ' ( t , . 1  + . 2  - 1 - ~), 
s=nl t=nl 

(where t = nl + n 2 -  1 -  s), but Q ' ( m a , m 2 ) = - Q ' ( m 2 , m l )  so this sum equals 
zero. [ ]  

Observe that the term pn,_a(xi)pn2(xj) appears in Q(nl,n2) exactly when 
nl ~ n2. 

1.2 Definition. For a E J~/'m, with m<~N, let Pc~ :=Pcq(xl,x)po, g ( x z , x ) - -  
p~,. (Xm, x), and let ~ m  := span {p~ : a E J#m} (as in other vector spaces, the span 
is over Q(k)). also Vm,, := span {p~ : a E Ym,,}. Sometimes p ( a l ,  a 2 , . . . ,  am) 
is a synonym for p~. 

1.6 Proposition. For o~ E ~A;m and OL i ~ 1, 

Tips = (Nk - k # { l  : at >~ ai, 1 7 ~ i} + a i ) p ( a l , . . . ,  ai - 1,...) 

+ k  p ( . . . , a i + ~ -  1 - l , . . . , l , . . . )  
s=l,sCi k, l=0  

-- Z p ( . . . , l , . . . , a i + a - -  1 - - 1 , . . . )  ; ) l=0  

w h e n  a i = 0 then Ti p,~ = O. 

Proof This a direct consequence of Lernrnas 1.3, 1.4, and 1.5. [ ]  

Example. For m = 3, 

TIP321 = (Nk + 3)P221 + k(P401 -P041 +P311 -P131 +P320 -P023); 

T2P321 = (Nk - k + 2)P311 + k(P041 -P401 +P131 +P320 -P302); 

T3P321 = (Nk - 2k + 1)P320 + k(P023 - P302), 

As customary in analysis of  several variables, the triangularity of  linear 
operators with respect to some partial ordering is very useful. Here we will define a 
family of orderings, one for each Ti. 
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i 
Define the raising operator PiPs = p ( a l , . . . ,  ai--~ 1 , . . . ,  am) for a E Ym, then 

TiPiP~ = (Nk - k ~ { l  : at>~ai + 1} + ai + 1)pa 

s 

+ k p(.  . . , ai + as - l, . . . , l, . . . ) 
s=l,sT~i\ I=0 (1.1) 

( a i - 1 ) A ( a s - 1 )  i s 

- p ( . . . , l , . . . , a i + a s - l , . . . )  

/=0 

For each i -- 1 , . . . ,  m define the binary relation Ri on Y m  by aRi/3 if and only 
if a r  and cof (TiPip~,p~) r 0. Then let >I (i) denote the transitive closure of Ri. 

1.7 Proposition. The transitive closure >~ (i) o f  Ri is a partial ordering. I f  
a,/3 E Jg'~,n and a >~ (i)/3, then one of  the following conditions hold: (i) a =/3,  (ii) 
as =/3s and a i > ~i ,  (iii) a s ~ ~s. 

Proof  From the formula (1.1), we see that aRi/3 when there is an s, 1 <~s<<,m 
such that ctj = flj for j r s and one of the following cases occurs: 

(i) /3s >/3i and {ai, as} = { /3 / -  l,/3s + l} for some l = 1, . . . , /3i ;  
(ii) 3 / =  as </3s = ai 
(iii) /3s <~fli and {ai,  a~} = {/3s - l,/3i + l} for some l = 1 , . . .  ,/3s. 

Induction on 1 shows that if a satisfies (i) or (iii), then a s ~/3s (recall/3s denotes 
the partition whose parts are the entries of/3); in case (ii) a s =/3s. Thus if aRi/3, 
then a s =  fls and as = fli </3s = ai for some s and aj = flj for j f[ { i , s} ,  or 
as ;,_ fls. This shows that the transitive closure of Ri is a partial ordering (there 
can be no loops). Suppose {aO), a (2) , . . . ,  a(t)} C Wm,n satisfy a(J)Ria (j+l) for 

l < ~ j < . t -  1, then oL (1) • o~ (t). Indeed (a(')) s _~ (a(2)) s. .. __ (a(t)) s implies 
either (q!l))~_ (a(t)) or " = "  holds in each step, but then case (ii) shows 

1) > a}". [] 

By construction, TiPi is triangular for ~> (i). 

1.8 Proposition. For each i =  1 , . . . , m  the linear operator ZiPi has the 
eigenvalues Nk  - k ~ { l  : a l ~ a  i -~- 1} ~- a i -]- 1 for  c~ E ~A/',,,~ and is invertible. 
For any /3 E Jfm,n the subspace span{p~ : a C ~:m,, and oL>~(i)/3} is invariant 
under Tipi. 

1.9 Theorem. For rn --= 1 ,2 , . . .  , N , n  E 

dim"U, nn = (m 

and 

Z+, generic k, 

+nn - 1 ) ,  

{ f  E ~/'mn : Tmf = T i n - i f  . . . . .  Tm-j+lf  = 0 }  = ~/'rn-j,n, 1 ~ j ~ m  - 1. 

Proof  We use double induction. First ~lFl ,n=span{pn(xl ,x)}  and 
pn(1, (1,0, . . .  ,0)) = ( k +  1)n/n! 5r O, thus dim ~l,n = 1. Also dim~:~,o = 1. 
Assume d i m ~ l :  = (t+71) for l =  1 , 2 , . . . , m - -  1 and s C Z+ and also for l =  m 
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and s = 0, 1,2,,  n - 1. Now 

~F'm,n = pm~F'm,n-1 0 "~/'m- l,n 

= span{pa : O~ m ~ 1, [o~1 = n} + span{pa : O~m = O, IOL I : n}. 

By Proposition 1.8 Pm is one-to-one on  ~ff'm,n-1, and so 

dim ~/fm,n = dim ~t/'m,n_ 1 q- dim f f / 'm- l,n = 

= (m+nn-2)-I + ( r e + n - 2 )  = ( r a n  + , , n -1 ) .  

This completes the induction. Essentially the same argument shows that (ker TN)M 
nTUN,n = ~UN-l,n; and by induction that (ker TN) M (ker TN-1)'" f~ (ker TN-j+I)N 
n~/'N,n = ~lf N_j, n. []  

1.10 Corollary. For fixed m and arbitrary N>-m, the projection of "U,n,~ 
considered as a space of polynomials in (xt, x2, . . . , Xu) onto ~IYm,, in the variables 
(x~, . . . , Xm) induced by the specialization xm+l = Xm+l . . . . .  XN = 0 is a linear 
isomorphism. As a consequence, in the action of Ti, the value of N can be taken as 
a generic parameter. 

2. The Intertwining Operator V 

The operator V is a linear map on polynomials in (Xl,X2~..., xN) preserving 

degree of homogeneity, such that V 1 - - 1  and TiVp(x)= V ( ~ p ( x ) )  for 

i -- 1 , . . .  ,N and any polynomial p. It was shown in (DLrN~, DE JEU, OPDAM [8]) 
that V exists and is an isomorphism for any k (f { - j / m  - n :  1 ~ j  < m ~ N  and 
n E Z+}. The inverse exists for all k; it has the simple definition 

V-'p(y) = exP ( i=~l YiTi)p(x) z: o" 

Since p is a polynomial the formal exponential is actually a terminating series (see 
TOROSSL~ [15] for another application). 

2.1 Proposition. Let a E JUra,n, then Vx ~ E ~Um,n. 

Proof By Theorem 1.9 IFN,,~ is the space of homogeneous polynomials of 
degree n in (Xl,...,XN). By the existence theorem, VxaE "UN,~. For i > m, 

v ( O - - x ~  x ~ TiVxa = \Oxl j = 0, because = X~ 1 .. . Xm~m. Thus Vx ~ E "Um,n. [] 

Because of Corollary 1.10 and the formula for V -1 we can consider the action 
of Von span {x ~ : oL E Jg'm,n} and on Vm,~ in terms of a generic parameter N. 

Example. V~ = (n] / (Uk + a ) . )p . (xa  , x).  By Proposition 2.1, V~ = cnpn(Xl , X) 
for some c~ E Q(k); also 
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TI(V~ll) = (Nkq-n)CnPn-l(X1,X) ~- V(o~lX~l ) 

= nVx~1-1 = nCn-lPn-1 (Xl,X), 
for each n ~> 1 

2.2 Theorem. For oe E Ym,n, 

VxC~ (Nk + j,~s;k ~ewm., -- 1~ Pc~ + E A(ti, a)p~, 

where A(ti, a)  E Q(k) and A(ti, oe) = 0 unless/3* >- a s (or/3 = a). 

Proof. The claim holds for n =  1 (indeed, V x j = ( 1 / N k + l ) ) p l ( x j ,  x), 
l<~j~m) .  Assume the claim is valid for all a with ]al<~n- 1. By symmetry, 
A(wti, wa) = A(ti, a) for any w E Sin, we may restrict our attention to Vx ~ with 

p 
A E Y m  n (that is, A1 >~ A2 >t . . .) .  Also assume Am > 0 (changing m, if necessary). 
Write Vx~= ~ w ~ , A ( t i ,  A)p~, and for each j, let Vx ;~= gj+&,o where 
gj := y~'~{A(ti, A)p5 : &~> 1} and Tj&,0 = 0. By the defining property of V, 

TjVxa= AjV(x}'  . . . x ) ' - '  . . . x > )  =: Ajhj (defining hi). 

Then gj = Ajpj(Tjpj)-lhj, and we can use the triangular properties of Tjpj and the 
inductive hypothesis on hj to get the desired results for A(ti, A), Let 
6jA = (A1, . . . ,  Aj - 1 , . . . ,  Am) < Xm,,-1 (not necessarily a partition). By the 
inductive hypothesis and Proposition 1.8, 

(Tjpj)-lhj E span {p~ : a  E ./V'm,n-l,a s }'- (6jA) s o r  o g >  (j)cSjA}. 

The argument starts at the smallest part of A. 

Part 1. We show if A(ti, A) ~ 0  and tim>/l, then t i = A  or tis >- A. Let 
# = (15mti) s. By Proposition 1.7 we have (i) 5mti = ~mA, or (ii) /z = 5mA and 
(Smti)m > (SmA)m, or (iii) # >- 5mA. In case (i) t3 = A. In case (ii) # = 6mA, and/3 
is obtained from 5mA by adding 1 to a part of A larger than Am, SO that 
ti* _ (AI , . . .  ,As + 1 , . . . ,  Am - 1) for some s which implies tis >_ A. In case (iii) 
~{=1 #i >/~-~=1Ai f o r j  = 1 , . . ,  , m -  1, and at least one of these inequalities is 
strict. Then tis is obtained by adding 1 to some part of #, which implies tis >._ A. 

Part 2. We show ifA(ti ,  A)~0 ,  t i j+l  ~---tij+2 . . . . .  t im=0, and tij~l for some 
j < m, then ti* >- A. Consider gj = Ajpj(Tj&)-lhj, let 5jti = (til, - �9 �9 tij - 1 , . . . ,  tim), 

s p and let # = (Sjti) E A/'m,n_ p As before, (ii) # = (6jA) * and 05jti)j > (SjA)j or 
(iii) # >-(SjA) s must hold (the case (i) 6 j t i=  5jA is ruled out because 
(~Sjti)m = 0 < (SjA)m). In case (iii), 

1 l 

E # i > ~ E A i  for l<<. l<<. j -1 ,  
i=1 i=1 

and 
j j - 1  

n -  1 
i=1 i=l  
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where ~j = A t -  1 if Aj > Aj+I or ~j = Aj if Aj = Aj+ 1. If n -  1 = ~-~=1 #i > 
j-1 > ~-~i=1 Ai + Aj, then adding 1 to any part tzi (i<~j) produces /3 E Jffm,n with 

/3s >_ A (recall/3j+l =/3j+2 . . . . .  /3m = 0, thus # has j  or fewer parts). If there is 
equality n - 1 = ~-~=1 #i = ~{---I Ai + ~j, then j = m - 1 and Am = Am-1 = 1. 
Again /3' is obtained by adding 1 to some part of /z and /3s>_ .~ (because 
n = Elm11/3i > Y]~im] 1Ai). In case (ii), # = (~jA) * implies Am-1 = Am = 1 and 
j = m - 1; also (~j/3)j =/3j - 1 > (~SjA)j = Aj - l = 0 implies that/3s is obtained 
by adding 1 to some part of A larger than Am = Am-! = 1; hence/3s >_ A. 

Finally, A(A, A) is the coefficient of p;~ in AmPm(Tmpm)-lhm where 

�9 r [  hl A2 -,~,n-l'~ 
hm=VkXlX 2 . . . x  m ). 

By the inductive hypothesis, 

( mA)t 
cof (hm,p~A) - (Nk + 1)6.~;/~ ' 

By the triangular property of TmPm and the inductive hypothesis 

cof((TmPm)-lhm,p6.~) = (nk + ( m -  1)k + Am)-l cof(hm,p6,,,)~). 

Thus 

A(A, A) = cof(AmPm(TmPm)-lhm,p),) 

_ (Am/(Nk q- (m - 1)k + Am))(A1Lk2!""- (Am -- 1)!) 

(Nk + 1)~;k 
A~ 

- -  (Nk + 1):~; k " [ ]  

By setting up a simple formal correspondence between x a andp~ we can study 
V as an endomorphism on r Define ~p~ - & x ~ for a c .Arm. - -  a !  ' 

2.3 Proposition. The linear map V~ is a diagonalizable automorphism of ~m,n 
(each n C Z+) with eigenvalues 1/(Nk + 1)A;k for A E Jff p 

m l  n �9 

Proof For any AE~/v'P~ and aEJV'm,, with a ~ = A  (that is, a is a 
permutation of A), 

) V~37a = ~. (Nk + 1);~;k p~ + ~xm,,E A(/3, a)p~ . 

Thus V~ is triangular for the partial order on Yn,m induced by /3 ~ ~- a ~. The 
formula for V~ shows that its matrix representation in the {pa : a E Jffm,n} basis 
has a (upper) triangular block structure with respect to the subspaces span 

P {p~ : a s = A} for A C J~m,n" The on-diagonal blocks are multiples of the identity 
matrix, and the eigenvalues 1/(Nk + 1)A;k are distinct for different blocks. Hence 
V~ is diagonalizable. [] 
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In this argument we tacitly used the generic dependence on N (see Corollary 
1.10). Also the formula for V -1 (involving Ti, l<~i<~m) shows that N is just a 
parameter. In fact for specializations there may well be "accidental" equalities: 
example for ), = (6, 3, 3, 2, 1, 1) and/z = (5, 3, 3, 3, 2), (Nk + 1);~; k = (Nk + 1)u;k 
when N = 6. 

P 2.1 Definition. For )~ E X m ,  n, let 

1 ;~.kf} E;~ = f C ~l/'m,~ : V ~ f  = (Nk + 1) , ' 

For a E ~/'m,n with a s = A, let cos be the element of E~ with cof(w~,p~) = 1 and 
cof(cv~,p~) = 0 for any/3 7~ a with/3 s = )~. 

P By Proposition 2.3, ~U,,,n is the direct sum of E~, A E Ym,n" The canonical 
basis for E;~ is {wa: a s = A}. I f f  E E~, t hen f  = ~-'~a c o f ( f ,  pa)w~ (with a s = A). 

The spaces Ea have a number of interesting properties which will be proved 
mostly by induction. For n = 0, 1 , 2 , . . . ,  let Sen denote the following statements 

P . applying to any E;~ with A E ~/'m,n" 
(i) a;;~ = p~ + ~-~{A~xP~ :/3 E Ym,n,/3s ~_ ),} and the coefficients A ~  are 

independent of N; 
(ii) TiPiE), = Ex for i = 1 , . . . ,  m; 
(iii) if f E E;~, i = 1 , . . .  ,m, then Ti f  E span{Eej;~ : Aj > Aj+I}, and the 

projection of Ti f  on E~jx is an eigenvector of Tipi with eigenvalne 
(Nk - k ( j  - 1) + )V)" 
An equivalent formulation to (iii) is 

(iii)' any f E E;~ has the expansion f = P i ~ j { j ~ j :  Aj > Aj+I} +3~,0 where 
3~j E E~j~, TiPiJ~j = ( N k -  ( j  - 1 ) k §  Aj)fij ( fo r j  with Aj > Aj+b so that ~jA is a 
partition), Tifi,o = 0, and T i f  = ~ j ( N k  - k ( j  - 1) + Aj)fij. 

Under the hypothesis (~Tn) one can determine the specific form of the eigen- 
vectors of T i p  i. 

P then foreach  a E JVm,n with 2.4 Theorem. I f  TiPiE~ C E~, for  some A E JVm, n, 
c~ s = A there is a unique eigenvector ~a,i = O-;o~Jw }--]~{B(/3, a)car :/3s = ), , /3/> ai} 
with eigenvalue (Nk - k4r )kl ) o~i} --~ ogi ~- 1). The coefficients B(/3, a) depend 
on k, but not on N. Any eigenvectorf  of TiPi in E:~ with the same eigenvalue has the 
expansion 

f = ~ { c o f ( f , p p ) ~ , i : / 3 s  = A and /3i = ai}.  

Proof  The expansion of TiPia;~3 in terms of a;.y, 3 ,s = A is determined by the 
coeffcients ofp~.  By formula (1.1), 

Tipiw# = (Nk - k # { l :  Al > f l i}  4- ,~i + 1)wfl 

+ : > / 3 +  
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First we characterize the possible /3 for which B(/3, a)  r 0. If ai = )q, then 
r = cos is an eigenvector for Nk + A1 + 1. Henceforth assume #i < )q. There is 
a permutation 7r C Sm such that aj = At(/) for all j and A~(i)_ 1 > A~r(1). Let 
7to = 7r(i). By the triangular property of  TiPi the eigenvalue of r must be 
( N k - ( T r o - 1 ) k + A ~  o §  Say ( j l , j 2 , . . . , j s )  is a permissible string if  
l~<j l  < j 2 " ' "  < j~  < 7to and Aj, > Aj2 > --- > Aj, > A~ o. For such a string, let 

.it = ~ { t :  At > Aji }, 1=  1 , . . .  ,s. Then B(/3, a) = (-k)S/I-I~_l(k(rco - 1 - j l ) +  
+Ajt - A~0) for w~ = (i, 7r -~ ( j l ) )( i ,  7r -1 (j2)) �9 �9 �9 (i, 7r -l(j~))w~. The construction 
of/3 implies that/3 and a differ in exactly s + 1 entries, namely those indexed by 
elements of  { i}U{Tr- l ( j t )  : t = 1 , . . . , s } .  Also /3i = a~-l(k ), /3~-~(j,) = 
= a r c - l ( j t + l )  = Ajt+l for t = 1 , . . .  , s  - 1 a n d  /37r-l(js) = ai. Further 
/3i >/3~-'(jl) > '">/3~-~( / , )  > ai (these values coincide with Aj~ > Aj2..- > A,~0). 
This shows that there is a one-to-one correspondence between the permissible 
string and/3 (so that B(/3, a)  is uniquely defined). Set B(% a)  = 0 for "y E JV~,~, 
7 * = A if 7 does not arise in this way. 

To show r is an eigenvector consider cof(TiPi~a,i, co3), the sum of  the 
contributions from TiPiW~ and TiPiW. r where c@ := (i, Tr-l(j2)) . . .  (/,rc-X(js))W~. 
Indeed, 

c~176 = s (-k)S-1 

1-I(k(rro- 1 - j l )  @ A j , -  ATro) 
/=2 

( (Nk + 1 - k~l § A k ) ( - k  ) ) 

/ 

= (Nk - k(rro - 1) q- A~ro q- 1)cof(r []  

For two linear operators U1, U2 the comnmtator  is [U1, U2] :=  U1U2 - U2U1. 
Define a "variable-changing" operator on ~m for each i , j  = 1 , . . . ,  m with i 5k j 
by 

( i , ) 
~i,jPof : : P  OZl,...OLiq-O~j,...~O,.-- ~ ~ E J~m" 

2.5 L e m m a .  For i , j  = 1 , . . . ,  m with i ~ j: 

(i) Tip2i =piTiPi+ ( l + k l ~ r  

(ii) TjPiPj = pi(Tjpj - k(ij) ) § k(j,ipi; 
(iii) [Tjp], TiPi - k(ij)] = O. 

Proof. For part (i), let a E JV'm and evaluate 

k E (l,iPi, 
tr 
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Tip~p~ - PiTiPiP~ o.,(( i , )  
= ( N k + a i + 2 ) p i p a + k Z Z  p . . . , a i + c ~ l + l - s , . . . s , . . .  

17~i s = 0  

( ,  , )) --p . . . , S , . . . , c t  i + o z / + l - S , . . .  

-- (NK + oL i Ac 1)pip~ - k p . . .  ,'ai + a t + l  - s , . . .  , s , . . .  
lr \ s = 0  

(~  , )) - p  . . . , s + l , . . . , a i + a ~ - s , . . .  

((~ , ) ( i  , )) =pipc~+k  Z p . . . , c ~ l . . . , a i + l , . . .  - p  . . . , O , . . . , a i + c ~ l + l , . . .  
lr 

tr 

Similarly, for  part (ii), 

Tjp~pjp~ - p~Tjpjp~ 

= (Nk + ctj + l)pipa + k Z p . . . , 1 , . . . , a i  + ctj+l - 1 , . . .  
/=0 

- p  . . . ,  a i  + o~j+l - l , . . . ,  l , . . .  - (Nk + aj + 1)pipa 

- k Z p  . . . , l + l , . . . , a i + a j - l , . . .  - p  . . . , a i + a j + l - l , . . . , l , . . .  
I~0-- ( ( ,  ~, ) (  i ~ ) )  

= k  p . . . , O , . . . , a i +  + 1 , . . .  - p  . . . , o z j + l , . . . , o ~ i , . . .  

= k ~ , : i p ~  - k p i ( q ) p , .  

For part (iii), 

I t : j ,  T:,] = r j ( r i p :  - p : r , )  ) p i  - r i ( r : i  - ( r : ,  - p i r j )  ) p j  

= r i ( k ~ : , : ,  - k p , ( q ) )  - r : ( k C : j  - kpj(q)) 
= k ( r : j  - r : i ) (0)  

(because [Ti, Tj] = 0, Theorem 1.9 [3] and TSi 4 = 0). F rom this relation 
[Tjpj, TiPi - k(/j)] = 0 follows easily. [ ]  

P then f E E~ if and only i f  for  each 2.6 Lemma. I f  S:n_l holds and A c A:m, ~, 
i =  1, . . . ,m 

f = p i Z { ] ~  j : j  = 1 , . . .  ,m and Aj > Aj+I} +fi,0, 

with j}j C E~:x, Tip'fq = (Nk - k ( j  - 1) + Aj)~j, and Tifi,o = O. 
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Proof Let f E E;~, i = 1 , . . . ,  m. Break up f into two parts: 

f l  := Z { c ~  : o~i>~ 1}, 
and 

3~,0 := Z { c o f ( f , P ~ ) P ~ :  o~i = 0}. 

By the direct sum decomposition of "~m,n--1 expand 
~--'~{ p , , 

f'i = Pi _ _  f ~  :E dl#rn,n_l,f # @ Elz,f # 7 k 0}. 

By the definition of V and Ea we have 

0 
TiV~f = (1/(Uk + 1);~;k)Ti f = V~ixi (~f). 

B u t  

thus 

0 

Oxi 

0 
= Ux, Ore!)) 

- S 0 o~i = 0,  

~p(c t l , . . . , c~ i -  1 , . . . )  c~i>~l, 

1 ) T i f =  VXuf~ 1 1)u; f~ .  
(Nk ~- 1)A;k (Nk + 

(Nk + 1)~;k is an eigenvalue of TiPi on Eu The property (50n-fii) implies that (Nk + 1)u;k 

(NK + 1)~. k , 
because T i f =  X~Tip i f~= X ~ , ~ - f f ~ - ~ f u .  Since N is generic, and the 

eigenvalues of TiPi on Eu are known by (50n-lii) and Theorem 2.4, we see that 
(Nk + 1)u;k must divide (Nk + 1)~;k (whenf~  # 0). This implies #s = As except 
#j = Aj - 1 for some j with Aj > Aj+I; the quotient (Nk - k( j  - 1) + #j + 1) = 
= (mk - k( j  - l) + Aj) is indeed an eigenvalue of Tipi on E~, (Theorem 2.4). 

For the converse, suppose g E ~l/'m,n and for each i =  1 , . . . , m ,  g = 
-- Pi~j{gij : Aj > Aj+l}+gi,o such that gij E E6j,x, TiPigij=(Nk - k ( j - 1 )  + Aj)gij 
and Tigio, = 0 .  We must show g E E ~ .  Expand g = ~ { g ~ : V E Y m , n } P  with 
g~ E E~. By the first part of this 1emma we can assume g;~ ---- 0 (by subtraction). 
For some fixed u # A consider the contribution of g~ to gij E E~j~, an eigenvector 
of TiPi with eigenvalue (Nk - k(#{ l  : ut>~Us} - l) + us) where ut = At for all t 
except uj = Aj - 1 and us = As + 1, some s (subject to us<~us-1 or s = 1). This 
eigenvalue differs from the hypothetical (Nk - k( j  - 1) + Aj) because Aj = Us is 
impossible; this requires s = j  + 1 and Aj+I = Aj - 1, then uj+l > uj. Thus gij = 0 
for each j  (with Aj > Aj+I). This leaves Tig = 0 for each i, which implies g = 0. 
Recall the desired component of g in E~ was subtracted off. [] 

2.7 Theorem. 5~ holds for all n E Z+. 

Proof Assume 50n-1 holds. Lemma 2.6 shows that (50niii) is valid. Let 
e A E JVm, .. We will start by showing that Tip~E~ C E~, for i = 1 , . . . ,  m. L e t f  E E~ 

and by the lemma expand f = PjE{fj,z : At > Al+l} +J),0 (for any j = 1 , . . .  ,m; 



196 C.F. DtrNrd~ 

and j~,l E E6~, Tjpj3~,t = (Nk  - k ( l -  1) + )~t)fj,l and Tj3~,o = 0. For a n y j  r i, by 
Lemma 2.5 (ii), 

TiP i f  = TiPiPj~Ifj,l + TiPifj,o 

: pj(riPi -- k(~))~Ifj,l § kr § ZiPifj,o. 

Rewrite this as T i P i f = p j E l g j , l + g j , o  where gj,l:=(ZiPi-k(ij))fj,l and 
gj,o := k~ i j (p jE l f j , t )+TiPi f j ,o .  By definition of ff/j and properties of Tipi, 
Tjgj,o = 0. Because [Tjpj, TiPi - k(ij)] = 0 (Lemma 2.5(iii)) and by property 
6Pn-l(i i i) ,  gj,l E Ett~ and Tjpjgj,l = (Nk  - k ( l  - 1) + Az)gj,l. 

To apply Lemma 2.6 to show TiP i f  E E l  we also have to do the case j -- i. By 
Lemma 2.5 (i), 

TiP i f  = Tip2~lfi,1 + Tipifi,o 

(the range of summation is again{l: )~l > Al+1}) 

=(piTiPi+(a§247176176 

+ (Nk + 1 - (m  - + k - Z 
j7s j•i 

+ - (m - 1)k)r - Cj (pir &t) 
jr 

(because TiPiP,~ = (Nk  + 1 - ( m -  1)k)p~ + k Y'~sr when ~ E ~Arm,n and 
c~i = 0). Further Ti~,i = 0, and ( i j ) f  E Ea; thus TiP i f  satisfies the hypotheses of 
Lemma 2.6 and is an element of E;~. 

Now assume )~m > 0 (simply note that if )~m = 0, then E~ = (1 + (1,m)) 
E(a~,;~,...,;~_~); or argue that E~ is the span of the Sm-orbit of w, where # is obtained 
from A by dropping the zero parts). Let { t l , t 2 , . . . , t r }  = { j : A j  > ,~j+l} and 
1 ~< tl < t2" �9 �9 < tr = m. From Theorem 2.2, ca~ = p~ + P~{Aa~p~ : c~ E M/~m,n and 
a ~ ~ A}. As in the previous part of the proof for each j = 1 , . . . , m  expand 
co~ = pj }-~:=lJ~,s +3~,0 withJ),~ E Ee,~,fj ,s is an eigenvector of Tjpj with eigenvalue 
(Nk  - k(t~ - 1) § At,), and Tj3~,0 = 0. We claim that3~,~ = 0 i f j  > t~. By property 
~9~ Jj,s is uniquely determined by cof(j~,~,p;~) for /3 s = 6t, A. Since s > i  
implies ~ A  ~- 6t, A we have 

s--2 

cof(J),~,p/~) = cof(a~;~,p;?) - E cof(j~,/,pfl), 
l=l  

where /3 E ~V'm,~-~, / 3 ' =  (~j)~)' (note ~Sj,~ is not necessarily a partition), and 
/~ := (/31,...,/3j + 1 , . . . ) .  If3~,, r 0 for some s, then it is an eigenvector of Tjpj 
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with eigenvalue (Nk - k(t~ - 1) + At,) which requires cof(3~,~,p~) r 0 for some fl 
with flj = At, - 1 and cof(3~,~,p.~) = 0 for all 7 with "y~ = 5t, A and q~ < At, - 1 
(Theorem 2.4). Suppose fi < t2""  < ts < j.  If 3~,1 r 0, then 0 r cof(j~,1,p~) = 

= cof(wA,p~) with flj = At~ - 1, but this implies fl~ = A and/3 r A (since/3j r Aj) 
so cof(wA, p3) = 0, a contradiction. The same argument inductively applied shows 
3~,l = 0 for l<.s. 

The last step is to show that the coefficients A~a are independent of N. 
Specialize the above conclusion to j = m, to obtain wx = Pmf,~ +fo  (changing 
notation) with fm C Ee~A and Tmfo = O. 

Since fm is an eigenvector of Tmpm with eigenvalue (Nk - (m - 1)k + Am), 
Theorem 2.4 shows that fro = co6~ + E{B(#)0:~ : #~ = 5mA and #m > Am - 1} for 
certain coefficients B(#) which are independent of N (and in Q(k)). By property 
5en_l (i) the coefficients of Pmfm (in the {p,~} basis) are independent of N. 

We find an explicit formula for f0 in terms of fro, again independent of N. From 
the first part of the proof (5~i i )  we see that wA is an eigenvector of 
(Tmpm - k~'~i<m(im)) with eigenvalue (Nk - k(m - 1) + Am + 1) (similar to the 
argument in Theorem 2.4). Write this as an equation for f0: indeed, 

But for a E JV'm, n with (Ym = 0 ,  (TmPm--k xf]i<m(im))p,~ = (Nk - (m - 1)k + 1)p~ 
and this applies to each term of the right-hand side of the equation. The com- 
mutation relation 2.5i shows that the left-hand side equals 

+ 

- (xk  - k(m - 1) + Am + 1)pmfm -- t' ~ ( i m ) p m f m  = --k ~ r 
i<m i<m 

while the right-hand side reduces to Amfo. That is fo = - ( k / A m ) ~ i < m  r 
and the {p,~}-expansion coefficients off0 are independent of N. []  

Observe that the proof actually provided an algorithm for w~ in terms of Es 
The fact that V~ acts as a multiple of the identity on E~ and TiPiEA C E), for each 
A E JV~,, shows that TiPi commutes with V~. There does not seem to be a direct 
(non-inductive) way of  proving this. 

We state the m = 2 results for illustration and leave the proofs as exercises. Let 
A = (A1, A2) (with A1 i> A2), then 

w~ = m + ~ (k + At - ~  + 1)fl! ((A1 - A2 + a)jp(A1 +j, A~ - j )  

+j (A,  - A2 + 1)j_lP(A2 --j ,  A, + j ) ) .  
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As Theorem 2.4 asserts, T l p l t o a = ( N k +  ~1 + 1)to;~ and T2pzto;~ = ( N k - k +  
-{-~2 -}- 1)to~ § kto(a2& ) (for ~1 > ~2).  

The transition from Ea to E(.~_1,),2_1,...,% _1) (for/~m/> 1) is remarkably easy. 
Define the linear map em : ~//~m,n --+ ~r by 

empa = { ~ ( o q -  1,o~2- 1 , . . . ,  o l in-  1 ) i f  each c~i~> 1; 
if  any ai = 0." 

We will show r = to(;~l-l,...,;~-l). 

2.8 L e m m a .  emTipi - TiPiem = era, i = 1 , . . .  ,m. 

Proo f  For oe E Win#, 

(emTiPi - TiPiem)p~ = [r + ai + 1) - (Uk + ai)em]p~ 

+ k Z emp . . . , ozi + O~s - 1 ,  . . . , l, . . . 
sr 

- Z p OZl - 1 , . . . , e e i  + oe , ' - -2-  l , . . . , l , . . .  
l=0 

) i s 
- -  r  . . . , 1 ,  . . . , a i  + a s  - l ,  . . . , 

sTki \ /=0 

- - Z p  o q - 1 , . . . , 1 , . . . , o ~ i + a s S - 2 - l , . . . ,  
/=0 

any term with an entry of  " - 1 "  vanishes; then replace I to 1 + 1 in the O ~ l ~ o L i  
summations, and everything in { } cancels. [ ]  

2.9 Theorem.  Let A E Jff~,~ with Am >~ 1, and  let # = (A1 - 1, A2 - 1 , . . . ,  
A~n -- 1) C ~/'m,n-rn, then emE~, = E u, emto,x = tOu and 

T 1 T z . . .  TmtO;~ = (Uk + )q) (Uk - k + )~2)""" (Uk - (m - 1)k + )~m)tO#. 

Proo f  Suppose that emEA = E# and emto,~ ---- tO/, is true for all A E Y P  
with m ~< s ~< n -  1. The induction starts at emtO(1,1,...,1)= 1; since tO(i,...,1)= 
= P(1,...,1) + Y;{A~,(1,...,1)p~ : a E #/'m,m and c~ s >- (1, 1 , . . . ,  1)} and a s >- ( 1 , . . . ,  1) 
implies at least one ai  = 0 so that Cmpa = 0. Let ), E jV'em,n with Am >~ 1, and let 
f E EA. As before, let { t l , . . . , t r )  = { j :  Aj > Aj+I} and l~<t l~<t2.- .  < tr = m. 
For each i = l , . . . , m ,  expand f = P i Y ' ~ = l ~ , s + f i , o  with f i , sEE6,sA and 
Tipi f , . s= ( N k - k ( t s - 1 ) + ) , t , ) j ~ , s  and Ti)~,0=0 (by Lemma 2.6). Then 
~mf = emPiEsemfi,s = Pi~semfi,s q- Crn~sPif[s, where 

f '  i,, := N{cof(fi,s,Pc~)pc~: ai = 0, a E -A#m,n-1}- 

Also, Ti(emE,pi f[~)  = 0 (any p~ appearing in the expression has ai  = 0). By the 
inductive hypothesis em)~,~ E Ee,s~, with the appropriate eigenvalue for Tipi, or 
emfi,, = 0 (necessary when #ts = 0 = )~ts - 1). By Lemma 2.6, e m f  E E u. Because 
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cof(emf,p~) = cof(c~a,p(al + 1 , . . . ,  a m -]- 1)) for any a E ~Arm,,-m with a s = A, 
emCOa = a~,. By the formula for (V~) -1, we have 

(V~)- 10")A Z P'~T?a ~ . . . .  T m w~, = (Nk + 1)A;k~A. 
O~ G,/i/'m,n 

Thus 

(Nk + 1);~;kema#~ = N{p(a l  - 1, a2 - 1 , . . . )T~ 1-1 �9 -, T2 m-1 (T1T2 �9 �9 �9 rmo.JA): 

a E ~V'rn,n, each ai ~> 1 } 

= (V~)-I(T1T2 ' ' '  rrncOA), 

and so 

(T1T2... Trn)Caa = (Nk + 1);~;k(V~)~ # 

(Nk + 1)A. k 
- -  " " " "  ~ d #  

(Nk + 1)u;k 

= (Nk + A1)(Nk - k + A2)--- (Nk - (m - 1)k + A,n)Wu. 

Of course, the same factor applies to any w~ with a s = A. [ ]  

3. Some Further Developments 

As an application we give a new proof of a formula of DUNKL and HANLON [7] 
for Garnir polynomials. Fix a partition # of/71 <~N and form the product of 
alternating polynomials corresponding to each column of the tableau for # (enter 
the numbers 1 ,2 , . . .  ,Nt in the tableau in order and filling up the columns 
one by one). That is, partition the set {1 ,2 , . . . ,N1}  as {1 ,2 , . . . , #~}U 
U{#] + 1 , . . .  ,#'1 + #~} U . . . ,  where # ' =  (#] ,#~ , . . . )  is the transposed (con- 
jugate) partition for #. Let Go be the group of permutations of { 1 , . . . ,  N1} which 
leave each part of the set partition invariant as sets, that is, Go -~ S#~ x S~ x . . . .  
Let e denote the sign character of Go, and let 

( #/1 #/l-L#2 ) 
a =  #l 1 - 1 , # / - 2 ,  . 1, ' I 1 . . ,  0 , #  2 - 1 , #  2 - 2 , . . . ,  0 , . . .  

(note ]a[ = E i and a has N1 - -  /Zl nonzero entries). Then 

gu(x) := ~J-~w~Go e(w) xw~ is the Garnir polynomial for #. 

3.1 Theorem. ([7]) Let A = a s, then gu(T)gu(x) = ~Ii(#ti)l(Nk + 1)A;k. 

Proof Let m = N1, so that ), = a s E Ym. Letf~ := Y'~w~Co e(W)Ww~ E E~. The 
degree offu (as a polynomial in x) is the same as the degree of gu, andfu has the 
same alternating properties for Go as g~ hence f~ = c(k)gu with c(k) C Q(k). In 
fact, c(k) is the coefficient of x ~ in fu, which is independent of N(>~N1), by 
property (Sei). The formula f o r  (V~) -1 shows t h a t  cof((V~)-lfl~,pa)= 
T~fu = (Nk + 1)a;g (because (V~)-lfu = (Nk + 1)~;kfu and cof(fu,p~) = 1). By 
the G0-alternating property, g~(T)f. #(Go)Tf. = # ( G o ) ( N k +  1)A;k. Thus 
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g~,(T)g~,(x) : 4r 1);~Jc(k). But g~,(T)gu(x ) is a polynomial in k of 
degree IAI (constant in x) and so c(k) must be constant in k, because the degree of 
(Nk § 1)a;k is IAI and c(k) is independent of N. It is straightforward to compute 
(for k = O) (oo) 
thus c(k) = 1. [] 

We intend to construct an inner product for ~Um (which is positive-definite 
when k~>0) in which the spaces E~ are pairwise orthogonal. The following 
irreducibility result will be instrumental. 

3.2 Proposition. Suppose A C YPm, k ~ O, and C ." E~--+ E~ is a linear 
transformation which commutes with each TiPi, i :  l , . . .  ,m, then C = cl 
(multiple of the identity), some c E Q(k). 

Proof We may assume A1 r Am, or else E~ is one-dimensional. Suppose C has 
the matrix representation Cw~ = ~-]~C(/3, a)w 3 (with a s =  A = fl~). Then 
[TiPi, C] = 0 is equivalent to 

C(/3,a)(hi(/3) - hi(a)) + k I ~ C((il)/3, a) - Z C(fl, (el)a)I 
[, 3t<31 ~t>al ) 

= 0, all a ,  3 C ,/V'm~ 

with a s = A = 3 s, where the eigenvalue of Tipi associated to w~ by Theorem 2.4 is 
denoted 

hi(a) : :  Nk - k•{l : At > ai} + ai Jf- 1. 

For fixed i, if/3i = ),m and ai = A1 (> Am), then C(fl, a)  : 0 since the sums in 
(3.2) are vacuous and hi(a) r hi(fl)_Doubly inducting, suppose that/3i < ai and 
C(/3, &) = 0 for all permutations &,/3 of A such that (i)/3i </3i and ai <~ &i, or (ii) 
/3i<.../3i and ai < 6:i, then C(/3, a)  = 0 (again, each of the sums equals zero). For 
any permutations a,/3 of A if a r  there exists i such that 3 / <  ai, and the 
argument shows C(/3, a)  = 0. 

Suppose/3 differs by a tranposition from a, that is,/3 : (ij)a, labeled so that 
ai < aj. Using (3.2) and C(/3, a)  = 0 we have 

k ( ~  C((il)/3'a) - Z C(/3'(il)a)) = c~<c~i 

But (il)/3= a only when l =  j, and this shows C ( a , a ) =  C(/3,/3). The 
transpositions generate all permutations of A, hence C is scalar. []  

4. The Inner Product and Jack Polynomials 

There is a bi-orthogonal relation of {E~ : A C ~A/P,} to Jack polynomials in m 
variables. These are introduced (MAcDON~D [11], STANLEY [14], BEERENDS and 
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OPDAM [2], LAPOINTE and VINET [9, 10]) as orthogonal basis for symmetric 
polynomials in (zl, z2 , . . . ,  Zm) with respect to the measure 

1-I I ( z i -  zj)(z; 1 - Zfl)lkdum(Z), 
l <<.i<j<~m 

where dum is supported by the m-toms, 

T m := {(Zl , . . . ,Zm):  zj = ei~ < Oj<...TrTj---- 1 , . . . , m } ,  

and d g  m = dOld02 " " dOra. We will go beyond 

polynomials in z. Also we will evaluate co;~ at 
for L>~m. 

For polynomials in z = (z~,. . . ,zm) with 
define the inner product 

the symmetric polynomials to all the 
L N 

the point x (L) := (1 , . . .71707. . .  70) 

coefficients in Q(k), and for k~>0 

f(z)gV(z) H ( Z j  - - z l l )  kdblm(Z), - -  Ck [ -- Z/) (Zj -1 (f, 
(2w)m JTm l j<1 

where gV (z) := g(z[ 1, Z 2 1 , . . . ,  Zm 1). Equivalently, for k = 1, 2, 3 , . . . ,  ( f ,  g)k is the 

constant term in the Laurent polynomial c k f ( z ) g V ( z ) ( H ( z J - z l ) ( z ]  -1 - z / l ) )  k, 
m " j<l 

and Ck = r(k+l) IF(kin + 1) the normalizing constant chosen so that (1, 1)~ = 1 
(a Selberg-type integral). Let ~/fn := span{z ~ : a C ~Arm:}. 

For a,/3 C dVm, let H ~  := (z% zg)k, a real symmetric matrix, positive-definite 
for k~>0; since H~;~ = 0 whenever lal r 1/31, the infinite matrix H is a direct sum 
of finite matrices ((dimJ/f~)-square). As an illustration for m = 2, 

( z ~  -~,z~lz~-~)~ = ( -k ) l / ( k  + 1)/ for 1 = [a -/31. 

Define an inner product on ~Um by (p~,p~)/~ := H J ,  extended by linearity. 
When k>~0, H - t  is positive-definite. The caret in the notation is to suggest 

duality. Define a bilinear map ~m,n x ~ n  --' Q(k) by [p~, z ;~] := tS~ (Kronecker 
delta), extended by linearity. We find the adjoint of TiPi with respect to this 
pairing. Let Ti denote the Dunkl operator for the Sm-action on (z~, . . . ,  zm), that is, 

"ri:-= O~-+k~-~. 1 - ( i j )  i = 1 ,  . m. . . . . .  ' " " 7 

oZ" ~ Zi -- Zj j~i  

4.1 Proposition. For f E ~//~m,~ and g E S,~n, 

[TiPif, g] = [f, ('rizi + (N - m + 1)k)g], i = 17... ,m. 

Proof Denote the generating function for {p~} by 

F ( x ' z ) = Z  Z Pc~Z~---- ( 1 - x j z j ) - t H ( 1 - x : J )  -~ �9 
n=0 c~E.#'m,n j=l l=l 

We first show 

TiF(x,z) - z:-iziF(x,z) = k ( N -  m + 1)ziF(x,z), for i = 1 , . . .  ,m. 
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The partial product 

m N 

Fo(x,z)  : H H ( 1 - x t z j )  -~ 
j = l  /=1 

is symmetric in both x and z, facilitating the following calculations: 

zi 4- k z j  - F ( x , z )  
TiF(x, z) = 1 - -  -XiZ i j = l  1 - xiz j 

j : l , j # i X i  - -  Xj "(1 - -  Z iXi ) (1  - -  ZjXj) 

1 ) 
(1 - zixj)(1 - zjxi) H (1 - z,x,) -1 

sT~i,j 

( ) ; i  } + ~ x. 1 1_ 1 (1 - zsxs) -1 Fo(x,z)  
j=m+l ~ xj 1 -  zixi 1 - zixj s=i,sr 

= r ( x , z ) \ y - ~  4-k Z 1 zj + 
j = l , j # i  - -  zjxi (1 - z j x i ) ( 1  - z i x j )  

N z~_ .) 
+k ~ 1 - z i x j  " 

j=m+l  

Also 

xiz--------L-i + k ~ xjzi_ . F(x,  z) 
Z i T i z i E ( x ,  Z) = Zi 1 + 1 - z i x i  j = l  1 - z i x j /  

+ k zi zi 
j iZi - -  Zj 1 - -  Z iXi ) (1  - -  

• f I  (1 - z,xsl-'~Fo(x, zl 
s= l,sT~i,j ) 

_ )• 
zjxj) (1 - zjxi)(1 - zixj) 

[ ( k - [ -  1) z i x i  4- k ~ zi'-'-xJ- 
: z i E ( x ,  Z) L 1 - z i x i  j=l,jT~i i - z i x j  4- 1 

1 - (zi + zj)xj + zizjxixj 
+k  

j=l,jCi ~ -(1 : ~ : ~ " 

(~ + 1)zi 
Thus TiE(x, z) - zi~-iziF(x, z) = k (N  - m + 1)ziF(x, z) (here 

1 - zixi 
(k + 1)z2xi _ (k + 1)zi, the terms for }-'~N=m+l contributed (N - m)kzi and the 

1 - -  ZiXi 
terms with denominator (1 -z jx i ) (1  -z ix j )  cancel out). This exhibits the adjoint 
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of Ti. Also p*z ~ = z'Vzi if o~i>~l, 0 if oL i = 0. Then (TiPi)* =pi*T i* = 
= "rizi + k(N - m + 1). []  

LAPOINTE and V~,rET [9, 10] made intensive use of the operator zi7i, which 
provided some stimulation for the present section. SAra [13] computed the 
expansion of the generating function F(x,z) (when m = N) in terms of the 
orthogonal basis of  non-symmetric Jack polynomials. 

4.2 Proposition. The operators ZiTi, T i p  i a r e  seIf-adjoint on ~/gn, Y:m: 
respectively, for the inner products (., ")k, (', ")~, n E Z+, i = 1 , . . . ,  m. 

Proof Assume that k----1,2,3, . .  (the entries of H, namely (z~,z~)k, are 
known to be in Q(k)). Integration by parts on the torus shows that 

(Since ~ f(e i~ = iei~ ~ (e iO) ). Let 

Cz h(z) := (Zl - zj)(zl 1 - zj  1) �9 
\ t<j 

Then 

JT, ZjT"j'fCz)gV (z)h(z)dum(Z) = - ITm f ( z  ) (Zj-~jzjg v (z))h(z)dum(Z) 

- -  IT f(z)gV (z)kh(z) E ;J. + Zl dum(z) 
m l # j  'J - -  Zl 

+ k E IT" zjf(z) -- (jl)f(z) gV(z)h(z)dum(Z) 
~#j zj - zl 

=- z g z z dum z 
m 

+ jT:(Zl (z/(e,"(z)-(j1)g v ( Z ) ) ' ~  . , .  : ,  

t#j Z] 1 ~ Zl --71 ) h(z)aumtZ) 

= J[Tzf(Z)(Z:~g) v (z)h(z)dum (z). 

In the calculation, we transformed 

to 

I (jl)f(z) gV(z)h(z)dum(Z) z: 
T m Z j  - -  Z l  

IT Zlf(Z) (jl)g v (Z) h(z)dum(Z); 
m Z l  - -  Zj 
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valid since k>~ 1 and h(z) is invariant under (jl). Now Tizi - ziT-i ~- I -~ k Y'~l#i(li ), 
thus 

(Tipi)* = zi~-i + (1 + k(N - m + 1))I + k Z ( i l ) ,  
lr 

which is also self-adjoint for (-, ")k. Let M be the matrix representation of (TiPi)* 
in the z-basis ((TiPi)*zc` = ~-~M~c`z 9, a,/3 E fm,n) ,  then the transpose M r is the 
matrix for TiPi in the {pc`} basis, and TiPi is self-adjoint for (., ")k if and only if 
MH -1 = H-1M r r  HM -1 = (MT)-IH r MTH = HM, the condition that 
(TiPi)* be self-adjoint (recall TiPi is invertible for generic k, in particular for 
k >  0). []  

4.3 Theorem. I f  A ,#  E J~e m and A ~ #, then Ea_I_E, in the (., .)~ pairing. 

Proof In this pairing, homogeneous polynomials of different degrees are 
always orthogonal; assume IAI = =n~>2. The eigenvalues of Tipi on E;~, Eu are 
( N k - k # { l  : At > Aj}+Aj+I )  and (Nk - k # { l  : #l > tzj} + #j § 1),j  = 1 , . . .  ,m, 
respectively. There must be at least one of these values not equal to any of the 
other set, say that it is co E Q(k) and occurs on E;~ (changing lables, if necessary). 
The linear space Y ---- E;~ M E~ is invariant under Tipi for each i. The orthogonal 
projection of E~ on Y (which certainly exists for k > 0) commutes with each TiPi, 
hence either Y = {0} or Y = E~ (Proposition 3.2). Suppose Y----{0} and let 
f E E;~ be an eigenvector of Tip1 for the eigenvalue Co; since f r E~ there exists 
g E E~ with (f,g)/~ r O. Expand g as a sum of eigenvectors of Tip1; all of the 
occurring eigenvalues differ from co hence ( f ,g )2  = 0, a contradiction. Thus 
E ~ C E ~ .  [] 

By inverting the expansions of wa in {pc`} we develop the link to Jack 
polynomials. 

As in property (Sei) in Section 2, define the connection matrix 
Ac~(a,/3 E JVm,n) by w~ = ~gA~c`pfl; Theorem 2.7 shows that Ac`a=l and 
A~c~ = 0 unless a = / 3  or /3s ~ as. Let B denote the inverse matrix, so that 
Pc, = ~-~ Bflc~w~ (and again, Ba,~ = 1 and B;~ = 0 unless a = / 3  or/3s ~_ as). For 

E JV'm,~ define an element of ~, , ,gc`(z) := ~gBc`~z~ (note the transpose!). 
Then {gc` : a E ,#'m,n} is a basis for ~f,, and (g,~, gfl)k = 0 if as r Further 
[~ ,g~]  = ~c`~. The proofs are trivial: let f ~  := (wc`,~)~,  a matrix, then 

= ATH-~A; the Gram matrix 

~c`~ := (gc`'g~)~ = Z Z Bc`,'~B~,'~(z'~'z'v~)~ 
'ffa "if2 

= (BHBT)afi = (~- l )a  ft. 

P The block structure of ~ with respect to the spaces {E;~ : A E JVm, n } implies that 
~-1 has the same block structure; and this shows (gc`,gz)k = 0 when a s r  

The pairing [wc`, g/~] = [E,n A'n,c`P'n, E.y2 B fl,'y2 z'r2] ---- E.y, A'n,c`B 3,'n = ( BA ) pc  ̀= 

Recall the generating function from Proposition 4.1; the bi-orthogonality 
implies 
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O0 

F(x,z) = ~ Z p~ 
t ~ : O  O~C,/~/'rn,n 

= (1 - zixi) -1 (1 - zixj) -k 
j=l  

= ~ Z w~ga(z) 

(4.1) 

n=O eeEJ/=,,, 

(absolute convergence if ~jl < 1 all j, and Izil = 1 ,  all i). 
P Fix A E JV'm, n, let J~_(z) = ~ { g ~ ( z ) :  a s = A} (summing over distinct 

permutations of A). Then J~(z) is symmetric in (zi, ze, . . .  ,Zm), for A, # E Y P  m,n 
with A ~ #, ();~, •)k = 0 and J~(z) = m;~(z) + y'~,_<A B~,m~,(z), where m~ denotes 
an element of the monomial basis, that is, m~,(z) = E{z ~ : a* = A} and 

By the defining properties of Jack polynomials )~(z) is a scalar (Q(k))-multiple of 
&(z; l /k) (STANLZY [14], BeeRENDS and OPDAM [12]). Recall that the Jack functions 
form a basis for symmetric functions in infinitely many variables, while Jack 
polynomials are the specializations to m variables and partitions with rn or fewer 
parts. 

For the tableau corresponding to the partition k (the set of lattice points (i,j), 
1 ~ i ~< m, 1 ~< j ~ ki) there are two hook-length products, the upper 

h*(A) := H (AJ - i + k - l ( A i - j + l ) ) '  
(i,j)EA 

and the lower 

h,(A) : :  H (Aj - i  + 1 + k - l ( ~ i - j ) )  
(i , j)eA 

(where A' denotes the conjugate partition). Stanley showed that 
cof(J~ (z; 1/k), m~,) = h. (A) ([14] Theorem 5.6), and also that the "symmetric 
function" squared norm j;~ :=Nh,(A)h*(A). This allows us to evaluate wa at the 

point x (L) := (1 , . . . ,  1 ,0 , . . .  ,0) for L>~m. By BeERZNDS and OeI)AM (Cor. 3.6 in 
[12]), 

(km);~;k 

(k(m - 1) + 1)~;k j~" 
7----- 

4.4 Proposition. For o~ E Ym,n, m <~ L <~ N, (H )1 
co~(x (L)) = (Lk § 1)a;k (Ai - J  + 1 + k(A~ - i)) , 

\ (i,j) EA 

where A = o~ s E JU p tn~n" 
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Proof Substitute xi = 1 for i <~L, x i = 0 for i > L in the identity (4.1) obtaining 

O(3 m 
Z Z &a(x(L))ga(z) = I - I  (1 -- Zi)-(Lk+a)" 
n=O o~E.~#m,n i=1 

Since w~ (x (L)) depends only on o~ s, the identity can be restated as 

Z (aJ~176 l~I  (1 -- Zi)-(Lk+l)" 
n=0 ,kE jV'em,n i=1 

The 1F0-hypergeometric series for Jack polynomials is 

m oc 
r I  (1 - zi)-(Lk+l) = Z Z (Lk -~- 1)~;k J)~(Z; l /k) 

k ~ j~ i=1 n=0 AEjV'Pm,n 

(Z. YAN [16], also B E E ~ S  and OPDAM [2]). The coefficient of (Lk + 1);~; k is 
h,(A)J~(z) )~(z) 

the required result. 
knh. (~)h* (/k) knh * (A)' 

It is not hard to show that the symmetrized ~ :-- ~-]{w~ : a ~ = )~} has the 
squared norm 

( ~ ,  ~ A ~'J)~)k = (~:{OL : Og E ~/~mn, OLs = ,~})2 (k(m - 1) + 1)A;kh,(A ) 
(km)~;kh* ( ~ ) 

We leave the computation of (w~,w~) for c~ ~-- ~ =/3 ~, ~ E JV'Pm,, for 
subsequent work; this computation probably can be done using the self-adjointness 
of each ZiPi acting on E;~. OPDAM [12] briefly mentioned bases for arbitrary (not 
just symmetric) polynomials associated to root systems. It should be possible to 
use the commuting set of self-adjoint operators {T lp l ,T2P2-  k(12),. . .  ,T ipi -  
- k  ~-]~j<i(ij),..., } to produce a complete orthogonal decomposition of E~ (the 
duals of these operators on ~ n  were introduced by L~o~yrE and VI~T [10]). 

The inner product on polynomials in Xl , . . . ,  XN used by SAHX [13] is defined as 
~rN / /1  X \ -1  v-rN /1 -k follows: the generating function F(x, z) ---- 11i=1 ~ - izi) llj=l k -xizj) ) = 

= ~-]~ z~p~(x) = ~ , ~  C~z~x  ~ defines the matrix C, for polynomials 
f = ~ a~x ~ and g = ~--];~ bgx9 the inner product (f,  g)p -- ~,~(C-1)~/~a~b~. 
Restricted to each E~ this inner product is proportional to the torus-type inner 
product (f ,g)k; this follows from the irreducibility shown in Proposition 3.2. 
Another pairing for polynomials was used in Section 3; it is If, g] = f(T)g(x)Ix=0- 
It was shown in [5] that this is related to the Hermite-type inner product by the 
formula 

[f, g] = Ck J exp(--Ak/2)f(x)exp(--Ak/2)g(x)  11  ]Xi - -  xJlZ%xP(-Ixl2/2) dx 
RlV i <j 

where Ck is the normalizing constant and Ak ---- ~-]~N_I T 2. NOW supposef E E~ and 
g E E u  with )~ ,#E~#~ and let f=~--]~a~x ~ and g = ~ - ~ b ~ x  ~, then 
f(Z)g(X)lx= o = y '~  a~T~g(X)lx=O; but Tag = (Nk + 1)u;kCOf(g,p~) by the proper- 
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ties of E#. Now g-=~-'~a,~b~(C-1)azpa. Thus [ f , g ] : ( N k + l ) t , ;  k 
~ ' ~ u 3 a ~ ( C - 1 ) a , z b ~ = ( N k + l ) u ; k ( f , g } p .  The inner product is zero unless 
A = ft. This exhibits the proportionality constant for the two inner products on 
each E;~. The mapping exp(--Ak/2) transfers orthogonality relations and norms 
from E~ to the Hermite-type inner product, studied by BAKER and FORRESTER [ l ] .  

P The inverse matrix B can be used in a formula for Vx~(a E ~#'m,n)" Indeed, 

x ~ = a!~p,~ = a!~EflBflawfl 

(and B~c~ = 1, B/~ = 0 unless /3 = a or fls >_ as). For example, when rn = 2, 
A1 ~ A2, 

~-~A2 (k)j i((A1 -- A2 -~j)joJ(AI+j,A2-j) (AJ~I ,~ 2 + 
~=a (k + At - A2 + j )jj. 

+j(A~ - )~2 + j  + 1)j_liZJ(A2-j,Al-rj) ). 
(Proof left as exercise.) 

5. Singular Polynomials 

In DUNKL, DE JEU, OPDAM [8] the singular polynomials were studied, for 
general finite reflection groups. For each value of k for which V -1 has nontrivial 
kernel (V does not exist), there is a space of homogeneous polynomials in 
Xl , . . . ,  Xs annihilated by each Ti, i = 1 , . . . ,  N. A conjecture was made regarding 
in which irreducible SN-modules one could find these singular polynomials. The 
present work confirms part of the conjecture: for each a = 1,2, 3 , . . .  such that 
gcd(N - m + 1, a) < (N - m + 1)/m, there is a space of polynomials annihilated 
by each Ti for k = - a / ( N -  m + 1) and on which Sw acts according to the 
representation (N - m, m) (m <~N/2). 

We will show that the Ss-orbit of W(a,a,...,a ) (rescaled to have Q[k]-coefficients) 
provides this space. Property 5Piii r of Theorem 2.7 shows that 

rio3(a,a,...,a ) = (Nk - (rrt - 1)k + a)f. 

for some fi E E(a,a,...,a,a-1) for i = 1 , . . . ,  m and, of course, Tiw(a,...,a) = 0 for all 
i > m. This indicates the desired property for k = - a / ( N  - rn + 1), but how do we 
know that W(a,...,a) is defined for this special value? Let A = ( a , . . . ,  a) E w e ;  the 
hook-length product used in Proposition 4.3 has the value 

kmah*(A) = a](k + 1)a(2k + 1 ) a ' ' - ( ( m - -  1)k + 1)a 

= ( ( m -  1)k + 1)~;k. 

Now Proposition 4.4 with L = m shows that 

~(xim)) : (ink + 1)~;~ : (mk + 1). 

( ( m -  1)k + 1);~; k a! 

I f fa  := ((m - 1)k + 1):,.kwA has coefficients in Q[k] (polynomials in k), then the 
polynomial identity fa(X (m)) = (mk + 1)A;k shows explicitly that fa r 0 when 
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k--= - a / ( N - m +  1) and g c d ( a , N - m +  1) < ( N - m +  1)/m. We show that 
this is indeed the case. 

5.1 Lemma.  Let 0 ~ b <<. a and # = ( a , . . . ,  b) E JVPm, then k(m-1)a+bh * (tz)o2lz is 
in the Q[k]-span of {p~}. 

Proof. Let v - -  ( a , . . . , a , b +  1) E JV P for O<~b<<.a- 1. Then 

(1--[m-2 ) 
k(m-1)a+bh*(#)=b!(a-b)!\~.~ (1 +ik)a ( a - b +  l + ( m - 1 ) k ) b  , 

and 

k(m-1)a+b+lh*(v) (b + 1) 
k(m-1)a+bh*(#) - (a -- b) (a - b + (m - 1)k). 

Assume the statement of the lelnrna is true for #. By the construction used in 
Theorem 2.7, oJ~ = Pmfm + fo where fm E E,  and Tmpmfm = (Nk - (m - 1)k+ 
+b + 1)fro. By the formula in Theorem 2.4, 

k -- b E (jm)w.. f m =  W# -- (m -- 1)k + a S<m 

By the inductive hypothesis k(m-l)a+b+lh * (V)fm has all of its coefficients ({p~}) in 
Q[k]. 

The method in Theorem 2.7 constructs f0 f romf,  n with no divisions (other than 
rational numbers). 

Repetition of this procedure reduces the problem to k(m-l)ah * x 
x((a,a,...,a,O))w(a,...,a,O); now reduce m by 1, and so forth. The induction 
begins at wa = pa(Xl,X) (just one part). 

The singular polynomials not associated to two-part partitions of N appear to 
be considerably more complicated. For example, for N = 5, the conjecture calls 
for the representation (3,1,1) to give rise to singular polynomials for 
kT__ 1 3 2~ 2~'" �9 

We conjecture that kl:qh*(),)~a has coefficients in Q[k] for arbitrary )~ E Y P .  
We also expect that more detailed information can be found about the 
denominators in w;~ = Efcip~p;~ in terms of/3. 

This has been a rather algebraic approach to the intertwining operator. The 
problem of constructing an integral transform which implements the operator for 
k > 0 remains open beyond N = 3. It would also be interesting to find an analytic 
definition of the inner product (., .)2, introduced for ~/Pm. 
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