Mh. Math. 126, 181-209 (1998) Monatehefte far

Mathematik
© Springer-Verlag 1998
Printed in Austria

Intertwining Operators and Polynomials Associated
with the Symmetric Group

By

Charles F. Dunkl, Charlottesville, VA

(Received 29 July 1996; in revised form 16 December 1996)

Abstract. There is an algebra of commutative differential-difference operators which is very useful

in studying analytic structures invariant under permutation of coordinates. This algebra is generated
by the Dunkl operators 7; := 6% +k3 i__(zj), (i=1,...,N, where (ij) denotes the transposition of
the variables x; x; and £ is a fixed parameter). We introduce a family of functions {p, }, indexed by m-
tuples of non-negative integers a = (e, ..., Q) for m<N, which allow a workable treatment of
important constructions such as the intertwining operator Vé This is a linear map on polynomials,

preserving the degree of homogeneity, for which T,V = V4~ i=1,...,N, normalized by V1 =1

(see DuNkL, Canadian J. Math. 43 (1991), 1213-1227). We show that T;p, = 0 for i > m, and
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where (A1, Az, .- ., Ap) is the partition whose parts are the entries of o (That is, A 2 A2 = -+ A 20),
B= (b1, 8m) >oiey Bi =Y oy & and the sorting of 3 is a partition strictly larger than A in the
dominance order. This triangular matrix representation of Vallows a detailed study. There is an inner
product structure on span{p,} and a convenient set of self-adjoint operators, namely T;p;, where
Pila = Play it 1, am) This structure has a bi-orthogonal relationship with the Jack polynomials in
m variables. Values of k for which V fails to exist are called singular values and were studied by De
Jeu, OppaM, and DUNkL in Trans. Amer. Math. Soc. 346 (1994), 237-256. As a partial verification of a
conjecture made in that paper, we construct, for any ¢ = 1,2,3,... such that gcd(N —m + 1,4) <
<{N—-m+1)/m and m<N/2, a space of polynomials annihilated by each T; for k=
= —a/(N—m+1) and on which the symmetric group Sy acts according to the representation
(N —m,m).

When spaces of functions in several variables have an analytic structure which
is invariant under permutation of coordinates, there is often a connection to a
commutative algebra of differential-difference operators. Examples of such
structures are orthogonal decompositions with respect to the measure
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or eigenfunctions of the differential operator
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The algebra of operators is generated by the Dunkl operators {3],

0 1- ()
T, =—+k —_
! Bx,- + Z Xi Xj
J#i
(i=1,...,N, where (ij) denotes the transposition of the variables x;, x; and k is a

fixed parameter, often positive). On the one hand, these operators make it easy to
construct a complete set of commuting invariant (symmetric) differential
operators, but on the other hand, it is difficult to work with the effect of the
operators on actual polynomials. In this paper we introduce a family of functions
which allow a workable treatment of important constructions such as the
intertwining operator V. This is a linear map on polynomials, preserving the degree
of homogeneity, for which T;V = Vaix,-’ i=1,...,N, normalized by V1 = 1. This
operator was introduced for arbitrary finite reflection groups by the author in [4];
later the “singular” values of k, those for which V fails to exist, were studied by
Dk Jeu, OppaM, and the author [8]. These values have an interesting representation-
theoretic interpretation. When V can be realized as an integral transform, it is a
fractional integral for several variables. This was done by the author [6] for the
case N = 3, the smallest nonabelian group, by analysis on the unitary group in
complex 3-space.

In this paper a more algebraic approach is taken. We construct a family of
functions, {p, }, indexed by m-tuples of nonnegative integers, a = (ay, 02, ..., 0n)
for m<N. We show that T;p, = 0 for i > m, and

V(S e xn) = oqlag! - - oy
D) S N D), (Nk— k4 1), - (Ne— (m— Dk + 1), 7 °

+Y A(B,a)ps;
7

where (A1, Az, ..., An) is the partition whose parts are the entries of ¢, (that is,
M= 220200, 8=(B1,...,8n)s Doy Bi = D1, &; and the sorting of 3
is a partition strictly larger than X in the dominance order; also (f); =
=t(t+1)---(r+j—1), the Pochhammer symbol. This triangular matrix
representation of V allows a detailed study. A key device is the operator T;p;
Where  piP(ay,...am) = Pl01,sGis1yeim) The introduction of the formal map
£ por—rxit- - xém /(! - - ouy!) leads to a complete eigenfunction decomposition
of V. The eigenfunctions have several interesting properties: the coefficients do
not depend on N, the operators {T;p'} commute with V¢ and there is an inner
product structure for which they are self-adjoint, and there is a bi-orthogonal
relation to complex analytic polynomials in variables zy,...,z, with the inner
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product

(f8)—
J J €™, ef)g(e ™, ... e7%) H |ei9f—ei9’|2kd6’1---d9m.

1< j<i<sm

The Jack polynomials form an orthogonal basis for the symmetric polynomials
(see BeerenDs and Oppam [2]); this leads to useful evaluation results for the
aforementioned eigenfunctions. SAn1 [13] has found the structure constants of an
inner product defined in terms of {p,} and their generating function for the non-
symmetric Jack polynomials. Results of the present paper link these polynomials
to the generalized Hermite polynomials studied by Baker and ForresteR [1].

In section 1, the polynomials p, are defined, the action of the Dunkl operators
1s worked out in detail, with the aid of product formulas. In section 2, the
eigenfunction decomposition of V¢ is produced; this requires some very involved
induction procedures, and heavy reliance on the triangular nature of {T;p;} with
respect to associated partial orderings.

In section 3, the results on eigenfunctions are used for a new proof of a formula
of DunkL and HanLoN [7] for the evaluation of (71, ..., Tn)g(x1,. .. ,xy) where g
is the Garnir polynomial associated to a partition of N (essentially, a product of
alternating polynomials, one for each column of an associated tableau). Also an
irreducibility property is proven for the space of eigenfunctions of V& with given
eigenvalue and this leads to an orthogonality result in the next section.

In section 4, the orthogonality structure associated with Jack polynomials is
introduced and is used to define an inner product on the span of {p,}. When the
parameter k is positive, the inner products are positive-definite, and there is a
boundedness property for V, namely, if fis a homogeneous polynomial on RY, then

up V()| sup (W) (where x| = (Zox))

x|= x|=1

(Dunkw [5]). Also, there is a description of the inner product used by Sahi, and its
relation to V¢ and to the Hermite-type polynomials.

In section 5, a part of the conjecture made in [8] about singular values is
verified: if 1<m<N/2 and a=1,2,3,... such that ged(a,N —m+1) <
< (N —=m+1)/m, then there is a space of polynomials (defined in terms of
Plaa...q)) Tealizing the representation (N — m,m) of the symmetric group, which
are annihilated by each Tj, when k = —a/(N —m + 1).

The eigenfunctions of V¢ have coefficients in Q(k); conjectures are made about
the poles of these coefficients in terms of hook-length products of tableaux. There
are indicators to subsequent research on complete orthogonal decompositions and
norm formulas. This will provide orthogonal polynomials whose symmetrizations
are the Jack polynomials.

Notation used throughout:

o Z,.={0,1,2,3,. . .}, Mu={a=(a1,...,om) i €Z,}, m=1,2,3,...;
o fora € Ny, |o] =37, op, ol :i=T]0, @il
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Npn={a € Nyt |a| =n},
NP ={NE Ny : Mi=X= - =), =0} (partitions with m or fewer parts);
N ={re Nt |\ =n}

e for o € A, & denotes the sorting of o into a partition, that is,
ajzas---2a), and (0f,03,...,05) is a permutation of (a1, 0, ..., 0m);

e for\peN Z, the dominance ordering is defined by A > p if and only if
S AN Y 1S <Sm;

e also A > p means A > p and A # u;

o fora € Ny and ;=1 let oo = (ovq,...,05 — 1,...,00) € N}
e for x = (x1,...,%n) € R", and o € A, the monomial (basis element for
polynomials) x* := x{'x5? - - - xm;

e for a polynomial p(x), the transposition (i))p(x) :=p(...,%),...,%,...)
(acts on the variables);

e for a polynomial p(x) expressed in some basis {g,} as p(x) =, ca&a(x),
let cof(p, gg) := cp denote the coefficient; °

e forn=20,1,2,..., the Pochhammer symbol (shifted factorial) is defined by
(@) =1, (@), = (a),(a+n); for X € A7 and a parameter k, the generalized
shifted factorial is

(@) g = f[(a = (= Dk),;

e vector spaces are over the field Q(k); “generic values” specifically exclude
negative rational numbers;

e the cardinality of a set € is denoted by #£, and for a,b€Z,
a A b := min(a, b).

1. The Fundamental Polynomials

The symmetric group Sy acts on R by permutation of coordinates. For a
parameter k we define the first-order differential-difference (“Dunkl™) operators

P 1 — (i
T,-:za——l—k ——(22, 1<i<N.
X; o Xi — Xj
The commutativity of {T; : 1 <i<N} was proved in (DunkL [3]). The polynomials
underlying the analysis of {T;} and V are defined by a generating function.
1.1 Definition. Fori = 1,...,Nandn = 0,1,2, ..., the polynomial p,(x;, x) is
defined by

N o
Fix,r) =1 —xr)"" H(l - xjr)_k = an(x,-,x)r".
j=1 n=0

If k= —mforsomem = 1,2,3, ..., then &, is a polynomial of degree Nm — 1
and p,(x;,x) = (—Nm +1),/n! #0 forn=0,1,... ,Nm—latx = (1,1,...,1).
If k+1¢ —~Z,, then p,(x;,x) = (k+1),/n! #0 at x = (0,0,...,1,...,0). Also
Pn(xi,x) is symmetric in the variables {x; : j # i}.
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1.1 Propeosition. T;p,(x;, x) = 6;;(Nk + n)p,_1{x;, x), for 1<i,j<N, n € Z,.
Proof. For j # i,

L) =g (] : INI(I xr)”
s . 7)) = . —_ —_
§7 T—xr™ ' - \l—xr 1-x7r) 13 !

:< kr  kr )f,-:O.
1—xr 1—xr

(k+1)r 1 1 d
Fi—r—F; = ZF,; (1-—
Li#i=r or "t 1—x; +k;xl-~xj 1—rx, 1-—rx] H )

=
2 (k-i—l)xi X;
2 NT Y\
r(l—rx; * Zl—rxj '

~

J#
((k+1 r+ky. ) (Nk + 1)r ;.
J#
T;pn(x;, x) is the coefficient of r" in
r(Nk+1+rE>37i:;pn(x,-,x)(Nk#—l—Fn)r” . O

We establish a product rule for 7; with emphasis on certain invariance relations.
1.2 Lemma. For any two polynomials f,g on RN and 1 <i<N,
—- g
Ti(fe) = (Tig) + (Tf)g — K S — (i) B8
JH K

1.3 Lemma. Suppose f1,f2, ... ,fn are polynomials satisfying (i)fy =fif | £ i
and [ # j, then

Ti(fifa " Im ETfl)Hfs kZ llel_]:i ll)fl)Hfs'
=1 sl T 1 s#L,i

Proof. For labeling convenience, assume that i = 1, and then induct on m.
Suppose the formula holds for 1 <m<n; by the product rule

Ti{fi- - fatwrt) = (Tl - 'fn))f?m + {(fir f) Tifont

- kZ “fa) = (WD Sa)) vt = (W)
1#1

In the sum, only the j = n + 1 term can be nonzero by the invariance property of
fnt+1; and this term is exactly

—k(fi — (Lin+ DAY for1 — (Ln+ Dfps) - (oo /) /(61 —%np1). O
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1.4 Corollary. For a subset J = {j1,J2,.--,jm} C {1,2,...,N} and [ &€ J,

m
T (Hpa,v (xj,.,X)> =0, forevery a € Ny,
i=1

Proof. Apply the lemma with f;, = p,,(x;,,x), fy = 1 if s ¢ J; each term in the
formula 1.3 evaluates to zero (indeed, T;f; = T;1 = 0 and (f; — (4j)fi) = O for all
J#D. O

1.5 Lemma. Let ny,ny € Z,, 1 <i<j<N, then
= (P, (%, %) = ()P, (%, %)) (P, (x5, %) — (§)Pms (37, )) / (% — %7)
n2—1
= Z [Py 15 (i X)Ps (35, ) — Ps{(Xi, X)Pry+my—1-5 (%, X))
=0
The right-hand side is symmetric in (ni,ny) and the summation can be taken over
the range 0 < s < (np — 1) A (mp — 1).
Proof. Denote the expression to be evaluated by
Q(n1,n2) = (P, (%) — Py (%)) (P, (%:) — Py (357))/ (x: — x5)
(suppressing the argument “x”"). Denote
Q' (m1,m2) := Py (X)Prmy (X7) — Py (%:)Pmy (%)
for my, my € Z,. We will show that Q(ny,n)— Q(ni1+1,n, — 1)=0'(ny,n, — 1)

for the case n; = n;. Express

Filer) =l ) = (1= )Y P ()
n=0 =0

with each wl(k) being a symmetric polynomial in (xi,...,xy). Then

pu) =Y %701 = xipp () + .
5s=0

Thus
Pn(x:) — pn(%) = Xipn—1(%:) — XPn—1(;)-
Substituting this formula for n = ny and n = n; + 1, we obtain

Q(ni,m) — Q(n +1,n — 1)

— (2 |50 = 2 ()5 ) = 51 1)

Xi —Xj

- (xipnl (xi) = XiPm (xj))(Pnr“l(xi) _Pn2—1(xj))

= Q'(nl,ng - 1)
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Since Q(n; + ny,0) = 0, we have
nz—-l
On1,m) = > (Qm +5,m— ) — Qm + 5+ Ly —s = 1))
s=0
n2—1
= ZQ’(nI +s,m—s—1)
s=0

n21

=Y Qm+m—1-11
=0

(setting t = ny — 1 —s). If ny < ny the same argument shows the validity of the
formula with the upper summation limit replaced by n; — 1. In this case consider

nz—l nz—l

ZQ’(nl +mp—1-s5,5) = ZQ’(t,nl +ny—1-—1),

s=n) t=ny
(where t =ny +ny — 1 —s), but Q'(my,my) = —Q'(my,m;) so this sum equals
Zero. I

Observe that the term py,, _;(x;)ps,(x;) appears in Q(ni,n;) exactly when
ny < ny.

1.2 Definition. For o € N, with m<N, let py = po, (%1, %)Pg, (x2,%) - - -
Pon (Xm, x), and Iet ¥, := span{p, : @ € A", } (as in other vector spaces, the span
is over Q(k)). also ¥, = span{p, : @ € Ny, ,}. Sometimes p(ay, ay, ..., 0p)
is a synonym for p,,.

1.6 Proposition. For oo € N, and o; =1,
Tipo = (Nk — k#{l: yz o, 1 # i} + ai)p(on, .o — 1,0

m ((e=LAe-1) i ]
kY > bl ata—1-1.,0.)
s=1,s71 1==0

(@i=2)A(as—1)

_ Z p(...,l,...,a,-—l—&—l—l,...));
1=0

when o; = 0 then T;p, = 0.
Proof. This a direct consequence of Lemmas 1.3, 1.4, and 1.5. |
Example. For m =3,
Tip3n = (Nk + 3)p2a1 + k(paot — Posr + Pa1r — P131 + P30 — Pozs);
Tap3o1 = (Nk — k + 2)pa11 + k(poar — paor -+ P131 + Pa2o — P3oz);
T3psor = (Nk — 2k + 1)pazo + k(po2s — paoz),

As customary in analysis of several variables, the triangularity of linear
operators with respect to some partial ordering is very useful. Here we will define a
family of orderings, one for each T;.
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Define the raising operator p;p, = p(ai, .. ., ai—i— 1,..., ) for o € Ay, then
Tipipo = (Nk — k#{l : cyz oy + 1} + i + 1)ps

m aiN(o;—1) i S
+k2 Z plooaitag—1...,0..)

smlgi \ =0 (1.1)
(ei—1)A(05~1) ; )
= > Pl ota—1.) ]
=0

For each i = 1,...,m define the binary relation R; on A", by aR;3 if and only
if o # 3 and cof (T;pips, pa) # 0. Then let > @) denote the transitive closure of R;.

1.7 Proposition. The transitive closure 2 ;) of R; is a partial ordering. If
a, B € Ny and o> )0, then one of the following conditions hold: (i) a = (3, (ii)
of = and o; > G, (ill) o = G5

Proof. From the formula (1.1), we see that aR;3 when there is an s, 1 <s<m
such that a; = ; for j # s and one of the following cases occurs:

(1) IBS > /Bi and {aiaas} = {/31 - la /Bs + l} for some [ = 17 . ')/Bi;

() Bi=a; < By =q

(i) B;<Bi and {oy, a5} = {B; — 1, B; + I} for some I =1,..., 6.
Induction on [ shows that if « satisfies (i) or (iii), then o > 3° (recall 3° denotes
the partition whose parts are the entries of (3); in case (i) o = . Thus if aR;3,
then of = 3 and o, = §; < B; = o for some s and o5 = §; for j & {i,s}, or
a’ = (. This shows that the transitive closure of R; is a partial ordering (there
can be no loops). Suppose {aV.a®, ... o} C N, satisfy aDR;aUtD for
1<j<t—1, then oV #£a®. Indeed (M) = (a@Y .. = (@) implies
either (@) = (a{¥) or “=" holds in each step, but then case (ii) shows
ol > o, O

By construction, T;p; is triangular for > (i)-

1.8 Proposition. For each i=1,...,m the linear operator Tip; has the
eigenvalues Nk — k#{l: y>o; + 1} + a; + 1 for « € N, and is invertible.
For any B € Ny, the subspace span{p, : o € N 'y, and o> yB} is invariant
under T;p;

1.9 Theorem. For m = 1,2,...,N,n € Z., generic k,
MYy = ("”” - 1),
n
and
{f €YV o Tmf =Tpaf=-= Tm_j+1f = 0} = Vm.jyn,lgjgm - 1.
Proof. We wuse double induction. First 77, = span{p,(x;,x)} and

pn(1,(1,0,...,0)) = (k+ 1),/n! # 0, thus dim ¥7, =1. Also dim ¥, = 1.
Assume dim ¥, = ("*7") for1=1,2,...,m— 1 and s € Z, and also for [ =m
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and s=0,1,2,,n— 1. Now

A//m,n = pmA//m,n—-l ® 7, ~1,n

=span{p, : oy =1, |e| = n} + span{p, : am = 0, |a| = n}.
By Proposition 1.8 py, is one-to-one on ¥, ,_;, and so
dim ¥y = dim ¥ oy +dim Yy, =
(m+n—2) <m+n—2> <m+n.—1)
n—1 n n

This completes the induction. Essentially the same argument shows that (ker Ty )N
Y Nn = ¥ N-1,; and by induction that (ker Ty) N (ker Ty—1) - - - N (ker Ty—_j31)N

NYNpn =V Nejn- I

1.10 Corollary. For fixed m and arbitrary N>=m, the projection of ¥y
considered as a space of polynomials in (x,x,...,Xy) 0Onto ¥y, , in the variables
(X1, ..., %nm) induced by the specialization x| = Xy = - - = xy = 0 is a linear

isomorphism. As a consequence, in the action of T;, the value of N can be taken as
a generic parameter.

2. The Intertwining Operator V

The operator V is a linear map on polynomials in (x1,x,,...,xy) preserving
degree of homogeneity, such that V1 =1 and T;Vp(x) = V(g% p(x)) for
i=1,...,N and any polynomial p. It was shown in (Dunki, DE Jeu, Opbam [8])

that V exists and is an isomorphism for any k & {—j/m —n:1<j <m<N and
n € Z.}. The inverse exists for all k; it has the simple definition

V7lp(y) = exp (Z yiTi)P(x)
=1

Since p is a polynomial the formal exponential is actually a terminating series (see
Torossian [15] for another application).

x=0

2.1 Proposition. Let o € N, ,, then Vx* € ¥y .

Proof. By Theorem 1.9 77y, is the space of homogeneous polynomials of

degree n in (xq,...,xy). By the existence theorem, Vx® € ¥ Nn- For i>m,
T:Vx®* = V(a%x‘l) = 0, because x* = xf‘l <+ xom. Thus Vx® € ¥ . d

Because of Corollary 1.10 and the formula for V~! we can consider the action
of Von span {x*: o € #},,} and on ¥, in terms of a generic parameter N.

Example. Vx| = (n!/(Nk + 1), )pn(x1,x). By Proposition 2.1, V¥? = ¢,p,(x1,x)
for some ¢, € Q(k); also
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TL(VAY) = (NK -+ n)eapu_s (1, %) = (aix">

= an'{_l = ncn—lpn—l(xhx)a
foreachn>1

2.2 Theorem. For o« € Ny,

o!
V¥ = ————p, + A(B, &)pg,
(Nk —+ 1)a‘;k ¢ ﬂe;m’"

where A(B, o) € Q(k) and A(B, ) = 0 unless §* > o (or § = a).

Proof. The claim holds for n=1 (indeed, Vx; = (1/Nk+ 1))pi(xj,x),
1< j<m). Assume the claim is valid for all o with |a|j<n — 1. By symmetry,
A(wﬂ,woz) A(B, ) for any w € S,,, we may restrict our attention to Vx* with
A€ JV (that is, \1 =X = --+). Also assume )\, > 0 (changmg m, if necessary).
Write Vit = =2 gehn, A(B; AP, and for each j, let Vx* = g;+gjo where

= Y {A(8,\)ps : =1} and T;gjo = 0. By the defining property of V,
RN CARE A X7 ) = Ajhy (defining ).

Then g; = jpj(ijj)_lhj, and we can use the triangular properties of Tjp; and the
inductive hypothesis on #; to get the desired results for A(3,)). Let
A=, A —=1,..., An) € A pmp1 (not necessarily a partition). By the
inductive hypothesis and Proposition 1.8,

(Tip)) 'hj € span {py : @ € N mn1,0° = (§N)° or @ (jGA}.
The argument starts at the smallest part of A.

Part 1. We show if A(B,A) #0 and (,>1, then S=X or 3 = A Let
u = (6,53)°. By Proposition 1.7 we have (i) 6,3 = §uA, or (ii) p = duX and
(6mf3),, > (6mA),,» OF (iii) g > 6, A. In case (i) B = A. In case (ii) p = OuA, and (8
is obtained from 6,A by adding 1 to a part of A larger than A,, so that
B =(M,..., A+ 1,..., A — 1) for some s which implies 5° > A. In case (iii)
M =Y Aforj=1,...,m—1, and at least one of these inequalities is
strict. Then 3 is obtained by adding 1 to some part of x, which implies 3° > .

Part 2. We show if A(B, \)#0, Bir1=F2="-=0,=0, and ,31-21 for some
Jj<m, then 3> A. Consider g;= }p}(T}p})_lkj, let 0 =(B,-.-, 68— 1,.-., Bm)>
and let p = (6;8)° € A7 ,_;. As before, (i) p = (§))° and (§5); > (5 A); or
(i) p > (§A)° must hold (the case (i) 6;8=06;A is ruled out because
(6i8),, = 0 < (6A),,)- In case (iii),

zl:uiZ i}\, for 1I<j—1,
i=1

i=1
and
J -1
n—1= Zlu’l = )\z ‘|‘
=1 i=1
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where)\-—)\ 1if > Mg or =X if =N fn—1=30_ >
Z )\ +)\J, then adding 1 to any part y; (i<j) produces 3 € N, with
G = A (recall Bir1=02=---= ﬂm = 0, thus p has j or fewer parts). If there is
equality n—l—zl L= Z Dy + N, then j=m—1 and My = Apy = 1.
Again ﬁs is obtained by addmg 1 to some part of y and (° > A (because
n—z Y6 > \). In case (ii), p = (§A)° implies Ap_1 = An = 1 and
j=m-— 1 also (§;8); = B; — 1 > (§;A); = Ay — 1 = 0 implies that 3° is obtained
by addmg 1 to some part of A larger than )\ =M1 =1; hence B = A
Finally, A(), ) is the coefficient of py in Ao (Tppm) i Where

hy = V(xi‘lxﬁ‘2 . xﬁlm_l).
By the inductive hypothesis,

(5!
(Nk+1)5 50

By the triangular property of 7,,0,, and the inductive hypothesis

OF ((Towpm) s Pi2) = (N + (1 — Dk M) ™ 00f s s 0)-

cof (A, ps, A) =

Thus

AN A) = cof (Anpu(Tnpm) " hms P2)
. ()\,,,/(Nk + (m — l)k + )\m))(Al!AZ! . (Am — 1)!)
B (Nk+1)5 54

Al
=Nkt Dy =

By setting up a simple formal correspondence between x® and p,, we can study
V as an endomorphism on ¥",. Define {p, = Lx*, for oo € N

2.3 Proposition. The linear map V§ is a dzagonalzzable automorphzsm of ¥
(each n € L) with eigenvalues 1/(Nk+ 1) s Jor X € ,/V

Proof. For any A € A fm and a € N, with o :/\ (that is, o is a
permutation of ),

1 Al
Ve =51\ w2 A

BeNmpn

B5=A
Thus V¢ is triangular for the partial order on A4, induced by 3° = . The
formula for V¢ shows that its matrix representation in the {p, : @ € A", ,} basis
has a (upper) triangular block structure with respect to the subspaces span
{po : & = A} for A € AP . The on-diagonal blocks are multiples of the identity

matrix, and the elgenvalues 1/(Nk + 1), are distinct for different blocks. Hence
V¢ is diagonalizable. I
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In this argument we tacitly used the generic dependence on N (see Coroliary
1.10). Also the formula for V™! (involving T;,1<i<m) shows that N is just a
parameter. In fact for specializations there may well be “accidental” equalities:
example for A = (6,3,3,2,1,1) and p = (5,3,3,3,2), (Nk+ 1), = (Nk+ 1),
when N = 6.

2.1 Definition. For A € A#* oy

E), = {fE YV mn - V§f=mc“i—1)/\—f}-
sk

For a € Ny, with & = A, let w, be the element of E) with cof(wa,p,) = 1 and
cof(weq, pg) = 0 for any f§ # o with 3° = X

By Proposition 2.3, ¥, , is the direct sum of Ej, A € A" ‘,:)n. The canonical
basis for E) is {w, : & = A} Iff € Ey, thenf =) cof(f, pa)we (With o = X).

The spaces E) have a number of interesting properties which will be proved
mostly by induction. For n =0,1,2,..., let &, denote the following statements
applying to any E) with A € A", P

1) wrx=pr+ > {Apps: 0 e ./an,ﬂs > A} and the coefficients Ag, are
independent of N;

) TipErn=Eyfori=1,.

(iii) if f€E), i=1,...,m, then T;f € span{Esy : Aj > Nj11}, and the
projection of T;f on E5 A 1s an eigenvector of T; ;p; with eigenvalue
(Nk—k(j—1)+XN).

An equivalent formulation to (iii) is

(iii) any f € Ex has the expansion f = p; > {fy: N\ > A1} +fio where
fii € Esx. Tipifiy = (Nk — (j — 1)k + Nj) fiy (for j with N > Ajg1, so that G\ is a
pamtlon) Tifio=0,and T;f = 3, (Nk — k(j — l)+)\)f

Under the hypothesis (%,) one can determine the specific form of the eigen-
vectors of Tjp;.

2.4 Theorem. If T;p;Ey CE), for some A € NE o then for each oo € Ny, , With
of = ) there is a unique eigenvector ¢ ; = wo+ ¥ {B(B,a)ws : 3° = X, B; > oy}
with eigenvalue (Nk — k#{1 : \; > oy} + o + 1). The coefficients B((3, o) depend
on k, but not on N. Any eigenvector f of T;p; in E with the same eigenvalue has the
expansion

f=3 {cof (fip)dps: FF =X and (= o}

Proof. The expansion of T;p;ws in terms of w,, v° = A is determined by the
coeffcients of p,. By formula (1.1),

Tipiwp = (Nk — k{1 : X > Bi} + i + Vg
+k> {(i)ws : 6> Bi}-
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First we characterize the possible 3 for which B(f3,a) #0. If o; = Ay, then
Pai = wq is an eigenvector for Nk + A; + 1. Henceforth assume p; < A;. There is
a permutation 7 € S, such that a; = Ay for all j and Arp.1 > Ag,. Let
mo = m(i). By the triangular property of T;p; the eigenvalue of ¢,; must be
(Nk = (mo — 1)k + Apy +1). Say (Jji,j2,..-,js) is a permissible string if
1<ji<jaz---<Jjs<m and X, > Aj, >--- > N, > Ag. For such a string, let
ji= #{t A > ’\jl}’ [=1,...,s. Then B(,@, a) = (—k)s/ H;:l (k(m) -1 —jl)+
+Ni, = Amp) for wg = (i, 77 1(j1)) (6,7 (j2)) - - (i, 71 (js))we- The construction
of 3 implies that 3 and « differ in exactly s 4 1 entries, namely those indexed by
elements of {l} U {’ﬂ'_l(j,) t= 1, e ,S}. Also ,6,' = Or-1(j))» IBW_I(j;) -
= Op-1(jy) = Ny Tor  t=1,...,5—1 and () =«q;  Further
Bi > Br1(jy) >+ > Br1(g,) > o (these values coincide with N > Ay, --- > Ag).
This shows that there is a one-to-one correspondence between the permissible
string and 3 (so that B(3, «) is uniquely defined). Set B(~y,a) = 0 for v € Ay,
~° = X if v does not arise in this way.

To show ¢, is an eigenvector consider cof(T;p;¢a;,ws), the sum of the
contributions from T;puws and Tipiw, where w, == (i, 7 (j2)) - - (i, 7L (j))wa-
Indeed,

(_k)s—l

cof (T;pipa,iwp) = —

[T(KkGro = 1=7) + X — Any)
1=2

(Nk+1—kjy + N, (k) tk
k(ﬂ-() -1 _jl) + /\jl - )‘Wo

= (Nk — k(mo — 1) + Ay, + 1)cof (P, wp). O

For two linear operators Uy, U, the commutator is [Uy, Uy] := Uy U, — UL Uy
Define a “variable-changing” operator on ¥, for each i,j =1,...,m with i #j
by

i J
G iPa :zp(al,...ai—l—aj,...,O,...), o€ Ny

25 Lemma. Fori,j=1,... mwithi#j:

@) Tip? = pTipi + (1 +k Z(ll)> pi —k Z CLipis
I£i I£i

(i) Tpip; = pi(Tip; — k(i) + kGapis

(iii) [T;p;, Tipi — k(i)] = 0.

Proof. For part (i), let o € A4, and evaluate
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Tipipo — piTipiPa

a;+1
= (Nk + a; + 2)pipa +k22<

£ s=0

pl.
i !
—p<...,s,...,a,~+al+1—s,...))

— (NK 4 o; + l)pipa—kZ( p(...,‘a,-—l—al—;—l —s,...,fv,...)
i\ s=0

i !
—p(...,S+1,»--,ai+al_Sa--')>
i
—p,pa+k2(( Lartl,. ) p(...,o,...,ai+o’u+1,~-~))
I£i
<1 +k2 ll )p,pa - kZClzpzpa

I£i I#i
Similarly, for part (ii),

Tipipjpo — PiTipipa

o ; i
:(Nk—i—aj—}—1)p,~pa—I—kZ(p(..,l,...,ai—l—aj-l—l—l,...)
=0

i J
—p(...,a,--l—ozﬁ—l—l,...,l,...)) — (Nk + o + 1) pipa

i l
..,a,-—I—oq—}—l—s,...s,.‘.)

g

o ' ; i j
_kzp(...,lil,...,ai+&j—z,...) —p(...,oz,-+aj+1—l,...,l,...)
1=0

=k(p(...,(l),...,ai+5zj+1,...) —p(...,aj—i—l,...,(]ii,.‘.))

= kG ipiPo — kpi(if)Pa
For part (iii),
[Tips, Tips) = Ti(Tip; — piTi)) pi — Ti(Tipi — (Tips — piT))py
= Ti(kGipi — kpi(if)) — Ti(kGijp; — kp;(if))
= k(Typ; — Tip:)(ij)
(because [T}, T;] =0, Theorem 1.9 [3] and T;(;; =0). From this relation
[T;p;, Tipi — k(if)] = O follows easily. O

2.6 Lemma If Pn_1 holds and X\ € NF  then f € E, if and only if for each
i=1,.

m,n’

f= piZ{f,j :j=1,...,mand N\ > A1} +fip,
with fij S E,sj)\, Tipifij = (Nk - k(] - 1) + )\j)fij, and Tiﬁp =0
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Proof. Let f € Ey, i = 1,...,m. Break up f into two parts:
= Z{COf(fapa)pa : Oli> 1}7

and
.ﬁ,O = Z{COf(fapa)pa Loy = 0}

By the direct sum decomposition of ¥, ,_1 expand

_PzZ{f € mn—-l’f:LEE/"f;J;#O}'
By the definition of V and E, we have

5]
TVESf = (1/(Nk + 1),,)T:f = Va(ﬁf)-
But '

0 0

o &P =5 G2 (ealaal - )

Ox;
{O ai:O7
plan,...,o5—1,..)) ;=1

1 1 ,
((Nk—I—l),\;k)Tf & ““(Nk+) T

M is an eigenvalue of T;p; on E
M f'. Since N is generic, and the
(Nk + 1);1,;]( " & ’
eigenvalues of T;p; on E, are known by (%,_1ii) and Theorem 2.4, we see that
(Nk + 1), must divide (Nk + 1), (when f}, # 0). This implies s = As except
fi =X — 1 for some j with ); > \j;1; the quot1ent (Nk—k(j—1)4+p+1)=
(Nk k(j—1)+N) is 1ndeed an eigenvalue of T;p; on E, (Theorem 2.4).
For the converse, suppose g€ ¥ ,, and for each i=1,....m g=
= pi%{8; 1 Aj > Njr1}+gio such that g; € Egy, Tipigy=(Nk — k(] 1) + \)gij
and Tigip = 0 We must show g € E). Expand g=X{g,:ve /V .} with
&v € E,. By the first part of this lemma we can assume g, = 0 (by subtraction)
For some fixed v # X consider the contribution of g, to g; € Es,», an eigenvector
of T;p; with eigenvalue (Nk — k(#{l: vi>v,} — 1) + 1) where vy = A for all ¢
except v; = Aj — 1 and vy = Ay + 1, some s (subject to vy <v,_; or s = 1). This
eigenvalue differs from the hypothetical (Nk — k(j — 1) + );) because \; = v; is
impossible; this requires s = j + 1 and A1y = ) — 1, then 141 > v;. Thus g; = 0
for each j (with A; > Aj41). This leaves T;g = 0 for each i, which implies g = 0.
Recall the desired component of g in E, was subtracted off. O

2.7 Theorem. #,, holds for all n € Z.,..

Proof. Assume &, ; holds. Lemma 2.6 shows that (¥,iii) is valid. Let
AE /VP . We will start by showing that T;p,E) C Ey,fori=1,...,m. Letf € E\
and by "the lemma expand f = p;%{fi;: M > At +fio (for any j=1...,m

thus

The property (&,—1ii) implies that

because T;f = Z}MT,-p,-fL =X,
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and f;; € Esp, Tipifiy = (Nk — k(I — 1) + Ap)fj; and T;fjo = 0. For any j # i, by
Lemma 2.5 (ii),

Tipif = Tipipi2afis + Tipifio
= pj(Tips — k(i) Zifi0 + k(05 fi0) + Tipifip-

Rewrite this as Tipif = pjXigi+&o Wwhere g, := (Tip; — k(ij))fiy and
gjo = kG j(pXifi1) + Tipifio- By definition of (; and properties of Tip;,
Tigjo = 0. Because [Tjp;, T;p; — k(ij)] =0 (Lemma 2.5(iii)) and by property
yn_l(iii), 8jl < Eg,,\ and ijjng = (Nk — k(l - 1) + Al)gj,l-

To apply Lemma 2.6 to show T;p;f € E) we also have to do the case j = i. By
Lemma 2.5 (i),

Tipif = Tipe Sifig + Tipifio
(the range of summation is again{/ : \; > A\i11})

= (PiTiPi + (1 +k 2@)) Pi) Lifig+ Tipifio— k Z Gi(piZifig)

i J#

= piTipiSifu+ (1 + kZ(ij)) (f —fi0)
J#i
+ (Nk+1— (m= D)o+, ()0 —k Y GilpiZufiy)
J#i J#i

= Xy (Nk — k(L= 1) + N)fig + (1 + kZ(ij))f
i
+ (Nk = (m = 1K) fio — kY GilpiZifia)
77
(because Tipipo = (Nk+ 1 — (m — 1)k)po + k> ;(is)pa When o € Ny, and
o; = 0). Further Ti(;; = 0, and (ij)f € E; thus T;p;f satisfies the hypotheses of
Lemma 2.6 and is an element of E).

Now assume A, > 0 (simply note that if ), =0, then Ej = (14 (1,m))
E() 2, 01)s OF argue that Ey is the span of the S,,-orbit of w,, where p is obtained
from A by dropping the zero parts). Let {f,f,...,5} = {j: X > N} and
1<t <fp--- < t, = m. From Theorem 2.2, wy = px + Z{Awpa : @ € A ', and
o = A}. As in the previous part of the proof for each j=1,...,m expand
wy = pj S o1 fis + o with fi s € Eg, 3, fi s 18 an eigenvector of Tjp; with eigenvalue
(Nk — k(t; — 1) + A,,), and T f;o = 0. We claim that f; s = 0 if j > #,. By property
Pu1(i), fs is uniquely determined by cof(fis,pg) for §° = 6, A Since s> i
implies §;A > 0, A we have

s—2
COf(fj»Yapﬂ) = COf(wA’p,é) - Z COf(f}J’pﬂ)’
=1

where 8 € Nyp1, B = (6;A)° (note ;A is not necessarily a partition), and
B:=(B1,...,0+1,...). If f;; # O for some s, then it is an eigenvector of Tjp;
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with eigenvalue (Nk — k(z; — 1) + ),,) which requires cof(f;5, pg) # 0 for some 3
with §; = A, — 1 and cof(fjs,p,) = 0 for all ¥ with * =& A and 3 < A, — 1
(Theorem 2.4). Suppose t; < tp--- < t; <j. If f;1 #0, then 0 # cof(f;1,ps) =
= cof(wy, pg) with j = A, — 1, but this implies 3 = X and (8 # X (since f3; # X))
so cof(w),p 5) = 0, a contradiction. The same argument inductively applied shows
fii=0for I<s.

The last step is to show that the coefficients A, are independent of N.
Specialize the above conclusion to j =m, to obtain wy = p,f,, +fo (changing
notation) with f,, € E;_» and T, fo = 0.

Since f;, is an eigenvector of T,,p,, with eigenvalue (Nk — (m — 1)k + ),
Theorem 2.4 shows that f,, = ws, » + X{B(p)w, : p* = 6uA and g, > A, — 1} for
certain coefficients B(y) which are independent of N (and in Q(k)). By property
& n-1(i) the coefficients of p,, fy, (in the {p,} basis) are independent of N.

We find an explicit formula for f; in terms of f;,, again independent of N. From
the first part of the proof (#,ii) we see that w) is an eigenvector of
(Tompm — kY, (im)) with eigenvalue (Nk — k(m — 1) + \,, + 1) (similar to the
argument in Theorem 2.4). Write this as an equation for fy: indeed,

<(Tmpm - kZ(im)) — (Nk—k(m — 1) + M\ + 1)) Pmfom

i<m
= ((Nk —k(m—=1)+ A +1) - (Tmpm - kZ(im)) )fo.
i<m
But for o € Ny With iy = 0, (Tppm—k >, _,,(im))pa= Nk — (m — 1)k + 1)p,

and this applies to each term of the right-hand side of the equation. The com-
mutation relation 2.51 shows that the left-hand side equals

mempmfm + (1 + k Z(lm)> pmfm - kz Cimpmfm

i<m i<m
— (Nk—k(m—1) + Ay + 1) omfm — kZ(im)pmfm = _kz CimPm s
i<m i<m

while the right-hand side reduces to Ay fo. That is fo = —(k/Am) >°;cn GimPmSoms
and the {p, }-expansion coefficients of f, are independent of N. N

Observe that the proof actually provided an algorithm for w in terms of E;, .
The fact that V¢ acts as a multiple of the identity on E) and T;p;E\ C E) for each
A€ AT shows that T;p; commutes with V. There does not seem to be a direct
(non-inductive) way of proving this.

We state the m = 2 results for illustration and leave the proofs as exercises. Let
A= ()\1, )\2) (with )y 2)\2), then

e
— J —_ . j —7

+i(A1 = A2+ 1), 1p(h2 —j, M + 1))
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As Theorem 2.4 asserts, Tipiwy=(Nk+ A1 + 1wy and Trpywy = (Nk — k+
+X + 1)&))‘ + kw(&)q) (for A\; > )\2).

The transition from E) to E(\ _15,-1,..,—1) (for A, > 1) is remarkably easy.
Define the linear map €, : ¥ nn — ¥ mn—m by

. _[plaa—l,s—1,...;000— 1) if each ;> 1;
mPa =10 if any o; = 0."

We will show e,w) = wiy —1,...A,—1)-
2.8 Lemma. ¢,,T;p; — Tipie = €m i=1,...,m.
Proof. For o € Ny p,
(emTipi — Tipiem)Po = [eEm(Nk + o + 1) — (Nk + &;)em|Pa

+k{2(i 5mp(...,a,-—|—oizs—l,...,;,...)

s#i \ I=0

%=1 , s
—Zp(al—1,...,ai—l—asLZ—l,...,l,...)
1=0
&; i 5
—Z Zsmp<...,l,...,oz,-+as—l,...,>

s#i \ =0

a,»-—l i
—Zl’(al—1,...,l,...,ai—i—asiZ—l,...,))}.
1=0

any term with an entry of ““—1” vanishes; then replace [ to [ 4- 1 in the 0<I< ¢;

summations, and everything in { } cancels. O
2.9 Theorem. Let )\ € /Vf;,n with Ap=1, and let p= (M —1,2—-1,...,

Am — 1) € Nppem, then e,E\ = E,, eqwy = w), and
TWTy - Tywy = (Nk+ X)) (Nk —k + X3) - - - (Nk — (m — 1)k + Apy)w,.

Proof. Suppose that ¢,E\ =E, and enw) =w, is true for all A€ A" Z’S
with m < s <n— 1. The induction starts at enw;1,.,1) = 1; since w 1) =
=pa,.1) + Z{As . )Pa @ € Nymand o’ = (1,1,...,1)}and &>~ (1,..., 1)
implies at least one ¢; = 0 so that ,,p, = 0. Let A € A" Zn with A\, >1, and let
f € Ey. As before, let {t;,...,t,} ={j: A\ > N1} and 1<H<t-- <ty =m.
For each i=1,...,m, expand f=p;> . fis+fio with fi, € Es A and
Tipifis = (Nk —k(t; — 1) + A\,) fis and Tifio =0 (by Lemma 2.6). Then

emf = EmpiBsemfis = Pi¥sEmfis + EmBspif i, Where
f;,s = E{COf(fi,SaPa)Pa Loy = 0,0é S E/Vm,n—l}-

Also, Ti(emXspif ;) = O (any p, appearing in the expression has o; = 0). By the
inductive hypothesis ¢, f;s € Es_, with the appropriate eigenvalue for Tip;, or
emfis = 0 (necessary when y; =0 = A, — 1). By Lemma 2.6, €, f € E,,. Because
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cof (emf,pa) = cof(wy,plan + 1,..., 0 + 1)) for any & € Ny p_m with of = A,
Emw) = w,,. By the formula for (V€)™", we have

(V&) wy = Z paTy’ -+ Tyrwy = (Nk + 1) 4wy

GEN mp
Thus
(N + 1)y g emwn = B{plon = Lop = 1, )T{ o T2 Y (T - - Thywy) -
o € Npp, each ;>1}
= (V&) (T Ty -+ Tywp),

and so
(T Ty)wn = (Nk + 1), (VEwy
(Nk+ 1),
T k),
= (Nk+ M\)(Nk —k+Xp)--- (Nk — (m — 1)k + A\p)w,
Of course, the same factor applies to any w, with o = A. |

3. Some Further Developments

As an application we give a new proof of a formula of DuNkL and HanLoN [7]
for Garnir polynomials. Fix a partition ¢ of Ny <N and form the product of
alternating polynomials corresponding to each column of the tableau for u (enter
the numbers 1,2,...,N; in the tableau in order and filling up the columns
one by one). That is, partition the set {1,2,...,Ny} as {1,2,...,p]}U
U{py + 1,0 +pht U---, where p' = (u),ph,...) is the transposed (con-
jugate) partition for . Let G be the group of permutations of {1,...,N;} which
leave each part of the set partition invariant as sets, that is, Gy ~ Sp, X Sy X
Let ¢ denote the sign character of Gy, and let

! / ul] ! ! ﬂ,1+/1/2
=Ly —-2,....,,0, -1, —2,..., 0 ,...

(note |af = (‘;) and « has N;—pu; nonzero entries). Then
8ul¥) = e, E(W)x" is the Garnir polynomial for p.
3.1 Theorem. ([7]) Let A = o, then g,(T)gu(x) = [[,(1)!(Vk + 1)

Proof. Letm = Ny, sothat A = o € Ny Letf, :== 3 €(W)wya € Ex. The
degree of f,, (as a polynomial in x) is the same as the degree of g,,, and f, has the
same alternating properties for Gy as g,, hence f, = c(k)g, with c(k) € Q(k). In
fact, c(k) is the coefficient of x in f,, Wthh is independent of N (>N1) by
property (). The formula for (V€)™ shows that cof((V¢)~ Y Pa) =
T°f,, = (Nk + 1), (because (V)™ f,J = (Nk + 1), fu and cof(f,,p,) = 1). By
the Go-alternating property, g.(T)f, = #(Go)T°f, = #(Go)(Nk + 1) ak- Thus
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8u(T)gu(x) = #(Go)(Nk + 1), . /c(k). But g,(T)gu(x) is a polynomial in k of
degree |A| (constant in x) and so c(k) must be constant in k, because the degree of
(Nk + 1)y, is || and c(k) is independent of N. It is straightforward to compute
(for k =0)

o 0
g,u (5—3— y .)g#oc) — #{(Go)N,

thus c(k) = 1. L

We intend to construct an inner product for ¥, (which is positive-definite
when k>0) in which the spaces E, are pairwise orthogonal. The following
irreducibility result will be instrumental.

3.2 Proposition. Suppose A € /T k#0, and C : Ey — Ey is a linear
transformation which commutes with each Tip;, i=1,...,m, then C=cl
(multiple of the identity), some ¢ € Q(k).

Proof. We may assume A; # A, or else E) is one-dimensional. Suppose C has
the matrix representation Cw, = > 5 C(B,0)wg (With o = A= (). Then
[T;pi, C] = 0 is equivalent to

C(B, ) (m(8) — hi(e)) + k{ Y c(p,a) - Y CB, (il)a)}

Bi<B: ar>o;

:07 all 01,,86;/1/‘,",

with of = A = [, where the eigenvalue of T;p; associated to w, by Theorem 2.4 is
denoted

hi(e) :=Nk—k#{l: N>} + o+ 1.

For fixed i, if 8; = A, and a; = A{> Am), then C(F,a) = 0 since the sums in
(3.2) are vacuous and h;(«) # h;(3). Doubly inducting, suppose that 3; < o; and
C(0, &) = 0 for all permutations &, 3 of A such that (i) 8; < 3; and o; < &;, or (ii)
Bi<B; and a; < &, then C(f, &) = 0 (again, each of the sums equals zero). For
any permutations «, 3 of A if o # 3 there exists i such that 8; < ¢;, and the
argument shows C(83,«) = 0.

Suppose (3 differs by a tranposition from «, that is, § = (if)c, labeled so that
a; < ;. Using (3.2) and C(f, o) = 0 we have

k(z c((is,e) - Y- (6, (il)a)) ~o.

Bi<B; <y
But (il)3= o only when [=j, and this shows C(a,a)= C(G,5). The
transpositions generate all permutations of A, hence C is scalar. ]
4. The Inner Product and Jack Polynomials

There is a bi-orthogonal relation of {Ej : A € 4P} to Jack polynomials in m
variables. These are introduced (MacpoNaALD [11], StaNLEY [14], BEERENDS and
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Orpam [2], LarointE and VINET [9, 10]) as orthogonal basis for symmetric

polynomials in (z1,2, .. ., z») With respect to the measure
[ 1@-29)E" 7" dun(a),
1gi<jsm

where du,, is supported by the m-torus,

T .= {(z1,...,2m) 1 5 =ei9f,—7r< o;<mj=1,...,m},

and du,, = d6,df, - - - df,,. We will go beyond the symmetric polynomia}s to all tII%e

polynomials in z. Also we will evaluate w) at the point x) := (1,...,1,0,...,0)
for L=m.

For polynomials in z = (zi,...,%,) with coefficients in Q(k), and for k>0
define the inner product

k
Ck

(F-8 = g |10 @| [T - 2™ = 27")

i<l

du,(2),

where g¥(z) := g(z7',25%,. .., z,"). Equivalently, for k = 1,2,3,..., (f, g), is the
k

constant term in the Laurent polynomial ¢ f(z)g" (z) ( H(Zj -2)(g " - zl_l)> ,
i<l
and ¢y = I'(k+1)" /T'(km + 1) the normahzmg constant chosen so that (1,1), =1

(a Selberg-type integral). Let 5, := span{z* : & € Ny}

For o, B € Ny, let Hyp := (z"‘, 7%),, a real symmetric matrix, positive-definite
for k> 0; since H,g = 0 whenever |a| # ||, the infinite matrix H is a direct sum
of finite matrices ((dim##,)-square). As an illustration for m = 2,

(@472 ) = (=k)/(k+1), for I=|a—g].

Define an inner product on ¥, by (pa, pg) p=HJ o> extended by linearity.
When k>0, H7! is positive-definite. The caret in the notation is to suggest
duality. Define a bilinear map ¥, X #, — Q(k) by [pa,z’] := 645 (Kronecker
delta), extended by linearity. We find the adjoint of T;p; with respect to this
pairing. Let 7; denote the Dunkl operator for the S,,-action on (z,, .. .,z,), that is,
0 1- @)

==k , i=1,...,m.
oz ;Zi_z_j

4.1 Proposition. For f € ¥V, , and g € #,,
[Tipif, 8l = [f, (i + (N —m + 1)k)g], i=1,....m.

Proof. Denote the generating function for {p,} by
00 m N
F(x,z) = Z Z P’ = H((l —xz)7" H(l —XIZj)_k).
n=0 QEN oy, =1 =1
We first show
TiF(x,z) — ziiziF (x,2) = k(N —m + 1)z;F(x,z), for i=1,...,m.
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The partial product

m

=11

j=1

mz

1 - lej

o~
Il
—_

is symmetric in both x and z, facilitating the following calculations:

% ~ g
TiF(x,z) = (1 —lxizi +k21 —]x-z~ F(x,2)

=1 i%j

mo 1
_|_
{jzlz,j:#,-xi =X ((1 — zx)(1 — %)
1

— (1 —zx)(1 — iji)> sg!j(l - sts)—l

—i—i -ixj( 1! )ﬁ(l—zsxs)_l}Fo(x,z)

Uz 1—z) S

m Zi— %
=F k 7
(-x Z)( 1— 2z, + Z {1 — ZjX; (1 — Zj.xi)(l — Z,‘Xj)}

N
XiZi E : XiLi
amiaiF (x,2) Z’( * —-Zixi+ = l_zixf) )

m Z Z
+k ( _ j ) y
{; ZJ:#I -7 \(1—zx)(1 —zx) (1-2z%)(1 - 2zx)

X ﬁ (1_ZSXS)_1}F0(va)

s=1,s#i,j
= z;F(x,2) (ke Ve 4k i L
- 1—zix; Py 1= z,xj

“ (zi + 7))%; + zizxix;
+k .
IZ ~zxi) (1 — zix;)

(k+1z
1 — zx;
= (k+ 1)z;, the terms for Z_m +1 contributed (N —m)kz; and the

Thus  T;F(x,z) — zimiziF (x,z) = k(N —m + 1)z;F(x,z)  (here
(k + 1)z}x;
1 — zix;
terms with denominator (1 — zx;)(1 — z;x;) cancel out). This exhibits the adjoint
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of T;. Also pfz® =2%/z if a;>1, 0 if a;=0. Then (Tip)* = p}T} =
=7z + k(N —m+1). ]

LaroiNntE and ViNer [9, 10] made intensive use of the operator z;7;, which
provided some stimulation for the present section. Sam [13] computed the
expansion of the generating function F(x,z) (when m = N) in terms of the
orthogonal basis of non-symmetric Jack polynomials.

4.2 Proposition. The operators zi1i, T; p, are self- ad]omt on 9?,,, Y mn
respectively, for the inner products {-,-);, (-, Vo, n € Zy, i=1,.

Proof Assume that k =1,2,3,... (the entries of H, namely (z ,2%),, are
known to be in Q(k)). Integration by parts on the torus shows that

[ 22 s @) = - [ 0% o

(Since 2 f(€”) = ’eaf( ). Let

k
h(z) = (Z(Zz —Zj)(Zl_l - Zj‘l)> .

I<j
Then
J 5@ i) = - |_6)(5 504" ) he)dm(a)
- | 108 @) 3 L
" CTRA
i3 [ LD @iy
i#j

- [ 70 (5 g)v(z))mz)dum(z)

—1 V v
ey | 5 ( e (Z”)h@)dum(z)

I#

N J D Eme)" (@h(e)dun(2)

In the calculation, we transformed
|, 5D @hiaannta
to
) (jDg"(2)
z—

| ar@ L2 by o
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valid since k> 1 and h(z) is invariant under (jI). Now 7iz; — zimi = I + kD_,;(li),
thus
(Tip)* = zm + (L + k(N —m+ 1))+ kY (i),
I£i

which is also self—adioint for (-,-);. Let M be the matrix representation of (T;p;)
in the z-basis ((Tip;) 2% = 4 Mpgo7®, o, B € Nyp), then the transpose M is the
matrix for T;p; in the {p,} basis, and T;p; is self-adjoint for (-,-); if and only if
MH' =H'M" & HM' = (M")"'H & M"H = HM, the condition that
(T,-p,-)”< be self-adjoint (recall T;p; is invertible for generic k, in particular for
k> 0). (

4.3 Theorem. If \, ;u € A and )\ # y, then E) LE, in the (-, Ve pairing.

*

Proof. In this pairing, homogeneous polynomials of different degrees are
always orthogonal; assume |\|=|u|=n>2. The eigenvalues of T;p; on E,, E, are
(Nk—k#{1: N\ > )\]}+)\1+1) and (Nk —k#{l > ,Ll,j} + i + ,j=1,...,m,
respectively. There must be at least one of these values not equal to any of the
other set, say that it is ¢o € Q(k) and occurs on E) (changing lables, if necessary).
The linear space ¥ = Ex N Eﬁ is invariant under T;p; for each i. The orthogonal
projection of E) on Y (which certainly exists for k > 0) commutes with each T;p;,
hence either ¥ = {0} or Y = E) (Proposition 3.2). Suppose ¥ = {0} and let
f € E\ be an eigenvector of T p, for the eigenvalue cy; since f & Eﬁ there exists
g € E, with (f, g),/c\ # 0. Expand g as a sum of eigenvectors of Tjpy; all of the
occurring eigenvalues differ from ¢y hence (f,g); =0, a contradiction. Thus
E, C ElJL_ O

By inverting the expansions of w) in {p,} we develop the link to Jack
polynomials.

As in property (&) in Section 2, define the connection matrix
Asp(a, B € N mpn) by wa :ZﬂAﬁapﬁ; Theorem 2.7 shows that A,,—; and
Ag, =0 unless a =3 or §° > o' Let B denote the inverse matrix, so that
Pa = Zﬁ Bgows (and again, By, = 1 and Bg, = 0 unless o = 3 or 3 > ). For
a € Ny, define an element of )y, 8,(z) := E,@ B,s7° (note the transpose!).
Then {g : @ € N p} is a basis for #, and (gq, gs); = 0 if o’ # 3°. Further
[Wa, 85] = Bup. The proofs are trivial: let Qqp := (wa,wp);, a matrix, then
Q = ATH1A: the Gram matrix

Vap = (80, 88)e = Z ZBaa’hBﬂﬁz&’y]’Z’h)k
MmooMm

= (BHB") 5 = (7") 1p-

The block structure of 2 with respect to the spaces {E) : A € A" Z,n} implies that
Q! has the same block structure; and this shows (g, gs), = 0 when o # °.
6The pairing [wa’ gﬁ] = [E*yl Ay aPyis 272 B,@,’Yzz’yz] :Z'y] Ay oBpy = (BA)ﬂa =
= Bar
Recall the generating function from Proposition 4.1; the bi-orthogonality
implies
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= ﬁ((l — z,'xi)~1 lN_[(l - Zixj)*k) (4.1)

(absolute convergence if |x;| < 1 all j, and |z;| = 1, all i).

Fix A€ ,/Vi,n, let Jy(z) =Y {ga(2) : & = A} (summing over distinct
permutations of A). Then J x(z) is symmetric in (z;,22,...,2m), for A, g € A" Z,n
with X # p, (Jx,Ju), =0 and Jx(z) = my(z) + >, -, B\, m.(z), where m, denotes
an element of the monomial basis, that is, m,(z) = ${z* : & = A} and

B\, =3X{B,, : &’ = A}

By the defining properties of Jack polynomials J(z) is a scalar (Q(k))-multiple of
Jx(z; 1/k) (StanLey [14], Beerenps and Oppam [12]). Recall that the Jack functions
form a basis for symmetric functions in infinitely many variables, while Jack
polynomials are the specializations to m variables and partitions with m or fewer
parts.

For the tableau corresponding to the partition A (the set of lattice points (i, ),
1<i<m, 1< j<\) there are two hook-length products, the upper

)= ] M—i+r(n—j+1)),
(L)ex
and the lower
he(N) = [ - i+ 14k (N —))
(i,7)ex

(where X denotes the conjugate partition). Stanley showed that
cof (Jx(z; 1/k), my) = hx () ([14] Theorem 5.6), and also that the ““symmetric
function” squared norm I ::Nh>.< (A\)A*(X). This allows us to evaluate w, at the

point x&) = (1,...,1,0,...,0) for L>m. By BrerenDps and Oppam (Cor. 3.6 in
[12]),
(km),\;k

(Do) = (k(m —1) + 1),

I
4.4 Proposition. For oo € N, ,, m< LN,

wo(x) = (Lk + 1)A;,€< IT =i+ 14k - i))) ,

(#)er

-P
where A =o' e N, .
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Proof. Substitute x; = 1 for i< L, x; = 0 for i > L in the identity (4.1) obtaining

= m
Y Y wale®)eale) = (1 -2 @Y.
n=0 a€N 'y, Pk}
Since w,(x)) depends only on o, the identity can be restated as
> m
> Y wal®)al) = [ -2 .
n=0 xen? i

The | Fy-hypergeometric series for Jack polynomials is

"’ (ke 0 (Lk + 1)y Ja(z;1/k)
1 g) @D xk Iz
o-a =3 5

n
n=0 xe? k I

1

(Z. Yan [16], also BeerenDs and Oppam [2]). The coefficient of (Lk + 1), is

hs (M) (2) I(z) .
- > th It.
he OORF(N) — kR* () e required resu
It is not hard to show that the symmetrized @) := > {w, : @ = A} has the
squared norm

(k(m — 1) + 1) hx (X)

(‘DM‘DQI/C\ =(#{oa:a€ Ny, = >‘})2 (km))\;kh* ()

We leave the computation of (w,,wg) for ' =A=', A€ N Zm for
subsequent work; this computation probably can be done using the self-adjointness
of each T;p; acting on E). Oppam [12] briefly mentioned bases for arbitrary (not
just symmetric) polynomials associated to root systems. It should be possible to
use the commuting set of self-adjoint operators {Tip1, T2p2 — k(12),. .., Tipi—
—k EJ- <(if),...,} to produce a complete orthogonal decomposition of Ey (the
duals of these operators on J#, were introduced by LaroiNTE and VINET [10]).

The inner product on polynomials in xy, . . ., xx used by Sani [13] is defined as
follows: the generating function F(x,z) = [[~,((1 — xz:) ™" Hﬁ:l(l —xiz) ") =
=), 2%Pa(®) = 34 5 Capz®s®  defines the matrix C, for polynomials
f=2 00" and g =3 4 bgx® the inner product (f,g), =Y, 5(C7"),5a0bp.
Restricted to each E) this inner product is proportional to the torus-type inner
product (f,g),; this follows from the irreducibility shown in Proposition 3.2.
Another pairing for polynomials was used in Section 3; it is [f, g] = f(T)g(x)|,—o-
It was shown in [5] that this is related to the Hermite-type inner product by the
formula

[F.8] = e j exp(—A/2)f (Wexp(—A/2)8(@) [ [ Ini — x5 exp(—|xl*/2)dx

i<j

where ¢, is the normalizing constant and Ay = Zi\; 1 Tl.2. Now suppose f € Ej and
§EE, with \pue€ ,/Vf, and let f=> a.,x* and g= Zﬂ bgx®, then
F(T)g(®)mo = 20 3aT*g(¥)|,—p; but T%g = (Nk + 1) ,,c0f(g, pa) by the proper-
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ties of E, Now g=3,,b3(C"),po Thus [f,g]=(Nk+1),
> 054(Ch), gbs = (Nk+1) ,(f,8),- The inner product is zero unless
A = p. This exhibits the proportionality constant for the two inner products on
each E,. The mapping exp(—A/2) transfers orthogonality relations and norms
from E) to the Hermite-type inner product, studied by BAker and FORRESTER [1].
The inverse matrix B can be used in a formula for Vx*(a € A" Z,n). Indeed,

x* = a!{pa = 01!62535&(4)5

(and Boo =1, Bg, =0 unless 8=« or §° > o). For example, when m = 2,
A=A,

(k);
K+ A — X +j);)!

Az
Pae = Wi h T Z ( (M = X2 +7)wWin+ix-))
=

+i(A = A +J+ 1), Wig—jx4)-

(Proof left as exercise.)

5. Singular Polynomials

In Dunkr, DE Jeu, Oppam [8] the singular polynomials were studied, for
general finite reflection groups. For each value of k for which V! has nontrivial
kernel (V does not exist), there is a space of homogeneous polynomials in
X1,...,xy annihilated by each 7;, i = 1,..., N. A conjecture was made regarding
in which irreducible Sy-modules one could find these singular polynomials. The
present work confirms part of the conjecture: for each a = 1,2,3,... such that
gcd(N —m+1,a) < (N —m+ 1)/m, there is a space of polynomials annihilated
by each T; for k = —a/(N —m+1) and on which Sy acts according to the
representation (N — m,m) (m<N/2).

We will show that the Sy-orbit of w(,, . 4 (rescaled to have Q[k]-coefficients)
provides this space. Property #iii’ of Theorem 2.7 shows that

Tiw(a,a,...,a) = (Nk - (m - l)k + d)ﬁ

for some f; € E(uq..a0-1) for i=1,...,m and, of course, Tiw, . 4 = 0 for all
i > m. This indicates the desired property for k = —a/(N — m + 1), but how do we
know that w, _, is defined for this special value? Let A = (a,...,a) € N 51; the
hook-length product used in Proposition 4.3 has the value

h*(\) = al(k+1),(2k+ 1), - ((m— 1)k + 1),
= ((m — Dk + 1)y,
Now Proposition 4.4 with L = m shows that
(mk 4 1) _ (mk+1),
((m =1k + 1), al

If f, := ((m — 1)k + 1), ,wy has coefficients in Q[k] (polynomials in k), then the
polynomial identity f,(x™) = (mk + 1) xx Shows explicitly that f; # 0 when

w(x™) =
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k=-a/(IN—m+1) and ged(a,N—m+1) < (N —m+1)/m. We show that
this is indeed the case.

5.1 Lemma. Let 0<b<aand p= (a,...,b) € N7, then k"=Dabp* (1), is
in the Qlk|-span of {pa}.

Proof Let v = (a,...,a,b+1) € A7 for 0<bh<a— 1. Then
m—2

Km=Datbpt (1) — pl(a — b)! ( (1+ ik)a) (@a=b+1+(m—1)k),

i=1
and

klm=Datbr ¥ () (b4 1)

k(m—l)a+bh*(#) - (a—b)

Assume the statement of the lemma is true for p. By the construction used in

Theorem 2.7, w, = pufm +fo Where f,, € E, and Tppmfn = (Nk — (m — 1)k+
+b + 1) fin. By the formula in Theorem 2.4,

(a—b+ (m—1)k).

k
S =wy — jmw,.
B (m— 1)k+a—b]gn;( )
By the inductive hypothesis k"4 15 (1)f, has all of its coefficients ({p,}) in
QkJ.

The method in Theorem 2.7 constructs fy from f;, with no divisions (other than
rational numbers).

Repetition of this procedure reduces the problem to k(" Dap*x
x((a,a,...,a,0))wq,. 40y now reduce m by 1, and so forth. The induction
begins at w, = p,(x1,x) (Just one part).

The singular polynomials not associated to two-part partitions of N appear to
be considerably more complicated. For example, for N = 5, the conjecture calls
for thle representation (3,1,1) to give rise to singular polynomials for
k=-41,-3 ..

Wezconjzecture that kMA* (A\)w) has coefficients in Q[k] for arbitrary A € A%,
We also expect that more detailed information can be found about the
denominators in wy = XgAgypg in terms of S.

This has been a rather algebraic approach to the intertwining operator. The
problem of constructing an integral transform which implements the operator for
k > 0 remains open beyond N = 3. It would also be interesting to find an analytic
definition of the inner product (-, -)¢, introduced for ¥7,.
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