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An Abelian Quotient of the Mapping Class Group Jo 
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Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91103, US 

1. Introduction and Preliminaries 

Let M = Mg, 1 be a compact oriented surface with one boundary component and 
let ~ '  =J/~o,1 be its mapping class group (that is, orientation preserving ho- 
meomorphisms of M which are 1 on the boundary mod homeomorphisms which 
are isotopic to 1 by an isotopy which is pointwise fixed on the boundary), and let 
J = Jg, 1 be the subgroup of maps in Jr' which induce the identity map on the 
homology group Ht(M,Z ). The group J is of interest both for its possible 
topological applications and for the group-theoretic questions which it supports. 
The former has been championed mainly in the work of Birman. In the latter 
category we have, for example, the open question : is J finitely generated ? Another 
problem of interest (which might have bearing on the first and which also has 
specific topological applications) is the computation of the abelianization J/J' .  
Abelian quotients of 3 were produced originally by Birman and Craggs in [BC] 
using the Rochlin invariant of homology 3-spheres. These quotients are finite in 
number and defined by means of homomorphisms: J ~ Z  2. In this paper we 

different abelian quotient of J ,  this time free of r a n k ( / ) ,  by construct a 
\ l 

examining its action on a certain nilpotent quotient of nl(M ). The new abelian 
representation :is then applied to the two problems: 

a) (Birman): Does the subgroup 3r of J which is generated by twists on 
bounding simple closed curves have finite index in J ?  

b) (Chillingworth): If f e 3  and f "preserves winding numbers" of all curves 
on M, is f ~ J - ?  (See [C 1] for relevant definitions.) 

The results are then extended to the case of a closed surface, and in the final 
section we look at the connection between the Birman-Craggs quotients and the 
quotient defined here. 

Throughout the paper, all surfaces are compact, orientable and oriented. Mg 
will denote a closed surface of genus g and Mo, 1 a surface with one boundary 
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component ; the latter will be commonly referred to as "an open surface". We also 
use the following notations and abbreviations" 

SCC means simple closed curve; BSCC means boundin 9 SCC, that is, an SCC 
which bounds in M. If the surface is closed, a BSCC 7 separates M into two 
surfaces each of which it is the boundary. For  an open surface, 7 is the boundary of 
only one of these subsurfaces : the other contains 0M. In this case then, we define 
the genus of  7 to be the genus of the unique subsurface it bounds. 

All homology groups use Z coefficients. We abbreviate Hi(M,  Z) and zcl(M ) to 
H and ~r respectively. For  an open surface the base point of rr will always be chosen 
on ~M. The product c~fl in r~ indicates that we traverse ~ first, then fl, and [c~, fl] 
means cq30~- lfl- 1. We will commonly confuse curves with their classes in re, using 
the same notation for both. 

H has the standard bilinear intersection form, which is symplectic (that is, 
x. x = 0 and the form establishes a self-duality on H, i.e., an isomorphism H-~ H*). 
A basis of H, which is free abelian of rank 2g, is symplectic if it is of the form a i, bg 
(i = 1 ..... 9) and ag.ai = b i • b; = O, ai. b; = 6 u (Kronecker delta). An automorphism of 
H is symplectic if it preserves the form ; these form a group which we denote simply 
by Sp. 

For an open surface M, n is free and has a set of free generators represented by 
SCC's eft,/3i (i= 1 .. . . .  g), where the ~ and fig's are disjoint except at the basepoint 
and are arranged there as in Fig. la. (Such a set of curves is known as a "canonical 
basis", and cutting the surface along these curves reduces it to a disc.) Figure lb 
shows the curves ek, /~k on the form of the surface we will use in this paper. The 
situation is essentially the same for a closed surface, except that n is no longer free : 

g 

we have the well known relation 1~ [e~, fl~] = 1. If we compute the partial product 
/=1  

k 

1-[ [a~, fig] in the open surface, we find it to be represented by the curve 7k of Fig. 
/=1 

g 

lc. In particular, 1~ [e~, fig] is represented by ~M itself, with orientation opposite 
i=1  

to that acquired in the natural way from M (the natural orientation of 8M puts the 
interior of M on its left). 

~ g  (resp..g/g, 1) is the mapping class group of M o (resp. M0,1). The homology 
functor gives homomorphisms from these groups to Sp, and it is well known that 
these homomorphisms are surjective; the kernels are o~g (resp. 'Jo. x). We shall also 
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systematically confuse a homeomorphism with its isotopy class in J L  For the 
most part we will work with an open surface, deriving the corresponding results 
for a closed surface from those for an open surface. The subscripts O, 1, etc., will be 
suppressed when clear. 

2. The Nilpotent Group n/In, r~'] 

Let M = Mg, 1 ; it will be implicitly assumed that all homeomorphisms of M are the 
identity on OM, and that a fixed basepoint bp is given on ~M. Then any 
homeomorphism f of M gives a well defined automorphism f *  of re. Furthermore, 
any isotopy which is trivial on dM induces the identity map on re, and hence f *  
depends only on its mapping class, This is consistent with our stated policy of 
confusing f with its mapping class, and we obtain a homomorphism 
* : Jg~Aut ( r  0. In the case of a closed surface we do not have such a homomor- 
phism : the homeomorphisms and isotopies of Mg do not fix a natural basepoint. 
Another simplifying feature of the open surface case is, as we have seen, that n is 
free. These facts illustrate the general principle we have found that, in most 
situations, J¢/o, 1 is easier to work with than J/0; the desired results for .~gg can 
usually be derived from those for '//g0, 5. 

We are going to exploit the action of ~ on n to get an abelian quotient of d .  
Our main tool will be its action on a certain quotient group of n. 

Definition. a) E = rc/[~z, n']. 
b) N = ~'/[z~, r~']. 

Note that E is just rc with centralized commutator subgroup N. We have thus a 
central extension 

O---~ N - - .  E P-Y~ H---~ O. 

Although the group operation in E (and N) will be written multiplicatively, we 
maintain the additive notation in H, so that p(ele2)=p(eO+P(e2).  

Recall that AZH is the quotient of H ® H  by the subgroup generated by x ® x  ; 
more generally, AkH is the quotient of the k th tensor power H k of H by the 
subgroup generated by X l ® X z ® . . . ® x  k in which two of the factors x~ are equal. 
The image of Y l ® . . . ® Y k  in AkH is denoted by y~ A Y2 A . . .  ^Yk.  An alternate 
definition which we will find more akin to our purposes is the following: let S k be 
the symmetric group, acting on H k by permuting the order of the factors, and 

define the map 2 : H k ~ H  k by 2(x)= ~ sign(n), re(x) for all x e H  k. It is well known 
~eSk 

that Ker 2 is precisely the subgroup generated by all x 1 ® . . .  ® x  k having two equal 
factors, and we may then define AkH to be Im 2, writing 

2 ( X l ® . . . ® X k ) = X  ~ A ... AXk= ~, sign(n)-x,m®...®x.(k). 
~ S k  

The fact that H is free abelian of rank 2 9 implies that AkH is free abelian of 

rank (2k). 
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Suppose now that x, y~H. Lift them to 2, ~ in E and form [2,2P]. Using the 
centrality of N, standard arguments (see, e.g., [MJ, as on p. 63) show that [2, Y] s N 
and does not depend on the liftings; we denote this element by {x,y}. Also 
following Milnor's exposition we have: 

Lemma IA. The map { - , - }  : H x  H---,N is bilinear and antisymmetric, that is, 
{x, y + z} = {x, y}- {x, z} and {y, x} = {x, y} - 1, and hence defines a surjective homo- 
morphism j : A 2 H--+ N 9iven by j(x A y) = {x, y}. 

Proof If ~, ~, ~ are liftings of x, y, z, then ~[ lifts y + z, and hence {x, y + z} = [2, ~ ] .  
By a standard commutator identity the latter is 

E2, 9]. ~E2, 72 ~-  1 = E2, ~3. E~, ~2 = {x, y}. {x, z}, 

since N is central. That {y, x} = {x, y} - 1 is obvious. Thus we do indeed get a well 
defined homomorphism from AZH to N; its surjectivity follows from the fact that 
N is generated by all [2, £] for 2, £e E. 

Lemma lB. j is an isomorphism. 

Proof N is free abelian of rank (z2 o) (see [MKS], Theorems 5.11 and 5.12). But 
\ - - /  

AZH is also free abelian of rank (2q), and a surjective homomorphism between f.g. 
\ / 

free abelian groups of the same rank must be an isomorphism, QED. We shall 
henceforth identify N and A2H via this isomorphism. It is natural in the following 
sense. Any automorphism f of rc induces an automorphism of E taking N to N, 
also denoted by f The action o f f  on H also induces a natural automorphism f on 
A2H (sometimes written AZf) by f (x/x  y)=f(x)/x f(y). The naturatity ofj:A2H-~N 
is then expressed by: 

Lemma 1C. fj(x /x y)=jf(x/x y) for x, y eH  

Proof Let 2, y lift x, y to E; then J)'(xAy)=f{x,y} = f [2 ,y ]  =[f2, fy].  Note that 
f(2), f(~) are liftings of f(x), f(y), so we get fj(x ^ y)= {f(x), f(y)} =j(f(x)/x f(y)) 
=jf(x A y). QED. 

Corollary. J acts trivially on N, and thus N is an J / / J  = Sp-module;j  is an Sp- 
module isomorphism of A2H with N. 

Proof The first statement follows from the corresponding one for A 2H, the second 
is then obvious. 

3. The Action of J on E 

Let f s  J ;  to avoid messy notation, we shall abbreviate the induced maps f *  on 7z, 
H, and E to simply f Let now e~ E and put p(e)= x~ It. Since f (x)= x, we get f(e) 
=ke, where keN. Ifp(e')=x also, we have e'=en for some nsN, and f(e')=f(e) 
*f(n)=f(e).n since (by Lemmas 1) f acts trivially on N. Hence f(e') .e '-l=f(e)n 
.(en)-1= f (e ) . e - l=  k, and we have: 

Lemma 2A. For f ~J;, x~H and e a liftin9 of x, the element f(e).e -1 is in N and 
independent of the lifting. 
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We denote this element of N by 6f(x). 

Lemma 2B. 6 f : H ~ N is a homomorphism. 

Proof Let x 1, x z ~ H  and el, e 2 be the liftings; then 

6f(x 1 + x2 ) = f(ete2).(ele2)- 1 = f(el) .  (f(e2). e~ 1). e;  1 

= f(eOe-~ l. f ( e z )e~ t=f f (x l ) .6 f (x2)  ' QED. 

Making now our standard identification of N with A2H, we have then 
3fe  Horn(H, A 2, H), and the latter is an additive abelian group. 

Lemma 2C. The function (~ :J -*Hom(H,  AZ H) is a homomorphism. 

Proof We must show that 6( f9 )=6f+ 69, that is 6(fg)(x)=6f(x)+ 6g(x) for xeH.  
Let e lift x;  we get 6(fg)x= fg(e).e- 1 = f[g(e) .e-  1] f (e ) . e -  1 = f(6g(x)).gf(x). But 
6g(x)e N and f acts trivially on N, so the latter is just 6g(x). 6f(x) in N, that is, 6f(x) 
+6g(x) in AZH, QED. 

Note that Ker 6 is precisely all maps f e J  such that f(e) = e, all ee E, i.e., the set 
of maps acting trivially on E. 

The group Hom(H, A2H) has a natural Sp-module structure, namely, for he Sp 
and c~ :H~AZH,  we put 

h(o 0 = (H h- x , H ...... ~ ~ AZH h-----L-~ AZH) = ho~h- a. 

This action also then defines an action of ~ '  on Horn(H, AZH) via the map 
~ ' ~ S p .  

Lemma 2D. I f  he .~ ,  f ~ J ,  then 6 ( h f h - t ) =  h(6f). 

Proof 

6(h f h -  ') (x) = h f h  - I(e). e -1 = h f h - 1  (e). hh- ' (e-  1) 

= h[f(h - le). (h- t(e))- 1] = h[bf(h- l(x))] = [h(6f)] (x), QED. 

In summary, Lemmas 2 tells us that ~ : J - * H o m ( H ,  A2H) is a homomorphism 
of groups commuting with the action of J g  on these groups, where d / a c t s  on o¢ by 

conjugation. Note that Hom(H, AZH) i s f reeabe l iano frank29 . (2~) , so lm6is f ree  

abelian of rank no greater than this. Our first main result will be to determine this 
image precisely. 

We first shift our viewpoint slightly through the use of the self-duality on H. 
We have Hom(H, AZH) naturally isomorphic to A 2 H ® H  *, and the latter is 
isomorphic via the symplectic duality to AZH®H. These isomorphisms commute 
with the natural actions of Sp on the groups in question a and are thus Sp-module 
isomorphisms. The isomorphism from A 2 H ® H  to Hom(H, A2H) is given specifi- 
cally by defining the value of O®x on y to be (y.x)O for OeAZH, x, ye l l .  To 

1 The natural action of Sp on AZH®H is 9(x ̂  y®z)=gx ^ gy®gz 
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describe the inverse isomorphism, choose a symplectic basis a~, b~ of H ;  then for 
6~ Horn(H, AZH) the corresponding element of A2H®H is: 

0 

[6(a,)® b~- 6(b,)®a~]. 
i = l  

For f ~ J  we denote the image of 6f in A2HQH via this isomorphism by z¢, and 
have the following form of Lemma 2 : 

Lemma 3. ~ : J ~ A 2 H ® H  is a homomorphism commuting with the action of ~ on 
these groups. Its image is thus an Sp-submodute of A2H®H. 

We will find this form of the homomorphism 6 more convenient for our 
purposes. 

4. The Image of 

Classical matter  on the representations of G1 tells us that A2H®H is not irre- 
ducible over G1 but (at least over a field) splits into two Gl-submodules, and 
this suggests that we examine these submodules as possibilities for Im z. One of 
these submodules is A3H; in fact, using the alternate definition of AkH found in 
Sect. 2, we have: 

a) A 2 H = t h e  subgroup of H 2 generated by X A y = x ® y - - y ® x .  Hence 
A2H®H = the subgroup of H 3 generated by (x A y ) ® z = x ® y @ z - y ® x ® z .  

b) A a H = t h e  subgroup of H 3 generated by 

x ^ y A Z = X ® y N z - -  y®X®Z + y®Z®X-- z N y ® x  

+ ZNX ®y-- X®z®y = (X A y)Nz + (y A Z)®X + (Z A x)Ny. 

Thus AaHCA2H®H. We shall show that Im z is precisely A3H by examining z on 
generators of J .  

Powell (see [P]) has shown that J is generated by two types of maps. First, let y 
be a bounding SCC (BSCC); then the twist T~sJ .  Second, let (7, 6) be a bounding 
pair (BP), that is, a pair of disjoint homologous SCC's which are not homologically 
trivial; then T~ T 0- i s  j .  Powell showed that (for a closed surface) these maps, taken 
over all BSCC's which bound a subsurface of genus 1 or 2 in M, and all BP's which 
bound a surface of genus 1 in M, generate j . 2  The author has shown in [J 1] that 
the latter maps suffice, for an open surface as well as closed. The next two lemmas 
calculate re when f is a Powell generator. 

Lemma 4A. Let ~ be a BSCC and put f = T~ ; then zy = O. 

Proof Let y be as pictured in Fig. 2, bounding S of genus k. We choose an arc e in 
M -  S connecting bp to 7 and let U be a thin band neighborhood ofe in M -  S, also 
as shown in the figure. A canonical basis ai, fl~ may then be chosen for lz, as shown 
in Fig. lb, so that ct~, f l ICM-S  for i>k, and for i<=k, (~ or fli)c~M-SCU. Let 

2 For an open surface Mg, x, the genus of a BP is defined as was done for a BSCC, namely, the genus 
of the unique subsurface of M which it bounds 
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now c be that element of n given by traveling out along e, turning right at 7 and 
running around it once, and returning to bp along ~. We find that the induced map 
of f on n leaves ei, Bi fixed for i>  k, and for i<  k and x = ei or/~i we have f ( x )  
= cxc-  1 = [c, x]. x. But ce n' since it is homologically trivial, so [c, x] e In, n']. This 
shows that f ( x ) = - x m o d [ n , n  '] for all basis elements x, that is, 6f (y)=0 for the 
corresponding basis elements y of H, i.e., 6f  = 0; zs is then also zero. 

We turn now to the case of a BP (,/, 6) bounding a surface S of genus k, as 
pictured in Fig. 3. 

Again we choose a canonical basis of n, suitably adapted to the splitting of M 
into S and M - S  (see Figs. 3 and also lb). To begin with, ei, ~ C M - S  for i > k +  1, 
and/~k+ 1 C M -  S also. ek+ 1 travels along an arce to 6 (that is, e is the initial arc of 
ek+ 1 c ~ M -  S), crosses it into S, and exits S at a crossing of y, as shown in Fig. 3. Let 
t /= ek+ 1 c~S and define d to be the path traveling out from e to 6, turning left, once 
around 6 and then back along e; also define c by running out along ~ and then t / to 
7, left once around y, then back along t /and e to the bp. These curves c and d are 
clearly homologous, and in fact homologous to /~k+l. Let now f =  T~T a- 1. Its 
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act ion on n leaves ai, fll fixed for i > k +  1 as well as flk+~, and for x = c q  or fli with 
i<=k we get f ( x ) = d x d - l = [ d , x ] . x .  Finally, f ( ak+l )=dc - lak+r  N o w  dc -1 is 
represented by the curve of Fig. 4. Referring to Fig. lc, Sect. 1, we see that  this is 
precisely the curve )'k, and hence by the results given there, we have d c - l  

k 

= I-I [al, fli]. if  a i, b i are the homology  classes of  a i, fli respectively (so that  the 
i = 1  

k 

class of  d is b,+ 1), then in N = A Z H  we have dc-~ is just y. a i ^ b i. Summariz ing  
i = 1  

then, we get: 

3f(a,) = b k+ , ^ a,~ i< k 
~f(bi) = bk+ 1 ~' 01/ - 

k 

6f(ak+l)= ~ a iAb  i 
i = 1  

6 f = 0  on remaining basis elements. 

Finally, we have:  

L e m m a  4B. If(7,6) is a BP bounding a surface S of genus k and ai, b i are chosen as 
above, then, 

Proof z s is given by 

g 

~, (6f(ai)®b ~-  6f(bi)®a~) 
i = 1  

= ~ [ ( b k + t A a i ) ® b i - ( b k + , a b i ) ® a i ] + ( ~ a l / \ b i ) ® b k + l  
i = 1  i = 1  

k 

= ~ [(bl ^ bk + 1)®ai + (bk+ 1 A ai)Nb i + (a i ^ bi)®bk+ 1]. 
i = 1  

But as we saw at the beginning of this section, this is just 

k 

a~Ab~^bk+ 1, QED.  
i = 1  
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There is an alternate way of describing the element z(T~T~ -~) which is 
sometimes useful. The inclusion S C M induces a map on homology H I(S)~ Ha(M ) 
which is actually injective (an easy proof may be given geometrically or by using 
the Mayer-Vietoris sequence). Choose a maximal symplectic subspace U of Hi(S), 
that is, a subspace with basis at, b~ (i= 1,..., k) satisfying the symplectic laws and 
which is maximal in this respect. Then HI(S ) has the basis % hi, c, where c is the 
homology class of y given the natural orientation induced by that of S (this 
orientation of y puts S on its left as we move around V). The above lemma may be 
(taking care of the signs !) translated into : 

C°r°llary" z(TT~- l)= ( ~ ai A bi) /\ c ' the latter expressi°n beiny independent ° f  l 

choices involved. 

We are now ready to prove 

Theorem 1. For 9 > 2, Im z = A3H. Thus z gives an abeIian representation of  J onto 

a free abelian group of  rank (23 ) 

Proof. We have already shown that z takes Powell's generators into A3H, so we 
need only show that z is surjective. If f is a BP map of genus 1 and % b~ is a 
symplectic basis of H chosen as in Lemma 4B and its corollary, then we have 
a 1 A b 1 A b 2 is in Imz. Using this element and the fact that Im z is an Sp-submodule 
of A3H will give us the theorem. 

First let g = 2 ;  we apply the Sp map a z - ~ b z ~ - a 2  (basis elements not 
mentioned are assumed fixed) to a 1/x b 1/x b 2 and get -a~  z, b~ A a2~ Imz. The Sp 
map a~.-*az, bl*--~b 2 applied to these two elements gives us a2/ , ,bzAb 1 and 
- a  2 Ab z/xal,  and we now have a basis of A3H in Imz. 

If g>3 ,  we apply instead the map a ~ a l + b l - b  3, a 3 ~ a 3 - b ~ + b  3 to 
at A b I/~ b 2 and get a~ A b 1 ̂  b z - b 1/x b 2 /x b3~ Im z, showing that 
b z A b 2 A b a e I m z .  If now we apply to the two elements a x ^ b ~ A b  2 and 
b~ t, b 2 A b 3 the Sp maps of the type 

a) al +--~ai, bw*b ~ 
and 

b) a~--*bi--*-a i 

we easily see that all of the following are in Im z : 

1) a, A b~ A bj~ 
2) a//x b~/x a~J i 4:j 

3) a~/x a~ ̂  a k] 

4) a i e, aj A bk} i,j, k distinct. 
5) a t ^ bj/~ b k 

6) b i A bj ^ bkJ 

These form a basis for AaH, QED. 
Because of a number of analogies with differential geometry and mechanics, we 

shall call the element z fe  A3H the torsion of  f. 
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5. Some Applications of 

Let .¢~ be the subgroup of J generated by all BSCC twists. Birman has conjectured 
that J is finite index in J .  For the surface Mg, 1, 0 > 2, the homomorphism T shows 
that this conjecture is false: for by Lemma 4A, Y C Ker T, and yet Im z is infinite, 

being free abelian of rank (23) > 0. In fact, any map f with non-zero torsion is of 

infinite order in J / J ' .  The disproof of Birman's conjecture for open surfaces has 
also been obtained by Wagoner (using algebraic K-theory) and, implicitly (as we 
describe below), by Chillingworth in [C 1, C 2]. In [C 2] Chillingworth exploits the 
concept of the "winding number" of a curve on a surface w.r.t, some vector field on 
the surface to obtain a necessary condition for a given map f ~ J  to be in J ' ,  and 
conjectures that this condition is sufficient. Using the torsion we will show this 
conjecture is false also. First we need a short resume of Chillingworth's work. 

For an open surface M and a non-singular (that is, nowhere zero) vector field X 
on M, the winding number (w.r.t. X) of an oriented regular curve ~ is defined to be 
the number of times its tangent rotates w.r.t, the framing which X induces along 
the curve; it is notated ~ox(7). This concept is then extended to the winding number 
of a free homotopy class of curves by selecting suitable representative regular 
curves for each class. If X1, X 2 are two vector fields, Chillingworth defines an 
integral cohomology class d(X1,X2) such that COx2(7)-cox~(y)=(d(X>X2),7) 
(originally defined in JR], p. 274). 

Suppose now f e J .  We introduce the function ef.xO,)=Ogx(fy)-COx(7); it 
measures the change in winding numbers produced by f Clearly o z x ( f ? ) =  COx(7), 
so o)x(fy ) = cn s_ ,x(7), and hence ey. x(7) = ~oy_ ,x(7) - (Ox(~) = (d(X,  f - 1 X ) ,  7), show- 
ing that the function ey, x is actually a function on homology classes and can be 
identified with the cohomology class d(X, f - 1 X ) .  Now 

el.x2(7)- el. x,(Y) = COx2(/Y)- ~Ox2(Y) - rnxl(fY) + (nx,(7) 

= (d(X1,X2),  f Y }  - (d(X, ,X2) ,  7) = (d(X~,X2), fY  - 7} = 0, 

since f7 is homologous to 7. We have thus shown: 

Lemma 5A. The cohomolooy class e l . x = d ( X , f - l X )  defined by es, x(7)=O)x(f7) 
-COx(?) is independent o f  the vector field X.  We write simply e f  henceforth. We also 
have: 

Lemma 5B. e cg=es+eo for  f g ~ J .  

Proof  

e Lq()') = Ogx(f97)-- °~x(7) = (~x f  (gT) -- Ogx(g?O + c°x(97) - O-~x(Y) 

= e i(gy) + e o(?) . 

But g7 is homologous to ~ so eI(97 ) = ef(7), QED. [Note: Wagoner (in unpublished 
work) has produced, by entirely different means, an isotopy invariant of ho- 
meomorphisms which seems to be the same as e r. ] 

We now dualize the class e s to a homology class tl, so that t r is thus defined by 
7. t~=es(7);  we call t s the ChilIingworth class of f As in Lemma 5B, t is a 
homomorphism from J to H. 
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Lemma 5C. Let f e J  and h e J [  ; then thfh_l=h(tf). Thus t is a homomorphism 
commutin 9 with the action of  ~ on J and H. 

Proof  

7.thfh_l = cox(h f h -  l(y))_ COx(y ) = COx(h f h-  1(7)) _ COx(hh- 1(7)) 

= COb-Ix(f h-  17)-  COh l x ( h  - 17)  

= (by Lemma 5A) COx(f h-  1 y) _ COx( h -  17) 

=(h-~'~,) . t f=v.h(t f) ,  QED. 

In order to establish the connection between the torsion and the Chillingworth 
class, we need to borrow the concept of a contraction from tensor calculus. This is a 
homomorphism Ci~: H k + 2__, H k (i, j distinct and < k + 2) defined by 

C~flxl®...®xk+ ~)=(xcx) @ x~. 
r ~ i , j  

It is easily seen that C~j is actually an Sp-module map. Applying this definition to 
A3H C H 3, we find all contractions on A3H differ only by a sign, so we put simply 
C=C12 and get: 

C(x A y/x z) = 2[(x. y)z + (y. z)x + (z. x)y] . 

In particular, C(a I ^ b I/x b2) = 2b 2. 

Lemma 6. Let A be an JC-module and F, G : J ~ A  two homomorphisms commutin9 
with the action of  J/[ on ~ ,  A ;  then F = G iff F( f )  = G(f), where f is some BP map 
T~Tf 1 of  genus 1. 

Proof  Clearly the condition is necessary. Conversely, since all BP maps of genus 1 
generate o¢ (see [J 1]) and all such maps are conjugate in Jg, we can express any 

O e J  in the form g=  l:] ( h J h ;  1)(h~ed/d). Then F(9)= ~ F(h~fh; 1)= ~, hi(F(f)), 
i = 1  i = 1  i = 1  

and likewise G(9)= £ hi(G(f)), so F ( f ) =  G(f)=,F(9)= G(g), QED. 
i = 1  

Theorem 2. For f ~  J ,  t I = C(zy). 
"C 

,9- ~'~ A3H 

\ /  
tt 

Proof. We are asked to prove that the diagram commutes. We will apply Lemma 6, 
with F =  t, G=  Cor, to the map f =  T~2 T~ 1 defined by Fig. 5a. By the corollary to 
Lemma 4B, we have zy = a 1/x b I/x b2, and hence C(zl)= 2b 2, so we need only show 
that t i = 2 b  z. Now f leaves all the curves ei, /~i unaltered except e2, which is 
tranformed into fa2=~'  2 as shown in Fig. 5b, so b i . t i = a ~ . t i = O  for all the 
homology classes a~, b~ excepting a 2. To find a2. t  I, note that e2w-~t  2 is the 
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(o) 

Fig. 5a and b 
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$ :/ 

(b} 

oriented boundary of the genus 1 subsurface S, and thus according to 
Chillingworth's Lemma 5.7, a 2 . t: = COx(~)- COx(~2) is _+ 2. In fact, a more careful 
book-keeping of signs shows that we actually get a 2 . t f= +2. [For  example, 
choose a non-singular vector field X on S which is orthogonal to ~2, so that 
eox(~2) =0. If we close up S to a genus 1 surface S by filling in ~2, ~ with discs D, D' 
respectively, then X extends to S so as to have a zero of index + 1 in D and a single 
zero in D', which by Hopf's theorems connecting vector fields and the Euler 
characteristic must have index - 1. This means that along OD' = + ~ the field X 
rotates - 1 times w.r.t, the standard parallel field on D'; the tangent field of ~ 
rotates + 1 times w.r.t, the standard field, so we get (Ox(~)= 1 -  ( - 1 ) =  2.] This 
shows that t:=2b 2, QED. 

Analogous to the corollary to Lemma 4B, we have: 

Corollary 1. Let f =  TTT ~- 1 with (~, 3) bounding S of genus k, and put c= the 
homolooy class of ~ with orientation acquired from S" then t f =  2kc. Im t is just 
2HCH. 

Proof If ai, b, is a basis for a maximal symplectic subspace of HI(S) then by the 
k 

aforementioned corollary ~: = ~ a~ ,x b i A c, and we find then that C(r:) = 2kc. The 
i = t  

latter statement follows from this, since hn tC2H and 2H is an Sp-module of H 
generated over Sp by, for example, 2b 2. 

Since I m t = 2 H  is infinite and t ( J ) = 0  we see how Chillingworth's methods 
disprove Birman's conjecture for open surfaces. It will be shown in the next section 
that this method fails, however, for a closed surface. 

tn [C 2] Chillingworth conjectures that if j'~ J and f preserves all winding 
numbers, then f ~ 3 - .  In our terminology this conjecture takes the form" 
t: =0=~f~ f .  We have, however: 

Corollary 2. There exists homeomorphisms f e J of Mg, t(9 > 3) with t: = 0 but f ¢ ~--. 

and hence 2H, is free abelian of rank 29. A3His free abelian of rank (2g), Proof H, 
\ - - 1  

and this is greater than 2g for g => 3, so C must have non-trivial kernel. If k is any 
non-zero element of Ker C then by Theorem 1 there is an f e J  with v:=k, and 
then t:=O. But f C J -  since z : + 0 .  
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Note. For # = 2 the map C :A3H~2H is actually an isomorphism and the above 
argument fails. 

We now make the obvious conjecture by strengthening Chillingworth's 
hypotheses: 

Conjecture. For f ~ J ,  zy = 0 ~ f ~  Y.  

6. Closed Surfaces 

We investigate how the above results can be adapted to the case of a closed 
surface. Let now M = M~ be closed, and suppose D is a (closed) disk in M. Then we 
put M o = M - I n t  D, ,A' D = mapping class group of M o, with obvious definition for 
Jo. M o is an Mg, ~, and if f is any homeomorphism of M D, then we may extend it 
by the identity on D to get a well defined homeomorphism of M. In this way we get 

a surjective homomorphism ~/'o P~' ; ~ '-  Suppose E is any other disc in M. Then 

there exists a homeomorphism j of M which is isotopic to 1 on M and such that 
j(D)=E. The m a p j  then induces a homeomorphism j : M D ~ M  E, as well as a map 
j ,  :d//D~ d/' e defined b y j , ( f )  = j f j -  1 for f ~  J/D. The fact that j =  1 in d/ implies  the 
commutativity of the diagram. 

,..a' 

We shall exploit this fact to define the torsion of maps in J = Jo. 
Note first that the inclusion map iD:Mv~M induces an isomorphism 

HI(Mo)~HI(M)=H.  We may thus identify Ha(Mo) with H and hence also 
A3HI(Mo) with A3H. 

Next, consider the exact sequence 

l ~ K e r p ~ J D ~ J ~  1. 

If f e  J ,  a lifting jr of it to JD is well defined up to an arbitrary multiple by 
k~Kerpo and hence z ieA3H is well defined up to the addition of an arbitrary 
term of the form zk, keKerpo. In other words, zy is well defined in the quotient 
A3H/~(KerpD). We designate this quotient by V and the image of z]  in it by zf. To 
justify this notation we need to show that V and zs do not depend on the choice of 
D. But Ker Pe =j*(Ker PD) =j(Ker Po)J- 1 and so z(Ker PE) = z(j(Ker PD)J- t) = (by an 
easy generalization of Lemma 2D, as applied to z)j(z(Ker pD))= z(Ker PD), since 
j =  1 on A3H. Thus z(Kerpo)CA3H is independent of D, showing V also to be 
independent of D. I f f  lifts f e J  to Jo ,  thenj f j  -1 lifts it to Jg,  and zj~_ ~ =j(zi)  
= zy, so zse V is also independent of D. This is our definition of the torsion of 
f~Jo" It should be noted that, just as for an open surface, V is an Sp-module and 
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r : J ~  V a homomorphism commuting with the action of ~ on J ,  V. Our next 
problem is, then, to find r(Kerpo) and the quotient V. 

g 

Let a~, b~ be a symplectic basis of H. The element 0 =  ~ a~/x b~ of AaH is 
i = 1  

independent of the choice of symplectic basis and is thus invariant under the action 
of Sp on A2H. Consider then the map u :H--*A3H given by u(x)= 0/x x. Then u is 
clearly a homomorphism, and is also an Sp-module map since u(gx)=OAgx 
= gO/x gx = g(O ix x) for g s Sp. If g --> 2 we also have u is injective. For suppose x + 0 : 
we may assume x ~ H  is primitive (that is, not a non-trivial multiple of another 
vector in H), and hence we may use x as the first vector ax of some symplectic basis 
of H. In terms of this basis then, 

O A x =  a~Abi Aal:t:O for g__>2. 
\ i =  1 

Lemma 7A. z(Ker PD)= Im u, and so we get an exact sequence 

u 3 O--* H--~ A H'-* V -~  O. 

Proof The kernel of Po is generated by: 

a) twisting the boundary curve of M o, 
b) maps of the type T~ T~- 1, where (7, 6) is a BP bounding S of genus g - 1. (See, 

for example, [B], pp. 156-160.) The former has zero torsion, and the torsion of the 

latter is a~ ̂  b~ A c with % b i, c as in the corollary to Lemma 4B. Since c is the 
i 

class of an SCC, it must be primitive. Further, c.a~=c.b~=O ( i= t .. . . .  g - i )  and 
hence we may find de H such that d. ai = d. b i = 0 and c- d = 1 ; % bl and c, d is then 
a full symplectic basis of  H. But then 

z(T~T~- 1) = a i / x b i + c A d  A c = O A c = u ( c ) .  

Thus z(Kerpt))Clmu. Conversely, note that since Kerpo  is normal in ~go, 
z(Ker po) is an Sp-submodule of A3H containing, e.g., 0/x b~, and so also contains 
O ^ x  for all x e H ,  QED. 

Recall that C : A 3 H ~ H ,  so C u : H - . H .  

I .emma 7B. Cu(x)= (29 -2 )x ,  all x e l l .  

Proof  Let a~, b i be an Sp-basis and suppose x=a~ ; then 

g 

u(x) = ~ a i ̂  b i/x al, Cu(x) = 2(y - 1)a 1 . 
i = 2  

Likewise for all the other basis elements, and the lemma follows. 
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Corollary. LetK= Ker C; then Kc~Im u =0.  

Proof Cu is 1 - 1 ,  so C is 1 -  t on Im u. 
The corollary also shows that K CA3H injects into ~ 

We now consider the following diagram: 
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0 D-H 

mult. by (2g-2) 

=(2g-2)H 

1 
0 

0 

I 
1 

u __ A3H 

i n c l .  ~ 2 H  quo t .  

0 

0 

1 
~ K  

v 

~.0 

v _--0 
k 
! 
! 
! 
! 
I 

I 
~--- 2H rood (2g-2) ~ 0 

0 

The rows and first two columns are all exact, and the 3 complete squares 
commute, so the dotted arrow is uniquely defined so as to complete the last square 
commutatively; the last column is then also exact by the 9-1emma. Since the dotted 
arrow is defined by the contraction C, we name it C also, Note that the diagonal 
map of 

A3H ~- V 

el 1 
2H '" --- 2H mod (2g-2) 

takes zyEA3H to its Chillingworth class reduced mod 2 9 - 2 .  To be more precise, 
Chillingworth showed in [C 1] that for a closed surface his winding numbers are 
defined rood 2 9 -  2, and mimicking the arguments of the preceding section we find 
that for f ~  Jg we get a well defined class t: in 2H m o d ( 2 g -  2). Furthermore, t is a 
homomorphism and, as for open surfaces, t: = C(z:). Using the obvious isomor- 
phism of 2H mod(2g - 2) with H m o d ( g -  1) (namely, division by 2) we get finally: 
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Theorem 3. For a closed surface of (lenus g > 2, we have a commutative diagram 

/ \ 
0 = K ~V --- Hmod (g-l) ~0 

i 
2 c 

where K=Ker(C:A3H--*H). The row is exact, and z is surjective. (Note that for 
g=2, K = 0  and V = H m o d ( g -  1).) 

We are now ready to examine Birman's and Chillingworth's conjectures for 
closed surfaces. As before, z(J-) and t(jT) are zero. Here, however, t(J) is finite and 
thus the use of t alone will not tell us that J / J  is infinite. On the other hand, V 
remains infinite for 9>3 since it contains K, and this disproves Birman's 
conjecture for closed surfaces. In [C 2] Chillingworth produces a homeomorphism 
f e  J such that t I = 0 in H rood 2(g- 1), but f is not the product of BSCC maps. A 
close examination of his proof reveals that it does not, however, prove that f is not 
isotopic to such a product: the reduction by isotopy leaves his invariant defined 
only mod 2(g-1). Again, the group K C V gives examples of f¢3-  having tj=O, 
showing that, for closed surfaces (of genus >3) as well, t r=0 is insufficient to 
insure that fEJ- .  

7. Other Abelian Quotients of J 

In this section we return to the open surface Mo, 1, and will assume implicitly that 
g => 3 henceforth. 

The representation of J onto A3H suggests the problem of finding other 
abelian quotients of J ,  and this naturally leads one to the universal such quotient, 
namely J / f .  A full knowledge of this group would be interesting in several ways, 
as mentioned in the introduction. As an obvious first conjecture, we might ask if 
J / J '  is A3H. This is not the case. In [BC], Birman and Craggs produced 
homomorphisms from J to Z 2 using the Rochlin invariant. Although it is a priori 
possible that these homomorphisms factor through A3H, we shatl see below that 
in fact they do not, so J / f  cannot be A3H. 

First, we should draw attention to the important and useful fact that J / J '  has 
a natural Sp-module structure induced by the conjugation of ~/ /on ~. For let 
~e J / J '  be represented by f e  J ;  f is determined up to a multiple by ke f .  Let 
also v e S p = J g / J  be represented by hsJg :  h is determined up to a multiple by 
9 e J .  Then define v(e) to be the reduction of hfh -1 to , ¢ / f .  Changing f to f k  
changes hfh-  ~ to hfh- l .hkh  - 1 = _ h f h - l m o d f ,  and changing h to gh changes 
hfh -I to g(hfh-a)g -1 =[g, hfh- I ] . h f h - l - h f h  -1 modJ ' .  Thus v(c 0 is well 
defined, and it is easy to see that it defines an Sp-module structure on J / f .  In 
seeking abetian quotients of J ,  then, those with Sp-module structure are of 
primary importance. They correspond to those quotients of J by a kernel which is 
normal not only in J ,  but in ~/g as well. 
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We describe now the abelian quotient of J derived from the Birman-Craggs 
homomorphisms. The homomorphisms themselves are from ~f to Z 2 and are finite 
in number. The intersection of all their kernels is denoted by cg and a simple 
argument shows that the group U = j /c¢  is a finite dimensional vector space over 
Z~. In [J 23 the author has given an explicit representation of this vector space as a 
space B 3 of cubic "Boolean" polynomials over a certain space closely related to 
H mod 2. Formally, these polynomials are ordinary Z2-polynomials in the symbols 
2 (xe H mod2), subject to the relations: 

1) x + y = x + y + x . y  (here x .y  is the Zz-valued intersection) and the 
"Boolean" relations : 

2) 22=2.  
The Sp-action on the polynomials is given by g(~)= 9-~, extended in the usual 

way. If e~ is a basis of H, then a basis for B 3 is given by: 
a) 1 (constant polynomials (Bo)) } linear } 
b) el polynomials (BI) quadratics 

(B2) cubics 
c) -di~j, i <j (B 3) 
d) "ei'ej'ek, i <j  <k 

Thus d imB3= ~=o\i/~ (29t" N°te the c°mm°n term (239) in the dimensi°n (rank) °f  

both B 3 and A3H; as this might suggest, the homomorphisms cr : J - . B  3 (defined in 
[J2]) and z:J--~A3H are not independent. To make the relation between them 
precise, we need: 

Lemma 8. B3/B 2 iS naturally Sp-isomorphic to A3Hmod2. 

Remark. In general the proof goes through to show B~/B,_ 1 ~-A"Hmod2. 

Proof If e~ is a basis of H rood 2, the assignment e~®ej®ek-~-~i~yk rood B 2 is easily 
seen to be trilinear by using the relations 1) and so defines a map r from H 3 mod2 
to  B3/B 2. Since ei®ei®e j goes to  "e2ej='ei-eiEB2, r actually factors through 
A3Hmod2 (here we are using the definition of A3Hmod2 as a quotient of 
H3mod2), and r : A a H m o d 2 ~ B 3 / B z  is clearly onto. But AaHmod2 and B3/B z 

are both of dimension (23), so r is actually an isomorphism. It is also an Sp-map 

since 
jg(e 1 A e 2 A e3) =j(ge t ^ ge z /~. ge3) = g-elgeage3 = g('el)g('ez)g(e3) 

=g('dl~2"d~)=gj(el Ae 2 Aea), QED. 

This lemma gives us a surjective map q:B3-~AaHmod2 defined by 
B3~B3/B 2 J ~ A3Hmod2 (i.e., ffy~'-~x A y A z), and K e r q = B  2. 

Theorem 4. The diagram commutes. 6g 

 32 od 2 
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Proof As previously stated, ~" is generated by BP maps TrT f i, where (7, 6) bounds 
a surface S of genus 1, If HI(S)CHt(M) has a maximal symplectic subspace with 
Sp-basis a, b, and c is the boundary class, then by Lemma 12b of [J 2] we get 
o-(r?,z~-1)= a/7(c + 1) = ~b~+ ~/~, and qa(TrT f 1)= a A b A e. But z (~T a- 1)= a A b/x c 
also; the theorem now follows from Lemma 6. 

Corollary. Neither of a, z factors through the other. 

Proof Certainly r cannot factor through a since B 3 is finite but A3H is not. That a 
does not factor through z follows from the existence o f f e  J with Ty = 0 but a s =t= 0; 
in fact, any non-trivial BSCC twist f has these properties. (See Lemma 12a of 
[J 2].) 

The two abelian quotients B 3 and A3H are (aside from their quotients) the only 
ones known. We may combine them into an Sp-module A by means of the 
pullback construction 

A 

B3 q ~  ~ d u c t i o n  

A3H rnod 2 

and then A incorporates all known information about J/~¢'. It is natural that we 

Conjecture. J / f  ~- A. 

A number ofsporadic calculations done by the author lend some added support 
to this conjecture. 
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