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Prevarieties and Intertwined Completeness of Locally 
Convex Spaces 

Steven F. Bellenot 

Certain results about locally convex topological vector spaces (TVS) show 
that the properties of (semi-) reflexivity and completeness have many common 
links [22, p. 144]. We introduce property HC to examine the links between 
refexivity and completeness. A Fr6chet space has HC if, and only if, it is reflexive. 
In general, HC implies completeness and semireflexivity. 

A prevariety is a collection of TVS's closed with respect to subspaces, products 
and isomorphic images. Prevarieties seem appropriate to the study of completeness 
and reflexivity properties (witness Theorem 1.1). Many natural examples of 
prevarieties are given in Section One. In particular, the spaces whose completion 
have HC form a prevariety hC. The notion of prevarieties is a weakening of the 
varieties of Diestel et al. [6]. For any TVS  (E, 4) with continuous dual E', and any 
prevariety X, there is a strongest topology of the dual pair, ~x, weaker than ~, 
with (E, ~x) ~ X (Lemma 1.2). 

Property HC is equivalent to Berezanski~'s inductive semi-reflexivity [3] 
(Proposition 2.2). In [3] it is shown that the TVS (E, ~) has HC, exactly when 
(E, ~s) is complete. Here S is the (pre)variety of all Schwartz spaces and is is the 
topology given above. This result is strengthened, obtaining the Intertwined 
Completeness Theorem 4.1 (ICT). The ICT states that for certain prevarieties 
X and Yand for any TVS (E, ~), (E, ~x) is complete if, and only if, (E, ~r) is complete 
(~x and ~r may be incompatible) or if, and only if, (E, 4) has HC. 

As an application of the ICT, it is shown that a space is a Hausdorff inductive 
limit of Hilbert spaces if, and only if, it is the strong dual of a space with HC. 
Also using the ICT, every Banach space is shown to be an inductive limit of Hilbert 
spaces. Thus every inductive limit of Banach spaces (i.e., every ultrabornological 
space) is, in fact, an inductive limit of Hilbert spaces. These results are in Section 5. 

Raman [17] considers a property HC which is similar to the property HC 
defined in Section 2. The two definitions agree in barrelled spaces. The definition 
of HC is chosen for its similarity to Grothendieck's Completeness Criterion, 
which is stated below for comparison and later use. 

Grothendieck's Completeness Criterion [22, Corollary 2, p. 149]. 
The TVS (E, 4) is complete if, and only if, every hyperplane in E', whose 

intersection with U ° is a(E', E) closed whenever U is a i-neighborhood of the 
origin, is itself a(E', E) closed. 

Here, and always, E is a vector space with the locally convex Hausdorff 
topological vector space topology ~ and E' is the continuous dual. Second duals 
will be, in general, algebraic and will be indicated by E '~. If U CE, then U ° is the 
(absolute) polar of U in E'. The convention of 0a representing the Minkowski 
gauge functional of the absolutely convex set A is used without further explanation. 
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Similarly, if V is an absolutely convex neighborhood for (E, 3), then (/~v, ~v) 
represents the completion of the normed space formed as the quotient of (E, ~v) 
by the kernel of ffv. 

Finally, we mention that the ICT can be extended to include certain 2-nuclear 
prevarieties (see [2]). 

§ I. Prevarieties, Examples, and Basic Results 

We define a prevariety to be a collection of TVS's closed with respect to sub- 
spaces, products and isomorphic images. A variety (in the sense of Diestel et al. [6] 
is a prevariety which, in addition, is closed with respect to quotients by closed 
subspaces. If M is a collection of TVS's, then the smallest variety (respectively, 
prevariety) containing ~ is v(~)(Qv(M)). 

There are many examples of prevarieties. We list a few examples of prevarieties 
below and at the same time develop notation for later use. The first eight examples 
are actually varieties; in fact, using Theorem 1.4 of [6, p. 210], we note that 
Qv(M) = v(~), if M is closed with respect to quotients by closed subspaces of finite 
products of spaces in M. 

1. The simplest and smallest prevariety or variety is K, the one generated 
by the scalar field [6, Theorem 3.6, p. 216]. 

2. The variety of nuclear spaces, N [6, p. 209], [22, p. 103]. 
3. The variety of Schwartz spaces, S [11, pp. 278--9], [6, p. 209]. 
4. The variety of strongly nuclear spaces, sN  [-6, p. 209]. 
5. Let ~ be the class of all Hilbert spaces and let H = v(~34~)= ~v(b4, °) be the 

variety generated by JS~. H contains those TVS's whose topology can be defined 
by means of semi-norms Qv such that (/~v, Qv) is a Hilbert space. 

6. Let 5e~ be the class of all super-reflexive Banach spaces [12, p. 896] (or 
equivalently, the class of Banach spaces isomorphic to any uniformly convex 
Banach space [8]). Let SR = v ( 5 ~ )  = ~v(Se~).  

7. Let ~ be the class of all reflexive Banach spaces and let R = ~v(~) = v(~). 
8. Under suitable conditions on the sequence space 2, the class of all 2- 

nuclear spaces form a variety,/.N. See [7], [18], and [20] for examples of such 
sequence spaces 2. 

The remaining examples are instances of prevarieties which are not varieties. 
In fact, they can all be shown to contain a Fr6chet Montel Space, constructed 
by Grothendieck and KiSthe [13, p. 433] (see also [6, p. 219]), that has 11 as a 
quotient, but none of these prevarieties contains l~. 

9. Let ~ -~ /be  the collection of all Fr6chet Montel spaces and let F M  = ~v( .~J[) .  
10. Let ~ be the class of all reflexive Fr6chet spaces and let F R  = ~v(o~,~l). 
11. Let P B  be the class of all TVS's in which every (weakly) bounded set is 

precompact. A proof that PB is a prevariety is essentially [19, Proposition 14, 
p. 853. 

12. The prevariety hC of all TVS's whose completion has property HC. 
Both H C  and hC are defined and discussed at length in the next section. 

13. Although we make no use of nonstandard analysis, it is worth mentioning 
that the collection of TVS's with invariant nonstandard hulls [-9], [10] forms a 
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prevariety IH. See [2] for results that deal with IH and for nonstandard results 
dealing with the ICT. 

The main distinction between prevarieties and varieties is perhaps best 
described in Theorem 1.1; varieties do not enjoy any similar theorem [6, pp. 219, 
225]. The proof of Theorem 1.1 is straight forward and will not be given. 

Theorem 1.1. Let c~ be any collection of complete TVS 's  and ~ any collection 
of complete semi-reflexive TVS's.  The completion of any space in Qv(C6) is in Ov(~). 
The completion of any space in Qv(M) is semi-reflexive. 

The two following lemmas are important for our use of prevarieties. We adopt 
the convention if (E, ¢) is a TVS and X is a prevariety, then the topology given by 
Lemma 1.2 is ~x. It could be said that ~x majorizes all "X" TVS topologies on E 
weaker than ~. The proof of Lemma 1.2 is essentially [22, p. 52]. 

Lemma 1.2. I f  (E, ~) is a T V S  with continuous dual E' and X is a prevariety, 
then there exists a unique T V S  topology on E, ~x, such that 

(i) ~r(E, E') < ~x < ~, 
(ii) (E, ~x) ~ X, 

(iii) /f ~/ is any T VS topology on E with a(E, E')< ~1 < ~ and (E, rl)~ X, then 
tl<~x. 

Lemma 1.3 will be used to construct examples of spaces which have the property 
that many of their "X"-topologies are distinct. The proof is an easy exercise from 
the definitions. 

Lemma 1.3. Let (E, ¢),(F,q) and (G,() be TVS's  and X a prevariety. I f  
(E, ~) = (F, ~1) Q(G, ~) (i.e. the direct sum), then (E, ~x) = (F, r/x ) ~(G, (x). 

§ 2. The Prevariety hC and Inductive Semireflexivity 

Property HC and inductive semi-reflexivity are equivalent properties that 
many known TVS's enjoy. Berezanski~ [3] first considered the notion of inductive 
semi-reflexivity, while property HC is a slight perversion of Raman's [ 17] property 
HC. The name HC stands for Hyperplane Closure. The following definitions 
differ in some cases, from the usual notions of the same name. 

Definition. A sequence {x,} in the continuous dual E' of the TVS (E, ~) is 
said to converge locally to y ~ E' if there exists an absolutely convex ~-equi- 
continuous set U in E' such that {x,}u{y} is in the span of U and Qv(x , -  y ) ~ 0  
as  n--~ oc. 

This definition is given by Terzioglu in [23]. The usual notion is Mackey 
convergence defined below. (See [13, p. 382].) 

Definition. A sequence {x,} in (E, ~) is said to be Mackey convergent to y ~ E 
if there exists a (weakly) bounded absolutely convex set U in E such that {x,} w {y} 
is in the span of U and Qv(x,- y)-*0 as n -*~ .  

The following proposition relates Schwartz spaces and local null sequences 
and will be needed later. The topology ~s has received attention before, for 
instance, Berezanski~ [3-] calls it ko. The proposition is a very easy consequence 
of [23, § 2(4), p. 237]. 
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Proposition 2.1. Let (E, 0 be a T V S  with continuous dual E'. Then the topology 
is  is the topology of uniform convergence on local null sequences. 

Definition. We say that a TVS (E, ~) has (property) HC if each hyperplane in E', 
which is closed for local convergence, is a(E', E) closed. 

Though this definition is not that of Raman's given in [17], the two definitions 
agree on o-barreled spaces [21]. 

Using Grothendieck's Completeness Criterion [22, Corollary 2, 149], we note 
that a TVS with HC is complete. 

Definition. The prevariety hC is the collection of all TVS's whose completion 
has property HC. 

We still have to show that hC is a prevariety. It suffices to show that a closed 
subspace of a product of spaces with HC has property HC. A proof of this fact 
can be constructed similar to the proof of Raman's theorem 16 [17, p. 193] 
with care paid to the existence of equicontinuous sets as opposed to bounded 
sets. This is due to our distinction between local and Mackey convergence. 

Definition (Berezanski~ [3]). A TVS (E, 4) is said to be inductively semi- 
reflexive if for every linear functional f on E', which is bounded on every ~-equi- 
continuous set, there exists an e e E, such that, for all x e E', we have f ( x )  = (x,  e). 

Proposition 2.2. A T V S  (E, ~) has HC if and only if, it is inductively semi- 
reflexive. 

Proof. For a linear functional on a normed space, sequential continuity, 
continuity, and boundness are equivalent to the sequential closeness of the kernal 
hyperplane. It is now easy to show that both HC and inductive semi-reflexivity 
are equivalent to the following: (.) Every linear functional on E', which is continuous 
on every span U ° with norm ~vo, for every ~-neighborhood of the origin U, is 
in the canonical image of E in E '~. 

We note that many of Berezanski]"s results in [3] can be proved simply via 
the use of (,) and well known results about normed spaces. In particular, his 
Theorem 2.4 [3, p. 1081] (Proposition 2.3 below) follows from (,) and the fact 
that a linear functional on a normed space is continuous if it is bounded on all 
everywhere non-zero sequences {x,} with lix, I] <2,,  for any everywhere positive 
null sequence of reals {2,},: 

Definition (Berezanskii [3]). A ~-rotor topology on the TVS (E, 4) is any TVS 
topology q, on E, such that: 

(i) a(E, E') < q < ¢, 
(ii) For each i-neighborhood of the origin U, there exists a null sequence 

of everywhere positive reals {2,} such that any sequence {x.} in E' with Ovo(X,) < 2, 
is r/-equicontinuous. 

Proposition 2.3. (Berezanskil [3, p. 1081]). I f  (E, ~) has HC and if t I is a 
~-rotor topology, then (E, q) has HC and is thus complete. 

We note that if t / is a i-rotor topology and ( is a TVS topology on E with 
t/_< ~ < 4, then ~ is a i-rotor topology. The topology ~sN is i-rotor. It is sufficient 
for every ~-neighborhood of zero U to chose {2,} to be rapidly decreasing to 
zero [14, p. 158], [2]. Thus it will follow from Table 3.1 that the topologies ~x, 
for X = N, S, FM, IH, PB, H, SR, R, FR, and hC are all i-rotor topologies. 
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§ 3. Inclusion Relations Among Prevarieties 

We list the results of this section in two tables. The purpose of Table 3.2 is to 
allow the construction of a TVS (E, 4) in which all the topologies ix, X one of 
our prevarieties in the first section, are distinct. For Table3.1, X - ~ Y  means 
X 3 Y .  

Table 3.1 

h C - *  F R  - ~ R - ~ S R - ~ H  

P B - ~ I H ~ F M ~ S  , N ~ s N - ~ K  

All the inclusions except the following are well known (see [14] and [22]): 
R 3 S  follows from the recent result [4] that weakly compact operators factor 
through reflexive Banach spaces; for h C 3 F R  we note that a Fr6chet space has 
HC if, and only if, it is reflexive [3, Corollary 3.6, p. 1082]; P B 3 I H ~ F M  can be 
found in [9] and [10]; for hC31H see [2]; and, finally, F M 3 S  follows from a 
general principle that yields Corollary 3.2. 

We say that the prevariety X is operator-defined if there exists an ideal of 
operators J (in the sense of Pietsch [15], [16]) such that (E, 4) ~ X if and only if 
there exists a fundamental base of absolutely convex i-neighborhoods of the 
origin ~//such that, for all U 6 q/, there exists V E ~ with V C U and the canonical 
map between the Banach space (Ev, Qv)~(Eu, Ov) belongs to J .  

Proposition 3.1. I f  X is an operator defined prevariety and FX is the prevariety 
9enerated by all Fr~chet spaces in X, then FX = X. 

Proof. This is modeled on the well known canonical embedding of a TVS 
into a product of Banach spaces [22, Corollary 2, p. 54]. All we need to show 
is that any TVS in X can be embedded into a product of Fr6chet spaces in X. 
These Fr6chet spaces can be constructed as projective limits of sequences 
• "--'(Ev~.+,~, ~v~.+ l~)--'(Ev(.), ~v~.~) ~ . ' '~([~v ,  ~v), where all arrows represent 
maps in J for U e ~h'. 

Corollary 3.2. F M  ~ F S  = S. 

In Table 3.2, examples are listed with references to where they are defined. 
The statements can be easily checked, with the exception of the last (see below). 
If (E, 4) is the direct sum of all the spaces in Table 3.2, then each of the topologies 
ix, X in Table 3.1, are distinct. Furthermore, the following pairs of topologies 
are incompatible: is and ~H, irM and ~R, ~m and ~FR, and ~hc and ~PB. These 
statements are easy consequences of Lemma 1.3. 

The rest of this section is devoted to justifying the last line of Table 3.2. The 
fact that Od E 1H can be found in [10, § 2]. We will indicate that if ~d is embedded 
in a product of Fr6chet spaces, then one of these Fr~chet factor spaces is not 
reflexive. 

For each function 0 :d~pos i t ive  reals, we define the neighborhood U(O) 
of the origin in ~b d to be the absolutely convex hull of the union, i 6 d, of the 0(i)-discs 
in the ith copy of the scalar field [19, p. 89]. If0 is the constant function 1, we write 
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Table 3.2 

Space Does not Belongs to 
Belong to 

q5 [6, p. 216] K sN 
2; [14, p. 177] (often called s) sN N 
l 2 PB H 
A o [1] H S 
l,, H SR 
O1~ c~, n = 1, 2 .... [5, p. 146] SR R 
E 0 [13, § 31,5, p. 433] [25, p. 240] R FM 
(E, I~rl(E, F)) [10, § 1] [2] hC PB 
~b d [6, p. 216] FR IH 

d is the cardinality of the power set of the continuum 

U(O) as just U. We will need to know that  if b C d is countab ly  infinite and W = 4> bc~ U, 
then the comple t ion  of (4~b, Pw) is 11. 

By s tandard  methods ,  it suffices to show that  if T :  (adam is a cont inuous  
one-one linear m a p  onto  the metr ic  TVS M such that  T(U) is open, then there 
is an infinite subset  b cd with T(UnqSb) the unit  ball of a no rmed  subspace of M. 
Clearly the comple t ion  of M would then conta in  ll as a subspace.  

Since M has a countable  basis 1/1 ~ 1/23 ... with 1/1C T(U), and since T is con- 
tinuous, there exist functions 0 r such that  T(U(O))cVj, j = I , 2  . . . . .  For  each 
increasing sequence of positive integers P =  {p j}, let P ' b e  the set {i ~ d: O~(i)>pf 1 
for j =  1,2,...}. The  union of all the P '  is d, but  there are only con t inuum many  P'  
so there is an infinite P'. We can take this P '  as b above.  Then  T(Unc~b ) is the unit  
ball of  a no rmed  subspace of M, since pf  1T(Uc~(ab)C Vj, j=  1, 2 . . . . .  

This result can also be used to show that  the prevariet ies PB, IH, and hC 
are not ope ra to r  defined [2]. 

§ 4. Intertwined Completeness 

The a im of  this section is to prove  the In ter twined Comple teness  T h e o r e m  (ICT). 

Theorem4.1 .  Inter twined Comple teness  Theorem.  For a TVS  (E,~), the 
following are equivalent: 

(i) (E, 4) has property HC 
(ii) (E, 4) is inductive semi-reflexive 

(iii) E is complete in all i-rotor topologies 
(iv) ~hC = ~ and (E, ~) is complete 

(vX) one (all) of the statements: (E, ix) is complete, where X is sN, N, S, H, SR, 
R, F M ,  FR, IH, or hC. 

The  history of  this theorem starts with Berezanski l  [3], where he shows the 
equivalence of (ii), (iii), (vS) and  (vN). R a m a n  [17] gives the equivalence of (i) 
and (vR) for barre led spaces. R a m a n  further claims the equivalence of (ii) and (vR) 
for barreled spaces [17, p. 197], but he misquotes  BerezanskiT. 
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Proof of ICT. We show (ii),¢~(i)~(iii)~(vX) for all Xc~(vsN)~(vS)~(ii), 
(i)¢~(iv) and 3X(vX)~(vsN). 

(ii)~(i). This is Proposition 2.2. 
(i)~(iii). This is Proposition 2.3. 

(iii)~(vX), for all X listed. This follows from the remarks after Proposition 2.3. 
(vX), for all X~(vsN). This is formal. 
(vsN)~(vX), for all X. This follows from 4sN < ix and use of [19, Proposition 5, 

p. 107]. 
(vsN)~(vS). This is a special case of the immediately preceding implication. 
(vS)=~(ii). This is Berezanskii's [3, Th. 1.5, p. 1081]. 
(i)¢~(iv) This is by the definition of the prevariety hC and the fact that a space 

with HC is complete. 
3X(vX)~(vsN). Let q = ix. By hypothesis, (E, q) is complete and since X C hC, 

we have qhC = q" It follows that (E, q) has HC from the equivalence of (i) and (iv). 
Now (E, ~/sN) is complete, but, sNCX so r/sN= 4~u. Q.E.D. 

We note that the example (E, 4) in section three (the direct sum of the spaces 
in Table 3.2) yields an example with each X topology distinct and incomplete. 
However, the completion of (E, 4hc) is an example with each X topology distinct 
and complete. 

§ 5. Duality and Ultrabornologieal Spaces 

In this section, we apply the ICT to characterize the strong duals of spaces 
with HC. The interplay between the topologies is and i~  allows us to prove the 
somewhat surprising fact that ultrabornological spaces are actually inductive 
limits of Hilbert spaces. (See Theorem 5.3.) The reader is reminded that an ultra- 
bornological space is an inductive limit of Banach spaces [19,p. 160]. Ultra- 
bornological spaces are the domain space for a closed graph theorem described 
in the appendix of [19]. 

Theorem 5.1. (F, q) is a Hausdorff inductive limit of Hilbert spaces if, and only if, 
(F, q) is the strong dual of a space with HC. 

Proof. Suppose (E, 4) has HC. Then (E, 4u) has HC (Proposition2.3). It 
follows from [3] that the strong dual of (E, ix) [and thus (E, i)] is the inductive 
limit of the normed spaces (span V °, Qro), Va in-neighborhood of the origin. 
We note that it suffices to restrict V to run over the !u-neighborhoods of the 
origin such that (/~v, Qv) is Hilbert space, in which case (span V °, Qvo) is also Hilbert 
space. 

Conversely, suppose (F, ~/) is a Hausdorff inductive limit of Hilbert spaces. 
Let E be the continuous dual of(F, ~/) and ~ be the topology of uniform convergence 
on the unit balls of the Hilbert spaces (i.e. i is the projective limit of Hilbert spaces 
given by the adjoints of the inductive limits forming (F, ~/) [19, Proposition 15, 
p. 85]). 

We note that i = in  and ~ is complete [2.2, 5.3, p. 52] and so (E, 0 has HC by the 
ICT. Furthermore, since each ball in Hilbert space is weakly compact, ~ is a 
topology of the dual pair (E, F). Hence F is the continuous dual of (E, i). Since 
(F, q) is barreled [19, Proposition 6, p. 81], r/ is the strong topology on F [19, 
Corollary 1, p. 66]. The proof is complete. 
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The following theorem is based on Proposition 2.1. It is the main step in 
Theorem 5.3. 

Theorem 5.2. If (B, 4) is a Banach space, then (B, 4) is an inductive limit oj 
Hilbert spaces. 

Proof. We note that if (B, 4) were reflexive, this would be a trivial consequence 
of the ICT and Theorem 5.1. In any case, let B' be the continuous dual of (B, 4). 
Let t/be the topology on B', of uniform convergence on null sequences of (B, 4). 
Since the closed absolutely convex hull of a null sequence is compact and hence 
a(B, B')-compact, t/is a topology of the dual pair (B', B). In fact, by Proposition 2.1, 
t/= qs is the strongest Schwartz topology of the dual pair (B', B). 

Since a linear functional on B is continuous if and only if it is bounded on 
null sequences, (B', q) has HC (see definition of inductive semireflexivity.) Thus, 
by Theorem 5.1, (B, ~), the strong dual of (B', q), is an inductive limit of Hilbert 
spaces. 

Theorem 5.3. An ultrabornological space is an inductive limit of Hilbert spaces. 
In particular, every sequentially complete bornological space is an inductive limit 
of Hilbert spaces. 

Proof. An ultrabornological space is an inductive limit of Banach spaces, 
which, in turn, are inductive limits of Hilbert spaces, by Theorem 5.2. 

The author recently discovered a direct proof of Theorem 5.2, which wild 
appear elsewhere. 

Note added in proof." Since submission the author has learned that Theorems 5.2 and 5.3 have 
appeared in [25] (and are implicit in [24]). Valdivia, in [26], improves Theorem 5.2 to: if the Banach 
space E has a weak-star separable dual, then every Banach space is an inductive limit of spaces 
isomorphic to E. 
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