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Introduction 
The method of defining a topology by specifying what nets converge to 

what points is due to BmKHOFr [1 ]. BmKnOFF also showed that regular topolo- 
gical spaces may be characterized in terms of nets. The first three axioms of 
BmKnOFF have obvious analogues for filters. However, his axiom (6), the 
iterated limit axiom does not have such an immediate interpretation. This paper 
gives a set of axioms that define a topology by specifying what filters converge 
to what points which includes a workable iterated limit axiom in terms of filters. 
It will be shown that the converse of this axiom characterizes regular topological 
spaces. We should note that DmUDONN~ [3] has characterized regular topo- 
logical spaces in terms of filters. However, the condition that we give, as we 
shall show, is at least as weak as DIEUDONN~'S and seems to be more flexible. 

SONNER [6] has given a set of two axioms for limit spaces and establishes 
polarity between limit spaces and topological spaces. His axioms suffer from 
the handicap that he must explicitly mention in his axiom (2) which sets are 
eventually to be the open sets in the topology. For our purposes entirely too 
much structure is couched in axiom (2) which makes his study inapplicable 
for more general convergence spaces. By using the filter analogues of 
BIRKHOFF 'S first three axioms and the iterated limit axiom we are able to obtain 
a greater unity between topological spaces and more general convergence 
spaces. 

It is also of some importance to find a notion of regularity for a convergence 
space in the sense of KOWALSKY [5]. We shall produce evidence that the de- 
finition of regularity we give is the axiom that should be adopted in this setting. 
For  example, a regular 7"1 convergence space is T2 and an inverse limit of 
regular convergence spaces is regular. 

We take the liberty of making free use of the results and terminology of [2] 
and [4]. Some of the most frequently used results will be repeated here, how- 
ever, for easy reference. F(X) will always denote the collection of proper filters 
on the set X. I f f  is a function on X and ~" e F(X) then f(~r)  is the filter generated 
by the sets f (F) ,  F e ~ .  [{F}] is used to denote the filter generated by the filter 
base {F} ; when {F} is merely {{x} } for some x e X, then [{{x}}] will be denoted 
by ~. If I is a directed set then Se(I) will denote the filter of sections of L 
KOWALSKV [5] has defined the notion of a diagonal convergence structure 
and proved that the closure operator associated with such a convergence is 
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idempotent. Diagonal convergence structures are defined by means of a 
"compression operator" x which is defined here. If ~ e F(F(X)), denote by 
x(~) the filter on X defined as follows: 

x(~) = sup i n f ~  = ~) infA. 
A ~ ' ~ A  A ~  

A convergence structure is then said to be diaoonal if at each point Xo ~ X the 
following condition is satisfied : for each map r/: X ~ F ( X )  that satisfies qx~zx 
and for each filter f f  e ZXo, xr/(~') e ZXo. Our iterated limit axiom is a strengthen- 
ing of the notion of a compression operator. In order to express this axiom we 
define a filter ff on X by: 

if I is a set, ~ F(I) and a t  F(X) ~ 

f~= ~U ~(b)IFe~ ~b~ X a(b)}. 
~b~F b ~ l  

Since the inftmum of a set {~ , :  ~ e I} of filters can be expressed as 

inf~-~ = {V ~b(ct)l¢~ X ~ } ,  

it is easy to see, subject to the above conditions, that 

= ~(~r(~) ) .  

Axioms for a topological space in terms of  filters 

Let X be a set and ~ be a relation on X to F(X); i.e. z C X  × F(X). The set 
xx = {~1 (x, ~ )  ~ x} of relatives of x can be thought of as the collection of all 
filters that converge to x (similarly ~-1~-= {x t(x,~)sT} can be thought of as 
the collection of all points in X to which ~ converges). For each subset A 
of X one may then define the closure ,4 of A as 

-A = {x ~ Xl3~r~  -cx~A ~ ~'}. 

,4 is called the closure operator associated with z. Clearly i f= 0. If one requires 
that ~ x  for each x ~ X  then it is easy to see that .43A, A u B  3__AuB. 
Another relation tr may now be defined on X x F(X) as follows: 

(x, ~')  ~ or. - -  if V C X and x ¢ V ' ' r  then V ~ ~ ,  

where V' denotes the complement of V with respect to X. In general a ~ z. 
Let • be a 'relation on X to F(X). In what follows z will be assumed to 

satisfy any or all of the following axioms. 

(~) ~ x ,  
(fl) if ~ '~  zx and (~ ->- at ,  then (~ E zx, 
@) if , ~ ¢  ~x then 3 ~ ~ ~ such that if ~ ~ f~ then ~ ¢ ~x, 

(6') for a given set L o-~'e F(I) and a a e F(X) l, if 

(i) ¥ b ~ I, tr(b) ~ ~vg(b), 
(ii) ~ ( ~ ) ~  ~x 

then 

~(~(~')) ~ Tx .  
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We shall refer to (6') as the iterated limit axiom. It should be noted that (a), 
(fl), (y) do not define a convergence space in the sense of KOWALSKY since one 
cannot conclude that if ~- e zx, fg e zx then o~- ̂  ff e zx. Sometimes we will 
write ~----, x instead of ~ e zx. 

In order to point up the significance of the individual axioms with regard 
to the associated closure operator, we prove several lemmas. 

Lemma t .  I f  z satisfies (ct) and (fl), then 
(Ki )  0 = 0 ,  
(K2) A C X = ~ A C A ,  
(K3) A C X ,  B C X ~ A u B = A u B .  
Proof. The proof of this lemma is trivial and hence omitted. 
Lemma 2. I f  ~ satisfies (a) and (6') then 

(K4) A C X = ~ A = . ~ .  

Proof. Since .~ satisfies (K 2) it suffices to show that .4 3 ~. Let x e .~ and 
~ -~zx  be such that ,4~ ~-, o~'~ be the trace o f ~ -  on A. Let 1=,4 ,  ~p = 1 x and 
for b ~ I let o-(b) e ~(lx(b)) = zb where A ~ tr(b). Clearly lx(~'i) = ~ ' e  zx since 
I ~-~. Define ~b ~ X o(b) by tk(b) =A. It follows that i fF~  °~ - then U q~(b) = A 

be l beF n I 

which implies A ~ x(a(~i) ). ~c(a(~t) ) ~ zx  by (6') so that x ~ .4. 
Lemmas 1 and 2 show that the closure operator A is a Kuratowski closure 

operator. Our next task to answer the question, "Does ~-e vx if ~ converges 
to x in the topology generated by the closure operator ,4?" The following 
lemma is the key which provides an affirmative answer to this question. 

Lemma 3. Let T satisfy (~) and (6'). Then 

Yc > ~ ¢ ~  x e ~ ( ~ ) .  

Proof. Recall that ~ = [ { f f l F e ~ ' } ]  and c t , (~ : )={x l3~9>~,  f fezx} .  
Suppose x e ~ , (~)  and let f~ > ~:, (g e zx. If F e ~- then F e (g; f~ e zx and 
F e ff imply x e ft. Hence x e ff for each F e ~- so that ~ > ~ .  Conversely, let 
: t >  o~ or equivalently xec~{f f lFe~-} .  For  each Fe°-~ there exists a 
f~v e zx and Fe f~r .  Let I = { F I F e ~ } ,  a (F )=fg  v, ~p : I ~ X : : F - - * x .  For any 

e F(I), ~p (.~) = ~ ~ zx. Axiom (6') now assures that x(a(~)) e zx  for any choice 
of • e F (1). Choose • as ~"(o~') = [ {St IF e ~-} ] where Sv = {H e ~r I H C F}. 
We shall show that x(a(6a(~'))) ~ ~r. Let F0 be an arbitrary element of ~-. If 
H e Svo then H CF o and H e  fgu. Choose ~b e X a(F) such that ~b(H)=H. 

Fe.,~ 
Then [_) tk(H)= U H = F o  which shows that x(tr(S~(~-)))>o~" so that 

H e S F  o H CFo 
x e ~,(~-). 

Let ~ z denote the topology generated by the closure operator A. The neigh- 
borhood filter of a point x for ~/, z is of course given by 

~(x) = [{Vlx ¢ ~}1. 

Lemma 4. I f  ~ satisfies (o0, (fl), (V) and (t$') then 

~r ~_ ~ ( x ) c ~  e , x  . 
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Proof. Suppose ~:k~C'(x) and ~:~ zx. Then there exists a set V~U(x)  
such that V ~b F for every F ~ i f ,  or V' ca F + 0. ffv, = [{ V' c~ F I F e ~ } ] is then 
a filter on X which is finer than ~ so that fly, ~ vx by axiom (fl)- This implies 
that x~  V-"; which contradicts the fact that V ~ ( x ) .  Conversely, suppose 
~- ¢ zx and ~ > ~(x)_ Then there exists a ff > ~ such that x ¢ ~((¢) by axiom 
(y). By Lemma 3 k ~ (¢ so that there is a G ~ ~¢ which does not contain x. Hence 
G' ~ ~ ( x )  which is a contradiction since then both G and G' would belong to ft. 

Lemmas 1 through 4 now produce the following theorem. 
Theorem t .  I f  the relation ~ on X to F(X) satisfies (~)--(6') then the associated 

closure operator is a Kuratowski closure operator. Furthermore, a filter o ~ 
converges with respect to the closure topology iff ~ zx. 

Regular topological spaces 

In this section we shall show that the converse of axiom (6') characterizes 
regular topological spaces. We shall indicate that a filter ~- on a topological 
space converges to the point x by #-~ zx. Of course Theorem 1 says that T is 
a relation on X x F(X) which satisfies (~)--(6'). 

Let z be a relation on X x F(X). z is said to satisfy condition (6") if: 

for a given set I, ~ F(I), a ~ F(X) x, if 

(6") (i) V b e I ,  a(b)ez~p(b), 
(ii) ~c(a(~)) ~ ~x, 

then ~v (~ )  ~ ~x. 
Theorem 2. Every reoular topolooical space satisfies (6"). 
Proof. Let Vbe a neighborhood of x, Wa closed neighborhood of x, WC V. 

By (ii) there exist an F ~ f f  and a ¢ ~X  o'(b) such that U ¢(b) C W. It follows 
b~l b~F 

that U (~'~C W. However, by (i) ~v(b)~ ( ~  for each ~b(b)~ a(b) and b ~ F. 
Hence ~v (F)C W C V, which proves the theorem. 

Theorem 3. I f  a topological space satisfies (b") then it is re#ular. 
Proof. Suppose X is not regular. Then there exist an x E X and an open 

neighborhood V of x such that Uc~ V'~= 0 for each neighborhood U of x. 
Let I = ~/'(x) ('V(x) the neighborhood filter of x), f f  = ~(I) .  For  each U E ~V(x) 
let ~v (U) ~ U ca V' and a(U) s • ~o (U) be such that U ~ a(U). Clearly (i) is satisfied. 
To verify (ii) let W e  I. Choose a Sw = {Veil Vc W} from ~ and let ~b(V)= V 
for each VeSw,  then U ~b(V)=W which is included in W. Thus (ii) is 

V ~ S w  

satisfied. On the other hand it is clear that tp(.~) ¢ zx since Vis an open neigh- 
borhood of x. 

DIEUDOYN~ [3] has characterized regular spaces as follows: Let E be a 
topological space, E 1, E 2 sets, ~b : E 1 x E2--*E a map, f f  ~ F(E 0, (¢ ~ F(Ez). If 
(1) ~b(2 x (~)--* ~p(x) 
(2) ¢ ( ~  x ~¢)~ a 
implies 
(3) ~p(~')-~ a 
then E is regular. For  brevity, we call this the D regularity condition. 
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The D condition will make sense if we only ask that E be a convergence 
space. We can then compare D with (5") in a convergence space setting. 

Theorem 4. In a convergence space E if D holds then (~") also holds. 
Proof. Assume D holds and let (i), (ii) of (6") hold. Let E1 = I, E2 = E t, 

q~:E 1 x E2~E: : (b ,F)~F(b  ). 
If we let 

i f =  [{Xt2(a) 2~a~tcr(a)}] 

then q~(b × i f )=  a(b)e z~p(b) and a short computation shows that ~b(°~ × if) 
= xa(~) .  Hence (6") holds. 

Regular convergence spaces 

A regular convergence structure on the set X is a relation z on X x F(X) 
that satisfies (~), (fl), (6") and 

(0 , ~ z x ,  ~ E ~ x ~ ^ ~ x .  

A regular convergence space is a pair (X, z) where X is a set, z a regular 
convergence structure on X. 

The first observation we make is that if {,,} is an arbitrary collection of 
regular convergence structures then sup ~, is itself regular. Next we note that 
if z is regular and f ~ yX then f(x(a~-))) = x( fo  a (~ ) )  which is a filter on Y. 
f actually induces a map F ( X ) ~  F(Y) which we have again denoted by f .  
This observation allows us to show that regular convergence spaces behave 
decently under inverse limits. 

Let (E~, z~) be a family of convergence spaces and 0~: E~E~ a family of 
maps. The projective limit convergence structure z in E is defined as follows 
(cf. [4], p. 288); z = i~ (v , ,  0,) is the coarsest convergence structure on E which 
makes all maps 0, continuous. A filter o-f or E r-converges to x if and only if 
for every ~, 0 , (~ )  z,-converges to O,x. 

Theorem 5. I f  every z, is regular, then so is z. 
Proof. Let again I be any non-empty set, ~-~ F(I), o- e F(E) ~ such that for 

each b ~ I, a(b)~p(b) in E and assume that x a ( ~ ) E  vx. Thus, we have that 
for every ~ ~ A, O,a(b)~ O,~p(b) and that O, x a ( ~ ) ~  O,x. Since 

K c r ( ~ )  = s u  w ~  inf  a(b), 

the filter generated by sets of the form U Sb, Sb~ a(b), it follows that 
bcF  

O, xa(~ ' )  = ~cO,a(~,a~): the filter on the right is generated by the sets ~ Tb, 
b~F 

Tb ~ O~,a(~), so that we may assume Tb = O~,(Sb), St,~ a(b). But then 

U 
b e F  \ b ~ F  

which is a generator of O~xo-(~r). The same argument yields inclusion the 
other way, so that the equality of the two filters is proved. 
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Since every z, is regular, we now conclude that O,v?(~)-oO, x for every 
~ A. It follows that ~ (,~-)-o x in E, thus proving the theorem. 

Remark. It my be useful to note the assertion proved in the preceding 
theorem more explicitly: Given any two sets E, F, a map 0: E - o F  and a ~ F(E) ~, 
we have 

0 x ~ ( ~ )  = x O a ( ~ ) .  

Theorem 6. A product X rat is regular if and only if each zat is regular. 
at 

Proof. There only remains the necessity of the condition, the sufficiency 
being obvious from the theorem we just proved. Thus, suppose X z, is regular 

¢t 

and let t r e F ( E J  be given such that a(b)-o~p(b)~E, for each b ~ I  and 
x t r ( ~ ) - o x , .  We have to show that ~ (~ ' ) -ox ,  in E~. 

To this end, choose arbitrary points xo e Ep, fl + ~, and define, for any 
filter ~at e F(E~), a filter ~-~* e F(E) by ~ *  = Xf~a with if, = ~at and, for fl 4= ct, 
f#a = ~p. It is clear that #-* converges in E if and only if ~ converges in E, 
and that is if y* = (Z~)a~a (with z, = y,, za = xa for fl + ~) is a limit of ~ * ,  there 
yat is a limit of ~'at and vice versa. Moreover, if w is a map Z-o E~, we may 
define w*: Z - o E  by letting w*(z) be w(z)* for each z e Z. 

With these notations, we conclude that a(b)*-o~p*(b) for each b ¢ l  and that 
(xa(~))*  -o x*. Let a*(b) = tr(b)* e F(E) for each b ~ I. Then (xa(~))* ~ xa*(~, ~ )  : 
the left hand side is generated by all products of the form XAa with A~ e xtr (~-), 
Ape ~a for fl 4: a, and Aa = Ep for almost all ft. We may choose A~ to be 
(,3 Sb, Sbea(b).  Obviously, then XAp contains ~ S* where S* ~ tr(b)*, i.e. 

b e F  b ~ F  

S~" = X T~, T~ b ~ tr(b), T~ ~ ~ for fl 4: ~ and T 0 = E~ for almost all fl - -  provided 
we choose, say, T~ = S~ and T~ = A a for all b e F. The union ~ S* is a generator 

b c F  

of xo'*(~,ar), which proves the inequality ( x a ( ~ ) ) * <  xtr*(~). From this we 
conclude that xtr* (~:) -o x*. The regularity of Xz~ now implies that ~* (~ar)-o x*. 
Thus, in particular, p ~  *(30 -o x~, p~ being the projection E-OE~. The construc- 
tion of ~p*(#:) immediately implies that p~?*(#-)=  v?(~), whence finally 
~p (#-)-o x~. This proves the regularity of (E~, ~). 

If(E, z) is a convergence space and A a subset of E then A may be considered 
as a subspace with the coarsest convergence structure on A such that the in- 

clusion map is continuous. Theorem 5 then guarantees that a subspace of a 
regular convergence space is a regular convergence space. 

Theorem 7. I f  ~ is a regular and T~ convergence structure on X,  then z is T2. 
Proof. Suppose there exist distinct points x, y of X and zxc~zy 4= 0. Let 

a r e  zx n ~:y, I = zy, tr: zy-o F(X) : :f~-o f# ~ : zy -o X :: f~-o y. If t/i e F(zy) then 
~p(O)=)~. If ~r~zy,  ~-~F(zy)  and x ( t r ( # ' ) )=# ' e zx .  Since z is regular 
~ (~- )e  zx. But ~p(#- )=pezx  and so z is not T~. 

Theorem 8. Let ~ be a convergence structure on X. I f  ~ zx  implies ~7~ zx, 
then z is a regular convergence structure. 

Proof. Let I be a set, #-e  F(I), tr ~ F(E) z. Suppose tr(b) e r ~p(b) for b e I and 
that x(a(~r)) ~ zx. Let ~ O(b) be a generator of x(tr(#r)). Since tr(b) e z ~p(b), 

b c F  
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~(b)eO(b) for all b~F.  Hence ~(F)C U~)(-b'~c ~O(b) and since ~ is a 
b~F b~F b~F 

generator o f ~ i t  follows that ~ (~ )  > ~ ,  By hypothesis ~ e zx 
so that ~0(~) e zx. 

In the following 2 examples let X be a topological space and Y a uniform 
space. 

Example 1. Continuous convergence ~c on the function space yX is defined 
by (cf. [2]) • ~ ~c ( f ) ' -"  Vx ~ X, ~(~e(x)) ~ a~[f(x)] where ~e~(x) denotes the 
neighborhood filter of x in X and J the entourage filter for the uniform 
structure on Y. Let x e X, V be a closed entourage in J .  Then there exists an 

7~s A x ~ q~ and a Ux e ~e~(x) satisfying Ax(U~) C V [f(x)]. For g e Ax, there exists a 
e F(Y x) satisfying ~ ~-z*, g or ~(y)~g(y)  for each y e U~. Hence g(y) ~ 

so that 7~, A~ (Ux) C ~ C V [f(x)], V being a closed entourage. This shows that 
for each x ~ X, ~ ' e  L(f)-  Since L > z, it follows that ~r°e  7~(f)- 

Example 2. Uniform convergence ~/ of a filter ~ F(Y x) at a point is 
defined by ~ l f ' ~ - ' V x ~ X ,  V entourage V in J 3UxE~f(x) and A x e ~  
such that (A~(y), f(y)) e V for all y e U:,. Now let V be a closed entourage. Then 
A~(y) C V[f(y)] for y e U~ and so -4:~'(y) C A~(y) C V[f(x)], y ~ U=. Hence 
~ "  ~ r / f  and since t />  z~, ~ e r/f. 
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