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Special Coordinate Coverings of Riemann Surfaces 
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t. Introduction 
The general uniformization theorem ensures that any Riemann surface can 

be represented as the quotient space of a subset of the complex projective 
line by a discontinuous group of projective (linear fraction) transformations. 
There are generally a great many different ways in which a given surface can 
be so represented, an observation which has been of some use in recent work 
on the moduli of Riemann surfaces, [3]. Any such representation provides a 
special coordinate covering of the Riemann surface, with the property that 
the local analytic coordinates are related to one another by projective trans- 
formations. The aim of the present paper is to investigate some aspects of the 
structures determined by special coordinate coverings of this sort, principally 
for compact Riemann surfaces. An underlying motivation, in addition to the 
possibility of gaining some further insights to an old topic by varying the 
point of view, is the quest for phases of the classical uniformization theorem 
which might suggest generalizations to several complex variables; there are 
manifolds of several dimensions which admit special coordinate coverings 
of a similar sort, for instance, quotient spaces of the Siegel upper half-spaces 
by discontinuous groups of transformations. 

The following is a brief outline of the contents of this paper. Section 2 is 
devoted to establishing the notation and terminology to be used, and to defining 
the structures to be investigated. Section 3 contains a discussion of relation- 
ships between these special coordinate structures and certain canonically 
associated fiat fibre bundles; the principal result is that the bundles completely 
describe the structures to which they are associated. Section 4 contains a 
differential-geometric discussion of these structures and their associated 
bundles. Section 5, as a slight digression, briefly sketches the role of these 
structures in an intrinsic formulation of the Eichler cohomology groups on 
Riemann surfaces. Section 6 contains a discussion of the classical uniformiza- 
tions of Riemann surfaces, from the point of view adopted here. There is also 
included an appendix, containing a review of some relevant results about 
complex vector bundles over Riemann surfaces, a discussion of fiat bundles 
associated to a complex vector bundle, and a sketch of an alternative approach 
to the topics treated in Section 4. 
5* 
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2. Notation and terminology 

A coordinate covering { U~, z~} of a two-dimensional manifold M consists 
of an open covering { U~} of M, together with homeomorphisms z~ : U~ ~ V~ (the 
coordinate mappings) from the sets U~ to open subsets V~ of the complex 
plane C. On the intersections U~ n U 0 ( M  there are defined two homeomor- 
phisms into C; the compositions 

f ,o = z, o z~ 1 : zo(U,n U a)~ z , (U ,n  U I~), 

which are homeomorphisms between open subsets of the two domains V,, 
V 0 C C, are called the coordinate transition functions for the given coordinate 
covering. Note that the union of two coordinate coverings, consisting of all the 
open sets and coordinate mappings from the two, is again a coordinate cover- 
ing; the set of coordinate transition functions for this union of course contains 
more than just the sets of coordinate transition functions from the two separate 
coordinate coverings. 

A complex analytic coordinate covering of M is a coordinate covering in 
which the coordinate transition functions are complex analytic mappings; 
two such coordinate coverings are called equivalent if their union is again a 
complex analytic coordinate covering, and an equivalence class of such 
coordinate coverings is called a complex structure on M. In the traditional 
terminology, a two-dimensional manifold with a fixed complex structure is 
called a Riemann surface. Similarly, a complex projective (or affine) coordinate 
covering of M is a coordinate overing in which the coordinate transition func- 
tions are complex projective (or affine) mappings; recall that a complex 
projective mapping f is a complex analytic mapping of the form f ( z )  = (az + b) 
(cz + d)-1 for complex constants a, b, c, d with a d -  bc + O, and a complex 
affine mapping is the special case of a complex projective mapping in which 
e = 0. Two such coverings are called equivalent if their union is a coordinate 
covering of the same kind, and an equivalence class of these coverings is called 
a complex projective (or affine) structure on M. In defining a complex projective 
structure, it is at times more convenient to envisage the sets V, as lying in the 
projective line, for then the points z for which cz + d = 0 do not require special 
attention. The complex projective or affine structures are special cases of the 
locally homogeneous structures introduced by EHg~SMANN, [6]. Note that a 
complex projective structure on M belongs to a unique complex analytic 
structure; the complex projective structure is said to be subordinate to that 
complex structure. Similarly, a complex affine structure on M is subordinate 
to a unique complex projective structure. 

If { U~, z~} is a complex projective (or affine) coordinate covering of M, the 
coordinate transition functions {f,0} are elements of the one-dimensional 
complex projective group ~ (or of the one-dimensional complex affine group ~¢) 
associated to the intersections U,n  UoCM; and for any triple intersection 
U, n UonU~C M, these group elements satisfy the condition f ,  a o f a r =  f,r.  
Therefore, the set {f,a} of all these transformations define a coordinate bundle 
over M, the group of the bundle being the complex projective group ~ (or the 
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complex affine group ~1) and the fibre being the complex projective line P (or 
the complex affine line C); the terminology used here follows STEErCROD [13]. 
Note that the element f~p is constant, when considered as a mapping from the 
intersection U~c~ Ua into the group ~ (or ~¢); hence the bundle is a f la t  coor- 
dinate bundle, or in the terminology of [13, section 13 ], a coordinate bundle with 
totally disconnected group. The coordinate bundles associated to two equi- 
valent complex projective (or atone) coordinate coverings are equivalent, in the 
category of flat coordinate bundles; hence to each complex projective (or 
affine) structure on M there corresponds a unique fiat fibre bundle, which will 
be called the fibre bundle associated to the complex projective (or affine) structure. 
A flat fibre bundle associated to some complex projective (or affine) structure 
on the surface M will be called an indigenous bundle on M; and a flat fibre 
bundle associated to some complex projective (or affine) structure subordinate 
to a fixed complex structure on the surface M will be called an indigenous 
bundle to that complex structure on M (or to the Riemann surface M, for 
short). 

3. The associated bundles 

The first topic for more detailed consideration is the relationship between 
complex projective (or affine) structures and their associated fibre bundles. 
It is an immediate consequence of the definitions that if tp is the fibre bundle 
associated to a complex projective structure on M, then the coordinate mappings 
in a coordinate covering representing that structure compose a cross-section 
of the bundle ~0, indeed, a cross-section of a very special sort. For any fibre 
bundle over M, the set of points in the bundle space lying over a suitably 
small open neighborhood in M is homeomorphic to the Cartesian product 
of the fibre with that neighborhood in M, hence that set admits a projection 
onto the fibre; and for a flat fibre bundle, any two such projections differ only 
by a fixed homeomorphism of the fibre. Now the compositions of these local 
projections with a cross-section of the bundle associates to the cross-section 
a family of local mappings into the fibre, which are determined uniquely up to 
homeomorphisms of the fibre. The cross-section of ¢p arising from a complex 
projective structure has the particular property that its associated family of 
mappings into the fibre consists entirely of local homeomorphisms; moreover, 
any such cross-section of tp determines a complex projective structure to which 
is associated the bundle tp. It is thus a trivial assertion that a flat fibre bundle ~o 
is indigenous to M if and only if it admits a continuous cross-section which 
determines local homeomorphisms into the fibre. The further investigation 
of this matter by purely topological methods, to determine directly the class 
of indigenous bundles on M, appears to be rather difficult; but the problem is 
quite amenable analytically, and will be discussed further in the following 
sections, the present section being devoted to the uniqueness of the structure 
to which a bundle on a compact Riemann surface is associated. 

For the sake of completeness, we begin with the rather trivial case of the 
attine structures. 
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L e m m a  t .  l f  a compact topological surface admits a complex aj~ne structure, 
then the surface has genus 1. 

Proof. Let { U~, z~} be a complex affine coordinate covering of the surface; 
in each intersection U~c~ U~ the coordinate mappings are related by z~ = f~8(zo) 
= aapz~ + b~p for some complex constants a~p ~ 0, b~. The canonical bundle 
of the complex structure defined on the surface by this affme covering has the 
transition functions k~ = (dzJdzp)-  1 = 1/a~p, [2] ; since these are constant, the 
canonical bundle has zero Chern class, hence the surface has genus 1. 

Theorem t. An indigenous fiat affine bundle to a compact Riemann surface 
is associated to a unique affine structure on the surface. 

Proof. Let {U~, z~} and {U~, w~} be two complex affine coordinate coverings 
of the Riemann surface, having the same associated affine coordinate bundles; 
thus in each intersection U~c~Up the coordinate mappings are related by 
z~ = a~z~ + b ~  and w~ = a~pw~ + b~  for some complex constants a~p 4: 0, b~. 
Since the two affine structures are by assumption subordinate to the same 
complex structure, in each neighborhood U~ the coordinate mappings are 
also related by w~ = f~(z~) for some complex analytic function f~. Now the 
derivatives dwjdz~ are also analytic functions in the neighborhoods U~; and 
it is readily seen that dwJdz~, = dwp/dzp in each intersection U~n U~, so that 
these derivatives define a global analytic function on the Riemann surface. 
Since the surface is compact, this function must be a constant c, and hence 
w,, = cz~, + d~, in each neighborhood U,. The two affine coordinate coverings 
are therefore necessarily equivalent, and this suffices to prove the desired 
result. 

It should be remarked that this theorem is false without the restriction 
that the affine structures be subordinate to the same complex structure. 

Next we turn to the rather more interesting case of the projective structures. 
Suppose that q~o is a one-dimensional fiat complex projective bundle over a 
topological space M, and is defined by transition functions o q~, a in terms of a 
coordinate covering {U,, z,} for the space M. Each projective transformation 

o tp, ~ can be represented by a matrix 

(P~P = \c~p d~p 

of complex constants; and if this matrix is normalized by requiring that det 
tp,p = 1, it is then uniquely determined up to si~gn. For any intersection U~c~ U a c3 
c~ U~ these matrices must satisfy the relatiofithat (p~pq~p~ = _ q~.  If the signs 
of the various matrices can be so chosen that the positive sign holds in all of 
these relations, then this collection of matrices defines a two-dimensional flat 
complex vector bundle q~ over the space M;  tl~e projective bundle (po will then 
be said to be associated to the vector bundle tO. Although not all flat projective 
bundles are associated to flat vector bundles in this manner, the indigenous 
projective bundles always are. (A further discussion of complex vector bundles 
over a Riemann surface, giving those properties which will be used in the 
subsequent discussion, will be found in the appendix to the present article.) 
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Theorem 2. Let M be a compact Riemann surface of  genus g > 1. A f ia t  
complex projective bundle q~O is indigenous to M if and only if q9 ° is associated 
to a f la t  complex vector bundle ¢p for which det q~ = 1 and ]divq~] = g - 1. Further, 
if{ U~, z~} is a complex projective coordinate covering of  M for which the mapping 
functions z~ compose a cross-section of  q)o, then there is a complex analytic 
cross-section h~ = (hl~, h2a ) of z@~o, for some complex line bundle Z with Ixl = 0, 
such that z~=hl jh2~ in U~. 

Proof. First, suppose that ¢po is a flat complex projective bundle indigenous 
to M;  then there will be a complex projective coordinate covering { U~, z~} of M 
for which the coordinate mappings in an intersection U~c~ Up satisfy 

z~ = q~°p(zp) = a~pz~ + b~p 
c~pzp + d~p ' 

where {tp°p} are transition functions defining the bundle q~o. Note that the 
canonical bundle ~c of M is defined by the transition functions 

k~p = (c~pz~ + d ~ p )  2 . 

Since t~ct = 2 g -  2, there exists a complex line bundle ~ with t~l = 0 such that 
the bundle ~®t¢ has a holomorphic cross-section {g~}, the divisor of which 
consists precisely of g -  1 double zeros. Since 14t = 0, that line bundle can be 
defined by transition functions { ~ }  which are complex constants of modulus 1 ; 
and the functions {g,} therefore satisfy 

g~= ~(c~z~+d~,~)2g~ in U ~ U p .  

Now in each neighborhood U~ select a branch of the function h2~ =(g~)1/2. 
These functions {h2~ } are well-defined holomorphic functions in U~, since {g~} 
has only double zeros; moreover they satisfy relations of the form 

h2~=;~p(c~pzp +d~B ) h2a in U~n Up, 

where Z~p are complex constants of modulus 1, and their global divisor on M 
consists ofg - 1 simple zeros. The pair of functions h 1 • = z~h2 • and h 2 ~ therefore 
satisfy 

hl~ , = Z~,p(ao, phll ~ + b~ph2~) 

h2~, = ;~,p(c~,phlp + d,,ph2p) . 

On the one hand, it follows therefrom that the matrices 

(a~, b ~  
~o*p = ;C,,p ,,co, p d , p ]  

define a fiat complex vector bundle ~0" over M, to which the projective bundle 
tp ° is associated; the desired vector bundle tp is then the one defined by the 
transition functions tp~p = (det tp*p)-1 ¢P*a" Furthermore, the functions h l ~, h2, 
compose a holomorphic cross-section of the bundle tp* and the common 
divisor of this cross-section consists in the g - 1 simple zeros of h i , ;  therefore, 
tdiv~01 = g - 1 .  Finally, since z,=h~Jh2~,, the last statement of the theorem 
follows as well. 
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Next, suppose that q)o is a flat complex projective bundle associated to a 
fiat complex vector bundle q) for which detcp = 1 and [divcpl = g  - 1. Select a 
complex analytic coordinate covering { U~, z~} of M, in terms of which the 
bundle ¢p is defined by transition functions 

Since [div ¢pl = # - 1, there is a complex line bundle ~ over M such that 141 = # - t 
and that 4-1 ®¢p has a holomorphic cross-section (hl~, h2~). There must also 
exist a complex line bundle )/over M such that I~/I = 0  and that t/®~ has a 
holomorphic cross-section #~; the bundle t/can be defined by transition func- 
tions r/~p which are complex constants of modulus 1. The functions fi~ = g~hi~ 
(i = 1, 2) then compose a holomorphic cross-section of the fiat complex vector 
bundle )/® <p, that is, 

f i~ = rl~,p(a~,af lp + b~,aAp), A~  = )l~,a(c,,af ia + d~,af za). 

Now introduce the holomorphic matrix-valued functions 

(hi= h; A 
H~'= kh2~, h'2,)' \ f 2~, f~:} '  

the primes denoting the derivatives with respect to the local coordinates z~. 
The matrices F~ clearly satisfy 

F,=t/,~tp~pFp(10 ~ )  in U~nU~, 

where k,~ = (dzJdzp)- 1 are transition functions defining the canonical bundle 
K; and consequently 

det F~ = r/~2pk~p detF B . 

It is easy to verify that detF~ is not identically zero. Recalling that fi~ = gl~h~, 
it follows that det F~ = g2 det H~, and therefore that 

det H~ = ~-2 k~p det Hp; 

that is to say, the functions det H~ compose a non-trivial holomorphic cross- 
section of the bundle ¢-2®x.  Since ] ~ - 2 ® K l = - 2 ] ¢ l + ( 2 g - 2 ) = 0 ,  the 
functions detH~ are nowhere vanishing on the Riemann surface M. The desired 
result follows readily from this. For introduce the local meromorphic functions 
w~ = hi Jh2~ in the neighborhoods U~; these compose an analytic cross-section 
of the flat projective bundle tp °, since also w~ = f l  Jf2~. Recall that the functions 
hl~ and h2~ have no common zeros, and observe that w~ = dwJdz~ = -(h2~ )- 2 
detH,  and that (1/wff= (h~) -2 detH~; since detH, 4= 0, the mapping w~ is 
actually a local homeomorphism into projective space, hence the bundle ¢po 
is indigenous, which completes the proof. 

Remark. A more detailed description of the possible vector bundles tp 
satisfying the hypotheses of the preceding theorem will be found in the appendix 
to this paper; see, in particular, Proposition A 4. 
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Theorem 3. An indigenous f la t  projective bundle to a compact Riemann 
surface of  genus # > 1 is associated to a unique projective structure on the surface. 

Proof. Let {U~, z~} and {U~, w,} be two complex projective coordinate 
coverings of the Riemann surface, having the same associated projective coor- 
dinate bundles. By Theorem 2 there will be a flat complex vector bundle q~, 
with detep = 1 and [div(ol = # - 1, to which this projective bundle is associated; 
and there will be complex line bundles ¢ and t/, with [~t = [t/I = 0, and holomor- 
phic cross-sections (g 1,, gz ~) of ~ ® ~0 and (h i ~, hz,) of ~/® ~0 such that z, = g 1Jg2 
and w~ = htjh2~. Introducing the matrix functions 

F = ( g t ~  h l ~  
\g2~ h 2 J '  

observe that these satisfy 

(¢~a 0 ) in U,c~Up, F~ = cp~pFt~ \ 0  r/~ 

hence that detF~ = ~a~/,a detFa;  that is, the functions detF~ compose a cross- 
section of the line bundle ~®~. Since I~®r/I =I l l  +171 =0,  either detF~ is 
nowhere vanishing, or d e t F ~ -  0. In the first case, in which the matrices F~ are 
non-singular, the bundle ~o is analytically equivalent to the bundle ~-1 @t/-1, 
hence Idiv~o] = 0, which is a contradiction. Therefore detF~ = 0, in which case 
the two vectors (g~,g2~) and (h1~, h2~) are linearly dependent, and hence 
z~ = w~. This shows the uniqueness of  the projective structure, which was the 
desired result. 

As in the affine case, this theorem is false without the restriction that the 
projective structures be subordinate to the same complex structure; for 
examples, see the discussion in [3 ]. 

4. Complex analytic connections 

A differential-geometric description of the possible complex projective 
(or affine) structures and their associated bundles on a Riemann surface M 
can be obtained rather easily from an analysis of the formal properties of  the 
differential operators defining projective or affine mappings. Suppose that 
f :  U ~  V is a complex analytic local homeomorphism between two open 
subsets U, VC C, so that f ' (z)  :# 0 for all points z ~ U. Introduce the differential 
operators 01, 02 defined by 

(1) 01 f (z)  = f"(z) / f ' ( z ) ,  

(2) 02 f (z) = (2 f ' (z)  f '"(z) - 3 f"(z)2)/2 f'(Z) 2 ; 

thus, Off is a complex analytic function defined in the same open subset 
U C C, (r = 1, 2). Ifg : V ~ W is another complex analytic local homeomorphism, 
then so is the composition h = gof  : U ~  W; and a straightforward calculation 
shows that 

(3) O,h(z) = O,g(f(z)) f'(z)" + Oj(z) ,  r = 1, 2. 
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Introducing the families ~-r of complex analytic local homeomorphisms f such 
that O,f(z) = O, it is clear from (3) that each family is dosed under composition 
of mappings, whenever composition is defined; that is to say, the families ~-, are 
Lie pseudogroups of complex analytic transformations, defined by the differen- 
tial equations (1) and (2). Indeed, the family ~1 clearly consists of all complex 
affine transformations; and, since 02 is the classical Schwarzian derivative [4], 
the family ~2 consists of all complex projective transformations. It is not 
difficult to show that ~1 and ~'2 are essentially the only such pseudogroups in 
one complex variable, thus explaining their special role in the subject; but that 
matter belongs to the classification theory of pseudogroups, [5]. 

Select a complex analytic coordinate covering {U,, z,} of the Riemann 
surface M, and consider the coordinate transition functions z, = f,a(zp) defined 
in the intersections U,c~ Up. The expressions a~,g = O,f,a are also complex 
analytic functions defined in the intersections U ,n  Up, and it follows from (3) 
by a simple calculation that ~,~. = (f~)" a,~p + a,p~ in U~c~ U ~  U~ ; that is to 
say, the collection of functions {tr,,a} defines a one-cocycle of the covering { U,} 
with coefficients in the sheaf of germs of holomorphic cross-sections of the line 
bundle x'. A zero-cochain {h,} of the covering having {a,,a} as its coboundary 
will be called a complex analytic projective connection on the Riemann surface 
M if r = 2, and a complex analytic affine connection if r = 1 ; thus such a connec- 
tion consists of a collection of functions {h,} holomorphic in the various neigh- 
borhoods { U,} and satisfying 

(4) (f~a)' h~-  h a = O,f~p in U~c~ Up. 

For an explanation of the terminology, see [10]. Note that the existence of a 
holomorphic such connection amounts to the condition that the cocycle {tr,~p} 
be cohomologous to zero; thus the vanishing of the first cohomology group of 
M with coefficients in the sheaf of germs of holomorphic cross-sections of the 
line bundle x', the group denoted by Hi(M, f2(x')), guarantees the existence of 
at least one connection. Having one connection given, the most general connec- 
tion is clearly the given connection plus an arbitrary quadratic differential 
(ifr = 2) or abelian differential (fir = 1) on M; there is thus established a one-to- 
one correspondence, albeit not a natural correspondence, between projective 
connections (if they exist) and quadratic differentials, and a correspondence 
between affine connections and abelian differentials. The role of these connec- 
tions is indicated by the following result. 

Theorem 4. For an arbitrary Riemann surface M, there is a natural one-to- 
one correspondence between the set of  complex projective (or affine) structures 
on M subordinate to the given complex structure, and the set of  complex analytic 
projective (or affine) connections on M. 

Proof. Any complex analytic coordinate covering {U~, z*} of M, defined 
with respect to the given open covering {U,} and equivalent to the given 
coordinate covering {U~, z~}, must be of the form z* = 0~(z,) for some complex 
analytic local homeomorphisms 0~; the coordinate transition functions for this 
new coordinate covering are of the form f*p = 0~ o f~p o 0~ 1. The condition that 
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the new coordinate covering be a complex projective (or afl~ne) coordinate 
covering is just that O,f*# = 0 for r = 2 (or r = 1, in the attine case). Using (3), 
the last condition can be written 

(5) Orf~# = -- (f'#)" O,g~, + 0,9#. 

It is convenient to introduce the intermediary functions 

(6) h~ = - O,g~, 

in terms of which condition (5) reduces to condition (4); thus, the set of all 
complex projective (or affine) coordinate coverings of M subordinate to 
the given complex structure of M can be put into one-to-one correspondence 
with the set consisting of those collections of pairs of analytic functions {g~, h~} 
satisfying (4) and (6). Two collections of such pairs {g~, h~} and {g*, h~*} define 
equivalent complex projective (or affine) coordinate coverings precisely when 
the complex analytic local homeomorphisms t=, defined by g* = t~o g~, are 
complex projective (or affine) mappings; and since 0,9* = (g~" O,t= + O,g~, this 
condition merely amounts to the condition that h* = h=. Therefore, to conclude 
the proof of the theorem, it is merely necessary to show that, given any collection 
of complex analytic functions {h=}, there exist local solutions {g=} of the 
differential equation (6); this is clear for r = 1, and becomes clear for r = 2 upon 
putting g'~ = y~- 2 and observing that (6) then has the form 2y" + h~y~ = O. 

Corollary t. Any open Riemann surface admits a complex affine structure 
subordinate to the 9iven complex structure; the set of all such structures can be 
put into one-to-one correspondences with the set of abelian differentials on the 
surface. 

Proof. Since t2(x) is a coherent analytic sheaf, and an open Riemann 
surface M is a Stein manifold, it follows that Hi(M, f2(x)) =0,  [9]. Therefore 
there exist complex analytic affine connections on M as noted above, and the 
Corollary follows immediately from the preceding theorem. 

Corollary 2. Any Riemann surface admits a complex projective structure 
subordinate to the 9iven complex structure; the set of all such structures can be 
put into one-to-one correspondences with the set of quadratic differentials on the 
surface. 

Proof. For an open surface, the argument proceeds as in the preceding 
Corollary. For  a compact Riemann surface, it follows from the Serre duality 
theorem that Hi(M, t2(x2)) ~ H°(M, f2(x- 1)) = the space of holomorphic 
cross-sections of  ~c-1; since Ix-t1 = 2 - 2 0 ,  it follows that HI(M, g2(x2))=0 
if O > 1, g being the genus of the surface M. The existence of projective structures 
on surfaces of genus 0 or 1 being obvious, the Corollary follows. 

Each projective connection on a Riemann surface M leads to a complex 
projective structure on M by Theorem 4, and this structure in turn has an 
associated flat complex projective bundle over M ;  the bundle can be determined 
directly from the projective connection as follows. (The corresponding affine 
case is quite trivial, so it will not be discussed further.) Given a complex analytic 
coordinate covering { U~, z~} of M, let {h~} be a complex projective connection; 
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and let {~a} be transition functions defining a complex line bundle ¢ such that 
~2 = x. In each neighborhood U~ select any two linearly independent complex 
analytic functions f l  ~, f2~ which are solutions of the linear differential equation 

1 
(7) f l ;  = -~h~f,~, i= 1, 2. 

A straightforward verification shows that in U~ n U a the functions (f~a ° fa~)~a~ 
are also solutions of the differential equation (7); so, introducing the vector- 
valued functions 

\ f 2 J '  
there is a unique complex constant matrix ¢pp~ such that 

(8) Fp(zB(z~))¢p,(z~) = ~op~F~(z~) in U~n Ua. 

Theorem 5. The matrices {~pp~} are transition functions defining the fiat 
complex projective bundle over M associated to the projective structure of the 
projective connection {h~}. 

Proof. In each neighborhood U, introduce the meromorphic function 
g~ =fiJf2~,  noting that these are non-trivial functions. Indeed, since f ~  are 
linearly independent solutions of (7), their Wronskian W~ is nowhere vanishing 
in U~; and since g" = -2 W~f2~, it follows that g~ ~= 0 at all points where f2~ 4= 0. 
Similarly, (1/g~)' ~ 0 at all points at which f l ,  4: 0, so since f ~  and f2~ have no 
common zeros, the functions g~ are local homeomorphisms into projective 
space. Thus a new complex analytic coordinate covering can be introduced 
by putting w~ = g~(z~) in U~, and refining the covering if necessary. Now in 
U~n Up it is clear from (8) that wp = ~0p~(w~), considering ¢pp~ as a projective 
transformation; that is to say, { U~, w,} defines a complex projective structure 
on M for which ~p = {~o,p} is the associated flat projective bundle. To complete 
the proof it is only necessary to observe that this projective structure corresponds 
to the connection {h,} as in Theorem 4, that is, that 02g~+h~=O; but this 
follows readily enough from (2) and (7), and the proof is therewith concluded. 

This same result can be derived in another manner, as is outlined in the 
appendix to the present paper. 

5. The Eichler eohomology groups 

In some recent investigations of automorphic functions, the cohomology 
groups introduced by EICHL~ have played an important role, [7, 12]. These 
cohomology groups are associated to a discontinuous group F of projective 
transformations of a domain D C C; hence they can also be considered as being 
associated to the Riemann surface D/F, with the natural projective structure 
on that surface. Now this cohomology theory can be associated, in a natural 
intrinsic manner, to any complex projective structure on any Riemann surface. 
This matter will not be considered in detail here; rather, a special case will 
be discussed to illustrate the role of the projective structures in the theory. 
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Let { U~, z~} be a complex analytic coordinate covering of a Riemann surface 
M, and let {h~} be a complex analytic projective connection on M. Consider 
the family of linear differential operators D =  {D~} defined in the various 
neighborhoods {U~} by 

(9) D~ = da/dza~ - 2h~ d/dz~ - h'~ . 

As before, for any line bundle ~, let H(4) denote the sheaf of germs of holomorphic 
cross-sections of the bundle 4; and let x denote the canonical bundle of M. 
The cross-sections of the sheaf H(4), the holomorphic cross-sections of 4, 
will be denoted by F(O = H°(M, H(4)). 

Lenuna 2. The operator D defines a sheaf homomorphism D: H(x- 1)~ t2(x2) 
Proof. Suppose given a germ of a cross-section f~ e H(r-  1), in a neighbor- 

hood U~; so in any other neighborhood Ua in which the same germ has a 
representation fp, it follows that f~ = x~-p I fp. A straightforward calculation 
shows that D~f~ = D~(x~p t f ~) = 2 x,pDpfp, but this is just the condition that 
D~f~ e H(x2), as desired. 

The kernel of the homomorphism D in the above lemma is a subsheaf 
Oh(x-1) C H(x-1), the subscript indicating the dependence of this sheaf on 
the choice of the projective connection h = {h~}. 

Theorem 6. I f  M is a compact Riemann surface of genus g > 1 and h = {h~} 
is a complex analytic projective connection on M, there is a natural exact sequence 
of complex oector spaces 

(10) 0 ~ F(x 2) ~ H 1 (M, Hh(x- 1)) ~ F(x2) _.. 0. 

Proof. By Lemma 2 the operator D yields the exact sequence of sheaves 

0-. ah(x- 1)~ a(x- 1)-D, H(x2)-.0; 
that D is surjective is a familiar property of ordinary differential equations. 
Corresponding to this exact sequence of sheaves is the exact cohomology 
sequence, a part of which has the form 

F(x-1)-~ F(x2)--, H1 (M, Oh(x-1))--,H'(M, H(x- 1))~ Hi(M, H(x2)). 

Since J x - t J = 2 - 2 g < 0 ,  it follows that F (x - l )=0 .  By the Serre duality 
theorem, Hi(M, H(x-1)) -_ H°(M, H(x2)) = F(x 2) and HI(M, H(x2)) 
~_ H°(M, H(x- 1)) = F(x-  1) = 0. The desired result then follows immediately. 

The groups H'(M, Hh(x-1)) will be called Eichler cohomology groups of 
the Pdemann surface M. The groups depend upon the choice of a projective 
connection h. In addition to the particular case mentioned here, one can intro- 
duce similar groups HI(M, Hh(x-')) for all positive integers n, by suitable 
extensions of the differential operator (9); higher dimensional cohomology 
groups do not occur for Riemann surfaces. The more general case will be 
discussed elsewhere. 

At each point of M, the stalk of the sheaf Hh(x 2) is a three-dimensional 
complex vector space, consisting of the germs of functions in the kernel of the 
differential operator (9); the Eichler cohomology groups are cohomology 
groups of M with a suitable system of local coefflcient~ [13]. The description 
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of these coefficients becomes simplest in terms of a complex projective co- 
ordinate covering { U,, z,} representing the projective structure associated to 
the projective connection h = {h,}. For in such a coordinate system h, =0  
in each U,, and hence the kernel of operator (9) in U, consists of all polynomials 
of degree at most two in the local coordinate z,. These observations, together 
with the exact sequence (10) relating the cohomology groups and the space 
r(x z) of quadratic differentials on M, exhibit the cohomology groups intro- 
duced here as reasonable extensions of the groups appearing in the study of 
automorphic functions. 

6. The geometric realization 
The complex projective (or affine) structures on a surface lead to rather 

explicit geometric representations of the surface, which are closely related to 
the various classical uniformizations of Riemann surfaces. Suppose that M 
is a compact topological surface with a .given complex projective (or affine) 
structure. Under the covering mapping M--,-M, the universal covering space 

of M inherits in the obvious manner a complex projective (or affine) structure. 
Since rq(M)=0, the flat fibre bundle associated to the complex projective 
(or affine) structure of M is trivial, [13]; hence there is a complex projective 
(or affine) coordinate covering { U~, z~} of M, representing the given structure, 
such that all the coordinate transition functions ~=f~a(~p) are identity 
mappings. For such a coordinate covering, the various coordinate mappings 
actually define a global mapping Q:B~F ~ D from the surface M onto a subset 
D of the complex projective line P (or complex affine line C); this mapping 
will be called the geometric realization of the given complex projective (or 
affine) structure. The realization mapping ~ is of course a local homeomorphism, 
since locally it coincides with a coordinate mapping; the set D is then a con- 
nected open subset of P (or C). Any other such coordinate covering representing 
the same structure will differ at most by the same complex projective (or affine) 
maEping applied to each coordinate mapping; thus the geometric realization 
#:M--,D is unique up to a projective (or affine) mapping applied to D. 

Let H_~ nl(M) be the covering translation group for the universal covering 
mapping M ~ M; and note that each T* ~ H is a complex projective (or affine) 
mapping in terms of the induced projective (or affine) structure of M. Thus 
for any point/~ e M and any element T* ~ / / the re  will be a complex projective 
(or aftine) transformation T such that Q(T*p)= TQ(~); this relation will of 
course hold for all points p in a small open neighborhood on the surface M, 
so by continuity the transformation T must indeed be independent of the point 
/~. That is, for each element T * ~ / / t h e r e  is a complex projective (or attine) 
transformation T such that Q(T*/~)= T#(ff) for all points/~eM. The set F 
of all these transformations {T} is therefore a group of complex projective 
(or affine) automorphisms of the domain D, and F ~ / I  under an isomorphism 
commuting with the realization mapping Q. Henceforth, by the geometric 
realization of a complex projective (or affine) structure on M, we shall mean the 
realization mapping Q:M~D together with the transformation group F 
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on D. Note that changing the realization mapping by a projective (or atone) 
mapping of D has the effect of replacing F by the corresponding conjugate 
subgroup of ~ (or ~¢). Note further that the isomorphism / / ~  F actually 
represents the characteristic class of the flat projective (or affine) bundle 
associated to the given structure on M, [13, section 13]. 

Since the realization mapping Q induces a mapping Q*:M/H~D/F ,  
it follows that the identification space D/F is compact in its natural topology 
whenever the space M = A-I/H is compact. The group F does not necessarily 
act in a discontinuous manner on the space D, however; the quite simple affine 
case, which we shall consider briefly next, illustrates this. 

Let M be a compact surface with a given affine structure; by Lemma 1, 
M must have genus 1, so t h a t / - / i s  a free abelian group on two generators 
S*, T*. Thus F is an abelian group of affine transformations generated by two 
mappings S, T, which one easily sees must have one or the other of the following 
forms : 

(i) S(z) = z + 1, T(z) = z + co, any complex ¢o; 
(ii) S(w) = aw, T(w) = bw, any non-zero complex a, b. 
For  the quotient space D/F to be compact, in case (i) necessarily D = C 

and I m c o ,  0; and in case (ii), necessarily D = C - 0 and either lal :~ 1 or Ibl ~: 1. 
Case (i) gives the usual representation of a compact Riemann surface of genus 1 
as the quotient of the complex plane by a discrete lattice subgroup, which 
evidently describes an affine structure on the surface as well. The mapping 
w = e ~, for a non-zero complex constant c, takes the full plane onto the punctured 
plane and transforms the group action of case (i) to that of case (ii), with a = e ~ 
and b = e¢°'; thus all of the groups in case (ii) actually do occur. It may be 
observed that co (modulo the usual action of the modular group) serves as 
modulus for the complex structures of M in the representation (i), and the 
affine structures of case (ii) can be used to associate the same fiat affine bundle 
to two inequivalent atone (indeed, inequivalent complex) structures. It should 
further be observed that, in case (ii), the group F does not always act dis- 
continuously on D. 

Next, turning to the projective case, we have the following simple result. 
Theorem 7. Let M be a compact topological surface of genus g > 1 with 

a complex projective structure; and let Q:M ~ D  be its geometric realization, 
where D C P, D ~ P. Then the realization mapping Q is a covering map; and 
either D is analytically equivalent to the unit disc, or its complement in P has 
infinitely many components. 

Proof. If P - D  consists of a single point, that point can be taken as the 
point at infinity in P ;  and since the transformations T e  F preserve D, they must 
then be affine mappings. Now the isomorphism H ~ F represents the charac- 
teristic class of the flat fibre bundle associated to the given projective structure, 
and if F is affine, it follows that the projective structure can be reduced to an 
affine structure; but by Lemma 1, the surface M must then have genus 1, a 
contradiction. Next, if P - D consists of two points, they can be taken as the 
points 0 and oo in P ;  the transformations T e  F then have one or the other 
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of the forms : T z  = az, T z  = a/z, (a e C, a 4: 0). The subgroup F 0 E F consisting 
of affine transformations is easily seen to be a normal subgroup of finite index. 
The corresponding subgroup Ho C H of covering translations then determines a 
finite-sheeted covering space of M which has an affine structure, hence which 
is a surface of genus 1 ; it then follows that M itself must have genus t, again 
a contradiction. Therefore the complement of D must contain at least three 
points. If D is simply connected, it must be conformally equivalent to the unit 
disc; otherwise, recalling that D/F is compact and hence that D must have an 
infinite group of automorphisms, the complement of D must have infinitely 
many components, [11]. 

Since Q is a local homeomorphism, to show that it is a covering mapping 
it suffices to prove the following: given any closed path 2 in D, from a point p 
to a point q, and any point p ~ M for which 0~) = P, there exists a path 2 in ~t 
beginning at the point p and satisfying Q(2)= 2. The path ,~ will indeed be 
constructed quite explicitly as follows. The quotient space M = 2V1/II being 
compact and Q: M~~ ~D being a local homeomorphism, there are a finite number 
of pairs of sets K i C Li C M such that : 

(i) each L~ is topologically a closed disc, and/~i is a closed subset of the 
interior of L/; 

(ii) Q : L i ~ L~ is a homeomorphism between L~ and its image L~ C D; 
(iii) for any point ~ c M there is a transformation T* c H such that T*J e / (  

= u i g  v 
Without loss of generality, we may suppose that p e/~1 ; thus p = ~(ff) e K1 

= Q(/(1)CLI. Let 21 be that segment of the path 2 from p to the first point 
P2 e 2 at which 2 meets the boundary of L1. By (ii) there is a path 21 from/~ in L1 
such that Q(21) = 21. By (iii) there is a transformation T* e H such that T*ff2 E gi~ 
for some index i2 ; if T 2 e iF corresponds to T~ under the isomorphism H ~ F, 
then T2p2 e Ki~, and T22 will be a path passing through T2p2. Let 22 be that 
segment of the path 2 from P2 to the first point Pa further along 2 at which the 
l~ath 7"22 meets the boundary of  Li~. By (ii) there is a path (T'22) from T~'/~2 in 
L~ such that Q(T~',~2) = T222 ;and so 22 = (T~')- 1(T~22) is a path in M beginn- 
ing at/~2 (the end 0f21) and such that Q(~2) = 22. The process can obviously be 
continued in this manner; the result is a sequence of subsegments 21, 22 . . . .  of 
the path 2, 2j running from p~ to pj+ 1, together with transformations Tje F 
such that: 

(iv) T~(pi) e K~j, for some specified index ij; 
(v) Pi+ 1 is the first point of 2, further along the path than pj, at which 

Tj2 meets the boundary of Li~. 
Moreover, the union 21 w22 w ... is an initial segment of the path 2 which 

can be lifted to a path in ~r beginning at the specified point p. To complete the 
proof, we shall show that the preceding procedure stops after a finite number 
of steps, necessarily therefore with an exhaustion of the entire path 2. Suppose, 
in contradiction to the desired result, that the sequence { T~} is infinite. Since 
these mappings T t map D into itself, and since the complement of D contains 
at least three points as noted above, it follows from Montel's theorem that the 
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sequence { Ti} is a normal family in D; there is thus a subsequence { Tjk } which 
is uniformly convergent on the compact subset A C D to a limit mapping T. 
The sequence of points {p j} has a unique limit point r along the path 2 in the 
natural order topology; of course, r is also a limit point of the sequence {p j} in 
the topology of P. Note that Tr ~ K = uiKi. (For if Tr ¢ K, then there would 
be an open segment #C,~ containing r and such that TlznK=O. From the 
uniformity of the convergence it would follow that TjkpnK = 0 for all suffi- 
ciently large values ofk; but since Pik ~ # for large values of k, and since Tj~p~k~ K 
by (iv), this would be an immediate contradiction.) Let L 0 be the intersection 
of all those sets Li such that Tr ~ K~. There is an open segment v C 2 containing 
r and such that the closure of Tv is in the interior of L 0. From the uniformity 
of the convergence it follows that Tj~v is contained in the interior of Lo for all 
sufficiently large values of k. Select some such value of k which is also large 
enough that p~ e v. Then the entire segment of Ti~1 from Tj~pj k to Tjkr is 
contained within the interior of L0, so in particular Tj~pj~+ t is in the interior 
of L0 ; but this contradicts (v), and the proof of the theorem is therewith con- 
cluded. 

In the preceding theorem, if D is simply connected the covering mapping 
Q : 3,~ ~ D must actually be a homeomorphism; therefore, in this case, the group 
F acts discontinuously on D and M ~ D/F. This is the familiar uniformization 
of Riemann surfaces, although it should be pointed out that D need not be a 
proper disc, there being many other projective structures possible on the same 
surface, [3 ]. The Schottky uniformization [8 ] furnishes examples of the other 
case in the theorem. 

7. Appendix: On complex vector bundles 

Let M be a compact Riemann surface (the complex structure of which will 
be fixed throughout), and let ¢p be a complex vector bundle over M. The 
dimension of tp, written dimtp, refers to the dimension of the fibre. A bundle tp 
with dim ~0 = 1 is called a line bundle; the Chern class of a line bundle ~o, con- 
sidered as an integer under the natural identification H2(M, Z)---Z, will be 
denoted by ItP[. In terms of a complex analytic coordinate covering {U,, z,} 
of M, an n-dimensional complex vector bundle ~o is defined by transition 
functions tp~a: U,c-~Up~GL(n,C) which are complex analytic in the given 
complex structure on M. The functions dettp~a then define a complex line 
bundle, which will be denoted by det tp. If ~o is an n-dimensional complex vector 
bundle and 4 is a complex line bundle, the tensor product 4®~o is also an 
n-dimensional complex vector bundle. For further general properties of 
complex vector bundles, see [1]. 

We shall here consider in somewhat greater detail vector bundles ¢p with 
dimtp = 2, dettp = 1, (where 1 stands for the trivial line bundle). For any fLxed 
such bundle tp, consider the set d(tp) of those complex line bundles 4 over M 
such that the bundle 4-1 ®tp has non-trivial holomorphic cross-sections; 
this is a non-empty set, and the Chern classes 14l of the bundles ~ e A(tp) are 
bounded from above, [1 ]. The divisor class of the bundle ¢p is defined to be the 
6 Math.  Ann.  170 
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following set of complex line bundles: div ~o = {i ~ A (q~); Ill = max,~ j(,~fnl }. 
Note that [div~o[ = 141, l ~ div ~0, is well-defined, indeed is merely the maximum 
Chern class of the bundles of A(~o). Note  further that if i ~ div~o is defined by 
transition functions ¢~a in terms of a complex analytic coordinate covering 
{ U~, z,} of M, then the bundle ~o can be defined by transition functions of  the 
form 

(11) q ~  = ( ~  a~p'~ C;/ 
for some holomorphic functions o'~, [1 ]. Thus, if r/® ~o admits a holomorphic 
cross-section for some line bundle ~/with Ir/[ = O, the order of the divisor of that 
cross-section is just [divq~[. 

Proposition A t. I f  tp is a complex vector bundle on the compact Riemann 
surface M with dimq~ = 2, dettp = 1, and tdiv ~0t > 0, then divtp contains a single 
complex line bundle. 

Proof. Let ¢ be a line bundle in div qg; any other line bundle in div ~p must 
be of the form ~®t/, where r/is a line bundle having Chern class [r/I = 0. Then 
if ¢®r/edivq~, the bundle (~®r/)-l®~p must admit a holomorphic cross- 
section (f , ,  g~); writing the transition functions of the bundle tp in the form (11), 
the holomorphic local functions f~, g~ must satisfy the equations 

- 1  " ...1_ - 1 - - 1  0 . f~=rha  Ja r/~ ¢~a ~agp, 

Since Jr/- t ® ¢-  21 = _ 21¢t < 0, necessarily g, - 0 and { f~} compose a cross- 
section of the line bundle t/; but since Ir/I = 0, it then follows that t /=  1, hence 
¢ ® t / =  ¢, which was the desired result. 

It is easy to see that necessarily Idivtp[ > - g ,  and that the bundle ~o is fully 
reducible whenever ldiv~ol>g, [1]. For  any given complex line bundle ¢ 
on M with 14t > 0, there is a Unique fully reducible complex vector bundle ~0 
over M with dim ~o = 2, det t# = 1, div q~ = ~; it is of course the bundle ~o = ¢ @ ~- 1 
The indecomposable (that is to say, not fully reducible) such bundles are 
described as follows. 

Proposition A 2. Let I be a complex line bundle with Ill > 0, over the compact 
Riemann surface M. The set of indecomposable complex vector bundles ~o on M 
with dimtp =2 ,  dettp = 1, div~o = l, is in one-to-one correspondence with the 
points of a complex projective space of dimension N - 1, where N = d i m F ( l -  2 ® x); 
(here F denotes the space of  holomorphic cross-sections of the relevant bundle, 
and x is the canonical bundle of the surface). 

Proof. Since div t# is uniquely defined in these circumstances, by Proposi- 
tion A1, all such bundles tp can be described by transition functions of the 
form (11) for various values of the functions tr~p. A simple calculation shows 
that these functions must satisfy the condition that a ~ =  l ~ p a ~ +  ¢~-r~a~ in 
U~c~ Upn Ur, that is, that the functions ¢~-pltr, a compose a one-cocycle of the 
covering { U,} with coefficients in the sheaf of  germs of holomorphic cross- 
sections of the bundle ¢2p, [2]. Further, if tr~a and z~p are two such cocycles, 
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the bundles they define are equivalent precisely when there are holomorphic 
functions f ,  in the sets U~ and non-zero constants a, b such that ~ , f , -  fp 
= a~-a 1 tr, a - b¢~-al%a, that is, precisely when the cocycles a~pltr, p and b~-pl %p 
are cohomologous. The desired set of  complex vector bundles is therefore in 
one-one correspondence with the projective space associated to the complex 
vector space HX(M, f2(~2)); the zero element in the vector space corresponds 
to the fully reducible vector bundles, which are here being ignored. Since 
H 1 (M, I2(~2))~ F(x ® ~-2), by Serre duality [2], the theorem is proved. 

Example. Consider the particular case of the above proposition in which 
Ill = e -  1. Since I¢-Z®xl =0, it follows that 

~0 if ~24:x ,  
d i m F ( ~ - 2 ® x )  = 

if ~ 2 = x . ]  

In the first case (~24= x) there are thus no indecomposable vector bundles 9 
with dim 9 = 2, det<p = 1, div 9 = ~. In the second case (~2 = x), there is a unique 
indecomposable vector bundle rp with dim<# = 2, det<# = 1, divq~ = ~; it is a 
straightforward task to verify that this bundle is defined by transition functions 

¢~p' / 
(12) 

= ~ dzp ~ 

Referring back to Theorem 2 (in Section 3), it is of interest to determine the 
set of fiat complex vector bundles tp for which dim tp = 2, dett# = 1, and Idivtpl 
= 9 -  1; note that to any complex vector bundle t# there corresponds a set 
(perhaps empty) of associated f lat  vector bundles, consisting of those fiat vector 
bundles which are analytically equivalent to tp. 

To begin the discussion, let{U,, z,} be a complex analytic coordinate 
covering of a compact Riemann surface M ;  and let {~0,a} be a complex analytic 
coordinate bundle defined with respect to that covering and determining a 
complex vector bundle tp. A set {G,} of holomorphic, matrix-valued functions 
defined in the various neighborhoods {U,} will be called an endomorphism 
of tp if G,tp,p = tp,aGp in U , n  Up. Let A(t#) be the set consisting of collections 
{A,} of holomorphic, matrix-valued differential forms of type (.1, 0) in the 
various neighborhoods {U,} such that dq~,a=tp, pAa-A,q~,p in U,c~U B. 
Introduce an equivalence relation in the set A(tp) by defining {A,} ,-~ {A*} 
provided d G , = G , A , - A * G ,  in each neighborhood U,, for some endo- 
morphism {G,} of q~. The set of equivalence classes will be denoted by ,4(~0); 
and the subset, consisting of those equivalence classes containing a represent- 
ative {A,} for which t rA,  = 0, will be denoted by ,,io(~o). 

Proposition A 3. On a compact Riemann surface M, the set of f la t  vector 
bundles associated to a complex vector bundle t# is in one-to-one correspondence 
6* 



84 R.C.  Gtn, m~N~: 

with the elements of  A(~o);further, if  det ~p = 1, the set of f l a t  vector bundles of 
determinant 1 associated to ~p is in one-to-one correspondence with the subset 

Proof. Since any coordinate bundle representing the vector bundle ~p 
is defined by transition functions of  the form ~p*a = F~p~pF; 1 for some holo- 
morphic, non-singular matrix-valued functions {F~} defined in the various 
neighborhoods {U~}, these bundles can be described by the functions {F~}. 
The coordinate bundle is flat precisely when d~p*p = 0; this is readily seen to be 
equivalent to the condition that d~p~p = ~p.pAp- A.cp~p where A~ = F~ 1 dF~. 
Note  that {F*} and {F~} define equivalent flat bundles whenever F*F~ ~ is a 
constant, that is, whenever A* = A.;  and that any analytic differential form 
A~ of type (1, 0) can be written locally as A~ = F~ ~ dF~. Therefore, the fiat vector 
bundles associated to ~p can be described by the dements  of  A(~p). Now, two sets 
{F*} and {F~} determine equivalent fiat bundles precisely when ~'*-~ ~'*- ~ 
= C.F.~p~aF; 1 C ~  in U~c~ Uo for some non-singular constant matrices C~; 
this condition amounts to the same thing as the condition that G~ = F*-  ~ C~F~ 
is an endomorphism of ~p, or equivalently, that d(F*G~F~I)=O for some 
endomorphism G~ of ¢p. Since the last condition reduces to the condition that 
{A*} ~ {A~}, this completes the proof  of  the first assertion of  the proposition. 
For  the second assertion, if det ~p~ = 1, then ~p*p is readily seen to be equivalent 
to a flat vector bundle of determinant 1 precisely where det F .  is constant; and 
since d(detF~)=(detF~)trA~, this is equivalent to the condition t rA~=0,  
which completes the proof. (Note that actually the condition tr A~ = 0 is pre- 
served by the equivalence relation introduced in A(~p).) 

Proposition A 4. Let M be a compact Riemann surface of genus # > 1, 
and ~p be a complex vector bundle over M with dim~p = 2, det~p = 1, and Idiv~01 
= O - 1. Then q~ has a non-empty set of  associated flat vector bundles i f  and 
only if  (diwp) z = x and q~ is indecomposable. (Thus, ~p must be as in the example 
considered above.) 

Proof. As a consequence of Proposition A3, ~p has a non-empty set of 
associated flat vector bundles if and only if A(q~) 4:0; so we need only consider 
the space A(~p) in somewhat more detail. In view of the hypotheses, the vector 
bundle cp is defined by transition functions of the form 

= 
o'a#~ 

where {i.a} define a complex line bundle ~ with 141 = a - 1 ;  and, as in the 
example considered above, either %p = 0 or %~ = 2d~.a/dzp, (the latter case 
occurring only when ¢2= x). An element {A.} e A(~p) is a set of holomorphic 
matrix differential forms satisfying 

(13) dq~,a = ~p.a Aa - A, ~p.~; 

write these matrices out explicitly as 

(fl t .(z~) dz. f , 2 . ( z J  dz.~ 
A . =  \ f z l . ( z g d z .  f 2 2 . ( z g d z J '  
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where z~ is the coordinate function in U~, and fij,,(z~,) are analytic functions. 
Note first of all that, as a consequence of (13), the functions {f2i~} compose 
a cross-section of the complex line bundle ¢- 2 ® x; so if ~2 = x, these functions 
form an arbitrary constant on M, while otherwise necessarily f21 • = 0. Then, 
also as a consequence of (13), the functions {fl  1~} satisfy the condition 
(14) fll~dz~-f11#dz#=~al(tr~,#f21pdzp-d~o,~) in U~,nUp; 
thus, the right-hand side of (14), considered as a one-cocycle of the covering 
{ U~} with coefficients in the sheaf of germs of holomorphic cross-sections of 
the canonical bundle, must be cohomologous to zero. By the Serre duality 
theorem this cohomology group is isomorphic to H°(M, 0) ~ C; it is a straight- 
forward calculation to show further that the one-cocycle {¢~-#1 d~p} corresponds 
to the constant 29 - 2 e C, hence is not cohomologous to zero. Now if f2 ~ - 0, 
there can hence exist no possible solutions f l  1, to (14); for the same reason, 
there can exist no solutions when the bundle is decomposable (a,p = 0). How- 
ever if f21~ = c for some constant c :#0 and if the bundle is indecomposabte, 
so that the elements tr, a have the form given in the preceding example, the 
right-hand side of(14) is easily seen to reduce to the expression (2c - 1) ~-1 d~a ;  
so there exist solutions { f~ ,}  precisely when c =  1/2. It is therefore already 
apparent that the set A(tp) can be non-empty only when ~2 = ~c and the bundle 
(0 is indecomposable. To show that A(~0) is actually non-empty in this case, 
observe that f21,---- =- 1/2 means that the right-hand side of (14) vanishes, and 
hence that f l  1~ dz, can be taken to be an arbitrary abelian differential ; sim- 
ilarly, fz2,dz, is an arbitrary abelian differential. The function f12, finally 
must satisfy 4 fl2~ = ~p fizp + z~p, where the expressions {z~p} form a one- 
cocycle of the covering { U,} with coefficients in the sheaf of germs of holo- 
morphic cross-sections of the line bundle ~4= xz, the precise form of the 
functions v,a not being important here; this cohomology group is always 
trivial, by Serre duality, hence such functions f l  ~, always exist, and the proof is 
concluded. 

Remarks. The analysis begun in the proof of the preceding theorem can 
be continued to provide a description of the sets A(tp) and .,to((O), and hence a 
description of the flat vector bundles associated to q~ ; since the final description 
of this set of flat bundles coincides with that provided by Theorem 4 in Section 4, 
there is no need to carry out the argument any further here. It may be of interest 
merely to note that, when q~ is the indecomposable bundle with (dive0)2 = 
as described in the previous example, the elements of Ao(~0) have unique re- 
presentatives in Ao(tp) of the form 

A ~ = (  1 0  dz, h,,:z) 

where {h~} are holomorphic functions in U~ which satisfy h , =  ~ hp- 
3 2 2 -2~p(d ~p/dzp) in U~c~ Up; note that the latter equation is equivalent to 

the assertion that the functions {h,} define a complex analytic projective 
connection on the surface M, as discussed in Section 4. 
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