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T h e  d P r o b l e m  w i t h  U n i f o r m  B o u n d s  

o n  D e r i v a t i v e s *  

Yum-Tong Siu 

Let f2 be a bounded strictly pseudoconvex domain in ~E" with C N 
boundary (N >2), i.e. there exists a C N real-valued function Q on an 
open neighborhood ~ of f2- in 6" such that f2 = {Q < 0}, dQ is nowhere 
zero on ~I2, and e is strictly plurisubharmonic on af2. 

For a ~ ~E" the components of a are denoted by al, .-., a,. 2q denotes the 
set of all nonnegative integers. For a ~]N", (, z ~ C", and t = j <  n, 

trot-- ml +""  + o .  

o!  = (o~ !) ... (o.!) 

(~ - zy  = (~1 - z l )"  ... (~. - z.) ~" 

D ' = ~ -  a ~  1 ... 0k"  

~0t ~0t D =Dz = 

O 
D~ = D j,, = Ozj 

When a differential operator is applied to a differential form, it is applied 
coefficientwise. Ct(O) [respectively C1~o,1~(~2)] denotes the set of all C t 
functions [respectively (0, l)-forms] on [2. For u e Ct(f2) and 0 < ~< 1 
define 

Ilullo,~ = sup {ID'Baf(z)l lz E ~2, Iol + I/~t < 1} 

,lul,o.,+, =supl  lO=B' f (z) - l~ Ba f (z')l l z, z' ~ fL z * z', t~, + ,l~, < l } _ z,i ~ 

For f = ,-~a f~(z) d£~ ~ Cl0,~,(f2) define [1 f 11~., -- m ~ .  I1 f~ H~,,. 

In this paper we prove the following 

Main Tlaeorem. Let O<_k<oo. I f  N-> k +4 and f~C~,l~(f2 ) with 
d f = O ,  then there exists ueC~(f2) such that ~ u = f  and [lulla.l+~ 
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< C, II f Ila.~ for all nonnegative integers l <= k, where Ct is a positive number 
independent o f f  (and small perturbations of  f2) 1. 

The Main Theorem is proved by showing that the solution u con- 
structed by Henkin [3] has the required bounds on its derivatives. By 
taking the Taylor expansion of f and using Stoke's theorem, we first 
derive a formula for the derivative of the Henkin solution which 
facilitates the estimation of its derivatives. Then we obtain the estimates 
of the derivatives of u for the special case where the coefficients of f 
are polynominals by using Stoke's theorem and the fact that a function 
differentiable of a high order on a curve in a domain in C can be extended 
to a function on the domain whose ~ derivative vanishes to a high order 
on the curve. The rest of the estimation is done in the same standard 
way as in the uniform bound case. 

Lieb told me that Alt, by constructing by Frobenius theorem and 
other techniques a symmetric part of the singularity of the Ramirez 
kernel [61, could also show that the ~ problem can be solved with 
uniform bounds on derivatives and he could obtain the Hrlder  estimates 
of any exponent <½ for the derivatives of the highest order. 

§ 1. The Integral Formula and the Solution Kernel 

1.1. Let 

F(~, z) = ~ (Dig) (~) (z, - ~i) + ~. (D,Djo) (0  (zi - ~i) (zj - ~j). 
i = 1 i , j  = I 

Since O is strictly plurisubharmonic on Of 2, there exists 20 > 0 such that 

- 2 R e  F ( ( ,  z )  > Q (~) - Q (z)  + 201C - z l 2 + o(IC - z l 2) (I) 

for C e 0f/. By solving the Cousin II problem with differentiable parameters 
(cf. [2]), (after shrinking g2) we obtain a C N-2 function ~(C, z) on f i x  f] 
holomorphic in z with the following properties: 

i) ~(~, z )*  0 for ~, z e ~ with Q(0 > 0(z), 
ii) for C ° e dO there exist an open neighborhood U of C ° in ~ and a 

nowhere vanishing C s - 2  function H(~, z) on U x U holomorphic in z 
such that ~(~, z) = n(~, z) F(~, z) on U x U, 

iii) there exist C N-2 functions Pt(~, z) on ~ x ~ holomorphic in z such 

that ~(£, z) = ~. (z i - £i) P~(~, z). 
i=1 

: A small perturbation of f~ means a domain {Q'< 0} where Q'e CN(0) with D ' Q  ' 

dose to /~Q on ~ for I~l ~ N. 
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1.2. Let 

o,z ,  . . . .  

where Z~ .. . . .  Z ,  are interminates. Define 

( n - i ) !  
C(~, z) = (2~]/Z-~)" 

(n-~)! 
K'(¢,z,A)= (2~ , - "~)"  

(where 2 e IR) and 

0(-~--  . . . .  , -~-)  ,~ d ~  ^ . - -^d~ .  

o(~ ~ - ~  P~ ,~ ~"-~" 

^ . . .  ^ 

For any C a function u on f2-, since 

d(u(OK'(~,z,2))=Su(OAK'(¢,z,),) on f~- x [0 ,1 ]  with e(¢)>e(z) 

d(u(O L(~, z)) = 8u(O A L(~, z) on f2- with (4= z, 

it follows from Stoke's theorem (cf. [2]) that 

u(z) = .f u(O c(~, z) + S "~u(O ̂ K'(~, z, ,~)- S ~u(O ^ L(~, z). 
,~e[O,1] 

By integrating over 2 e [0, 1] terms of K'(~, z, 2) containing d2, we obtain 
a form K((, z) and the following integral formula 

u(z) = .[ u(O C(~, z) + ~ "Ju(O ̂ K(~, z ) -  ~ Ou(O ̂  L(~, z). (II) 

1.3. For a C °° O-closed (0, 1)-form f defined on an open neighborhood 
of ~2-, we define 

r a ( f ) =  S f nK(~,z)-  ~ f nL(~,z). 

Since there exists a C °O function u defined on an open neighborhood of~2- 
satisfying Ou = f ,  it follows from (II) that ~Ta(f)= f on ~2. 

§ 2. Formula for First-Order Derivatives 

Let f = ~ fi(z)d~i be a Coo 0-closed (0, 1)-form defined on some 
i = l  

open neighborhood of t2-. 
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2.1. On 0 we have 

To(f) = ~ f~(z) Tn(d~i) + S ( f (0  - f(z)) ^ K(~, z) 
i= 1 ~ e ~  

- I ( f ( O - -  f ( z ) )  A L(~, z) .  
¢eD 

Using ~ = + - - ~ j ,  we obtain 

0 Oz---~, Tn(f)= ~ (3fi(z--'~) Tn(d~')+ ~ fi(z) f--~- Tn(d~) 
i= ~ dz.i t= ~ ozj 

-l-g ~ 

I o + 

+ I ~ [ ( f ( O -  f(z)) ^ L(~, z)]. 
g~f/u~.j 

By comparing it with (III)Dj, we obtain 
, ,  

oZj Ta(f)= Ta(Djf) + ,E: ~ f~(z) f -z~-ozj Ta(d~') 

+~'~.on (f(~)-f(z))^ (-~zj + - ~ / )  K(~, z) 

-joo  
- 5 ( f ( O -  f ( z ) )  A + L(~, z) 

~a ~j [(f(O- f(z)) L(~,z)]. A 

2.2. For the purpose of estimation, we are going to transform 

(rob 
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by Stoke's theorem. Let 

( f(O-f(z))  ^ K(~,z)= f b.~((, z) (L( 0 
# ,v=  1 

- f, .(z)) d~l  ^ - - -  ^ d G  ^ . . .  ^ d~.  ^ d~: A - . .  ^ , G  

where b.~((, z) is a ~g-linear combination of coefficients of K(~, z) and 
d[. means that d~. is omitted. For z s O, by applying Stoke's theorem to 

/~,v = I 

^dG ^ . . - ^ ~ ^ . . . ^ d ~ , )  

= 8 [(f(~)_ f(z)) ^ K(~, z)] 
0(j 

O [b,~([, z) ( f ( O -  f(z))] d[, ^-.- ^ d~. (- i)n+' +" 

^dG ^--. ^a'~^--- ^d~. 
on 0~, we obtain 

• [b,v(¢, z) ( f ( O -  f(z))]  d~, ^... ^ d~. A d[z ^". ^ ~ ^ ' "  ^ a~.. 
2.3. Combining the results of (2.1) and (2.2) we have 

8 " 
~gz--j-- T°(f)= Ta(DJf)+ ,=E, f~(z)-~ 8ezJ T°(d~') 

+ I (f(()-f(z))^(~---Z~s + ~-~s)K(~,z) 
~SYl  

[ e 0 9 / * , v =  I 

• d(~ ^--- ^d~, ^ dG ^... ^ ~ ^ , - - ^  d~, (IV),~,, 

- .f (f(O-f(z))n ( 8 ~ +  8-~i ) L(~, z) 

0 +~af ~ [(f(O - f(z)) ^ L(~, z)]. 

We will show later that ~ Ta(d[~) is ½-H61der bounded on Q if N > 5, 

and the bound can be chosen to be independent of small perturbation 
of ~. Let us assume it first. 
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Observe that 

and 

-~-~ F((, z)t <- const I( - zI 

Let f2m={Q<--~} and let heC~,l~(O) with llhi[~,l<oo. Using 
(IV)~m, h and employing the standard method of estimation (i.e. using (I) 
and taking ImF(~, Z) as one local coordinate of af2m in the evaluation 
of the integrals over Of 2,, just as in the case of getting uniform bounds 
and Hblder conditions for solutions of the ~ problem [3, 4, 7]), we 
conclude that, for m large enough, 

D,,,,t- 

where C is independent of h and m. (Henkin and Romanov [4], in getting 
the Htilder condition of exponent ½, makes use of ~h = 0. Actually this 
is not necessary, as is shown in [7].) 

Since 
sup tl To,,(h)tlo,~.o < co m 

and ~Ta,,(h ) = h on f2m, there exist # e C®(f2) and a sequence {m,.} such 
that the derivatives of Ta,,,~(h) converge uniformly on compact subsets 
of 12 to the derivatives of #. Then d g = h  on [2 and ttgl[r~,~_<C[[hllo.1. 
This is precisely the Main Theorem for the case k = 1. 

2.4. In preparation of deriving the analog of (IV)a,f for the case k > 1 
we have to make a transformation in one of the integrals in (IV)a,s, 
because one integral involves 

d~" 1 A,,.Ad~'. Ad¢I A.,. A ~ A ' " A d ~ ' n  

instead of 

d~',, A - . - A  d~v=_ ' A d ~ I A  -..  A d~n 

whose presence is necessary for the process of induction on k. 
We cover dr2 by a finite number of open subsets U~(I < i__</) of f2 such 

that ~ (0  is nowhere zero on Ui for some 1 < vt < n. Since Q = 0 on dO, ~ ,  = _ 
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when pulled back to Uf~Ot2. Let a i (1 <i<-/) be a nonnegative C ~ 
I 

function with compact support in U~ such that ~ a~ = 1 on a neighbor- 
i = 1  

hood of Of 2 in f~. Hence, when pulled back to dO, 

d~l ^ ' "  Ad~.Ad~l  ^"" ^ ~ ^ . . .  ,,,d~, 

= ~ (- 1)'-~'+%(0 ~ (0 ( ~  (0) -' 
• d~, A . . . A ~ A . . . A d ~ , ^ d ~ I ^ . . . ^ d ~  n. 

§ 3. Estimation in the Polynomial Case 

Fix (o e dO and let 0 be an open neighborhood of (0 in f). 

3.1. L emma. Let c~i, dpo~Cl(U) such that, for ~ O n c 3 f 2 ,  
00 d2Q & 

and ~b,j(0 = iOn,t3(--((). Let P(~,z)= ,=~L q~,(0((,-z, ) 

1 ~ qbu(O ((i - zi) ( ( j -  z j). Then there exist c > 0 and an open +-2 ~,j:~ 
neighborhood U of ~o in (: such that IF(~, z)J > cl~ - zl 2 for ~, z ~ U and 
e(z) <- o <= e(O. 

Proof. There exist A > 0 and an open neighborhood U 1 of ~0 in 0 
with diameter <½ such that 

~bi(0- - ~ [ ( 0  < A e ( 0  (1 < i ~ n )  

l ~e (01<=Ae(~) (l<i,j<n) 

for ~ ~ UI and 0(0 ~ 0. It follows that 

IP(~, z ) -  F((, z)l =< (n + -T-) a0(0  I( - zl 
n 2 

\ 

for ~, z ¢Ut and 0(0 ~ 0. By (I) there exists an open neighborhood U2 
of ~o in U1 such that 

IF((, z)t >- 0(0 + ~ I( - zl 2 
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for (, z ~ U 2 and Q(z) ~ 0 ~ Q(0- Let U be an open neighborhood of (o in 

U2 with diameter < 2 n + A . Then 

l~'((, z)[ _-> IF((, z)[ - [P((, z) - F(~, z)[ 

~O(O(~-(n+ n-~-2 )Al~-zl) +~-I~-zl ~ 
> 20 
= 2 I~-z[~ 

for ~, z ~ U and Q(z) _-< 0 < Q(0. Q.E.D. 

3.2. Lemma. Let m <_ t < N be positive integers and let G be an open 

of C'. Suppose 1 < j  < n and ~ (0  #= 0 for ( ~ (J. Then every subset U 
v,~,j 

function h((,z) on ( O n O ~ ) x G  can be extended to a C '-"+1 function 

[~((,z) on 0 x G such that -NF( ( , z )=7( ( , z )Q(O m-1 for some C - "  

function ?((, z) on U × G. 

Proof. Let h0((, z) be a C ~ function on 0 x G with extends h((, z). For 
0 ~ v < m define by induction on v a C ~-~ function h~((, z) on 0 x G such 
that 

Oh~ OR 
((, z) = hv+ ~((, z)~-~-~ (0 .  

c ~  
Let 

Then 

,n-1 1 
h(( ,z)= ~ ( - i ) ' ~ ( h ~ ( ( , z ) Q ( O  ~. 

v=O 

O~j (~, Z) = (__ 1)m_ 1 1 t~hm_ 1 
(m--1)! 0~ ( ( , z )o (O" - ' .  Q.E.D. 

3.3. Proposition. Let I>__0 and m ~ n  be intergers such that 
l < = 2 ( m - n ) + l  and 2 ( m - n ) - l + 4 < _ _ N .  Let l<=al<_...<=a~<__n and 

g 

l 
g(~, z ) =  l-] (~,  - z J .  

i=1 

^.. .^<. 
v=l 

g(~, z) to(~, z) 
is a C 2("-"~-t+2 ( n , n - l ) - f o r m  on f)x~, then S 

uniformly bounded for z e •. 
• (~, z) ~ 

is 
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Proof. We need only show this locally near 00. Take ~o e 00. After 
changing the coordinates system linearly, we can assume without loss of 
generality that there exists an open neighborhood 0 of ~o in f) such that 

a~j (~)4=0 for ( e  0 and 1 <j~n.  We can also assume that n(~,z) is 

defined on 0 x 0 and ~(~, z) = n(~, z) F((, z) on 0 x/3. 
Fix 1 < v _<n. By (3.2) we can find C 1 functions ¢i(0, eJj(0 on 

such that 

(() for ~eDmOf2 ,  
020 

¢,(0 = ~, (0, 4'°= o~,o~----~. 

0¢, 
~(~ (0 = ~(¢) e(¢) ~ ~'- "'- '÷ ~, 

~ ( 0  = =,~(¢) e(O 2~'-">t ÷ ' on 8 

(v) 

for some C ° functions cS(0,,cqj(0 on U. Also, by (3.2) we can find C 1 
functions a~((,z) on U x f 2  such that a~((,z)=a~((,z)n((,z) -m on 
(t]c~dt2) x t2 and 

O~v(~,z)=Tv(~,z)e(~)z(m-n)-t+t~, on O x O  (VI) 

for some C ° function 7v((, z) on 0 x ~. Let 

P(~, z) = ~,(0 (z, - ~,) + T 0 ( z j -  ~j). 
i=1  i, "= 

By (3.1) there exist Cv > 0 and a relatively compact open neighborhood U~ 
of (0 in 0 such that 

#(Lz)l>__cd~-zl 2 for LzeV~ and Q(z)<O<¢(O.  (VII) 

Let 

gj~,z)=g(Lz) \ p(Lz)~ -m p(Lz).,, ]. 

It follows from (V), (Vl) and (Vll) that 

[Rv(~,z)[~const[~-z] -2"+I for ~ E U v - f 2 -  and zeUvmO. (VIII) 

Let B, be a relatively compact open neighborhood of ~o in U~ such that 
aB~ is C I and the normal vector of 0By and 0~2 are independent at every 
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point of dB, ndf2. For z e B~c~f2, by applying Stoke's theorem to 

d~ (g("F(~,z)~,(~,z), z) d~-i A ... A d~'~ A-.. A .  d~'n A d~l A .." A d~n) 

=( - -1 )  ~ - 1 R v ( ~ , z ) d ~ A " ' A d ~ . ^ d f l / \ ' " A d f .  

on B~ - -  £ 2 - ,  we obtain 

g(~,~(~,z) a~(~,z) m z) d~'l ^ " "  A d~'~ A ... A d~" n A d~l A--- A d~n 
~eBvng~ 

9(~, z) a~(~, z) d~ 1 A--. A df,~ A-.. A d(,  ^ d(  1 A..- A df,~ 
= -  I F(~ ,z)"  

+ f ( - Iy-~R~(¢z)d(~^ . . .^d~,^d~^- . . / , a f t , .  
~eBv - D -  

It follows from (VIII) that, if U is a relatively compact open neighborhood 

of ~o in (~ B~, then 
V=I. 

g((,  z) ~o(f, z) 
• f ~ ( f ,  z)" 

~O~ 

is uniformly bounded for z e Uc~£2. Q.E.D. 

3.4. Proposition. Let k e N .  I f  N > k + 3, then D~z To(Od(-  z-) ~) is 
uniformly bounded on 0 for c~, ? e N  ~ with lel < k, and the bound can be 
chosen to be independent of small perturbations of £2 (where Tn(O~(~- z-y) 
means \ 

I Zg-z , I 

Proof. Using 0--~j = + - - ~ f  and applying Stoke's 

theorem as in (2.2) and using (2.4), we conclude from (3.3) that 
D~ 5 ( ~ -  z-') r C(~, z) is uniformly bounded on £2 for I~1 =< k if N > k + 3. 

The arguments used in obtaining the bound clearly imply that the bound 
can be chosen to be independent of small perturbations of Q. The 
proposition now follows from 

To(J;(~- z-)') = - I ( r -  z-)' C(~, z) 
~E 0J'/ 

which is a consequence of (II) when we substitute u(~) by (~'- ~')~ and let 
z' = z. Q.E.D. 

3.5. It follows from Tt~(d[i) is ½-H61der bounded on f2 

and the bound can be chosen to be independent of small perturbations 
of 12 if N ~ 5. Hence the Main Theorem is proved for k = 1. 
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§ 4. The Case k > 1 

4.1. For I s N  and g(~)~ Cl(g2) define 

1 1 o"~(~, z)=~(O-  ~ /~! (/~,)! (o~O~'~)(z)(~- z) ~ ( ( - ~ ' .  
1#l+lB'l-<t 

For 9 e C°(f2) define 9(- ~(~, z) = O((). The following identities hold: 

O #~(~, z) = (~, z) 

+ # %  ~) = \ - ~ /  (~' ~). 

Suppose f ( ( )  ~ ck(o) and let 9~,(0 = f~k~(~, Z'). Then 

(9~,)(t~(~, z) = f(k)((, Z) for z' = z and l ~  k. 

4.2. Proposition. I f  I~1 = k >  0 and f =  ~ f~d~ is a C ° "O-closed 
i=1 

(0, 1)-form on an open neighborhood of f2-, then 

D~Ta(f) = ~ a~p,i(z) (DPDa' f~)(z) 
lPt+l#'i<k 

=< i ~ .  ( I X ) ~  

+ X I (D~'y,)~-~-,~,-,~'D (~, z) K~,,(~, ~) 
l ~ i ~ n  

+ Y~ I (DeOe'f~)~-~-'P'-Ie'r'(~,~)L~#,~(~,z) 
l <=i~n 

where. 
i) a~a,i(z) has uniformly bounded derivatives of  order < N - k - 3  

and the bounds can be chosen to be independent of small perturbations of f2, 
ii) K~p, i(~, z) is an (n, n - 1)-form in ~ whose coefficients are obtained by 

applyin9 to the coefficients of  K(¢, z) the two operations ~ + Oz----~' 0~ 

( l < l ~ n )  a total number of  k - l / ~ l - I f f l  times and then takin9 linear 
combinations with coefficients in C N- 1 (~), 

iii) L~a,i(~, z) is an (n, n)-form in ~ whose coefficients are obtained by 

d (i < l < n )  applying to the coefficients of  L(~, z) the operation ~ = _ 

k - 1/~1 - I//'1 times and then takin9 linear combinations with coefficients in ~. 
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Proof. The case k = 1 follows from (2.3), (2.4), and (3.5). For the 
general case we use induction on k. Suppose (IX)~ is true for I~l = k. 
Fix 1 < v _< n and let 

We are going to derive (IX~. 
For ? e IN" with l?I > 0, let Jy be the set of all (a, i) with a e N" and 

l<i<n such that D:Di =D r. Since Of=0, we have ]5"f~ =D'-#fj for 
(~, i), (fl, J) ~ Jr- For y e IN" with i?l > 0, define fr(z) = (J~'f~) (z) for (~, i) ~ Jr. 
This definition is independent of the choise of (0t, i). From the definitions 
off} t~ and f r  we obtain 

! ! 

• (D~D-~'f~) (z)(~-  z-) ~' d~ 
1 t 

= f(~) -- ~ ,6! 7! (~ -- z)~ (Daft) (z) "~(~- z~'. 
IPl+lyl~k+l 

Substituting f~(() in (IX)~ by f tk~((, z'), using the above expression for 
,~, , - 

f , ' " ( ¢ ,  z) d(~, and then setting z '=  z, we conclude from (4.1) that 2. 
i=1 

1 1 
/Y~To(f)= ~ fl! 7[ (D~f~)(z)D~Tn(~(~-z-)~) 

+ ~, a}tvi(z) D~D-'#'f~(z) 
IFl+lP'l_-<k 

+ ~ ~ (D~DP'f~)(k-t~t-I~'l~(~,z)K~p,i((,z) 
l=<i_~n 

+ ~ I (D~P'f~p-l~t-I~'J, (~, z) L3~,,(~, z). 
I~1 +lP'l_~l, Ceo 

We apply ~ to both sides of(X)s and we use the following two identities 

0 j (D~t.fi)O,_lPl-ltrl)(~,z)K}~,t(~,z) 
OZv ~¢s~ 

I e = oo + z) K ; ,  ,¢,  z)) 

- I ~ ((D~OP'LP -j~l- I~'~, (~, z) K~,~(~, z)) 
g~OD 
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0 ~ (DaBa,f~)~k_lal_ta,l>(~,z)L;a,i((,z) 
OZv r, e o  

- $ ~-r ((DaBa'f/)°'-tt~l-la'l~ (if, z) L3a,,(~, z)). 

+Now we transform 

I :) z)) 
~eOD 

by Stoke's theorem as in (2.2) and compare the final result with (X)D~I. 
The proposition now follows from (3.4) and (2.4). Q.E.D. 

4.3. Proof of the Main Theorem 

{ '} Let f2m= O < - - ~ -  • Assume l e N  with l<k and f e  C~.1~(f2) with 

IIfllm,~ < oo. Using (IX)~,~ and employing the standard method of esti- 
mation as mentioned in (2.3), we conclude that, for m sufficiently large, 

for =< I. Since 
IIO~ To.(f)[l~.,+ ~ C Ill libra,+ 

sup 11Tt~.(f)[Im.,o < oo 
m 

and "~To.(f)=f on I2 m, there exist u e C~(f2) and a subsequence {my} 
such that the derivatives of Ttj,..(f) conver_ge uniformly on compact 
subsets of I2 to the derivatives of u. Then du = f  on.t2 and rlub,~++ 
-< Ctlfllm,. Q.E.D, 
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