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The & Problem with Uniform Bounds
on Derivatives*

Yum-Tong Siu

Let Q be a bounded strictly pseudoconvex domain in € with C¥
boundary (N 22), ie. there exists a CY real-valued function ¢ on an
open neighborhood 2 of 27 in C" such that Q= {¢ <0}, dg is nowhere
zero on 0€2, and p is strictly plurisubharmonic on 0£.

For a e €" the components of a are denoted by a,, ..., a,.IN denotes the
set of all nonnegative integers. For aeN",{,zeC", and {<j<n,

ld=a; +--- 40,

=(a,})... (o))
C—zf = —z)" ... ((—z)™
D*=D? o
TR 9L 0
N .. e am
b*=Db:= 8z ... o7
D;=D d

b dz = .
dz;

When a differential operator is applied to a differential form, it is applied
coefficientwise. C(2) [respectively Cly ;,(22)] denotes the set of all C'
functions [respectively (0, 1)-forms] on Q. For ue C'() and 0<e<1
define

lullg, =sup{|D*D? f(2)| |z € @, Joj + |B1 < I}
\D*D* f (z) - D°D* £ (2)
|z —2'|*

Il =sup] 7 eQa+ 2, +AIS].
Forf= Z fiz) dz;€ Cip, 1)(Q) define | 1/ g, = max [l fila,-
In this paper we prove the following

Main Theorem. Let 05 k<co. If NZk+4 and feCy, “(Q) with
3f =0, then there exists ue C*(Q) such that du=f and Nullg+s

* Research partially supported by a National Science Foundation Grant and a
Sloan Fellowship.
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= Gl f g, for all nonnegative integers | < k, where C, is a positive number
independent of f (and small perturbations of Q)'.

The Main Theorem is proved by showing that the solution u con-
structed by Henkin [3] has the required bounds on its derivatives. By
taking the Taylor expansion of f and using Stoke’s theorem, we first
derive a formula for the derivative of the Henkin solution which
facilitates the estimation of its derivatives. Then we obtain the estimates
of the derivatives of u for the special case where the coefficients of f
are polynominals by using Stoke's theorem and the fact that a function
differentiable of a high order on a curve in 2 domain in € can be extended
to a function on the domain whose J derivative vanishes to a high order
on the curve. The rest of the estimation is done in the same standard
way as in the uniform bound case.

Lieb told me that Alt, by constructing by Frobenius theorem and
other techniques a symmetric part of the singularity of the Ramirez
kernel [6], could also show that the J problem can be solved with
uniform bounds on derivatlves and he could obtain the Holder estimates
of any exponent <3 for the derivatives of the highest order.

§ 1. The Integral Formula and the Solution Kernel
1.1, Let

F(, )= Z D) (z:— i_ (D:iD;@) () (z: — L) (z;—&)).

N(’—x

Since g is strictly plurisubharmonic on 94, there exists 4, >0 such that

~2ReF((, 2)Z (0) — e(2) + Aoll — 2I* + oIl — 2I) ity

for { € 8Q2. By solving the Cousin II problem with differentiable parameters
(cf. [2]), (after shrinking €3) we obtain a C¥~2 function @({, z) on @ x
holomorphic in z with the following properties:

1) &, z}+0for{,ze @ with o(0)> o(2),

ii) for {° € 49 there exist an open neighborhood U of {° in @ and a
nowhere vanishing C¥~? function H({, z) on U x U holomorphic in z
such that &, 2)=H({,z) F{,2) on Ux U,

iii) there exist C¥~2 functions P,((, z) on @ x € holomorphic in z such

that (.= 3. (2~ L) P2

t A small perturbation of £ means a domain {¢’ <0} where ¢’ e C¥(Q) with D*¢’
close to D*g on £ for |a} £ N.
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1.2. Let
@(215""2"): z (Mi)izi/\ (/\dzv>5

ie=1 v¥i

where Z,, ..., Z, are interminates. Define

S GtV LY s WY
C(C,Z}—— (2 V——)" @((p g esesy @)/\dCl/\ /\an
= D! ( 5-{, NP Z—G,
el =L, LA
G ey =2

lz—{? 4 lz—¢?

Kz 0=

+(1~k}%)AdClA---AdC,,
{where AeIR) and
( 1) (EI-EI En-'zn
L z)= (2] y ey
= =iy e et

For any C function u on Q7 since
duQ K'(( 2z, ))=0u)AK'({, 2,4 on Q x[0,1] with @()>0(2)
dw@) L, 2) = SuO ALKz on Q with [z,
it follows from Stoke’s theorem (cf. [2]) that
w@= [ wQCEC A+ [ u)AKEz2)- ! ou) A L(L, 2).-

{edf2 {edf?
Ae[0,1}

) Adlyn---ndl,.

By integrating over 4 € [0, 1] terms of K'({, z, 4) containing dA, we obtain
a form K({, z) and the following integral formula

uz= [ uQ)CCA+ [ uQ)AKCE )~ f ou) AL 2. (1D

$ed2 Ledf
1.3. Fora C® d-closed (0, 1)-form f defined on an open neighborhood
of 27, we define

To(f)= j fAK({,Z}”gjanL(C,Z).

(e

Since there exists a C* function u defined on an open neighborhood of @~
satisfying Ju = f, it follows from (II) that 8 T,(f)=f on Q.

§ 2. Formula for First-Order Derivatives
Let f = Z fi(2)dzZ; be a C® d-closed (0, 1)-form defined on some
open nelghborhood of Q.
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2.1. On Q we have
L= L O T+ [ (fO-10)AKE

(111,
— | (fO-fEYALE 2.
Les2
Using —— é‘ (;;—- —-) . , we obtain
x 0 (z)
5};'1};(1‘ ; Todl) + Z S (2) Tg(dC,)
+ (L+—~)[(f(é) ~f@) A K(, 2]
ledf}
- I Y[(f(l) f@) A K, 2]
{etfd 5
- (“*+——) [(fO—f@) ALK 2)]
{ef2

J ~——[(f(€) f@)ALEL,2)].

By comparing it with (I11),, , we obtain

-5-- To(f) = To(D;f) + Z f,(z) Tn(dl:.)

+ ] (fQ=1@)A ( +57) K2

Q- f@)AK(E, 2]

- § (FO=f@) (—5— 4 5?) L2

-3 6&,

+d ag (SO - f(2) A LE, 2]

2.2. For the purpose of estimation, we are going to transform

| ac 57 WO~ 1) AKE, 2]
Ledf2
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by Stoke’s theorem. Let

FO~F)AKGD= 3 b2 (D)

uv=1
— D) AT A A AL, A AT AL A AL

y}lere b,.({, 2) is a Z-linear combination of coefficients of K({, z) and
d{, means that df is omitted. For z € @, by applying Stoke’s theorem to

A{=10 $ bultD (S0) = KL e T ndL,
/\dCll\'--/\d/Z:/\“'/\an)

6( (SO~ @) A KE. 2]

+ Z (= 1)’””“ i [bm(C,Z)( fO-fNdl A Adl,

v=1
" AdClA-~-A@A---Aan
on 0£2, we obtain
0

] [(fO-fE)AKLE 2]= | i Fi)ﬁjﬂ!aﬁf—

LedQ2 C {ed u,v=1 3
- - P
bSO = f@IdE A Adlndl A AdEA A dL,.
2.3. Combining the results of (2.1) and (2 2) we have

3— To(f)=To(D;f) + Z fil@) 5~ To(dCJ

+ [ (-1 ( 57K

Led

- I )'i (—1)"”“‘ [b“v(C (L - f)]

ledQ p,v=1
2 . v
Al A A AL A /\dC A-ndl, V)a.s

- [ JO-F@) (5 az;)L(c,z)

{e2

+ -—[ fO~f(@) AL 2)].

Ceﬂ

We will show later that —é—i—— To(dl) is 1-Holder bounded on Qif N 2 5,
and the bound can be chojsen to be independent of small perturbation
of Q. Let us assume it first.
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Observe that

= F{{, z)] Sconst|{—z|

£

l( 0 a?: )F(c e

Let Q,={o<-—%} and let he CH () with {hjg, <co. Using
(IV)g,..» and employing the standard method of estimation (i.e. using (I)
and taking ImF((, z) as one local coordinate of 8Q,, in the evaluation
of the integrals over 8, just as in the case of getting uniform bounds
and Hélder conditions for solutions of the & problem [3,4,7]), we
conclude that, for m large enough,

)

2 Tonlh

and

<const|{—z.

= Clhla,,
2,4

where C is independent of h and m. (Henkin and Romanov [4], in getting
the Holder condition of exponent 4, makes use of dh = 0. Actually this
is not necessary, as is shown in [7].)

Since
sup 1 Ta,. (M g,,0 <

and 0Ty, (h)=h on Q,, there exist ge C*(Q) and a sequence {m,} such
that the derivatives of T, (h) converge uniformly on compact subsets
of 2 to the derivatives of g. Then dg=h on © and lglla,s = Clihlg,i-
This is precisely the Main Theorem for the case k=1.

2.4. In preparation of deriving the analog of (IV)g , for the case k> 1
we have to make a transformation in one of the integrals in (IV), ,,
because one integral involves

dfy A ndl,Adl, A---Aﬁl\j/\---/\d{n
instead of
di,, A--Adl

¥~ 1

AdlA - AdE,

whose presence is necessary for the process of induction on k.
We cover 99 by a finite number of open subsets U,(1 £i <) of @ such

that ;E-»(C) is nowhere zero on U, for some {1 < v, £ n. Since =0 0n 42,
¥

a=—{5F0) (£ s 0a T o)

ST



¢ Problem with Uniform Bounds on Derivatives 169
when pulled back to U;noQ. Let 6; (1 <i<]) be a nonnegative C”
1
=1 on a neighbor-

function with compact suppott in U, such that ) o
- i=1
hood of 69 in £. Hence, when pulled back to 00,

--Ac’zr\-/\-'-f\d{,,

dZi - Adl Andl A
i
- % (-1 'J,m;g(o( i+ (z;))
~dC1A-~Ad/f::A--~AdC,,Ad[1A - Adg,.

§ 3. Estimation in the Polynomial Case
Fix (%€ 82 and let U be an open neighborhood of {° in Q
for teUnof,

3. Lemma. Let ¢, $yeC'(0) such that,
P o), La FG9= Z 80 G~

¢i(l)= BC ) and ¢,(0)= 3T,00,
+_ Z ¢ (0 &i—2)(;—2). Then there exist ¢>0 and an open
=1

nezgk;)orhood U of {° in U such that |F({, 2)\ = cl{ —z|* for {,ze U and

e(z2) 0= 0(0).
Proof. There exist 4 >0 and an open neighborhood U; of (°

with diameter <3 such that
60~ 0| 5400 asisn)

60~ 70| 400 150j50

for { e U, and ¢({) = 0. It follows that
2
P 2)—FQ 2| S (n + -”2—) Ao~

for {,ze U, and ¢({) 2 0. By (I) there exists an open neighborhood U,

of {% in U, such that
FC 2200+ 21—
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for {,ze U, and g(z) 0 < g({). Let U be an open neighborhood of {° in

1
U, with diameter < (2 (n + %) A) . Then

IFC 21 ZIFC 2l = IF(C,2) - F(, 2)]
2
ge(o(i - (n+ %)Am—m) + 20 g

> |0 —z?

SR
for {,ze U and g(z) £0 Z 9(0). Q.E.D.

3.2. Lemma. Let m <= N be positive integers and let G be an open
subset of C". Suppose 1 £j<n and g—gj(g#o for (e U. Then every C'
function b, z) on (UNORQ)x G can be extended to a C'™*t function
R, 2) on UxG such that %(C, )=y 2)o()"" ! for some C'™™
Sunction y{{, z) on U x G.

Proof. Let hy((, 2) be a C' function on U x G with extends h({, ). For
0= v <m define by induction on v a C'* function h,({, z) on U x G such
that

(C Z) hv-’r I(Cs Z) (C)
j

5C
Let
h((, 2)= Z (—-1)v h(C,Z)Q(C)"
Then .
a{ (C Zy=(—1)"" Y f y - Q.ED.

3.3. Proposition. Let =0 and mzn be intergers such that
Ig2m—m+1 and 2m—n)—[+4<N. Let 1L0,5--Z06,<n and
!

96.9= 1 €0 =2)-

If . _
o)=Y a,(Ddly n-ATT A~ AT AL A A dL,

v=1

is @ C2m=m=1*2 (0 1 {)-form on OxO, then g({, 2) w((, 2)
( )f Cej;,‘vﬂ ‘p(C’Z)m

uniformly bounded for ze Q.
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Proof. We need only show this locally near 482, Take (° € 002, After
changing the coordinates system linearly, we can assume without loss of
generality that there exists an open neighborhood U of {° in 2 such that

gg (0)=*0 for {e U and 1 <j<n We can also assume that H((, z) is

deﬁned on U x U and P, 2)=H, 2) F{{,z) on UxU. .
Fix 1 £v<n By (3.2) we can find C' functions ¢,({), ¢;Q) on U

such that
_ 0o %0
)= £ ©, o=

8T8, ——=—() for LeUndQ,

09

7 O=aQ e,
V)

¢" O =20 Q> "1 on T

for some C° functions (), &;;({) on U. Also, by (3.2) we can find C!
functions a,({,z) on Ux such that 4,({,z)=a,((,2) H({,2)™™ on
(UndQyx 2 and

FEI=EP I o Uxd (VD

for some C° function 7,(Z, z) on U x §3. Let
FCo= 3 60E-0+5 L os0E-0E-3).
i=1 =

By (3.1) there exist ¢, > 0 and a relatively compact open neighborhood U,
of {% in U such that

IFC 2 Z el —2? for {,zeU, and o(z)S0=e((). (VID
Let

[ éa,
i =72 a,(¢, Z) i (C, Z)

FGam " FGom!

R\, 2)=4¢(, 2)
it follows from (V), (VI) and (VII) that
[RAL, 2)l Scomst| —z]~2"*! for (e U,— Q" and zeUnQ. (VII))

Let B, be a relatively compact open neighborhood of {° in U, such that
OB, is C* and the normal vector of 8B, and 02 are independent at every
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point of dB,n L. For ze B,n ¢, by applying Stoke’s theorem to

d;(g—(c—%“?c"zv)%ﬂdfl /\--~/\Ea/\---/\dfn/\dll /\---/\dC,,)

=(=1)"" R, AT A AT AL A AL,

on B, — 2, we obtain

{ernang_(Céji()g—;;_’%ﬂdzl /\-../\a/a/\ .../\dfn;\dé'l f\"'f\din
=-§eagv—ggg:ﬁ?5§;éﬁdzl/\"'Ad/z:/\"'/\dg’,}\dil;\,..Adcn
+ | (=0"'R( AL A ndD AL A AL,

{eB,—02"

It follows from (VI1I1I) that, if U is a relatively compact open neighborhood

of {®in () B,, then

. [ 9¢D el
ST ()
is uniformly bounded for ze Un Q. Q.ED.

3.4. Proposition. Let keN. If N2=k+3, then D*Ty(0,—2)") is
uniformly bounded on  for o,y €IN" with |a| <k, and the bound can be
chosen to be independent of small perturbations of Q (where T5(0,(C —2)")

means —_— - -
J 8-z AK(, z)-;jg 8027 A L, z)).

{edf
. ) 0 é 5 . ,
Proof. Using Ej = (—6-; + —a—c—;) T and applying Stoke’s

theorem as in (2.2) and using (2.4), we conclude from (3.3) that

Dz j' {{ —2zy C(, z) is uniformly bounded on @ for [ Sk if NZk+3.
tedsz

The arguments used in obtaining the bound clearly imply that the bound

can be chosen to be independent of small perturbations of Q. The
proposition now follows from

T8l —2) = - 5@ . C-27Cl, 2

which is a consequence of (II) when we substitute u({) by ({ — )" and let
=z Q.ED.

3.5. 1t follows from (3.4) that »—£- Tp(dl) is 1-Holder bounded on Q
and the bound can be chosen to bejindependent of small perturbations
of Q@ if N = 5. Hence the Main Theorem is proved for k= 1.
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§ 4. The Case k> 1
4.1. For leN and g({) e C'(Q) define

O(F N (7Y — 1 T8 _ '
g, 2)=g() Iﬂl+%|<l B (ﬁ’)‘ —— (DD ) (-2 (-2 .

For g € C°(Q) define g~ V({, z) = g({). The following identities hold:

(-1
(Q(C, )_ ( aacg ) (Cv Z) H]

3C
b a1
C U)(C Z)— <';§Z7g"> (C7 Z)a
j
é 0 g \®
<~5‘C;+ 5z, gV, Z)—( C) 2.

Suppose f({) e C¥(£2) and let g,.({) = f®(, 2)). Then
@) 2)=f%( 2 for 7=z and I[<k.

4.2. Proposition. If |o|=k>0 and f= Z fidz, is a C* O-closed
(0, 1)-form on an open neighborhood of 2~ then
D; Tn(f) = Z ajpi(2) (D’D* f) (2)

iii<k

+1
é

+ Y| (DD RN ) KL, 2)
I8l +18") sk Leon

+ Y § (DPDFETINTEN 2 I5(C, 2)
b +1F sk cn

Ill\

Xy

where.,
i) agp(z) has uniformly bounded derivatives of order SN—k—3
and the bounds can be chosen to be independent of small perturbatzons of Q,
i) K3, 4(C, 2) is an(n,n — 1)-form in { whose coefficients are obtained by
6 d

d
5C; "ol
(1 £1<n) a total number of k—|B|—|B| times and then takmg lmear
combinations with coefficients in C¥~ L),

iil) I 4((, 2) is an (n, n)-form in { whose coefficients are obtained by

applying to the coefficients of K((, z) the two operations ——

applying to the coefficients of L((,z) the operation —a—%—- (i=sign
!

—|Bl — |B'| times and then taking linear combinations with coefficients in C.
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Proof. The case k=1 follows from (2.3), (24), and (3.5). For the
general case we use induction on k. Suppose (IX)}, is true for |¢|=
Fix1£v<nandlet

B=(0gy ooy Xy 15 O 1, gy s )

We are going to derive (IX)5.

For yeIN" with [y|> 0, let J, be the set of all (x, i) with «eN" and
t<i<n such that D°D,=D". Since of =0, we have D*f;=D"f; for
(i), (B, )ed,. For'yelN” with |y > 0, define f,(z2) = D f) () for (o, ) e J,.
This definition is independent of the choise of («, i). From the definitions
of f* and f, we obtain

" - 1
AL L= - — —

181+ [Tsk+ 1 @'\ hely
-(DD¥ f) (2 - 2 T,
=f0O- X —~—~(C P D)) (L -zp.

wi+npsker Bl Y
Substituting £,({) in (IX)3 by £;¥((, z’), using the above expression for
Y. f®(, 7)dl;, and then setting z'=2z, we conclude from (4.1) that

i=1

DiT(f)= X (D”f,) (2) Dy (@€ - 27)

1Bl + Iyl sk+1 5‘ y!
+ Z aﬂﬂ’i(z) Dﬂm/ﬁ(Z)

I+ 1Sk
é én
_ . X),
+ | (DPDF £k~ 11=1FD (¢, 2) K3 (C, 2)
Iﬁllt:lfslék(eﬁﬂ

+ Y [ DD () Iyl 2).

1B+ 1B sk ten
n

lij
We apply Fp

0 [ (DPDF [y =180 (¢, 2) K3, (0, 2)

oz, {edf

= [+ ) @D K )

- _‘%» ((DED® £y~ 18- 18D (¢, 2) K3.4(, 2))

tedD
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d j‘ (Dﬂﬁﬂ’fi)(kﬂﬂhlﬂ’l) (C, Z) La,’w'i(Ca z)
azv Lef2

{efl

D ,f;')(kp =18 (C’ Z) La;lﬁ’i(g Z)) .

CEO

Now we transform

]

{edn2 v

(DD [y~ M-IV ¢, 2) K, 2)

by Stoke’s theorem as in (2.2) and compare the final result with (X)p, ,.
The proposition now follows from (3.4) and (2.4). Q.ED.

4.3. Proof of the Main Theorem

|
Let Q,= {g < —;}. Assume [eN with [<k and fe C3 ,(Q) with

I f Y. <oo. Using (IX)3, and employing the standard method of esti-
mation as mentioned in (2.3), we conclude that, for m sufficiently large,

105 T, (N 2,3 S CILS N2,
for o] £ 1. Since

sup 1T, (Ng,.,o0 <o

and & T,,(f)=1f on Q,, there exist ue C*() and a subsequence {m,}
such that the derivatives of T, (f) converge uniformly on compact
subsets of Q to the derivatives of u. Then du=f on-Q and [ulg,+;

ED

=Clfla
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