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A Nullstel lensatz and a Positivstellensatz 
in Semialgebraic Geometry 

Gilbert Stengle 

1. lntroduetion 

Let k be an ordered field, K a real closed field containing k. Our 
purpose is to study finite systems of polynomial inequalities P~ >0,  
P~ e k Ix1... x,], i = 1 . . . .  , m, and the associated ( k -  K) semialgebraic 
sets, that is, the set of points in K n satisfying the given inequalities. Our 
main result, Theorem l, is a semialgebraic nullstellensatz which charac- 
terizes the ideal of polynomials vanishing on a semialgebraic set. In 
the special case that the set is algebraic we obtain Theorem 2, a new 
and superior real counterpart of the Hilbert nullstellensatz of a kind 
which appears in the investigations of Dubois [ 1 ]. As a direct consequence 
of Theorem 1 we obtain Theorem 3, a positivstellensatz which gives 
a purely algebraic characterization of the semiring of polynomials 
nonnegative on a semialgebraic set. This semiring is, in our opinion, 
the most natural and important algebraic object associated with a 
semialgebraic set. As a special case we obtain Theorem 4, a new charac- 
terization of definite polynomial functions which gives a subtle addendum 
to Artin's solution of Hilbert's 17th problem. We then derive a series 
of easy consequences which bear upon the study of systems of polynomial 
inequalities and polynomial programming. Here our positivstellensatz 
takes on the color of a nonlinear Fourier-Kuhn Theorem (see [2]) 
which describes the complete set of inequalities deducible from a given 
set. 

2. Basic Definitions 

Let k be an ordered field, K a real closed field containing k as an 
ordered subfield. Let x=(x~,  ...,xn) denote n indeterminates. We 
establish the following correspondences between subsets of K n and 
subsets of k [x] = k [xl . . . . .  xn]. 

Definition I. Given a subset X of K n, let J(Y0 be the ideal of poly- 
nomials in k[x] which vanish on X, let ~¢(X) be the semiring of poly- 
nomials in k[x] which are nonnegative on X. Given a subset B of k[x], 
let ~ (B)  be the set of common zeros in /C' of polynomials in B, let 
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~r(B) be the set of common points of nonnegativity in K n of poly- 
nomials in B. 

Definition 2. A subset W of K ~ is semialgebraic if W = ~¢'(B) for some 
finite set B e k [x]. 

The purpose of the next definition is to assign to ~/r(B) a simple, 
constructively defined semiring of polynomials S[B] nonnegative on 
~(B) .  It should be appreciated that this semiring is only a subsemiring 
of the generally much larger (and as yet undetermined) semiring d (~¢r (B)) 
of all polynomials nonnegative on ~/¢r(B). 

Definition 3. For any subset C of a ring containing k, let S(C) be the 
semiring generated by k +, the positive elements of k, and the squares 
of elements in C. Given another subset B, let S(C)I-B] be the semiring 
generated by S(C) and B. In the case that the containing ring and C 
are both k[x], abbreviate S(k[x]) to S, S(k(x))[B] to sin].  

We shall be using semirings of the form SIP1 . . . . .  P ~  associated 
with the semialgebraic set ~/1~(P1 . . . .  ,P , , )=  ~(S[P1,- . . ,Pm]).  We ob- 
serve that SIP t . . . .  , Pm] is a finitely generated semimodule over S 
having as a set of generators the set of all 2 m products of the P[s without 
repeated subscripts (including 1 as the empty product). Since the set of 
inequalities Pi ~ 0  is equivalent to the set using these generators we 
frequently assume without loss of generality that a system of inequalities 
has this special form. To refer conveniently to systems of this form we 
make the following definition. 

Definition 4. We say that a set of polynomials {P1, ..-, Pro} is standard 
if {PI, .-., P,,} is a semimodule basis for S [PI . . . . .  Pm] over S. A system 
of inequalities {P~ _> 0} is standard if the set {P1 . . . . .  Pro} is standard. 

Our most important definition is the following which defines a kind 
of generalized radical of an ideal relative to a semiring. This definition 
makes sense in a general commutative ring although we only use it here 
in k [x]. 

Definition 5. Let C be a commutative ring, I an ideal in C, and A 
a subsemiring of C containing all squares in C. Then the A-radical of I 
is the subset of C 

QA(I) = {C I C 2ra + a ~ I for some m > 0 and some a ~ A}. 

An ideal is an A-radical ideal if it is its own A-radical. 
The following argument shows that Qa (I) is actually an ideal. 

Lemma 1. QA(I) is an A-radical ideal. 

Proof. If c 2m + a ~ I, then for any c' ~ C we have (cc') 2m + (c') 2m a ~ I 
or (ce')2"+ a'~ l, a'~ A. Hence Q,l(l) is dosed under multiplication by 
elements of C. Less obvious is that QA(/) is closed under subtraction. 
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To show this suppose c2"+  a l e  I, c2"+ as e I, n ~m. Then 

{(C 1 - -  C2) 2 + (C 1 "3 t- C2)2} 2 n + l  = {2C 2 -1- 2C2} 2n+1 = c2"a ± c2,a 1 3 ~ 2 4 "  

This relation has the form 

(C a --C2)4n+2 +as=c2raa3-I-cZna4, a ~ e A .  

Hence (q - c2) 4"+ 2 + a5 + al a3 + a2 a4 = (el z" + at) a3 + (e~" + a2) a4 e 1. 
Since this has the form ( q -  c2)2N + a ~ l  we conclude that QA(I) is an 
ideal. To show that QA(I) is its own A-radical suppose cZm+a~QA(1). 
Then (c 2" + a) 2" + a' e 1. This has the form 

c'*"" + a" ~ I ,  a" e A ,  hence c ~ Oa(I) . 

3. The Semialgebraic Nullstellensatz 

Our semiatgebraic nullsteUensatz gives the geometric meaning of 
QA(I) in k[x]  in the case that A = SIP1, ... ,  Pro]" 

Theorem I (semialgebraic nullstellensatz). Let A = S[P1 . . . . .  I'm]. 
Then jbr any ideal I in k ix] 

eA (I) = J {3e" (I) n W'(A)}. 

Our proof combines a standard proof of the Hilbert Nullstellensatz 
(e.g. Jacobsen [3]) with the most basic arguments of Artin-Schreier 
theory. We incorporate the main steps of the proof into two separate 
propositions. The first proposition establishes the theorem in the special 
case that I is prime and A-radical. 

Proposition 1. Let d be a prime A-radical ideal in k ix]  where 
A = S [P1 . . . .  , Pm]" Let 9 be a polynomial not in J. Then there is a zero of  J 
contained in # ' ( A )  at which 9 does not vanish. 

Proof. Let (") denote the quotient mapping from k ix] to k [x]/d = F. 
Let G be the quotient field of F. Then G is formally real over k in the sense 
that if Z rig~ 2 = 0, r i ~ k +, gi ~ G, then 9, = 0. Indeed we even have that 
Z0t,O 2 = 0, ot i ~ A -  {0}, implies 0l= 0. To show this let gt = 7o tTi, ~i ~ F, 

~o4=0 and suppose that ~=)~ ,0q=~ i, fi, ai~k[x] .  Then ~ a t f i 2 ~ J  
1 

which implies that a 2 f(~+ a; ~ J where a~ E A. Since J is A-radical this 
implies that a~f/2 ~ J. But J~ = ai 4= 0 implies a~¢J. Since J is prime, 
f~ ~ J. Hence y, = fi = 0 and gi = 0. 

Now suppose that G can be given an ordering extending that of k 
in which Pl, ..., Pm are all nonnegative. Then by Lang's Theorem 
(Lang [4]) there is a homomorphism tp extending the imbedding of k 
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into K to a homomorphism from k[2t  . . . . .  2,, ~, Pl, ..., Pro] into K 
such that q~(g--)4:0, and q~(P~) >_- 0. Let ~=(37~ . . . . .  X,)eK".  Then f e J  
implies f ( 0  = (P ( f )  = 0. Moreover g ( 0  = ~P (g-) :l: 0. Finally Pi(0 = q~ (~) 
>_- 0 so that ~ e ~K(A). Thus ~ is the required zero of J. 

It remains to show that G has at least one ordering in which the 
P~'s are nonnegative. We know that there are no nontrivial relations of 
the form 

Let G' be a maximal algebraic extension of G with this property. We 
show that each element of . 4 -  {0} is a square in G'. For if ~ e . ~ -  {0} 
is not a square then in the proper algebraic extension G'(V~ ) we must 
have some nontrivial relation 

I: ~{gi + 1/~h~}~ = O, ~ e ~ -  {0}. 

Taking traces we find the relation in G' 

Z ohg ~ + E aa~h~ = 0.  

But this implies gi = hi = 0 contradicting the nontriviality of the relation 
in G'(V~ ). Hence each element of A is a square in G'. Obviously G' 
is formally real over k. But any such field has at least one ordering 
extending the ordering of k. In this ordering the elements of A must be 
nonnegative since they are squares. To complete the proof order G as a 
subfield of G'. 

In the light of the conclusion of this proposition we can describe 
prime A-radical ideals as the ideals of irreducible real varieties V which 
have the special property that Vn~ff(A) is Zariski dense in V. 

Prolmsi t i~ 2. 0,4(1) is the intersection of all prime A-radical ideals 
containing I. 

Proof. Suppose J is an A-radical prime ideal containing I and 
suppose feQA(I). Then fZm+a~lCJ.  Since J is A-radical, f ~ J .  
This shows that OA(/)CnJ. 

To show the reverse inclusion suppose f ¢  Q4(I). Then it suffices 
to show that there is a prime A-radical ideal not containing f .  By hypo- 
thesis there is at least one A-radical ideal containing no power of f, 
namely g,d/). Let J be an ideal maximal with respect to both of these 
properties. We complete the proof by showing that J is prime. Sup- 
pose f l ,  f2 ¢ J. Then Q,t {(J, fl)} and QA {(J, f2)} are A-radical ideals 
strictly containing g. Hence each contains some power of f, that is, 
f ~ '  + al = b~ f +Jr, i := l, 2, where at ~ A, b~ e k Ix], j~ ~ J. These equations 
imply f2(m+~')+affibf~fs+j, aeA,  j eJ .  If f~fs belonged to J we 
could conclude that fsm+ a~J, which, since J is A-radical, would 
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imply that f2~m + m2) z j ,  a contradiction. Thus f~, f2 ¢ J implies fl  f2 $ J, 
that is, J is prime. 

Proof of Theoreml. It is obvious that QA(/)CJ{¢~(/)¢~¢¢:(,4)}. 
To show the reverse inclusion suppose that f vanishes on ~(l)n~lr(A). 
Then if d is any prime A-radical ideal containing I, f vanishes on the 
subset Yf(J)n~g:(A) which implies, using Proposition l, that f ~ J .  
Thus f ¢  ~ J  which, by Proposition 2, is QA(I). 

If we specialize Theorem 1 to the case in which A = S  [that is, 
~ ( A )  = K ~] we obtain a new and superior version of a real nullstellensatz 
discovered by Dubois [1]. 

Theorem 2 (real nullstellensatz), 

Qs(i ) = j {~(i)} = {f l f2m + Z r~f/2 ~ I, ri ~ k +, f /~  k[x]}.  

It is interesting to elucidate the relationship between this result and 
Dubois' theorem which asserts that o¢(~ (I)) is 

= { f l f " ( l  + X ri ~b~) ~ I, r i e k +, ~b, ~ k (x)}. 

The main difference is that the latter involves rational functions. Let 
be the complete semiring of nonnegative polynomial functions. We can 
suppose without loss of generality that m is even in Dubois' condition. 
Since any element of Os(I) satisfies a relation f2m+ IF, r,f~2e I which can 
be written f2m(i+Zr~[f i f -m]2)el ,  we have 0s(/)CRv/I. Likewise, 
since f2m(1 + Zr~b2)eI has the form f 2 = +  ~beI where ~b e ~_we  have 
Rv/ICQs,(I ). Thus directly from the definitions Os(I)C~/ICo~,(I). 
But since ~r(5") = ¢/r (5")= K", an immediate consequence of Theorem 1 
is es(I) = Q~.(I). 

4. The Positivstellensatz 

The semiring ,4 = S[PI . . . .  , Pro] is in general a proper subset of 
~ ' = ~ ( W ' ( P I  . . . . .  Pro)) and might be described as the largest sub- 
semiring of ~ that can be identified with no more than a moment's 
thought. The following theorem will explain our success in using A 
without going over, as in Hilbert's 17th problem, to objects defined in 
terms of rational functions. This theorem asserts that d is a kind of 
restricted integral closure of `4 in k Ix]. 

Theorem 3 (positivstellensatz). Let A = S [PI , ..., Pro]. Then 

M { ~ ( P I  . . . .  , Pro)} = { f r f  2~+1 ÷ at f = a2, al, a2 ~ `4}. 

Proof. Let ~¢ denote M { ~ ( P I  . . . . .  Pro)}, let ~t '  denote { f l f  2~+1 
+ at f = a2, at, a2 e `4}. Clearly ~ '  C d so we need only show that 
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~qCCd'. Suppose fE~¢ .  Then P l > 0 ,  .... Pro>0 implies l + t 2 f 4 : 0 ,  
t ~ K .  Let S*=S(k[x , t ] )  and let A*=S*[P1, . . . ,Pm].  Then by Theo- 
rem 1 0A* {(1 + tz f )}  = d r {~¢:((1 + t2 f ) )n  ~/:(Pl, --., Pro)} where, of course, 
~ ,  ~ indicate sets in K n+l and dr and Qa* indicate ideals in k[x, t]. 
But 3e'((l + t2 f ) )c~f ' (Pl  . . . . .  Pro) = ft. Hence Qa.{(1 + t2f)} = dr(~J) 
= k[x, t]. In particular l e O~,{(1 + t2f)}, that is 

1 + a*(x, t) = p(x, t) {1 + t~f(x)}  

where a*~A*,  p(x , t )Ek[x , t ] .  More explicitly this relation can be 
written 

1 + ~.~r i ja2~(x , t )P~=p(x , t ){ l  + t2 f (x ) } ,  r i j>0  
i j 

(here for convenience we suppose that {P~} is a standard set). With the 
purpose of extracting the even part in t we can write this even more 
explicitly as 

1 + Z E rii(bij(x, t z) + tci~(x, tz)) 2 Pi = (b(x, t 2) + tc(x, t2)) {i + t 2 f } .  

Extracting the even part in t and replacing t 2 by t we find 

1 + a~'(x, t) + ta~(x, t) = b(x, t) {1 + t f }  where a~, a~ e A*. 

Now relacing t by lit and clearing all denominators with an odd power 
of t we obtain a relation of the form 

t 2~+1 + ta~(x, t)+ a*(x, t) = d(x, t) ( f +  t}.  

Letting t = - f we finally obtain 

fzu+l  + a~(x, f )  f = a~(x, f ) .  

Since a~' (x, f )  e A we conclude that f 6 ~¢'. 
In the special case A = S the semiring ~¢ (~(S))  is simply the semiring 

of all positive semidefinite polynomials. Thus we have obtained a charac- 
terization of these polynomials more refined then that given by Artiffs 
solution of Hilbert's 17th problem. The latter characterizes non- 
negative polynomials as those which have a rational representation 
E rt~k ~, r~ e k ÷, ck~ ~ k(x). Instead we have the following result. 

Theorem 4 (integral characterization of nonnegative polynomials). 
A polynomial f ~ k I x ] / s  nonne#ative as a function from K n to K if and 
only if f satisfies an equation 

f2"n+l +(T, rtg~) f = t2s~h~, ri, s i~k  +, gi, h i~k[x] .  

We remark that it is of no consequence that the representation 
involving squares of rational functions follows from this theorem 
since the same resources of Artin-Schreier theory are used to prove 
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both. However more subtle information about relationships involving 
rational functions flows from the integrality of Theorem 4 as we will 
show in Section 5 (see, for example, the Corollary to Theorem 9). 

5. Systems of Polynomial Inequalities. Polynomial Programming 

"Programming" is a name used to describe the constructive or 
computational study of systems of inequalities. While our methods and 
results are very far from being constructive (typically involving, for 
example, a sum of squares with no estimate on the number of summands) 
such questions have been instrumental in our thinking. We give some 
consequences of our theorems which bring some notions of program- 
ming securely within the scope of algebraic methods. We also favor 
the fresh and concrete language of programming. 

A vital distinction in programming must be made between sinoular 
inequalities f ~ 0 which are in fact satisfied only with equality, f = 0, 
and slack inequalities which are somewhere satisfied with inequality, 
f >  0. A simple restatement of Theorem 1 with I = {0} yields an algebraic 
description of the singular inequalities which are consequences of a given 
system. 

Theorem 5 (characterization of singular inequalities). 

j ( W - ( p  1 .... , p,~)) = {flf2m e - S [P1 . . . . .  Pro'I} 

I f  the system of inequalities {Pi > O, i = 1 . . . .  , m} is standard then Pj > 0 
is singular if and only if  for  some m > 0 

m 

P2m = - E triP~, a i e  S .  
1 

The first conclusion of the following theorem looks like a result 
that one could get for continuous or differentiable functions on R" 
by reasonably constructive methods using partitions of unity. Moreover 
these methods are not farfetched here since in many real fields (unlike 
the complex case) one can construct reasonable rational approximations 
to partitions of unity. However we have only succeeded in establishing 
these results using the wildly nonconstructive resources of field theory. 

Theorem 6 (synthesis of globally definite functions from locally 
definite data). Let  {P,  i =  1 . . . . .  m} be a standard set of  polynomials. 
Then at each point o f  K" at least one Pt is negative (nonpositive) if  and 
only if there are nonneoative polynomials Q~ not all zero such that 
E P, Q, = - 1 (E P, Q~ = 0). 
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Proof. The hypothesis first implies ~/¢:(P1 . . . . .  P,,)=fl. Hence 
- 1 e ~(3~'(P1 . . . . .  P~)). Theorem 3 then implies 

( - - l )  zm+l + ( - - t ) a l  = a2, ai~S[e i ,  . . . ,P,]  

or at +a2 = -  1. Since {P~) is standard this relation has the form 
Z a+P+ = - 1. 

The weaker hypothesis only implies ~ ( - 1  +t2Pi}=O in K "+t. 
Hence Z a i ( x , t ) ( - l + t 2 p ~ ) = - l .  Extracting the coefficients of the 
highest power of t appearing in this relation we obtain the desired 
conclusion. The sufficiency of the polynomial equalities is obvious. 

We now consider relationships involving rational functions. We 
shall view Theorem 3, our positivstellensatz, as a characterization of 
all the polynomial inequalities which are consequences of a given set. 
An immediate consequence of this Theorem is the following variant 
of a result of A. Robinson 15]. 

Theorem 7 (rational representation of consequence relations on a 
real variety). Let V be a real variety and let I = J ( V ) .  I f  P ~ O  on V 
is a consequence of the standard system {Pi > 0 on V, i = t . . . .  , m} then 
a2 p = Y.siPt(modI) where a ¢ I  and s~e S. 

Proof. Let QI... Q~ be a basis for I. Then {Pi >- O, Qi >= O, - Qi > 0} 
=~P>0. Hence P(P~m+s'l)=s' 2 where s'~eS[P1 . . . . .  Pro, Qi . . . . .  Qp, 
- Q l ,  ..., -Qp] .  This implies (P2m + sl)2 p = s 2  (modI) where s i t s  
• [P1, ..-, Pm]. If P e I the conclusion is trivial, so assume P ¢ I. Then also 
p2m + sl ~ 1. For I = ~stP~ ..... e~(O) is an S [PI, . . . ,  Pm]-radical ideal for 
which PZ~'+sle l  would imply P e I .  In this case we have a relation 
of the required form with a = p2,, + sl. 

Motzkin [6] has suggested that the representation of consequence 
inequalities given by this theorem in the case V= K" can be regarded 
as the counterpart for inequalities of the Hilbert Nullstellensatz. 
Certainly this relation is strikingly simple: in each consequence P ~ 0 
of {Psi0}, P must have the simple form Z 0iPi where the ~:s are non- 
negative rational functions. Nonetheless a comparison with the Hilbert 
Theorem is inappropriate because this rational representation is 
merely necessary and is not sufficient. In fact there is a deplorable 
tendency for all polynomials to be so representable. For example 
consider the system {xl ~0,  - x t  ~0}. In this case any f e k [ x ]  can be 
represented 

f - . { ~ x l f } z ( x t ) + l x l - f ~  2 

Of course the trouble here is caused by singular inequalities. The domain 
(Pt . . . . .  P~ on which we are attempting to study function values sits 
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in a lower dimensional real variety to which many rational functions 
will not specialize. A natural way to attack these difficulties is to divide 
out the ideal .J~ {~¢r(P 1 . . . . .  Pro)} = I or equivalently (by Theorem 2, the 
real nullstellensatz) to cut down polynomial functions to their restrictions 
to the real variety V of zeros of this ideal. We thus arrive at the necessity 
of studying systems of inequalities on real algebraic varieties as in 
Theorem 7. However, even if we reduce to the appropriate variety or 
even restrict ourselves to the case V = K n, there are further difficulties 
as the following example shows. 

W = W {(1 - x 2 - y2) (Ix - 2] 2 + y2)} is the union of the dosed unit 
disc {x 2 + y2 < 1 } and the point (2, 0). Even though in this case V = K 2, 
the pathology illustrated above occurs at the isolated point (2, 0). For  

1 
example 0 = (x - 2) 2 (3 _ x) is nonnegative on W, but (x - 2) ~ 0 = { - x 

is not. It thus seems doubtful whether Theorem 7, even in its full form, 
can by itself be a significant tool for studying polynomial inequalities. 
One view of the difficulty is that a natural passage to a collection of 
geometrically significant quotients seems more complicated for semi- 
rings than for rings. However in the following definitions we isolate a 
very special situation in which representations in terms of quotients 
are both necessary and sufficient. Much more should be done here. 
For  example these definitions should be made on a real algebraic 
variety. However to do this properly we need resources of real algebraic 
geometry which seem disproportionate here. We therefore give only 
the simplest case, obtaining a result (Theorem 8) for which we claim 
only suggestiveness and illustrative value. 

Definition 7. The system {Pt ~ 0, i = I . . . . .  m} is slack if the ideal 
{gF(P1, . . . ,  P,~} given by Theorem 5 is {0}. If the system is not slack 

then it is singular. 
Of course the geometric idea is (say if k = K = R) that a slack system 

defines a semialgebraic set with nonempty interior. 
Definition 8. The system {Pt -~ 0, i = 1,. . . ,  m} is locally slack if for 

each f e k Ix]  the n + 1 dimensional system {P~ > 0, i = t . . . . .  m, t z f - 1 > 0} 
is slack. 

The geometric idea here is obscured by a technical device and appears 
more clearly in the following description in terms of sets in K n. 

Lemma. { Pi ~- O, i = 1 . . . . .  m} is locally slack i f  and only if  for each f 
the ideal J(~C'(Pl  . . . . .  Pm)n { f >  0}} /s improper. 

Proof. Let W = "/F(P 1 . . . . .  'am)- If {P~ => 0, t 2 f -  l > 0} is not 
slack then for some g(x ,04=0 W x K c ~ / ( t 2 f - 1 ) c C ( h ( x , t ) ) .  If 

1 (x, t) ~ W x Kc~ , f ' ( t 2 f  - 1) x e W c ~ { f > O } ,  then for all t > ~ ,  
V J tX~ 
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and hence h(x, t) vanishes. Let g(x) be the leading coefficient of h(x, t). 
Then x E W ~ { f > O }  implies g(x)=0.  Hence J ( W c ~ { f > 0 } )  is a 
proper ideal. Conversely if this ideal is not proper then x e Wc~ {f  > 0} 
implies g(x) = 0 for some nontrivial g e k[x]. Then if (x, t) e W x K 
c ~ ' { t z f - l }  we have x e W  and f > 0 ,  hence g(x)=0.  This means 
W x K n ~ i " { t 2 f - l } C ~ , / ' ( g ( x ) )  so t h a t / ' ~ 0 ,  t 2 f - 1  ->0) is not slack. 

The geometric meaning of local slackness (again suppose k = K = R) 
is that the intersection of W with an open set is either empty or contains 
an open set. However a direct definition in terms of the sets {P~ > 0} 
c~ { f  > 0} is inappropriate here since we have not given an algebraic 
description of the ideal of polynomials vanishing on such a set. 

For  locally slack systems we immediately have the following 
satisfactory rational representation of consequence inequalities. Here 
we understand ~b>0, ~be k(x) to mean: ~b is nonnegative on its domain 
of definition. 

Theorem g (rational representation of consequence relations). Let 
{Pi > O, i = 1 . . . .  , m} be a standard locally slack system. Then the rational 
inequality 0>=0 is a consequence of {Pi ~0} if and o n l y / f ~ =  E~iPi where 
the O~'s are nonnegative rational functions. 

Proof. Let (b=P/Q. Let W=~(P1 , . . . , Pm) .  Then on Wc~{Q#0}, 
p Q = Q2~ is nonnegative. Hence P Q ~ 0 on Wwhich implies P Q = Z ~ i P~ 

tpi 
or ~b = Z -~T P/. Conversely suppose ~ = Z ~i P/. Let ~b i = Qi/D. Then 

pD2Q = • QiQ2Pi. Since Z QiQ2Pt is nonnegative on W we must have 
Wr~ {PQ < 0} c f/(D2). By local slackness we conclude that Wc~ {PQ < O} 
= fl, that is, PQ __> 0 on W. Thus for Q ~: 0 we have {P/_-> 0} =*- ~b 

> O. = - ~  = 

This result invites a geometric interpretation. The set of nonnegative 
rational functions on a semialgebraic set defined by a locally slack 
system is a finite dimensional semivector space (or convex polyhedral 
cone) over the semifield of definite rational functions. This polyhedron 
seems to be a natural kind of dual body to the semialgebraic set. It is 
an infinite dimensional object (over k) but with some finite dimensional 
attributes. 

We next obtain finer consequences of Theorem 3 simply by noting 
that in representations in terms of rational functions we have some 
information about the denominators. We say that an element of k(x) 
is regular on a set X in K ~ if it can be represented in the form P/Q where Q 
does not vanish on X. If X = K" we say the element is regular. 

Theorem 9 (rational representation of positive consequence relations). 
I f  P > 0 is a consequence of  the standard system {Pt >--O, i = 1, ..., m} 
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then P =  Y, q~iP~ where the dpi are elements of S(k(x)) [P~, ..., P,~ regular 
on ~ (P1, . . . ,  pro). 

Proof. The denomina to rs  in the ~b~'s can all be taken to be (p2~ + s)2 
s ~ SIP1 . . . .  , Pro-I, which by hypothesis does not  vanish on 3~V(P1, . . . ,  P~). 

Corollary. Let P(x) be a real polynomial which assumes only positive 
values. Then P = 1~ ck~ where the ~b{s are regular rational functions. 

In conclusion we note a problem suggested by Theorem 4 (which 
we state for simplicity in the case k = K = R). Is some high odd power 
of every nonnegat ive  real po lynomia l  a sum of squares of polynomials? 
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