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1. Introduction

In a previous paper [1], the authors studied those abelian groups which
contain isomorphic proper subgroups. It was found that the non-existence of
such a subgroup is somewhat exceptional. In the case of torsion groups of
power greater than the continuum, it was even shown that there are always
isomorphic proper subgroups which are direct summands. This observation
suggests the study of arbitrary abelian groups which have isomorphic proper
direct summands. It turns out that these groups enjoy many special properties
which make them worthy of consideration. One of these is the following result,
which is basic in this investigation.

(1.1) Lemma. An abelian group G has an isomorphic proper direct summand
if and only if there exist @, v in the endomorphism ring of G such that yp =1
and py =+ 1.

Proof. Let ¢ be a monomorphism of G into itself such that G = p(G) @ H
with H == 0. Then the endomorphism y of ¢ defined by v = ¢! on ¢(G) and
=0 on H satisfies pp = 1 and @y 4= 1. Conversely, if ¢ and p are endo-
morphisms of G which satisfy yp =1 and ¢y <1, then ¢ is one-to-one,
Kery =+ 0, and it is readily verified that @ = ¢ (@) & Ker .

It follows from Lemma 1.1 that the notion of a group with an isomorphic
proper direct summand is self-dual: There is a monomorphism ¢ of ¢ into
itself with Im ¢ a proper direct summand if and only if there is an epimorphism
y of ¢ onto itself with Kery a proper direct summand. Moreover, Lemma 1.1
suggests that the proper object to study is a system (G; @, ), where G is an
abelian group and ¢ and y are endomorphisms such that y¢ = 1. We show
that the study of such systems is equivalent to the study of modules over a
ring A which is freely generated over Z by non-commuting indeterminates X
and Y subject to the relation XY = 1.

Because of the many connections between pure subgroups and direct
summands, it is of interest to consider abelian groups with isomorphic proper
pure subgroups along with an investigation of groups with isomorphic proper
direct summands. To simplify our terminology we call an abelian group G:

an I-group if @ has an isomorphic proper subgroup;

an IP-group if G has an isomorphic proper pure subgroup;

an ID-group if G has an isomorphic proper direct summand.

* This work was supported by the National Science Foundation research grant No.
G-19915.
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Clearly, @ is an ID-group implies G is an IP-group implies ¢ is an I-group.
Suitable examples show that neither of these implications can be reversed.

Throughout this paper, group means abelian group. The notation and ter-
minology used is a mixture of that in Fuons [4], KarLansky [5], and CarTaxN
and EILENBERG [2].

2, Charaeterization of IP-groups and ID-groups

The problem of characterizing IP-groups and ID-groups can be pursued
along the familiar road of reduction to the reduced and divisible cases, and for
torsion groups, to the primary case. We first give some simple lemmas.

(2.1) Lemma. If G has a direct summand which is an ID-group (1P-group),
then G is an ID-group (1P-group).

(2.2) Lemma. If G is a direct sum of infinitely many copies of the same non-
zero group, then G is an ID-group.

(2.3) Lemma. Let p be a monomorphism of G into G and let N be a fully
invariant subgroup of Q.

(a) If @(G)isadirect summand of G'and N is not an ID-group, then ¢ (N)=N.

(b) If @(G) and N are pure subgroups of G and N is not an I P-group, then
p(N)=N.

Proof. To prove (a), let G/ = ¢(G) ® H. Clearly, ¢(N) < N N ¢(G). By
Lemma 1.1, there is an endomorphism v of G such. that y @ is the identity on G.
If p(r)c N, then v = yo(x) € p(N) C N, since N is fully invariant. Thus,
¢(N) = ¢(G) " N. By Lemma 21.1 in [4], it follows that

N=(p(@)nNye (HAN)=p(N)® (HAN).

Since XN is not an ID-group, N = ¢(N).

To prove (b}, it is sufficient to show that ¢ (N) is pure in N. Assume that
@{z) = my, where x, y € N and m is a positive integer. Since @ (@) is pure in G,
there exists z € G such that

@) = melz) = @plmz).
Thus, z = mz, and since N is pure in G, there exists w € N such that x = mw.
Therefore,
@) = p(mw) = me(w),
where @{w) € @(N).
(2.4) Lemma. Let N be a fully invariant subgroup of G.
(a) If N and G/N are not 1D-groups, then G is not an ID-group.
(b) If N is a pure subgroup of G and N and GIN are not 1P-groups, then G
18 not an I P-group.
Proof. To prove (a), assume that ¢ is a monomorphism of G into & such
that G = @(G) ® H. Since N is not an ID-group, it follows from Lemma 2.3
(a) that N = @ (N) < @ (G). Therefore,

GIN = ¢(@)N e (H+ N)/N, and ¢(@)N = ¢(G)/p(N)=G/N.

Since G/N is not an ID-group, H + N = N = ¢(N) < ¢(G). Thus, H = 0, and
G is not an ID-group. The proof of (b) follows similarly from Lemma 2.3 (b).
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(2.5) Lemma. Let G= 3 & N, be the direct sum of any number of fully
invariant subgroups. Then G is an ID-group (I P-group) if and only if some N,
is an ID-group (I P-group).

Proof. By Lemmas 2.1 and 2.3.

{2.6) Theorem. Let Gp be the torsion subgroup of G. If Gy and GG are not
ID-groups (1P-groups), then G is not an ID-group (IP-group). Moreover, Gp
is an ID-group (1P-group) if and only if some primary component of Gp is an
ID-group (IP-group).

Proof. By Lemmas 2.4 and 2.5.

(2.7) Corollary. A group Q of finite reduced rank is not an I P-group.

Proof. Since ¢ has finite rank, both G and G/Gy have finite rank. By [1,
Theorem 1], (/3 is not an I-group. Suppose that ¢ is a monomorphism of G/Gyp
into G/Gy such that ¢ (G/Gy) is a pure subgroup of G/Gy. Then (G/Gr)/ ¢ (G/Gy)
is torsion free. However, since rank(g(G/Gy)) = rank (G/Gr) < o, it follows
that (G/Gr)/ ¢ {G|Gy) is a torsion group. Thus, ¢(G/Gy) = G/Gy, so that G/Gy
is not an IP-group. By Theorem 2.6, ¢ is not an IP-group.

{2.8) Theorem. Let G = K @ D, where K is reduced and D is divisible. Then
G is an ID-group (I P-group) if and only if either K is an ID-group (I P-group)
or D is an ID-group (IP-groupj. Moreover, D is an ID-group (IP-group) if
and only if 1D has infinite torsion free rank, or infinite p-rank for some prime p.

Proof. The first statement follows from Lemmas 2.1 and 2.4. If D is an
IP-group, then either D/Dy or some primary component of D has infinite rank
by Theorem 2.6 and Corollary 2.7. Conversely, if D has infinite torsion free
rank or infinite p-rank, then D has a direct summand which is either a sum of
infinitely many copies of @ or a sum of infinitely many copies of Z (p*°). Hence D
is an ID-group by Lemmas 2.1 and 2.2.

(2.9) Theorem. A4 reduced p-group G is an ID-group if and only if f4(n)
{the n-th Ulm invariant of G} is infinite for some non-negative integer n. If this
condition is satisfied, then G = K & C, where C is a non-zero bounded 1D-group.

Proof. Let G be an ID-group, say G = G, @ H, where G =~ @G, and H + 0.
Then

fo(n) = fg,(n) + fa(n) = fe(n) + fg(n)

for n=0,1,2,... . Thus either fy(n) = x or fy(rn) = 0. However, H 4 0
and H reduced implies fz (n) 3= 0 for some n. Therefore, fg(n) = oo for some n.
Conversely, suppose that f;(n) is infinite. Let B be a basic subgroup of G. Then
B=B,® B,® ..., where B,_, is a direct sum of f4() copies of Z(p*+1). In
particular, C = B, ., is a non-zero bounded ID-group by 2.2. Since B, ,, is
pure in B, and B is pure in G, it follows that C = B, ., is a direct summand
of @. Therefore, by 2.1, @ is an ID-group.

{2.10) Corollary. If Gp iz an ID-group, then G is an ID-group.

Proof. By Theorems 2.6, 2.8, and 2.9, if Gy is an ID-group, then Gy has a
non-zero direct summand C which is an ID-group and which is either divisible
or & group of bounded order. In either case C is a direct summand of G, since
Gp is pure in G. Thus, @ is an ID-group by 2.1.



24 R. A. BeavmoxT and R. S. PIERCE:

(2.11) Corollary. If G is a reduced p-group such that |G| > 2%, then G is an
ID-group.

Proof. 1f |G| > 2%, then | B| > %, where B is a basic subgroup of G¢. Hence
for some n, |B, 4| > %, Therefore, f3(n) > %4, so that @ is an ID-group by
Theorem 2.9.

Remark. If G is a countable reduced p-group, then it follows from A4,
page 135 in [4], that G has a direct summand H which is an unbounded direct
sum of cyclic groups. Therefore [4, Lemma 31.1], H has a proper basic sub-
group B such that H = B. Thus, H is an IP-group, and by Lemma 2.1, ¢ is an
IP-group. These remarks and Theorem 2.9 show that the group B= ) @ Z(p")

n<w

is an IP-group but not an ID-group. The torsion completion of B, B
= ¥ @ Z(p"), is an example of a group with cardinality 2* which is an

B<®

I-group but not an IP-group. Crawiey [3] has given an example of a sub-
group of B containing B which is not an I-group.

The results on torsion free ID-groups are sparse. The following general
result provides some information in this case.

{2.12) Theorem. Let G be a reduced group suck that Gip@Q is finite for all
primes p. Then G is not an ID-group.

Proof. Suppose that ¢ is a monomorphism of G into G such that G
= ¢(G)® H. We have

GlpG = ¢ (@) p(pG) = e A)pg (@) = (A)pG N ¢(G) = (pF + p(M)/pC .
Since G/p@ is finite, it follows that pG + ¢ (G) = G. Therefore,

Glp(@) = (PG + ¢(@)/9(G) = p(G/9(6))
for all p. Consequently, G/p(¢) = H is divisible. Since G is reduced, it follows
that H = 0. Thus, ¢ is not an ID-group.
Remark. The converse of Theorem 2.12 does not hold for either torsion or
torsion free groups. The p-group B = } @ Z(p*) has |B/p B| = %, and Bis not

n<w
an ID-group. Let V, be a rational vector space of countably infinite dimension
with basis ¢, €5, .. ., ¢,, ... . Then the subgroup & of V, generated by ¢,/pP

and (¢; + ¢;)/2 for all ¢, 4, k and all positive integers m, such that ¢ <4 and
P1> Py - - «» Pus - - » are the odd primes in their natural order, has |G/p,G] = %,
for all ». Moreover, (7 is an indecomposable torsion free group [4, page 1517, so
that @ is not an ID-group.

(2.13) Corollary. Lef py, Py, . . ., Pu, - - - be an enumeration of the primes and
Iet G =} & G, where each G, is a direct sum of a finite number of copies of the

n
py-adic integers. Then G is not an I P-group.
Proof. Since each element of G, has finite p,-height and is p,,-divisible for
m = n, it follows that @, is a fully invariant subgroup of @ for all n. Hence by
Lemma 2.5, it is sufficient to show that each &, is not an IP-group. Since G,
is complete in the p,-adic topology, it follows that an isomorphic proper pure
subgroup of @, is a direct summand [5, Theorem 23]. That is, if G, is an
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IP-group, then &, is an ID-group. However, G, is not an ID-group by Theo-
rem 2.12, since &, = p, G, for m 4= n and G,[/p,d, is a finite direct sum of
cyclic groups of order p,.

3. ID-systems

It was noted in Section 1 that for the classification of ID-groups, it is
convenient to consider not just the groups themselves, but also the endo-
morphisms which determine the isomorphic direct summand.

(3.1) Definition. An ID-system is a triple (G; ¢, y), where G is an abelian
group and ¢ and y are endomorphisms of G such that pgo =1. Two ID-
systems ((; @, p) and (G'; ¢', ') are isomorphic if there is a group isomor-
phism 6 of G onto G’ such that 6 = ¢'0 and Gy = y'0.

(3.2) Examples. (a) Let & be any group. Let ¢ be an automorphism of G.
Let 9 = ¢~ Then {G; ¢, ) is an ID-system. In this case & need not be an
ID-group.

(b) Let H be any group. Denote by Py the complete direct sum of countably
many copies of H. Let ¢ and 7 be the right and left shift endomorphisms of Py
defined by

(2, Ty, 5, .. ) = (0, 2, X, . . .},
T((Xy, @9y g, . . 1) = (X, X5, .. ) .

Then {Ppg; 0, 7y is an ID-system. If 85 denotes the direct sum of countably
many copies of H, then Sy can be considered as a subgroup of Pg. Moreover,
o(8g) € Sgand 7(Sg) € Sz. Hence (Sg; o', v') is an ID-system, where ¢’ and 7/
are the restrictions of ¢ and 7 to 85. More generally, a subgroup 7T of Py with
8z € T determines an ID-system provided that ¢(7) ¢ 7 and t(T) C T. We
call such a 7' a total shift invariant (. s. 1.) subgroup of Py.

If H <0, then any t.s.i. subgroup of Py is an ID-group. We will see
presently that every ID-group is obtained by an extension process from groups
of the type given in 3.2.

The study of ID-systems is equivalent to the study of modules over a
certain ring. This important observation makes it possible to apply the methods
of homological algebra to the theory of ID-systems,

(3.3) Definition. The ID-ring A is the residue class ring

Z{X, Y}(XY - 1),

where Z{X, Y} is the polynomial ring with identity in non-commuting in-
determinates X, ¥ with integral coefficients, and (X ¥ — 1) is the ideal of
Z{X, Y} generated by XY — 1. Let & and % denote the residue classes of X
and Y respectively in 4.

{3.4) Lemma. Every element of A can be expressed uniquely in the form

a= P, n) = 2 gt g € 4.
1,720

Hence A is a free Z-module.

(3.5) Theorem. T'here is a one-to-one correspondence between ID-systems and
A-modules. If {G; @, p) is an ID-system, then the corresponding A-module is
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the group G with the module operation defined by

P& ) -z=Py ¢ ().
Two ID-systems are isomorphic if and only if the corresponding A-modules are
isomorphic.
The proof of this theorem is routine.
If A is any ring, M is a A-module, and « € A, then the set of all elements
of infinite o-height in M is
o M = an M.

Clearly, «® M is a subgroup of M, but in general, if A is not commutative, then
«® M is not a submodule of M. However, for the ID-ring A, we can prove the
following result.

{3.6) Lemma. Let G be a A-module. Then

(1) %°6 is a submodule of Q; for x € 1°G, nx = .

(2) GIn»@Q is a A-module without non-zero elements of infinite y-height.

Proof. An element x belongs to %*@Q if and only if there exist ;, 7,, 5, . . .
in G such that © = &, = 5?x, = ndx, =+ - - . If this condition is satisfied, then
Nz =1n(nx) = n* () = 9*(nxz) = - - - and

fw=fnay = Entay = Enfag=- -~
=2 = Ny = NPu3= """
Thus, nx € °G and &z € 5@, Therefore @ is a submodule of . Moreover,
for € 9@, néx = nénx, = nr, = x. Finally, by a standard argument, if
z + 1@ has infinite 7-height in G/»*@, then x € #*(, which implies (2).

This lemma shows that n* @ is a submodule of ¢ on which £ and 7 act as
inverse automorphisms. We will call a module of this kind an automorphic
module (or automorphic A-module). The automorphic modules are exactly
the A-modules corresponding to ID-gystems of the type defined in 3.2 (a).

If T is a A-module corresponding to a t. s.i. subgroup of a product Py
(see 3.2 (b)), then we will call T' a shift module.

(3.7) Theorem. If G is a A-module, then G is isomorphic to a shift module
tf and only if @ has no elements of infinite n-height.

Proof. Suppose that G is isomorphic to the shift module 7'. To show that G
has no elements of infinite 5-height, it suffices to prove that T has no non-zero

elements of infinite 7-height. However, this is clear because
k

7oy, gy ..} =1(0,0,...,0, 2,7, ...).
Conversely, assume that & has no non-zero elements of infinite #-height. Let

H={xc@G|tx=0}.
Then @ decomposes as a.group,

G=Hen@=HeonH) e @) ==HengH e onH e (7).
For z € G, map

Bix > (@, Xg, Ty o . ., Ty, .. )€ Py,
where

=T+ Bk Y,
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2y, Loy -, € H, y, € G. It is clear that u is a well-defined group homo-
morphism of @ into Py. Moreover, if u(x)= (2, x,, 5, ...), then u(éz)
= (Zg, X3, . . .) = T (X)), and u(nz) = (0, 2y, 2y, 3, . . .) = o (u(x)). Thus, the
image 7 of u is a subgroup of Pp such that (7"} ¢ T and ©(T) ¢ T. Moreover,
if 2, %, . . ., ¥, are in H, then
plxy+ g+ 0 ptay) = (@, %y, .04, %, 0,0,..0),

so that Sz C T'. That is, T is a t.s. i. subgroup of Pg. Since u& =7y and
un = o u, it follows that u is a 4-homomorphism onto the 4-module determined
by T'. Moreover, the kernel of y is #*@ = 0, so that y is a A-isomorphism.

It is perhaps worthwhile to interpret 3.6 and 3.7 as statements about ID-
systems. The result is the following theorem.

(3.8) Theorem. Let (GQ; @, w) be an ID-system. Let K =nf<]w¢p"(G) = ¢°(,

H = Kery, and o = @|g. Then o is an automorphism of K and there is at. s.i.
subgroup T of Py and an epimorphism u such that the following diagrams are
row exact and commutative:

0—K—G5T—0

Lol |

0—K—G5T—0,

ko b

0—K—Ga@-5T7T—0.

4. Extensions of 1D-systems

The results of the previous section show that every A-module is an extension
of an automorphic module by a shift module. We now wish to classify the dif-
ferent extensions of a fixed automorphic module K by a fixed shift module 7'.
Since the module structure (though not the group structure) of automorphic
and shift modules can be considered to be known, this program is essentially
equivalent to that of classifying the module structure of all 4-modules. It is
obvious that the appropriate classifying structure is the group Ext} (7, K).
The main result of this section is a theorem which relates Ext) (T, K) to
Ext, (7T, K).

If T and K are any A-modules, then the group Hom, (7T, K) carries the
structure of a left and right A-module with the operations

(ay) @) = x(@), (B @=x(p2),
where y € Homg, (T, K) and «, § € 4. Obviously,
(ax) B =alyp).

The same remark applies to the derived functor Ext; of Homy: Ext, (7, K)
is a two sided A-module, and

(a) = o (AP)
for all o, 8 € A and A € Ext, (T, K).
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(4.1) Lemma. Let T and K be A-modules, where K is an automorphic module.
Then the inclusion mapping

iy : Homy (7T, K) — Homy (T, K)

sends Hom (T, K) onio {y € Homy (T, K)|&y = y&}.

Proof. Clearly, if y € Hom (T, K), then y € Homy (7T, K) and &y = y&.
Conversely, if ¥ ¢ Hom, (T, K) and £y = y &, then since K is an automorphic
module, y5 = néyn = ny&n = ny. Therefore, y € Hom,(7T, K).

Tt is convenient to identify the elements of the groups Ext} (7T, K) and
Ext, (T, K} with equivalence classes of short exact sequences

0->K->G->T->0,
considered respectively as A-modules and Z-modules. Two such sequences
0>-K->G@->T—-0 and 0+K->G >T->90

are equivalent if there is an isomorphism k of @ onto G’ (considered as A-
modules and Z-modules in the respective cases) such that the following dia-
gram commutes:

0>K—>G—>T-0

.

0--K->Q ->T-0,

Thus, if two sequences of A-modules are equivalent, then they are equivalent ag
Z-modules. It follows that the mapping i,, which associates with each equiv-
alence class 2 of sequences of A-modules the equivalence class ' of sequences
of Z-modules containing 2, is a well-defined mapping of Extl (7, K) into
Ext, (7T, K). Because of the way in which the addition operation (Baer compo-
sition) is defined in ExtL (7, K) and Ext, (T, K) (see [2], page 290), it is clear
that i, is a group homomorphism. We will call 4, the reduction homomorphism.

It should be remarked that each short exact sequence of abelian groups
in the class 9’ = 4,2 can be regarded as a sequence of A-modules. For if

0—-Ek-Laeg L 170
is in ,2l, then there is a sequence of A-modules in 2,

0o—k-Lag .70,
such that the diagram
0—-k-Le L T—0
|
0—-EK-Laegl.T—0
commutes. Defining « - # = k(o - k~1(2)) for « € 4 and x ¢ G’ makes G into a
A-module in such a way that f and g are 4-homomorphisms.
(4.2) Lemma. Let K and T be A-modules, where K is an automorphic module.
T'hen the reduction homomorphism
iy Extl (T, K) - Ext, (T, K)
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sends Extl (T, K) onto {U ¢ Ext, (T, K)| A = AE}. The kernel of i, consists of
those equivalence classes of sequences of A-modules whick split as sequences of
abelian groups.

Proof. If Y is in the image of ¢,, then the class U contains the sequence
0—kLelr—0,

where G is a 4-module and f and g are 4-homomorphisms. Since K is an
automorphic module, the following diagram is commutative:

At 60— KL g 10

N CE

A 0—K-LHa % T—0

ol

EA0— KN g 2T 0,
Therefore £ = AL,

Conversely, suppose that £ = A&, It follows as in the proof of Lemma 4.1
that #?A = Ax. Let
0—KLaetr—0

be a sequence belonging to the class 2 ¢ Ext, (T, K). Then there exist endo-
morphisms  and ¢ of G such that the following diagrams commute:

oK. g% 170

I

0—K-1ig om0,

0K a2t T—0

O

oKL a2 170,

By the commutativity of these diagrams, (pgp — 1) () ¢ Kerg = Imf and
(pp — 1) (Imf) = 0. Consequently,

Y29 —gye) —1=—(pp—17=0.
Therefore G can be made into a A-module by defining

fra=yp), n-2=02¢— gyp)(@).
With the module operations so defined, it is easily verified that f and g are
A-homomorphisms. Thus,
A:0—K-L @ LT 0
is in the image of 7,.
The final statement of the lemma is obvious.
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(4.3) Lemma. Let K and T be A-modules, where K is an automorphic module.
Then there i3 @ homomorphism

d, : Hom, (T, K) - Ext4 (T, K)
such that (i) Imd, = Keri,, and (ii) Kerd, = {£y — ¢ &y € Hom, (T, K)}.
Proof. Let 8 be in Homy, (T, K). Define the A-module Gy as follows: as a

group, Gy is the (external) direct sum K @ 7'; the module operations on ¢ are
defined by

E-bty=(-k+60),&0), n-ke,)=@-k—n-0@xn-t)n-t).
It is eagy to verify that with these definitions, £7 = 1. Moreover, with
fo: K—>Gy, gg: Gy~ T
defined by fa(k) = (&, 0), go(k, £) = t, respectively, f; and g, are A-homo-
morphisms, and
0-— K q,2 170
is a short exact sequence of A-modules. Let 2, denote the class of this sequence.

Define
dl . 9 Rl Q[g
It can be checked that d,(0 + x) = Uy + U,,, where 0,2 € Hom, (T, K) and
Ay + 2, is obtained by the Baer composition. Thus, d, is & homomorphism of
Homy, (7, K) into Ext}, (T, K). It is evident from the the definition of G, that
the sequence
0— K18 ¢, %170
splits as a sequence of abelian groups. Hence Imd; < Keri,. On the other hand,
suppose that ¢,2 = 0. Then (by the remarks preceding Lemma 4.2) 2 contains
a sequence
0—-kKk-LEKer LT —0,
where f(k) = (k, 0), g((k, t)) = t, K ® T is a A-module, and f and g are 4-homo-
morphisms. For « € 4, let « - (0, ) = (6,(f), t,). Then 6, ¢ Homy (T, K). Since
gla-(0,8) = a-g{{0, )} = « - ¢, it follows that ¢, = o - {. Moreover, o - (£, 0)
= o+ f{k} = f{a* &} = (o - k, 0). Therefore,
a'(k:t)z‘x'(kx0)+a'{0’t)=(“'k+ga(t}:“'t)'
Since &7 = 1, it follows that
(e, 1) = £ (b, 1) = £+ (- b+ 6, 0+ &) = (b + & 0,(0) + s - 0), ).
Therefore £0, = — 0,7, and since K is an automorphic module, 6, = 540,
= —70;7. This proves that the sequence under consideration is in the class y,.

Hence % = d; (0), completing the proof of (i).
Suppose that d, (0) = 0 for 0 ¢ Hom, (7', K). Then the sequence

0— K g, 70

splits. Hence, there is a A-homomorphism % : T -» G such that gyh is the
identity on 7. Evidently there exists y¢ Hom,(7T, K) such that A(¢)
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= (= x(t), t). From the identity £A(f) = h(& - t), it follows easily that 0 = &y —
— g &. Conversely, suppose that 6 = £y — y&, where y € Homy(T, K). Define
h: T — Gy by h(t) = (— x(f), t). Then ggh is the identity on 7, and it can be
checked that h is a A-homomorphism. Therefore, the A-module sequence

0— K- g,2. 70

splits, so that d,(6) = A, = 0. This completes the proof of Lemma 4.3.
(4.4) Theorem. Let K and T be A-modules, where K is an automorphic
module. Then there is an exact sequence

Ow»HomA(T K)->, HomZ(T Ky-2s HomZ(T I()-—»Ex‘o1 (T,K)
Extz(T K) Extz(T K) EXtA(T, K) B d 0 N

where i, ts the inclusion homomorphism, i, 18 the reduction homomorphism,
iy —~&x— x& y € Homy (T, K), ¢p: U > U — UE, A€ Exty(T, K), dy is
defined as in 4.3, and d, is a homomorphism derived from d,.

Proof. It follows from 4.1, 4.2, and 4.3 that this sequence is exact up to

Exty (T, K) - Ext, (T, K). To complete the sequence, let
0->8>F—>T->0

be a short exact sequence of 4-modules with F A-free. Then since 4 is Z-free
by 3.4, it follows that F is Z-free, and consequently 8§ is also Z-free. Thus,
using the results alrcady established, together with standard results of homo-
logical algebra, we have the following diagram with exact rows and columns:

Homy (F, K) -2 Homy (¥, K) A, Exthy (F, K) =
I I

Hom, (8, K) - Homy (8, K) -2 Ext} (S, K) -2 Ext,(S, K) = 0
E 2

Exty (7, K) % Exty (T, K)

Eth(F, K) —— Eth{F, K)

ﬁ H

0 0,

where r is the restriction homomorphism y — y|¢ and @ is the connecting
homomorphism. Obviously r¢, = ¢,r. Moreover, since 8(x&) = (9y)& and
0(&x) = &(@y), it follows that de¢, = ¢,0. Therefore, the diagram commutes.
From the commutivity and exactness, it follows easily that
0-1(Imcy) = Imr + Ime, = Imre, + Ime; = Imeyr + Imey
= Ime, = Kerd, .

Thus, there is a homomorphism e of Ext, (7, K) onto Ext}(S. K) such that
Kere = Imc,. Finally, from the exactness of the sequence

0 = Exty (F, K) > Ext} (S, K) > Ext3(T, K) - Extg (F, K) = 0
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it follows that there is an epimorphism
d,: Ext, (T, K) - ExtY (T, K)

with Kerd, = Kere = Imc,. This completes the proof of the theorem.

(4.5) Corollary. Let K and T be A-modules, where K is an automorphic
module. Then Ext%(T', K) = 0 for n > 2.

Proof. Let 0 - S ->F > W — 0 be an exact sequence of A-modules, with
F A-free. Then 8 is Z-free and

0 = Ext, (S, K) - Ext2 (8, K) — 0

is exact. Hence Ext? (S, K) = 0. Since Ext3 (W, K) =~ Ext? (S, K), it follows
that Ext% (W, K) = 0 for all A-modules W. Therefore, Ext%(T, K) = 0 for
n > 2.

The following result exhibits the functorial nature of the exact sequence
of Theorem 4.4. The proof is omitted since it is lengthy and contains no
surprises.

(4.6) Theorem. Let T, T", K, and K' be A-modules, where K and K' are
automorphic modules. Denote the exact sequence of Theorem 4.4 by D(T', K). Let
A:T' - T and p: K-> K' be A-homomorphisms. Then there exist translations

M*:D(T,K)—>D(T'",K) and p,:D(T,K)—>D(T,K'),

where the component maps of A* and p, are the induced maps of A and p respec-
tively.

5. Extensions of frivial ID-systems

Answers to interesting questions about ID-groups can be found by deter-
mining the conditions under which the reduction homomorphism

iy Extl (T, K) - Ext,(T, K)

is zero, one-to-one, or onto. Note that ¢, = 0 if and only if each ID-group which
is a module extension of X by T has K as a (group) direct summand. The
homomorphism ¢, is one-to-one if and only if (roughly speaking) each ID-group
which is a module extension of K by 7' has an essentially unique ID-structure.
Finally, ¢, is onto if and only if every group which is an extension of K by T
is an ID-group.

We examine these problems in the particular case where the automorphic
module K is trivial, that is, X is simply an abelian group on which 4 acts by
&x = nx = x. Such a trivial 4-module corresponds to an ID-system (K; ¢, p),
where ¢ = p is the identity mapping. The results of Section 4 can be put in a
form which is convenient for computations when K is a trivial A-module.

(5.1) Theorem. Let K and T be A-modules, where K is a trivial A-module.
Let g : T — T be defined by g(t) = ¢t — &t. Then there is an exact sequence

L] f 3 A
0 — Homg(T/o(T), K) 2> Homy(T, K) L. Hom, (T, K) -2 Ext,(T, K)
iy * i
2 Exty (T, K) 2 Exty (T, K) — Ext,(Kerg, K) — 0,
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where p is the natural projection of T onto Tfp(T), i is the inclusion mapping
of Kerp into T, and p*, o}, and i* are the mappings induced by p, p, and i.

Proof. The group homomorphism ¢ can be factored, g = j», to obtain two
short exact sequences

0 —> Kerp —» T -2 o(T) — 0,
0—> o(T) -1 T -2, TYo(T) — 0.
From these we obtain the exact sequences
0 — Homy(p(7T), K) -i Hom,(T, K) ,
Ext, (o(T), K) 2> Ext,(T, K) — Ext,(Kerg, K) — 0,
0 —> Homy(TJo(T), K) > Homy (T, K) ~1» Homy (e (T), K),
Exty (T, K) ~5> Ext,(o(T), K)— 0.

These sequences, the sequence of Theorem 4.4, and the fact that v*§} = ¥ =¢;,
yield the required result.
(5.2) Corollary. Let T and K be A-modules, where K is a trivial A-module.
Then
Ext? (T, K) = Ext,(Kerp, K)
and
Hom (T, K) == Homz(T/o(T), K) .

(6.3) Lemma. Let U and V be abelian groups and A : U — V a homomorphism
inducing 1* : Extz(V, K) - Ext,(U, K). Then A* = 0 if and only if for every
short exact sequence

0—K-—G V-0,

there is a homomorphism p: U — G such that A = p u.

Proof. Let U be the class of 0 > K - G -%» ¥V — 0. Then A2* = 0 if and
only if there is a homomorphism v : K @ U — G such that the following diagram
is commutative:

A0 K Ko U—U—90

R .

A0 Ko @20 V0.

The lemma follows from this observation.

Throughout the remainder of this paper g is the group homomorphism of T
into T defined by o (f) = ¢ — &¢.

(5.4) Theorem. The reduction homomorphism iy is zero for all trivial A-
modules K if and only if Kerp is a direct summand of T and there is a subgroup L
of o(T) such that T|L is free.

Proof. By Theorem 5.1, i, = 0 if and only if

o} : Extz (T, K) - Ext,(T, K)
Math. Ann. 153 3
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is one-to-one. The short exact sequences obtained by factoring ¢ = j» (as in the
proof of Theorem 5.1) yield the following exact sequences:

Hom (T, K) -> Homy(Kerg, K) —> Ext,(o(T), K) 2> Ext4(T, K},
Exty(T/o(T), K) X Exty(T, K) 2> Ext,(o(7), K)

where pf = »*j*. Since j* is onto, it follows that g¥ is one-to-one if and only
if both §* and v»* are one-to-one. This latter condition holds if and only if
p* = 0 and ¢* is onto.

Suppose first that p* = 0 and ¢* is onto for all trivial K. Then, in particular,
©* is onto when K is the group Kerp. This implies that Kerp is a direct sum-
mand of 7'. Let G be a free group and f: G — T/p(T) an epimorphism. Since
p* = 0, it follows from 5.3 that there is & homomorphism ¢ : 7' -> ¢/ such that
p = fg. Thus, L = Kerg < Kerp = o(7), and T/L = g(T) < G is free.

Conversely, assume that Kerp is a direct summand of 7" and L is a subgroup
of o(T) such that T/L is free. The first condition clearly implies that ¢* is
onto for all K. The composition of the injections L L o(T) I, Tisthe injeetion{
of Linto T. Since 7T/L is free,

0 = Ext,(T/L, K) —> Ext,(T, K) 2> Ext,(L, K) —> 0

is exact, and therefore I* is an isomorphism for all K. Since I* = (jEy* = k*j*,
it follows that j* is one-to-one, and hence that p* = 0 for all K.

Remark. The proof which we have given for Theorem 5.4 establishes
somewhat more than is stated in the theorem. To obtain the conclusion that
¢ (T) contains a snbgroup L such that 7/L is free, it is only necessary to assume
that ¢, = 0 for all trivial A-modules K which are free as groups. Note that in
this case L contains the torsion subgroup of 7'. In particular, if 7 is a torsion
group, then o(7') = T'. If T is a torsion free group, then the conclusion that
Kerp is a direct summand is obtained if ¢, = 0 for all trivial A-modules K
which are torsion free as groups.

{6.5) Theorem. The reduction homomorphism 1, ts one-fo-one for ail trivial
A-modules K if and only if p is one-to-one and g(T) is a direct summand of T.
Proof. By Theorem 5.1, i, is one-to-one if and only if

o¥ : Homy (7T, K) -~ Hom (T, K)

is onto. Asspme that o} is onto for all K. Let K = 7. Then there exists
x € Homgz (7T, T') such that of (x) = xe is the identity on 7. Therefore p is
one-to-one and g(7') is a direct summand of 7. Conversely, if ¢ is one-to-one
and ¢(7) is a direct summand of 7', then there exists y € Hom, (7', T') such
that y g is the identity on 7'. Consequently, o¥ y* is the identity on Hom, (7', K)
for all K. Thus, g} is onto for all K.

(5.6) Theorem. Let T be a shift module. The reduction homomorphism is
onto for all trivial A-modules K which are free groups if and only if T is a free
group.
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Proof. By Theorem 5.1, i, is onto if and only if
o% : Exty (T, K) - Ext, (7T, K)

is zero. Assume that p¥ = 0 for all free K. Let G be a free group and f:G - T
an epimorphism. Then Kerf is free, and by 5.3, there is a homomorphism
g: T — (¢ such that g = fg. Since ¢g(7") is free, it follows that 7 = F; ® Kerg,
where F, = g(7') is free. Note that Kerg C Kerp, and that since T is & shift
module, it follows that g (®y, x,, ;, . . .) = (&, — 2,5, Xy — 25, . . .} i8 zero if and
only if oy, =a,=23="-+. Let 1:Kerg-> T be defined by Az, z, 2, ...)
= (z,0,0,...), and let = be the projection of T = F, ® Kerg onto F,. If
alMz,x, %, .. )=n{x0,0,...) is zero, then (2,0,0,...)¢€ Kersw = Kerg ¢
¢ Kerp, so that « = 0. That is, # 1 is a monomorphism of Kerg into F,. Thus,
Keryp is free, and consequently Kerg is free. Hence 7' is a free group.

Conversely, if T is free, then Ext (7T, K) = 0 for all X, and hence gf = 0
for all K.

(6.7) Examples. (a) Let T be the shift module Sy, where H is any group.
Then the homomorphism g has an inverse, namely

n n n
oMy, @y, . .., 2,,0,0,...) = (.Zx,-,.Zx,-,...,‘ij,0,0,...\..

j=1 j=2 je=mn /
Hence by 5.4 and 5.5, the reduction homomorphism ¢, is both zero and one-
to-one for all trivial 4-modules K. Thus, Exty (T, K) = 0. This means that an
ID-group which is a A-module extension of a trivial A-module by Sy is the
module direct sum X &, Sg.
{b) Let T be a shift module. Thus, 7' is a t. s. i. subgroup of Py for some
group H. Define § : Py — Py by

1 2 3
6(3’)1,3}'2,%3,.. )Z ( 293_,;, Z:Dj,.ij,...) .

=1 =1 =t

Assume that §(7") < 7. Then — 5§ is a right inverse of p. Consequently, Kerp
is a direct summand of T and ¢ (T) = 7. Therefore by 5.4, ¢, is zero for all
trivial A-modules K. Note that Kerp =~ H, since for any = ¢ H,

(e, @, 2,...)=20(x0,0,...)€0(8g) () T.

Therefore, if H 4 0, g is not one-to-one, and it follows from 5.5 that 1, is not
one-to-one for all trivial 4-modules K. Hence for some trivial A-module K,
Ext) (T, K) 4= 0. We conclude that there exists a group K and A-module
extensions of K by T with essentially different ID-structures. Of course, all
of these extensions are isomorphic to K @ 7' (as groups).

(¢) Let H=2/pZ ={0,1,2,...,p — 1} be the cyclic group of order p.
Define w = (wy, w,, wy, . . .), where w; =1 if ¢ is a perfect square and w; = 0
otherwise. Let 7' be the subgroup of Py generated by Sy, (1,1,1, . . .), &w for
1=0,1,2,..., and fw for j =0,1,2,... . Then 7 is a shift module. Let
& be the endomorphism of Py defined in (b). For every natural number 7,
d(w) contains a block of n consecutive zeros followed by a block of » consecutive
ones. It is easy to see that no element of 7' has this property. Hence 8(w) ¢ T'.

3*
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We will prove that there is some trivial 4-module K for which the reduction

homomorphism %, is not zero. Assume the contrary. Then ¢, = 0 for all trivial K.

By 5.4, Kerg is a direct summand of 7 and ¢(7) = T (since 7 is a forsion

group). Therefore, ¢ has a right inverse ¢. Consequently, for z¢ 7,

o{p — nd) (x) = 0. Hence, (p — ) (&) = (b, &k, k, ... )€ T, and —5d(z) € T.

Consequently §(x) = — &(—nd(x)) € T, contradicting the fact that §(w) ¢ 7.
{d) Let H = Z. Let r be any positive real number. Define T, C Py by

T,={x€ Py ||x(n)] = cn" for some positive integer c} .

Clearly, T, is a pure subgroup of Py, and 8y ¢ T',. Moreover, it is easy to
verify that £7, C T, and 7, < T,, so that T, is a shift module. We wish to
prove that there is a torsion free group K such that 4,: Exty(T,, K)—
- Extz(T,, K) is not the zero homomorphism. This can be done, using 5.4
and the remark following this theorem, by showing that there is no subgroup
" L < ¢(T,) such that T',/L is free. Suppose that such an L exists. Using the fact
proved in [6, Theorem 3] that Hom,(7,, Z) is countable, it follows that 7,/L
has finite rank. Thus 7',/L is finitely generated. Consequently T,/o(T,) is
finitely generated. To show that this is impossible, we have only to prove that
T,/o(T,) is a non-zero divisible group. Let 6 be the endomorphism of P,
defined in (b). Set 7 = — % d. Then gt is the identity on P,. Moreover 7o(T,)
¢ T,,since Tg(x) = & — u, where u (n) = x(1) for all n. To prove that T,/o(T,)
is divisible, let € T, and k > 1. It suffices to find v and w in 7', such that
x = kv + o(w). Let y = v(x). Define z(n) and w(n) by the division algorithm:
y{n) = kz(n) + wn), 0= wh)<k.
Then z, w € Py and w is bounded, so that w ¢ T',. Hence
z=7(2) = o(y) = elkz + w) = kv + o(w),

where v = p(2). Since 2 € T, and p(w)€ T,, it follows that kv ¢ T,. Thus,
v € T, since T, is pure in Py. Hence T,/o(T,) is divisible. It remains only to
prove that g(7,) & T,. Define ¢ P, by z{n)= [n"]. Clearly, z¢ T,. If
x € g{T,), then 7{x) € to(T,) € T,. However, it is easy to see that 7(z) (n) is
of the order of n"+1. Thus, t(x) ¢ 7,.

The proof given in 5.7 (d) yields a somewhat more precise result: the
reduction homomorphism 2, : Exty (7, Z) - Ext,(T,, Z) is not zero. Indeed,
writing g = j» with »: T, - o(T,) and j: o(7,) - T, (injection), we obtain

0 > Homg(0(7,), Z) > Homy(T,, Z)
and
Homy(o(T,), Z) > Bxty(T,/e(T,), Z) > Bxty(T,, Z) - Bxt, (o(T,), Z) .

Thus, since Hom(T',, Z) is countable (by [6, Theorem 3]) and Ext,(T,/o(T,),Z)
is uncountable (since 7',/o(7,) is a non-zero divisible group), it follows that
Kerj* & 0. Thus, g¥ = »*j* ig not one-to-one, and by 5.1, 7, is not zero.

(6.8) Theorem. Let H be any group. Then there exists a t. s.i. subgroup
T < Py, and a group K such that the reduction homomorphism i, is not zero.
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Proof. If H is a torsion group, let M denote a cyclic subgroup of H with
prime order. If H is not a torsion group, let M be an infinite cyclic subgroup
of H. In each case, there is a t. s. i. subgroup 7' of Py, and a trivial A-module
K such that the reduction homomorphism

iy Extl (T, K} - Extyz{T,, K)

is not zero (by 5.7 (¢) and (d)). Then Ty + Sg is a t. 8. i. subgroup of Py. As
A-modules, T/Ty = Sg/TyN Sy = Su/Suy = Sg/y. Thus, by Theorem 4.6, we
have the commuting diagram

Exty (T, K) - Ext (7T, K)

ExtY, (T, K)— Extz (T, K)

in which the vertical mappings are induced by the inclusion mapping of T,
into 7. Note that the image of the mapping of ExtL (7T, K) into Ext, (T, K)
is the kernel of the mapping of Exty (7, K) into Ext% (Sgz/, K). By 5.2,
Ext%(Su/u, K) is isomorphic to Ext,(L, K), where L is the kernel of the
mapping $ - ¢ — £s in Sy Thus, L = 0 and Ext? (Sy/y, K) = 0. That is,
the mapping Exty (7, K) - ExtY (T, K) is onto. Since the reduction homo-
morphism Ext) (T, K) — Ext,(T,, K) is not zero, it follows that the reduction
homomorphism Extl (7', K) - Exty(T, K) is not zero either.

Remark. If H is not a torsion group, we can let M = Z. By the remark
following 5.7 (d), the group K can be taken to be Z in this case also.

Theorem 5.8 can be reformulated as a statement concerning the existence
of ID-groups.

(5.9) Corollary. Let H be an arbitrary non-zero abelian group. Then there
exists an ID-group G and a monomorphism ¢ of G into itself such that Gle(G)=H
and @” G is not a direct summand of G.
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