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1. Introduction 

In  a previous paper [1], the authors studied those abelian groups which 
contain isomorphic proper subgroups. I t  was found that  the non-existence of 
such a subgroup is somewhat exceptional. In  the case of torsion groups of 
power greater than the continuum, it was even shown that  there are always 
isomorphic proper subgroups which are direct summands. This observation 
suggests the study of arbitrary abelian groups which have isomorphic proper 
direct summands. I t  turns out that  these groups enjoy many special properties 
which make them worthy of consideration. One of these is the following result. 
which is basic in this investigation. 

(1.1) Lemma. A n  abelian group G has an isomorphic proper direct summand 
i] and only i] there exist ~v, ~v in the endomorphism ring o / G  such that ~p ~v = 1 
and q)y) =~ 1. 

Proo]. Let ~0 be a monomorphism of G into itself such that  G = ~o (G) ~ H 
with H 4 0. Then the endomorphism ~v of G defined by ~ = ~-1 on ~v (G) and 
~v = 0 on H satisfies ~v ~v = 1 and ~0~v =~ 1. Conversely, if ~0 and ~v are endo- 
morphisms of G which satisfy ~v~0 = 1 and ~v~v 4 1, then ~v is one-to-one, 
Kerry ~= 0, and it is readily verified that  G = ~v(G) $ Ker ~v. 

I t  follows from Lemma 1.1 that  the notion of a group with an isomorphic 
proper direct summand is self-dual: There is a monomorphism ~0 of G into 
itself with Im ~o a proper direct summand if and only if there is an epimorphism 
~v of G onto itself with Ker~p a proper direct summand. Moreover, Lemma 1.1 
suggests that  the proper object to study is a system (G; ~, ~v}, where G is an 
abelian group and ~v and ~v are endomorphisms such that  ~v ~v = 1. We show 
that  the study of such systems is equivalent to the study of modules over a 
ring A which is freely generated over Z by non-commuting indeterminates X 
and Y subject to the relation X Y = 1. 

Because of the many connections between pure subgroups and direct 
summands, it is of interest to consider abelian groups with isomorphic proper 
pure subgroups along with an investigation of groups with isomorphic proper 
direct summands. To simplify our terminology we call an abelian group G: 

an I-group if G has an isomorphic proper subgroup ; 
an IP-group if G has an isomorphic proper pure subgroup; 
an ID-group if G has an isomorphic proper direct summand. 

* This work was supported by the National Science Foundation research grant No. 
G-19915. 
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Clearly, G is an ID-group implies G is an IP-group implies G is an I-group. 
Suitable examples show tha t  neither of these implications can be reversed. 

Throughout this paper, group means abelian group. The notation and ter- 
minology used is a mixture of tha t  in FUCHS [4], KArLA~SKY [5], and CARTA~ 
and ErL~B]~RO [2]. 

2. {3haraeterization of IP=groups and ID-groups 

The problem of characterizing liP-groups and ID-groups can be pursued 
along the familiar road of reduction to the reduced and divisible cases, and for 
torsion groups, to the primary case. We first give some simple lemmas. 

(2.1) Lemma. I] G has a direct summand which is an ID-group (IP-group),  
then G is an ID-group (IP.group).  

(2.2) Lemma. I / G  is a direct sum o/infinitely many copies o/the same non- 
zero group, then G is an ID.group. 

(2.3) Lemma. Let qo be a monomorphism o / G  into G and let N be a ]ully 
invariant subgroup o/G. 

(a) I/q~ ( G) is a direct summand o/G and N is not an I D-group, then ~ ( N) = N.  
(b) I[  q~ (G) and N are pure subgroups o / G  and N is not an IP-group, then 

~(N)  = N. 
Proo]. To prove (a), let G =  cp(G) q~H. Clearly, ~v(N)_SN~ ~v(G). By 

Lemma 1.1, there is an endomorphism ~o of G such that  ~o q~ is the identity on G. 
If  ~o (x) E N, then x = yJ ~v (x) E ~o (N) ~ N, since N is fully invariant. Thus, 
~0(N) = ~0(O) ~ N. By Lemma 21.1 in [4], it follows that  

N = (~(a )  n N) + (H c~ N) = ~(N) + (H ~ N ) .  

Since N is not an ID-group, N = ~0 (N). 
To prove (b), it  is sufficient to show that  ~o (N) is pure in N. Assume that  

q~ (x) = my ,  where x, y E N and m is a positive integer. Since q~ (G) is pure in G, 
there exists z E G such tha t  

~(x) = mq)(z) = cf(mz) . 

Thus, x = mz, and since N is pure in G, there exists w E N such tha t  x = row. 
Therefore, 

q~(x) = q)(mw) =: mq~(w) , 
where gv (w) E ~ (N). 

(2.4) Lemma. Let N be a /uUy invariant subgroup of G. 
(a) I[  N and G/N are not ID-groups, then G is not an ID-group. 
(b) I[  N is a pure subgroup o / G  and N and G/N are not IP.groups, then G 

is not an IP-group. 
Proo]. To prove (a), assume that  ~0 is a monomorphism of G into G such 

that  G = ~0 (G) $ H. Since N is not an ID-group, it follows from Lemma 2.3 
(a) tha t  N = ~v (N) g ~ (G). Therefore, 

GIN = q~(G)/N $ (H + N) /N ,  and q~(G)/N = q~(G)/qJ(N) ~- GIN.  

Since GIN is not an ID-group, H + N = N = ~ (N) ~_ ~0 (G). Thus, H = 0, and 
G is not an ID-group. The proof of (b) follows similarly from Lemma 2.3 (b). 
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(2.5) Lemma. Let G = ~ $ N i be the direct sum o/ any number o/ /ully 
invariant subgroups. Then G is an ID-group (IP-group) i /and only i/some N~ 
is an ID-group (IP-group). 

Proo]. By Lemmas 2.1 and 2.3. 

(2.6) Theorem. Let G~ be the torsion subgroup o] G. I /G~  and G/GT are not 
ID-groups (IP-groups), then G is not an ID-group (IP.group). Moreover, GT 
is an ID.group (IP-group) q and only i] some primary component o] G T is an 
ID-group ( I  P.group). 

Proo/. By Lemmas 2.4 and 2.5. 

(2.7) Corollary. A group G o/finite reduced rank is not an IP-group. 
Proo/. Since G has finite rank, both GT and GIG T have finite rank. By [1, 

Theorem 1 ], G~, is not an I-group. Suppose that  ~ is a monomorphism of GIG T 
into GIGs, such that  ~ (G/GT) is a pure subgroup of G/Gf. Then (G/GT)/q~ (G/GT) 
is torsion free. However, since rank(q)(G/G~,))= rank(G/G~,)< c~, it follows 
that  (G]GT)/q~(G/GT) is a torsion group. Thus, q~(G/GT) = G/G~,, so that  (7/(79 
is not  an IP-group. By  Theorem 2.6, G is not an IP.group. 

(2.8) Theorem. Let G = K $ D, where K is reduced and D is divisible. Then 
G is an ID-group (IP.group) i] and only i/either K is an ID-group (IP-group) 
or D is an 1D-group (IP-group). Moreover, D is an ID-group (IP-group) i/ 
and only i / D  has infinite torsion/ree rank, or infinite T-rank/or some prime p. 

Proo/. The first statement follows from Lemmas 2.1 and 2.4. If  D is an 
]P-group, then either D/D~ or some primary component of D has infinite rank 
by Theorem 2.6 and Corollary 2.7. Conversely, if D has infinite torsion free 
rank or infinite p-rank, then D has a direct summand which is either a sum of 
infinitely many copies of Q or a sum of infinitely many copies of Z (p~). Hence D 
is an ID-group by Lemmas 2.1 and 2.2. 

(2.9) Theorem. A reduced p-group G is an ID-group i / and  only i / /a(n)  
(the n-th Ulm invariant o~ G) is infinite/or some non-negative integer n. I / th i s  
condition is satisfied, then G = K ~ C, where C is a non-zero bounded ID-group. 

Proo/. Let G be an ID-group, say G = G, • H, where G ~-- G 1 and H ~= 0. 
Then 

/(~ (n) =/a,  (n) +/H (n) = / a  (n) + / ,  (n) 

for n = 0, 1, 2 . . . . .  Thus either /a(n) = c~ or [~(n) = O. However, H ~ 0 
and H reduced implies/H (n) ~= 0 for some n. Therefore,/a (n) = cQ for some n. 
Conversely, suppose t h a t / a  (n) is infinite. Let B be a basic subgroup of G. Then 
B = B 1 ¢ B 2 $ . . . .  where Bt+ 1 is a direct sum of /a( i )  copies of Z(p~+l). In  
particular, C = B,+ 1 is a non-zero bounded ID-group by 2.2. Since Bn+ 1 is 
pure in B, and B is pure in G, it foUows that  C = Bn+l is a direct summand 
of G. Therefore, by  2.1, G is an ID-group. 

(2.10) Corollary. I / G  T is an ID-group, then G is an ID-group. 
Proo]. By Theorems 2.6, 2.8, and 2.9, if G~, is an ID-group, then G T has a 

non-zero direct summand C which is an ID-group and which is either divisible 
or a group of bounded order. In  either case C is a direct summand of G, since 
G T is pure in G. Thus, G is an ID-group by 2.1. 
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(2.11) Corollary, I / G  is a reduced p-group such that IG] > 2 x°, then G is an 
ID-group. 

Proo/. I f  IGI > 2 40, then IBI > "~0, where B is a basic subgroup of G. Hence 
for some n, IBn+l] > n 0. Therefore , /a(n)  > ,%, so tha t  G is an ID-group by  
Theorem 2.9. 

Remark. I f  G is a countable reduced p-group, then it follows from A, 
page 135 in [4], tha t  G has a direct summand H which is an unbounded direct 
sum of cyclic groups. Therefore [4, Lemma 31.1], H has a proper basic sub- 
group B such tha t  H ~- B. Thus, H is an IP-group,  and by  Lemma 2.1, G is an 
IP-group. These remarks andTheorem 2.9 show tha t  the group B = ~ ~ Z (p~) 

~ t u  

is an IP-group but  not  an ID-group. The torsion completion of B, 
= ~ *  $ Z(p*), is an example of a group with cardinality 2 ~0 which is an 

n < o  

I-group but  not  an IP-group.  CRAWLEr [3] has given an example of a sub- 
group of B containing B which is not an I-group. 

The results on torsion free ID-groups are sparse. The following general 
result provides some information in this case. 

(2.12) Theorem. Let G be a reduced group such that G/pG is finite/or all 
primes p. Then G is not an ID.group. 

Proo]. Suppose tha t  ~ is a monomorphism of G into G such tha t  G 
= ~ (G) $ H. We have 

G/pa_  = =  (G)/pG ( p G  + . 

Since G/pG is finite, it follows tha t  pG + q~(G) = G. Therefore, 

GIv(G ) = (pG + v(G))/v(G) = p (e /v (G) )  

for all p. Consequently, GI~ (G) _~ H is divisible. Since G is reduced, it follows 
tha t  H -- 0. Thus, G is not an ID-group. 
Remark. The converse of Theorem 2.12 does not hold for either torsion or 
torsion free groups. The p-group B = ~ ¢ Z (pn) has i B/p B i = n 0 and B is not 

n < : a J  

an II)-group. Let  g~ be a rational vector space of countably infinite dimension 
with basis e~, e 2 . . . . .  en . . . . .  Then the subgroup G of Vo~ generated by  ek/p~ 
and (e~ + e~)/2 for all i, ~, ]¢ and .all positive integers m, such tha t  i < ] and 
Pl, P2 . . . .  , Pn . . . .  are the odd primes in their  natural  order, has IG/p~GI = 
for all n. Moreover, G is an indecomposable torsion free group [4, page 151], so 
tha t  G is not  an ID-group. 

(2.13) Corollary. Let Pl, P~ . . . . .  Pn . . . .  be an enumeration o/ the primes and 
let G --- ~ ~ G~, where each Gn is a direct sum o / a  finite number o] copies o/the 

n 

p,,-adic integers. Then G is not an I P.group. 
Proo/. Since each element of G. has finite p~-height and is p~-divisible for 

m =~ n, i t  follows tha t  Gn is a fully invariant  subgroup of G for all n. Hence by  
Lemma 2.5, i t  is sufficient to show tha t  each G, is not an IP-group. Since G, 
is complete in the pn-adie topology, it  follows tha t  an isomorphic proper pure 
subgroup of G n is a direct summand [5, Theorem 23]. That  is, if G~ is an 
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IP-group, then G, is an ID-group. However, Gn is not an ID-group by Theo- 
rem 2.12, since Gn = pmG~ for m =~ n and Gn/pnG n is a finite direct sum of 
cyclic groups of order pn. 

3. ID-systems 

I t  was noted in Section 1 that  for the classification of ID-groups, it is 
convenient to consider not just the groups themselves, but  also the endo- 
morphisms which determine the isomorphic direct summand. 

(3.1) Definition. An ID-system is a triple <G; 9, ~>, where G is an abelian 
group and ~ and y) are endomorphisms of G such tha t  yJ ~ = 1. Two ID- 
systems <G; ~v, ~v> and <G'; 9', ~v'> are isomorphic if there is a group isomor- 
phism 0 of G onto G' such that  0 ~v = 9 '0  and 0 ~ = ~' 0. 

(3.2) Examples. (a) Let  G be any group. Let  ~ be an automorphism of G. 
Let  ~ = 9 -1. Then <G; ~0, ~o> is an ID-system. In this case G need not be an 
ID-group. 

(b) Let H be any group. Denote by PH the complete direct sum of countably 
many copies of H. Let  a and ~ be the right and felt shl/t endomorphisms of PH 
defined by 

a((xl, x~, x3 . . . .  )) = (0,  Xl, x~ . . . .  ) ,  

T( (x .  x~, x3 . . . .  )) = (x~, x3 . . . .  ) .  

Then <P~; a, v> is an ID-system. If S H denotes the direct sum of countably 
many copies of H, then S H can be considered as a subgroup of PH- Moreover, 
a(SH) g S H and ~(SH) ~ S H. Hence <S~; a', z'> is an ID-system, where a' and ~' 
are the restrictions of a and T to S~/. More generally, a subgroup T of P ~  with 
S~ =c T determines an ID-system provided tha t  a(T) c= T and T(T) _g T. We 
call such a T a total shi]t invariant (t. s. i.) subgroup of P~. 

If  H # 0, then any t. s. i. subgroup of P~  is an ID-group. We will see 
presently tha t  every ID-group is obtained by an extension process from groups 
of the type given in 3.2. 

The study of ID-systems is equivalent to the study of modules over a 
certain ring. This important  observation makes it possible to apply the methods 
of homological algebra to the theory of ID-systems. 

(3.3) Definition. The ID-riT~g zJ is the residue class ring 

z{x, r } / ( x  Y -  ~) ,  

where Z{X,  Y} is the polynomial ring with identity in non-commuting in- 
determinates X, Y with integral coefficients, and (X Y -  1) is the ideal of 
Z{X,  Y} generated by  X Y - 1. Let  ~ and ~/denote the residue classes of X 
and Y respectively in A. 

(3.4) Lemma. Every element o[ zl can be expressed uniquely in the [orm 

o~ = P(~, zl) = ~ n i j ~  j, n~ E Z .  

Hence zJ is a ]tee Z-module. 
(3.5) Theorem. There is a one-to-one correspondence between ID.system8 and 

A-modules. I] <G; 9, ~v> is an ID-system, then the corresponding Ll.module is 
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the group G with the module operation defined by 

P($, 7)" x --- P(%o, q~) (x) . 

Two ID.system8 are isomorphic i / a n d  only if the corresponding A-modules are 
isomorphic. 

The proof of this theorem is routine. 
I f  A is any  ring, M is a A-module,  and  a E A, then  the set of all elements 

of infinite a-height  in M is 
a~' M = N ~n M . 

C~earty, a ~ M  is a subgroup of M,  bu t  in general, if A is no t  commuta t ive ,  then  
a ~ M  is no t  a submodule of M.  However ,  for the  ID-r ing A, we can prove the  
following result. 

(3.6) Lemma.  Let G be a A-module. Then 
(1) ~ G  is a submodule o /G; /or  x E ~'~G, ~ x  = x. 
(2) G/~IoG is a A-module without non-zero dements o] infinite v-height. 
Proo/. An element x belongs t o  T ° G if and  only  if there exist xl, x2, x 8 . . . .  

in G such t h a t  x --- ~/x 1 --- ~/2x~ -- ~ax a . . . .  . I f  this condition is satisfied, then  
x : ~ (7 xl) = ~ (7 xg.) = ~a (7 xa) . . . .  and  

~ x  = ~ V x  1 = ~V~x~ = ~ V s x 3  . . . .  

= xl---- ~x~ = ~2x a . . . .  . 

Thus, ~?x E ~ G  and Sx E ~ G .  Therefore ~"G is a submodule of G. Moreover, 
for x E ~ G ,  ~ x  = ~ $ ~ x  1 - - ~ x  1 = x. Finally,  by  a s tandard  argument ,  if 
x ÷ ~ G  has infinite q-height  in G/T°)G, then  x E ,/~G, which implies (2). 

This lemma shows t h a t  ~ G  is a submodule of G on which ~ and ~ act  as 
inverse automorphisms.  We will call a module  of this kind an automorphic 
module (or automorphic  A-module).  The automorphic  modules are exact ly  
the A-modules corresponding to  ID-sys tems of the  type  defined in 3.2 (a). 

I f  T is a A-module corresponding to  a t. s. i. subgroup of a product  PH 
(see 3.2 (b)), then  we will call T a shi/t module. 

(3.7) Theorem. I t  G is a A.module, then G is isomorphic to a shi/t module 
i / and  only i / G  has no elements o/infinite ~7.helght. 

Proo]. Suppose tha t  G is isomorphic to  the shift module T. To show t h a t  G 
has no elements of infinite ~-heigh¢, it suffices to  prove t h a t  T has no non-zero 
elements of infinite ~pheight. However ,  this is clear because 

k 

~ ( ~ , ~  . . . .  ) = ( 6 , 0  . . . . .  0 , x . x ~  . . . .  ) .  

Conversely, assume t h a t  G has no non-zero elements of infinite T-height. Le t  

~i = {xE a l~x  = 0} .  
Then G decomposes as a g r o u p ,  
o = H $  7(0)  = H +  ~(H) ~ V2(G) . . . . .  H ~  v(H) ~ . . . e  ~-(H) $ ~-+~(G). 
For  x E G, m a p  

~t : x -~  (x~, x~, x~ . . . . .  x~ . . . .  ) E P~ , 
where 

x = x~ + ~x~ + • • • + ~ x ~  + , /~+~y,,  
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xl, x2 . . . . .  xn ~ H,  y .  E G. I t  is clear tha t  /~ is a well-defined group homo- 
morphism of G into PH. Moreover, if ~ ( x ) = ( x l ,  x~ , x  a . . . .  ), then /z(~x) 
= (x 2, x a . . . .  ) -- v(,u(x)), and # ( ~ x )  = (0, x 1, x~, x 3 . . . .  ) = a~u(x)) .  Thus, the 
image T of # is a subgroup of PR such tha t  a (T)  = T and v ( T )  ~_ T.  Moreover, 
if x 1, x~ . . . . .  xn are in H,  then 

/ .g(X 1 -~  ~ X  2 ~-  " " ' "3r ~¢~Xn) = (Xl ,  X 2 . . . . .  Xn, 0 ,  0 . . . .  ) , 

so tha t  S n ~_ T .  That  is, T is a t. s. i. subgroup of PH. Since /~ ~ ---- ~/~ and 
# ~ = a/~, it follows that/~ is a A-homomorphism onto the A-module determined 
by T. Moreover, the kernel of/~ is ~ G  = 0, so t ha t / ~  is a A-isomorphism. 

I t  is perhaps worthwhile to interpret 3.6 and 3.7 as s tatements about ID-  
systems. The result is the following theorem. 

(3.8) Theorem. Let <G; ~, ~o> be an ID-sys tem.  Let K = N ~ ' (G)  = ~ G ,  

H = KeryJ, and ~ = ~[g. Then ~ is an automorphism o / K a n d  there is a t .  s. i. 
subgroup T o/ PH and an epimorphism # such that the/ol lowing diagrams are 
row exact and commutative: 

0 , K - - - , G  " ,  T - - - , O  

Is lo 
0 , K - - - ~ G  ", T - * 0 ,  

0 , K - - - ~ G  t ~ , T  , 0  

0---- ,  K- - - - ,  G "-~, T , 0 .  

4. Extensions o f lD-systems 

The results of the previous section show tha t  every A-module is an extension 
of an automorphic module by  a shift module. We now wish to classify the dif- 
ferent extensions of a fixed automorphic module K by  a fixed shift module T. 
Since the module structure (though not the group structure) of automorphic 
and shift modules can be considered to be known, this program is essentially 
equivalent to tha t  of classifying the module structure of all A-modules. I t  is 
obvious tha t  the appropriate classifying structure is the group Ext~ (T, K). 
The main result of this section is a theorem which relates Ext~ (T, K) to 
Extz  (T, K). 

I f  T and K are any A-modules, then the group H o m z ( T ,  K) carries the 
structure of a left and right A-module with the operations 

(~z) (x) = ~ .  z (x) ,  ( z# )  (x) = z ( f l "  x ) ,  
where )/C Homz(T ,  K) and a, fl E A. Obviously, 

( a z ) f l  = . ( z # )  • 

The same remark applies to the derived functor Ex t  z of Homz:  Ex tz (T ,  K) 
is a two sided A-module, and 

(a~a) # = a ( ~ f l )  

for all ~, fl E A and 92 C Ex tz (T ,  K). 
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(4.1) Lemma. Let T and K be/l.modules, where K is an automorphic module. 
Then the inclusion mapping 

i 1 : HomA (T, K) -+ Homz(T,  K) 

sends Horn(T,  K) onto {Z E t Iomz (T, K) I~Z =-" Z~}" 
Proo/. Clearly, if g E I tom~(T,  K), then Z C t Iomz(T ,  K) and ~Z = Z~- 

Conversely, if Z E Homz(T ,  K) and ~Z = Z~, then since K is an automorphic 
module, Z~ = ~ Z ~ / =  ~ Z ~ / =  ~Z- Therefore, • E Hom~(T,  K). 

I t  is convenient to identify the elements of the groups Ext~ (T, K) and 
Ex t  z (T, K) ~4th equivalence classes of short exact sequences 

O ~ K ~ G - ~  T - ~ O ,  

considered respectively as A-modules and Z-modules. Two such sequences 

O-> K-+ G-+ T ~ O and O-~ K - ~  G' -+ T-+ O 

are equivalent if there is an isomorphism k of G onto G' (considered as LJ- 
modules and Z-modules in the respective cases) such that  the following dia- 
gram commutes: 

O ~ K ~ G - ~  T->O 

O ~ K ~ G ' - ~  T ~ O .  

Thus, if two sequences of A-modules are equivalent, then they are equivalent as 
Z-modules. I t  follows that  the mapping i~, which associates with each equiv- 
alence class N of sequences of A-modules the equivalence class ~1' of sequences 
of Z-modules containing N, is a well-defined mapping of Ext}j (T, K) into 
Ext  z (T, K). Because of the way in which the addition operation (Baer compo- 
sition) is defined in Ext~ (T, K) and Ex tz (T ,  K) (see [2], page 290), it is clear 
that  i s is a group homomorphism. We will cM1 i~ the reduction homomorphism. 

I t  should be remarked that  each short exact sequence of abelian groups 
in the class 9A' = i~9A can be regarded as a sequence of d-modules. For  if 

0 , K  I , G ' J L ,  T ~0 

is in i~0A, then there is a sequence of d-modules in ~[, 

O-- -~K r~G g-~ T , 0 ,  
such tha t  the diagram 

0 , K  I~,G g-A~. T .~0 

U U 
0 , K  t , O ' = ~ ,  T - - * 0  

commutes. Defining o~. x = lc(oc, l¢-Z(x)) for ~E A and xE G' makes G' into a 
A-module in such a way that  / and g are A-homomorphisms. 

(4.2) Lamina. Let K and T be A-modules, where K is an automorphic module. 
Then the reduction homomorphism 

is: Ext~ (T, K) -~ Extz  (T, K) 
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sends Ext~ ( T, K) onto {OA E Extz (T ,  K) I~OA = OA~}. The kernel o/ i  2 consists o/ 
those equivalence classes o/sequences o/ A-modules which split as sequences o/ 
abelian groups. 

Proo/. If OA is in the image of i 2, then the class 0A contains the sequence 

0 - - - + K  I ) G  ° ) T  , 0 ,  

where G is a A-module and / and g are A-homomorphisms. Since K is an 
automorphic module, the foUowing diagram is commutative: 

OA~:0:--+K I " , G  g , T  .... 0 

Therefore ~1  = 9A $. 

1 t° i, 
O A : 0 - - + K  1~G g , T .  , 0  

1, 
~2{:0 , K  t~ ,G  g,  T - - + 0 .  

Conversely, suppose that  ~PA = OA~. I t  follows as in the proof of Lemma 4.1 
that  ~OA = 02 7. Let 

O--+ K J ~ G ~  T >0 

be a sequence belonging to the class 92 ~ Ex t  z (T, K). Then there exist endo- 
morphisms ~p and q of G such tha t  the following diagrams commute: 

0 - - + K  i ) G  o T - - + 0  

10 l l0 
0 - - + K  ], G. g> T - - , 0 ,  

0 , K  ] , G  a> T - - + 0  

17 l, 
0 ) K  I , G  g,T----+O. 

By the commutativity of these diagrams, (v2~-  l ) ( G ) g  Kerg = I m /  and 
( ~  - 1) (Im/) = 0. Consequently, 

y~(2~0- ~v~p~)- 1 = - ( ~ p ~ - 1 ) 3 =  0 .  

Therefore G can be made into a A-module by  defining 

~.  x = ~(x),  7"  x = (2~ - ~0cp) (x).  

With the module operations so defined, it  is easily verified that  ] and g are 
A-homomorphisms. Thus, 

9 A : 0 - - + K  1 , G  ~ T  >0 
is in the image of i S. 

The final statement of the lemma is obvious. 
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(4.3) Lemma. Let K and T be A-modules, where K is an automorphic module. 
Then there is a homomorphism 

d 1 : Homz(T,  K) -~ Ext~ (T, K) 

such that (i) Imd~ = Keri~, and (ii) Kerd~ = {~Z - g~ tg  E Homz(T,  K)}. 
Proo/. Let  0 be in H o m z ( T  , K). Define the d-module Go as follows: as a 

group, G o is the (external) direct sum K $ T;  the module operations on G are 
defined by  

~ .  (k, t ) =  (~ .  2 + 0(t), ~ .  t), ~.(2,t)=(~.2-~.o(~.0,~.0. 
I t  is easy to verify tha t  with these definitions, ~ == 1. Moreover, with 

]o : K -~ Go, go : Go -+ T 

defined by  /0(k)-- (k ,  0), g0(k, t ) =  t, respectively, /0 and go are d-homo- 
morphisms, and 

O - - *  K 1°, G o °°~ T - - - ,  O 

is a short exact sequence of A-modules. Let  920 denote the class of this sequence. 
Define 

d1: 0-~ 92o. 
I t  can be checked tha t  dl(0 ÷ u) = 920 ÷ 92~, where 0, ~ E Homz(T,  K) and 
920 + 92~ is obtained by  the Baer composition. Thus, d 1 is a homomorphism of 
Homz(T,  K) into Ext~ (T,  K). I t  is evident from the the definition of Go that  
the sequence 

0 -~K 1°,Go °-~° T . .  , 0  

splits as a sequence of abelian groups. Hence Imd  1 _~ Kerlz. On the other hand, 
suppose that  i~92 = 0. Then (by the remarks preceding Lemma 4.2) 92 contains 
a sequence 

0 , K  1 , K ~ T  a-~T , , 0 ,  

where/(k)  = (k, 0), g((k, t)) = t, K $ T is a d-module, and / and g are d-homo- 
morphisms. For  a E A, let a"  (0, t) = (0a(t), t~). Then 0a E H o m z ( T ,  K).  Since 
9(~" (0, t)) = ~-  9((0, t)) = ~-  t, i t  follows that  t~ = ~ .  t. Moreover, a -  (2, 0) 
= ~ . / ( k )  = / ( ~ -  k) = (~- k, 0). Therefore, 

~ .  (2, t) = ~ .  (k, 0) + :¢- (0, t) = ( ~ .  2 + 0~(t), ~ -  t ) .  

Since ~ / =  1, it  follows tha t  

(k, t) = ~ . (k, t) = ~ . (~ . k + O,(t), 7"  0 = (k + ~ . O~(t) + O~(~ . t), t) . 

Therefore ~ 0 , =  - 0 ~ 1 ,  and since K is an automorphie module, 0, = ~ 0 ~  
= - ~ 0 ~ .  This proves that  the sequence under consideration is in the class 920~. 
Hence 92 = d~ (0~), completing the proof of (i). 

Suppose that  d~ (0) = 0 for 0 E H o m z ( T ,  K).  Then the sequence 

0 , K ,,~, G~ ~-R~ ~ T ..... ~0 

splits. Hence, there is a A-homomorphism h:  T -~  Go such that  goh is the 
identity on T. Evidently there exists z E H o m z ( T , K  ) such that  h(t) 
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= ( -  z(t), t). From the identi ty ~h(t) = h(~.  t), it follows easily tha t  0 = ~Z - 
- Z~- Conversely, suppose tha t  0 =  ~ Z -  Z~, where ZE Heinz(T,  K). Define 
h:  T-+  G O by h(t) = ( - z ( t ) ,  t). Then gob is the identi ty on T, and it  can be 
checked tha t  h is a A-homomorphism. Therefore, the A-module sequence 

0 - - * K ~ G 0  g 0  T , 0  

splits, so that  d 1 (0) = 910 = 0. This completes the proof of Lemma 4.3. 
(4.4) Theorem. Let K and T be LJ.modules, where K is an automorphic 

module. Then there is an exact sequence 

0 - - *  Hom~(T,K)  ~', H o m z ( T , K  ) e_.~ H o m z ( T , K  )__~ Ex t ~ (T ,K )  

~'~ Ex t  z (T, K )  e,, Extz  (T, K) ~', Ext~ ( T, K) ~ 0 ,  

where i 1 is the inclusion homomorphism, i s is the reduction homomorphism, 
c1: Z -~ ~g - Z~, Z E Homz(T,  K), c~: 92 -~ ~92 - 92~, 91 E Extz(T,  K), d 1 is 
defined as in 4.3, and d 2 is a homomorphism derived from d r 

Proof. I t  follows from 4.1, 4.2, and 4.3 that  this sequence is exact up to 

Ex tz (T ,  K) e-A* Ex tz (T ,  K). To complete the sequence, let 

be a short exact sequence of A-modules with 2' A-free. Then since A is Z-free 
by 3.4, it follows that  F is Z-free, and consequently S is also Z-free. Thus, 
using the results alrcady established, together with standard results of homo- 
logical algebra, we have the following diagram with exact rows and columns: 

Hem z (F, K) e,, t iom z (F, K) - ~  Ext~ (F, K) = 0 

Homz(S,  K) e ,  Homz(S  ' K ) ~  E x t , ( S ,  K )  ~', Extz(S,  K) = 0 

E x t z ( T , K  ) e ,  E x t z ( T , K  ) 

1 1 
Ex t  z(F,  K) ~ Ex t  z (2,, K) 

U U 
0 0 , 

where r is the restriction homomorphism Z-~ Xls and 0 is the connecting 
homomorphism. Obviously r e l=c l r .  Moreover, since 0 ( ) ~ ) =  (OX)~ and 
O(~X) = ~(0)~), it follows that  Oe 1 -= c~a. Therefore, the diagram commutes. 
From the commutivity and exactness, it follows easily tha t  

O-l(Imc2) = I m r  + Imc 1 = Imre  1 + Imc 1 = Imc l r  + Imc 1 

= I m e ~  ---- Ker  d 1 . 

Thus, there is a homomorphism e of Ex t z (T ,  K) onto Ext~(S.  K) such tha t  
Kere = Imc~. Finally, from the exactness of the sequence 

0 = Ext~ (F, K) ~ Ext~ (S, K) -~ Ext~ (T, K) -~ Ext~ (F, K) - 0 ,  
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it follows tha t  there is an epimorphism 

d2: Ex t z (T ,  K) ~ Ext~ (T, K) 

with Kerd  2 = Kere  = Imc~. This completes the proof of the theorem. 
(4.5) Corollary. Let K and T be A-modules, where K is an automorphic 

module. Then E x t ] ( T ,  K) = 0 / o r  n > 2. 
Proo]. Let 0 -+ S -+ F -+ W -+ 0 be an exact sequence of A-modules, with 

/v A-free. Then S is Z-free and 

0 = Ex t  z (S, K) - - ~  Ext2z (S, K) - - ~  0 

is exact. Hence Ext~ (S, K) = 0. Since Ext~ (W, K) ~- Ext~ (S, K), it follows 
tha t  Extaz (W, K) = 0 for all A-modules W. Therefore, E x t , ( T ,  K) = 0 for 
n > 2 .  

The following result exhibits the functorial nature of the exact sequence 
of Theorem 4.4. The proof is omit ted since it is lengthy and contains no 
surprises. 

(4.6) Theorem. Let T, T' ,  K ,  and K '  be /]-modules, where K and K '  are 
automorphic modules. Denote the exact sequence o] Theorem 4.4 by D ( T, K).  Let 
2 : T '  ~ T and ix : K -+ K '  be A-homomorphisms. Then there exist translations 

2" : D ( T ,  K)  -+ D ( T ' ,  K)  and tx. : D ( T ,  K)  ---> D ( T ,  K ' ) ,  

where the component maps o] ~* and ix. are the induced maps o / 2  and ix respec- 
tively. 

5. Extensions of trivial ID-systems 

Answers to interesting questions about ID-groups can be found by  deter- 
mining the conditions under which the reduction homomorphism 

i~ : Extlz (T, K) -+ Extz(T,  K) 

is zero, one-to-one, or onto. Note tha t  i 2 = 0 if and only if each ID-group which 
is a module extension of K by  T has K as a (group) direct summand. The 
homomorphism i s is one-to-one if and only if (roughly speaking) each ID-group 
which is a module extension of K by  T has an essentially unique ID-structure.  
Finally, i 2 is onto if and only if every group which is an extension of K by  T 
is an ID-group. 

We examine these problems in the particular case where the automorphic 
module K is trivial, tha t  is, K is simply an abelian group on which A acts by  
~x = ~/x = x. Such a t r ivia l / / -module  corresponds to an ID-sys tem ( K ;  ~0, v2), 
where ~ -= ~ is the identi ty mapping. The results of Section 4 can be put  in a 
form which is convenient for computations when K is a trivial A-module. 

{5.1) Theorem. Let K and T be A-modules, where K is a trivial A-module. 
Let Q : T ~ T be defined by ~ (t) = t - ~t. Then there is an exact sequence 

0 ~ H o m z ( T / o ( T  ), K)  ~ Hom z(T ,  K) ~ Hom z( T ,  K) d__~, E x t , ( T ,  K) 

~' E X t z ( T , K )  q--~*2Extz(T,K) ~ ' , E x t z ( K e r e ,  K ) , 0 ,  
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where p is the natural projection o/ T onto T/~ (T), i is the inclusion mapping 
o] KerQ into T, and P*, ~i,* and i* are the mappings induced by p, q, and i. 

Proo/. The group homomorphism ~ can be factored, ~ = j v, to obtain two 
short exact sequences 

0 ) K e r ~ - ! ~  ~ T ~ ~o(T) ~ 0 ,  

0 - - ~  Q(T) ~, T ~, T/@(T) ...... O. 

From these we obtain the exact sequences 

0 - - *  Hom z (e (T), K)  "l~* Homz (T, K ) ,  

Extz(@(T ), K)  - ~  Ex tz (T ,  K) - - ~  Extz(Ker@, K) , 0 ,  

o , Homz(T/e(T) ,  K) ~'~ Homz(T, K)!*~ Homz(e(T), g), 

Ext  z (T, K) ~ Ex t  z (e (T), K) - - ~  0 .  

These sequences, the sequence oI Theorem 4.4, and the fact tha t  v~]~ --- ~ -- cl, 
yield the required result. 

(5.2) Corollary. Let T and K be LJ.modules, where K is a trivial A-module. 
Then 

Ext~ (T, K) ~ Ex t  z (Ker Q, K) 
and 

Hom~ (T, K) -~ Homz(T/9  (T), K)  . 

(5.3) Lemma. Let U and V be abelian groups and ~ : U -+ V a homomorphism 
inducing A* : Extz(V,  K) ~ Extz (U,  K). Then A* = 0 i / a n d  only i / / o r  every 
short exact sequence 

0 : K  :G  ~ V - * O ,  

there is a homomorphism ]a : U -+ G such that 2 = p [~. 

Proo/. Let  02 be the class of 0 --> K -+ G ~ V ~ 0. Then 9/~* = 0 if and 
only if there is a homomorphism v : K ~9 U -+ G such tha t  the following diagram 
is commutat ive:  

~ ' 9 / : 0  . . . .  K ~ K ~  U ~ U , 0  

9 / : 0 - - - , K  , G  ~ ~ V , 0 .  

The lemma follows from this observation. 
Throughout the remainder of this paper  ~ is the group homomorphism of T 

into T defined by  q (t) = t - ~t. 
(5.4) Theorem. The reduction homomorphism i~ is zero /or all trivial A- 

modules K i /and only i /Ker  q is a direct summand o / T  and there is a subgroup L 
o / e ( T )  such that T/L  is/ree. 

Proo/. By Theorem 5.1, i 2 = 0 if and only if 

q~ : Ex tz (T ,  K) -~ Ex tz (T ,  K) 
Math. Ann. 153 3 
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is one-to-one. The short exact sequences obtained by  factoring ~ = jv  (as in the 
proof of Theorem 5.1) yield the following exact sequences: 

H o m z ( T ,  K) i~  Homz(Kere ,  K) , Extz(Q(T ), K) ~*, E x t z ( T ,  K ) ,  

E x t z ( T / e ( T  ), K) P*, Ext z (T ,  K ) J * ,  E x t z ( e ( T  ), g ) ,  

where e* = v ' j*.  Since j* is onto, it follows tha t  ~z* is one-to-one if and only 
if both ~* and v* are one-to-one. This latter condition holds if and only if 
p* = 0 and i* is onto. 

Suppose first tha t  p* = 0 and i* is onto for all trivial K. Then, in particular, 
i* is onto when K is tile group Ker  ~. This implies tha t  Ker  ~ is a direct sum- 
mand of T. Let G be a free group and / : G ~ T/Q (T) an epimorphism. Since 
p* = 0, it follows from 5.3 tha t  there is a homomorphism g : T - ~  G such tha t  
p = / g .  Thus, L = Kerg  g K e r p  = e(T), and T/L -~ g(T) g G is free. 

Conversely, assume tha t  Kerff is a direct summand of T and L is a subgroup 
of ~ (T) such tha t  T/L is free. The first condition clearly implies tha t  i* is 

onto for all K. The composition of the injections L k, ~ (T) ~ T is the injection l 
of L into T. Since T/L is free, 

0 = Extz (T/L ,  K )  ~ Extz (T ,  K) l_~* E x t z ( L  ' K) , 0 

is exact, and therefore l* is an isomorphism for all K. Since l* = (~k)* = k ' j * ,  
it follows t h a t / *  is one-to-one, and hence tha t  p* = 0 for all K. 

Remark. The proof which we have given for Theorem 5.4 establishes 
somewhat more than  is stated in the theorem. To obtain the conclusion tha t  

(T) contains a subgroup L such tha t  T/L is free, it is only necessary to assume 
tha t  i 2 = 0 for all trivial A-modules K which are free as groups. Note tha t  in 
this case L contains the torsion subgroup of T. In  particular, if T is a torsion 
group, then Q(T) = T. I f  T is a torsion free group, then the conclusion tha t  
KerQ is a direct summand is obtained if i 2 = 0 for all trivial A-modules K 
which are torsion free as groups. 

(5.5) Theorem. The reduction homomorphism i 2 is one.to-one ]or all trivial 
A-modules K i~ and only i / ~  is one-to-one and ~(T) is a direct summand o / T .  

Proo/. By Theorem 5.1, i ,  is one-to-one if and only if 

~* : Homz(T,  K) -+ H o m z ( T ,  K) 

is onto. Assume tha t  ~* is onto for all K. Let  K-- :  T. Then there exists 
ZE Homz(T ,  T) such tha t  ~*(Z) = Z~ is the identi ty on T. Therefore ~ is 
one-to-one and ~(T) is a direct summand of T. Conversely, if ~ is one-to-one 
and Q(T) is a direct summand of T, then there exists Z E Homz(T,  T) such 
tha t  Z Q is the identity on T. Consequently, ~* Z* is the identity on Horn z (T, K) 
for all K.  Thus, ~ is onto for all K. 

(5.6) Theorem. Let T be a shi/t module. The reduction homomorphism is 
onto/or all trivial A.modules K which are/ree groups i/ and only i/ T is a ]ree 
group. 
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Proo]. B y  Theorem 5.1, i 2 is onto  if and  on ly  if 

~* : E x t z ( T ,  K )  -~ E x t z ( T ,  K) 

is zero. Assume t h a t  ~ = 0 for all  free K.  Le t  G be a free group and  / :  G -> T 
an ep imorphism.  Then  K e r /  is free, and  b y  5.3, the re  is a homomorph i sm  
g: T ~  G such t h a t  ~ = / g .  Since g ( T )  is free, i t  follows t h a t  T = F 1 ~ Kerg ,  
where FI  _~ g ( T )  is free. Note  t h a t  K e r g  <= KerQ, and  t h a t  since T is a shif t  
module,  i t  follows t h a t  ~(xl, x2, x a . . . .  ) = (x 1 - x 2, x 2 - xa . . . .  ) is zero if and  
only if x l = x  2 = x  a . . . .  . L e t  ~ : K e r ~ - > T  be def ined b y  ~ ( x , x , x  . . . .  ) 
= (x, 0, 0 , . . . ) ,  and  let, ~ be the  p ro jec t ion  of T = F 1 ~ K e r g  onto  F 1. I f  
z)~(x,  x, x . . . .  ) = ~(x ,  0, 0 . . . .  ) is zero, t hen  (x, 0, 0, . . .) ~ K e r ~  --- K e r g  

Ker~ ,  so t h a t  x ...... 0. T h a t  is, ~ is a monomorph i sm  of K e r ~  in to  F 1. Thus,  
Ke r~  is free, a n d  consequen t ly  K e r g  is free. Hence  T is a free group.  

Conversely,  if T is free, t hen  E x t z ( T ,  K )  = 0 for  all  K ,  and  hence ~2" = 0 
for all  K.  

(5.7) Examples .  (a) Le t  T be the  shif t  module  SH, where  H is a n y  group.  
Then the  homomorph i sm  ~ has  an inverse,  n a m e l y  

e -1 (x 1, x~ . . . . .  x~, 0, 0 . . . .  ) = xj, x j , . . . ,  x~, 0, 0 . . . . .  
j j j = n  / 

Hence by  5.4 and  5.5, the  reduc t ion  homomorph i sm  i 2 is bo th  zero and  one- 
to-one for al l  t r iv ia l  A-modules  K.  Thus,  Ex t~  (T,  K) = 0. This  means  t h a t  an  
ID-group  which is a A-module  extens ion  of a t r iv ia l  A-module  b y  SH is the  
module  d i rec t  sum K ~A SH- 

(b) Le t  T be a shif t  module .  Thus,  T is a t .  s. i. subgroup  of PH for some 
group H.  Define ~ : PH -~ P ~  b y  

( 1 2 3  =1=1=1 ) 
Assume t h a t  (~ (T) ~ T. Then  - ~ 5 is a r igh t  inverse of ~. Consequent ly ,  K e r  
is a d i rec t  s u m m a n d  of T and  ~(T)  = T. Therefore  b y  5.4, i 2 is zero for all  
t r iv ia l  A-modules  K .  Note  t h a t  K e r  ~ ~ H,  since for a n y  x E H,  

(x, x, x . . . .  ) = ~(x, 0, 0 , . . . )  C 6 ( 8 , )  ~_ 6(T)  = T .  

Therefore,  if H ~ 0, ~ is no t  one-to-one,  and  i t  follows f rom 5.5 t h a t  i 2 is not  
one-to-one for all t r iv ia l  A-modules  K.  Hence  for some t r iv ia l  A-module  K,  
Ext~ (T,  K)~= 0. W e  conclude t h a t  there  exis ts  a g roup  K and  A-module  
extensions of K b y  T wi th  essent ia l ly  different  ID-s t ruc tu res .  Of course, all  
of these  extens ions  are  i somorphic  to  K ~ T (as groups).  

(e) L e t  H = Z / p Z  = {0, 1, 2 . . . . .  p - -  1} be  the  cyclic g roup  of o rder  p. 
Define w = (wl, w~, w a . . . .  ), where  w~. = 1 if  i is a perfect  square  a n d  wi = () 

otherwise.  L e t  T be t he  subgroup  of P n  gene ra t ed  b y  Sn,  (1, 1, 1, • • .), ~ w  for  
= 0, 1, 2 . . . . .  and  ~ w  for ] = 0, 1, 2 . . . . .  Then  T is a shif t  module .  Le t  
be the  endomorph i sm of P n  defined in  (b). F o r  eve ry  n a t u r a l  n u m b e r  n, 

(w) conta ins  a b lock of n consecut ive zeros fol lowed b y  a b lock  of n consecut ive  
ones. I t  is easy  to  see t h a t  no e lement  of T has  th is  p rope r ty .  Hence  (~ (w) ~ T. 

3* 
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We will prove tha t  there is some trivial A-module K for which the reduction 
homomorphism i 2 is not zero. Assume the contrary. Then i s = 0 for all trivial K. 
By  5.4, Ker~ is a direct summand of T and Q(T) = T (since T is a torsion 
group). Therefore, ~ has a right inverse ~. Consequently, for x E T, 
~(~ - ~ )  (x) ---- 0. Hence, (~0 - ~ )  (x) = (~,)~, ~ . . . .  ) E T, and - ~ ( x )  E T. 
Consequently ~ (x) = - ~ ( - ~  ~ (x))E T, contradicting the fact tha t  ~ (w) (~ T. 

(d) Let  H -- Z. Let  r be any positive real number. Define T,  < PR by 

T r = {x ( P~/I [x(n)t ~ cnr for some positive integer c}. 

CLearly, Tr is a pure subgroup of Ptt, and SR ~_ T r. Moreover, it is easy to 
verify tha t  ~ T, C T,  and ~ T~ ~ T~, so that  T,  is a shift module. We wish to 
prove that  there is a torsion free group K such that  i 2 :Ex t~  (T,, K) -~  
-+ Extz(Tr ,  K) is not the zero homomorphism. This can be done, using 5.4 
and the remark following this theorem, by showing that  there is no subgroup 
L g ff(Tr) such that  Tr/L is free. Suppose that  such an L exists. Using the fact 
proved in [6, Theorem 3] tha t  Hom z (T,, Z) is countable, it follows that  T,/L 
has finite rank. Thus Tr/L is finitely generated. Consequently Tr/~(T,) is 
finitely generated. To show that  this is impossible, we have only to prove that  
T~/~(Tr) is a non-zero divisible group. Let  8 be the endomorphism of Pz  
defined in (b). Set ~ = - ~ ~. Then ~v is the identity on Pz. Moreover vq(T~) 
~ T~, since v~(x) = x - u, where u(n) -- x(1) for all n. To wove  that  T~/q(T,) 
is divisible, let x E Tr and k > 1. I t  suffices to find v and w in T, such that  
x = kv + Q(w). Let y -- v(x). Define z(n) and w(n) by the division algorithm: 

y (n )=  kz(n) + w(n), O ~ w(n) < k .  

Then z, w E Pz and w is bounded, so that  w E Tr. Hence 

x = ~ ( x )  = e(Y) = ~(~z + w) = kv + e(w),  

where v = ~ (z). Since x E Tr and ~ (w)E Tr, it  follows that  kv E T~. Thus, 
vE Tr since T r is pure in Pz. Hence Tr/Q(T~) is divisible. I t  remains only to 
prove tha t  e ( T r ) ~ T ~ .  Define x E P z  by x ( n ) =  [nr]. Clearly, xE Tr. If  
xE ~(Tr), then ~(x) E ~ ( T ~ )  C T r. However, i t  is easy to see that  v(x) (n) is 
of the order of n ~+1. Thus, ~(x) ~ Tr. 

The proof giveu in 5.7 (d)yie lds  a somewhat more precise result: the 
reduction homomorphism i s : Ext~ (Tr, Z) -~ Extz(T~, Z) is not zero. Indeed, 
writing e = ? ~  with v:T~-+ ~(T~) and ]:~(Tr)-+ T~ (injection), we obtain 

0 -~ Homz(  @ (T,), Z) -~ Homz(Tr ,  Z) 
and 

Homz(e(T~), Z) -~ Extz(Tde(T~),  Z) -~ Extz(T~, Z) i*, Extz(~ (T~) ' Z ) .  

Thus, since Horn z (T~, Z) is countable (by [6, Theorem 3]) and Extz(T~/~ (T~),Z) 
is uncountable (since T~/~(Tr) is a non-zero divisible group), it  follows that  
Ker]* 4= 0. Thus, ~* = ~'2"* is not one-to.one, and by 5.1, i2 is not zero. 

(5.8) Theorem. Let H be any group. Then there exists a t. s. i. subgroup 
T g P~, and a group K such that the reduction homomorphism i~ is not zero. 
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Proo/. If  H is a torsion group, let M denote a cyclic subgroup of H with 
prime order. I f  H is not a torsion group, let M be an infinite cyclic subgroup 
of H. In  each case, there is a t. s. i. subgroup T O of PM, and a trivial A-module 
K such tha t  the reduction homomorphism 

i2: Extl~ (To, K) -+ E x t z ( T  o, K) 

is not zero (by 5.7 (c) and (d)). Then T o q- S~ is a t. s. i. subgroup of P~.  As 
A-modules, TIT  o ~-- SH/To ~ SH = SH/SM -~ SR/M. Thus, by  Theorem 4.6, we 
have the commuting diagram 

Extl~ (T, K) -~ Ex tz  (T, K) 

Ext~ ( To, K) -> Ex t  z ( T 0, K) 

in which the vertical mappings are induced by  the inclusion mapping of T O 
into T. Note tha t  the image of the mapping of Ext~ (T, K) into Ex t  I (T o, K) 
is the kernel of the mapping of E x t ~ ( T  0, K) into Ext~(Su/M, K). By 5.2, 
Ext~ (SH/M, K) is isomorphic to Extz(L,  K), where L is the kernel of the 
mapping s -+ s - t s  in SH/M. Thus, L == 0 and Ext~ (Su/M, K) = O. Tha t  is, 
the mapping Ext~ (T, K) -> Ext~ (T0, K) is onto. Since the reduction homo- 
morphism Ext~ (T o, K) -~ Ex tz  (To, K) is not zero, it follows tha t  the reduction 
homomorphism Ext~ (T, K) -> Extz(T,  K) is not zero either. 

Remark. I f  H is not a torsion group, we can let M = Z. By the remark 
following 5.7 (d), the group K can be taken to be Z in this case also. 

Theorem 5.8 can be reformulated as a s ta tement  concerning the existence 
of ID-groups. 

(5.9) Corollary. Let H be an arbitrary non.zero abelian group. Then there 
exists an ID-group G and a monomorphism q) o/G into itsel/ such that G/q) (G) _~ H 
and q9 ~ G is not a direct summand o/G. 
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