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Introduction 
We shall try to outline the background of the problem, the problem itself, 

and our results so that this introduction alone will give a fairly precise idea of 
what the paper is about. Let ~g denote the Siegel upper-half plane of degree g 
and/'o(2) the principal congruence group of degree g and of level 2. We shall 
sometimes exclude the case g = 1. As a discrete subgroup of Sp(g, R), the 
group Fg(2) operates properly discontinuously on ~g from the left and the 
quotient variety Fg(2)\ ~g is non-singular for 2 > 3. Consider, on the other hand, 
the ring A(Fg(2)) generated by Siegel modular forms belonging to Fg(2). Then 
A(Fa(2)) is a positively graded, integrally closed, integral domain of ring 
finite type over C and the projective variety 6e(Fg(2)) associated with this graded 
ring is a compactification of Fg(2)\~g in the sense that this is complex-analytic- 
ally isomorphic to a Zariski open subset of 6:(Fg(2)). Furthermore, the "bound- 
ary" 5:(Fo(2) ) -  Fg(2)\~g of 5:(Fo(2) ) is a disjoint union of quasi projective 
varieties which are the conjugates of the image of Fgo(2)\~g o under the dual ~* 
of the Siegel operator ~ for 0 < go < 9. These properties of 5:(F0(2)) are obtained 
by BAmV and 5:(Fg(2)) is generally known as the Satake compactification of 
/'g(2)\~g (cf. 16, 1, 2). 

Now, it was observed by CHRISTtAN that all boundary points of 5:(Fg(2)) 
are singular on 6:(Fg(2)) except for the case when (9, 2) = (2, 1) (cf. 4, 5). Around 
the same time, we found that 6e(F2(2)) is not even "almost non-singular" 
for 2 ~ 3 although it is a V-manifold, and hence almost non-singular for 2 = 1, 2 (8). 
Then, it was observed that 6e(Fg(2)) is not almost non-singular at any boundary 
point except for the case when (g, 2) = (2, 1), (2, 2). In fact, this was derived from 
a general theorem of partial desingularization of compactifications of SATAKE's 
type (10). Since algebraic geometry can most effectively be applied if the variety 
is non-singular, a problem arises as to whether 6e(F~(2)) admits a natural de- 
singularization or not. This does not mean to desingularize each 5:(Fg(2)) 
separately but it means to fred a desingularization functor ~ and a natural 
transformation from ~ to 6e. Furthermore, it is expected that, if we denote 
by .~'g_1(2) the proper transform of ~*6e(F~_x(2)) under the morphism 
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~(Fg(2))~Se(/'g(2)), the restriction of this morphism to ~-g-1(2) splits into 
two morphisms 

such that the fibers of the first morphism are auto-dual abelian varieties of 
dimension 9 - 1  with level 2 structures and their "limits", and the second 
morphism is the desingularization of degree g - 1. Moreover, if we decompose g 
as go + gl, the fiber over the image point in 6e(Fg(2)) of a point t in ~go is 
expected to be an extension of the g~-fold product of the abelian variety with 
(tlgo) as its period matrix by a reducible variety each irreducible component 
of which is a compactification of the group variety (C*) ~)g'~g~- 1). With this 
problem in mind, we investigated the monoidal transform Jl(Fg(2)) of.~(Fg(2)) 
for 2 > 3 along its boundary, i.e., along its singular locus. We have found that 
the monoidal transformation o//(Fg(2))--.(Fg(2)) and the desingularization 
~(Fg(2))~Se(Fg(2)) so-to-speak coincide on the image of Foo(2)\~g o by ¢i* 
and on its conjugates for gl < 3, but not for g~ = 4. In particular ~t' gives the 
desingularization functor ~ for g ~ 3. This is our main result. It seems very 
likely that closer examination of the non-singular projective varieties J/(Fg(2)) 
for g < 3 will not only enrich our knowledge in algebraic geometry but also 
in the theory of Siegel modular functions. 

It is with pleasure that we mention that the first version of our work was 
done at Bures-sur-Yvette and was announced at G6ttingen in the spring of 
1964. Also, we would like to remark that the present version is very closely 
connected with a paper written by StE~EL in 1955 (20). Indeed, we shall, see 
that properties of the monoidal transformation are rooted in a certain theory 
of reduction of positive, non-degenerate matrices, which we shall discuss in the 
first section of this paper. 

i .  Fundamental and central cones 

We shall use Z and Q, R, C to denote the ring of rational integers and the 
field of rational, real, complex numbers. Also, we shall use R+ to denote the 
set of non-negative real numbers. Let g denote a positive integer. We shall use ~), 
or more precisely ~g, to denote the set of symmetric matrices of degree g 
with coefficients in R. Then ~9 forms a vector space over R of dimension 
N = (½)g(g + 1). If we use "tr" to denote the trace function, and also "det" 
to denote the determinant, we can identify ~ with its dual space by y ~ tr(y ). 
An element y of ~ is called positive if, for every column vector x with g co- 
efficients in R, the quadratic form x ~ t xyx  is R+-valued. The point y is called 
non-degenerate if the quadratic form t x yx  is non-degenerate. This is the case 
if and only if we have det(y) 4~ 0. Also, we say that y is a half-integer matrix or 
a half-integer point if the quadratic form t xyx  is Z-valued on the lattice of 
integer vectors.This is the case if and only if diagonal coefficients and the twice 
of other coefficients are integers. We shall denote by ~ ÷ the set of all positive 
elements of ~). Thi~ set forms a non-degenerate, dosed convex cone such that 
its interior points are precisely positive, non-degenerate matrices. Now, we 
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know that the group GL(#, R) operates on ~ keeping ~ ÷ stable as 
y ~ u y t u .  

Therefore GL(#, R) operates on the interior of ~ ÷ and there the action is 
transitive. In particular GL(g, Z) operates on ~9 ÷, thus introducing an equiv- 
alence relation in its interior. We can construct a closed convex cone in ~ ÷ 
containing a representative for every interior point of ~ ÷ in the following way. 

Suppose that tr is a fixed interior point of ~ ÷ and y a point of ~9. If u is 
a point of the vector space over R of # x # matrices with coefficients in R, 
we get a quadratic form on this vector space as u~tr(auy'u).  We see imme- 
diately that this quadratic form is positive, non-degenerate if and only if y 
is an interior point of ~! ÷. In this case, the quadratic form attains its minimum 
on any given closed discrete subset of the vector space. After this remark, we 
consider the set Fo of points y of ~ ÷ satisfying 

tr(auy'u) - tr(ay) > 0 

for every u in GL(#, Z). Clearly F ,  is a closed convex cone in ~ ÷. Furthermore, 
if Yo is an arbitrary interior point of ~ ÷ and if the quadratic form tr(truyotu) 
attains its minimum on GL(g, Z) at u = v, say, then y = vyotv is in F,,  and y 
is equivalent to Y0 with respect to GL(g, Z). We call F,  the fundamental cone 
associated with a. The fundamental cone is non-degenerate. The following 
lemma is straightforward: 

Lemma t .  Suppose that u is an element of  GL(g, Z). Then u maps an interior 
point of F o to a point of Fo if and only if  it keeps tr invariant in the sense tutru = tr. 

We shall denote by Aut(a) the finite subgroup of GL(g, Z) consisting of 
those u satisfying tuau = a. The lemma states that the stabilizer o fF ,  in GL(g, Z) 
is precisely Aut(tr). 

In the special case when a is a half-integer matrix, we consider the set 
Co of points y of ~0 ÷ satisfying 

tr(a'y) - tr(try) > 0 

for every half-integer, interior point tr' of ~9 ÷. Clearly C,  is a closed convex 
cone contained in F,. We call C, the central cone associated with a. We note 
that the stabilizer of Co in GL(#, Z) is Aut(tr) at least when C, is non-degenerate. 
It would be interesting to investigate in general whether Fo and C, are"chambers" 
in the sense they have only a finite number of "walls". The properties of the 
fundamental cone was investigated in the case g < 4 for a very special tr by 
S~.LL~G and CHARVE (17, 3). We were led to the considerations of both F,  
and Co for the same special a from an entirely different line of thoughts. ~ We 
shall summarize their results mixing with our additional results, which we 
shall use in the later sections. 

The particular tr we have mentioned is the following half-integer g x g 
matrix 

t Prof. SmQ~ has kindly suggested to us the following references: G. VoRor~o'f, Crelles J., 
133 (1908), pp. 97--178; t34 (1908), pp. 198--287; t36 (1909), pp. 67--181. M. KO~CH~R, Math. 
Ann., t4t  (1960), pp. 384 432; 144 (t961), pp. t75--182. 
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If x is a column vector with coefficients x~, x2, ..., xg and if we introduce a 
column vector X with coefficients x~, x2 . . . .  , xg, xg+ ~ = - (xl +x2  + "'" +xg), 
we have g+ 1 

'X oX = 6)'xx = Z (x,) 2- 
i=1 

This shows clearly that ao is positive and non-degenerate. For  a closer investiga- 
tion of the corresponding quadratic form tr(tr ouytu), it is convenient to introduce 
a new coordinate system in the space ~.  

Suppose that y is a point of ~g with coefficients Yij for t ~ i, j ~ O. We 
define a point Y of ~)g+ 1 with coefficients Yii for 1 ___ i, j < O + 1, where the ad- 
ditional g + 1 coefficients are introduced as 

0+1 
~, y i j=O i =  1,2, . . . , # +  1. 

j = l  

The correspondence y-* Y can be extended by linearity to the vector spaces 
of matrices with coefficients in C. At any rate, the point Y, hence also y, is 
uniquely determined by its N coefficients yt~ for 1 _< i < j  ~ # + 1. We arrange 
these coefficients lexicographically and call them normal coordinates of the 
point y. Also, we call Y the matrix associated with y. The usefulness of the 
normal coordinates comes partly from the following identity. Suppose that a 
is an arbitrary point of ~. We shall denote g column vectors contained in an 
arbitrary g x g matrix u by u 1, u 2 . . . . .  ug and also we put ug+l =0 .  Then we 
have 

tr(cru ytu) = ~ ( -  yo ) t (u t -  uj)cy(u i - uj). 
l <i<j<=g+ l 

We note that the matrix ao is characterized by the condition t(u i - uj)tr(ui - u j) = 1 
for 1 ~ i < j  < g + 1 when u = Ig. After these remarks, we shall determine Aut(ao). 

For  each n, we shall denote by n, the symmetric group of permutations of 
the first n positive integers 1, 2 . . . .  , n. Then we have a representation r%+ 1 --' 

GL(g, Z) defined in the following way. Suppose that p: i -~  i' is an element 
of ng+~. Then, to a column vector X with coefficients x 1, x 2, ..., xg+l, we 
associate another column vector X'  whose i'-th coefficient is x~. Clearly, 
if X is contained in the hyperplane xl  + x2 + " " +  xg+ t =0 ,  so is X'. If we 
drop the (g + 1)-th coefficients from X, X', we get column vectors x, x' and 
an element u(p) of GL(g, Z) satisfying x ' =  u(p)x. The correspondence p ~ u ( p )  
defines the representation in question. Because this is a monomorphism, we 
sometimes identify ;~g+ ~ with its image in GL(g,  Z). 

Lenuna 2. We have Aut(ao) = r%+ 1 u - ng+ i. 
Proof. We shall denote the right hand side by + ng+l- If u is taken from 

+ng+ 1, we have 
~(ux)%(ux) = 'x' % x ' =  (½)'X'X' 

= (½)'XX ='XaoX 
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for every x, hence 'UaoU = tro. Conversely, suppose that u is taken from Aut(ao). 
Then we have ~(u~- uj)tro(u i -  uj) = 1 for 1 < i < j  ~ g + 1. In particular, we 
have tu~trout = 1 for i =  1, 2, ..., #. Consequently, each ui either has only one 
non-zero coefficient which is + 1, or has only two non-zero coefficients which 
are 1 and - 1. Since we have d e t ( u ) .  0, not all u~ are of the second type. By 
multiplying an element of the subgroup +Ttg of +7~g+ t to u from the right, 
we can assume that the coefficients of Ug are 0, ..., 0, 0, 1. Then, by multiplying 
an element of the subgroup rcg_ 1 of rcg+ 1 to u from the left, we can assume that 
the coefficients of ug_ 1 are either 0, ..., 0, 1, 0 or 0, ..., 0, - 1, 1. In fact, we 
have only to examine the condition t(ui-ua)~ro(Ui-Uo)= 1 for i = g - 1 .  
In the second case, we change u to -u(g ,  g + 1)u, and we will get back to the 
first case. Then, by multiplying an element of the subgroup ng-2 of ng+l 
to u from the left, we can change u into lg. This completes the proof. 

We shall next determine the central cone C,  for tr = a o. Using the identifica- 
tion of ~) to its dual space, we define a half-integer matrix tr~j of ~) as 

tr(tr~y) = tr(cr o y) - y~j 

for 1 < i < j _< g + 1. Since we have 

tX a i jX = (½) (k ~, i,j(Xk)2 "~- (Xt -- ~ j)2 ) , 

in which k runs over the indices 1, 2, . . . ,  g + 1 excluding i and j, clearly tr~j 
is positive and non-degenerate. Furthermore, they are conjugate to each 
other with respect to r~g÷ 1. Also, we shall denote by e~j the point of ~ such that 
its normal coordinates are all zero except at (i,j) where it is - 1 .  We shall 
prove the following lemma: 

Lemma 3. The central cone C for ~ = cr o is given by 

C = ~ R+ e~j. 
1 <--_i<j~_g+ 1 

In other words C consists of points y of ~ such that the normal coordinates of  
- y are all in R+. 

Proof. Suppose that y is a point of ~ with the property y~j~ 0 for 
1 < i < j  < g + 1. Let ~r denote an arbitrary half-integer, positive, non-degenerate 
matrix. Then, for any integer vector x different from zero, we have txax >= 1. 
Hence, for u = lg we have 

tr(ay) = ~ ( -  yi j) t(Ui-  Uj)~7(U i -- U j) 
l ~_i<j~g+ l 

--~ ~ ( -  Y'i) = tr(ao Y) • 
l~t<j~_o+l 

This shows that y is in C. Conversely, suppose that y is taken from C. Then, 
we have t r ( t r~y ) -  tr(ao y ) =  -y~j  > 0 for 1 < i < j  ~ g + 1. This already proves 
the lemma. 

We shall now compare F ,  and C,  for tr = tro. For  this purpose, we shall 
introduce a point e~j,k~k~k~ of ~ whose normal coordinates are zero except 
at (ij) where it is 1 and at (ikp), (jkp) for p = 1, 2, 3 where they are - 1. We are 
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assuming  tha t  the five indices i, j, kl, k2, k 3 are distinct. Therefore  these points  
exist for g > 4  and they are conjugate  to each o ther  with respect  to %+ r 
We note  tha t  eij, klk2k3 is not  in C because one of  the no rma l  coord ina tes  is 
strictly positive. 

Lemma 4. The  fundamental  cone F for  a = a o contains eU, klk2k3 for  g > 4, 
hence it is strictly larger than the central cone C. However,  in the case g < 3, 
we have F = C. 

Proof. We shall p rove  the first part .  We  have only to show tha t  y = elg + 1,234 
is in F for g > 4. The  non-zero  coefficients a m o n g  Yi~ for 1 < i < j < g  are 
2, 2, 2, 2 at (11), (22), (33), (44) and  - 1, - 1, - 1 at (12), (13), (14). Let  v denote  
a g x g mat r ix  whose non-zero  coefficients are 1, 2, 2, 2 at  (11), (22), (33), (44) 
and  - 1, - 1, - 1 at (12), (13), (14) all mult ipl ied by  the square  roo t  of  ½. Then  
we have y = vtv. Consequent ly  F conta ins  y if and only if 

4 

t r (aouy'u  ) = (½) ~ t ( 2 u i -  UOao(2U i - u 0 
i = l  

is at least equal  to t r (aoy)  = 5. We shall separa te  seven cases. 
(1) t u l ~ r o u l = l .  In this case, we have  t ( 2 u i - U O a o ( 2 U i - u O = l ,  3 . . . . .  

and  the value 1 is t aken  only by i = 1 ; hence t r (a  0 uytu) > (½)(1 + 3 + 3 + 3) = 5. 
(2) tU laoUl=2 .  In this case, we have ' ( 2 u i - U O a o ( 2 U i - U O = 2 , 4  . . . . .  

and the value 2 is t aken  at  mos t  by  three values of  i; hence t r (aoUytu)> 
>(½) ( 2 + 2 + 2 + 4 ) = 5 .  

(3) ' U l a o U l = 3 .  In this case, we have ' ( 2 u i - u O a o ( 2 U i - u O = l ,  3 , . . . ,  
and  the value 1 is t aken  at  mos t  by one i; hence tr(ao uytu) > (½) (3 + 1 + 3 + 3) = 5. 

(4) ' u l ~ r o u l = 4 .  In this case, we have ' ( 2 u i - u l ) a o ( 2 u i - u l ) = 2 , 4 , . . . ,  
hence tr(~rouytu) > (½) (4 + 2 + 2 + 2) = 5. 

(5) ' u l c r o u l = 5 .  In this case, we have ~ ( 2 u i - U O a o ( 2 U i - u O = l ,  3 . . . .  , 
and the value 1 is t aken  at  mos t  by one i; hence tr(ao uytu) > (½) (5 + 1 + 3 + 3) = 6. 

(6) ' U l a o U l = 6 .  In this case, we have  t ( 2 u i - u O a o ( 2 U l - U l ) = 2 , 4  . . . . .  
hence t r (aouy 'u  ) > (½) (6 + 2 + 2 + 2) = 6. 

(7) 'u 1 a0 u 1 > 7. In  this case, we s imply have  tr(a0 u y 'u) > (½) (7 + 1 + 1 + 1) = 5. 
We shall i l lustrate the a rgumen t  in detail. Case (2) is mos t  complicated.  
Since ao is a half-integer, positive, non-degenera te  matr ix,  we have  
t ( 2 u i - u O a o ( 2 U l - U O >  1 and also t ( 2u i -uOcro (2Ui -UO = 'UlaoU 1 mod2.  
Therefore,  in the case when tu~ Oo ul = 2, the possible  values are 2, 4, .... O n  the 
other  hand,  by mul t ip lying an e lement  of  %+ ~ to u f rom the left, we can  assume 
that  the coefficients of  u 1 are 1, 1, - 1, - 1, 0, ..., 0. Then  we see tha t  an integer 
co lumn vector  x with coefficients x l ,  xz . . . . .  xg satisfies t(2x - U0ao(2X - ul)  = 2 
if and only if xl ,  Xz = 1 or  0, Xs, x4 = - 1 or  0, Xs . . . .  = xg = 0 and  

xo+l = - (xl  + x2 + "'" + xg) = O. 

Therefore,  there exist five solut ion vectors  a m o n g  which only three are l inearly 
independent .  

We  shall p rove  the second part.  In general, consider  an  equa t ion  of  the 
fo rm 

t r (a  o uy'u)  - tr(troy ) = - n~jy~j, 
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in which y is now a variable point of ~.  If we exclude the already discussed 
case njj = 0, we have n~i => 1. Also, because of the conjugacy property, we have 
only to consider the case (ij)=(12). Then, a solution u exists in GL(g, Z)  if 
and only if we have g =< 3. Moreover, in the case 0 = 2, we have nxz = 2 and u 
is in the coset 

Aut(°o) (10 _ ~ ) .  

In the case 9 = 3, we have nx2 = 1 and u is in the coset 

Aut(cro) - 1 . 

1 

At any rate, for 9 < 3 ,  a point y of F satisfies - y i j > O  for l<i<j<_<_g+ 1, 
hence it is in C. This completes the proof. 

The matrices we have introduced are sufficient to describe F for 9 = 4 
(but not for 9 > 5). In fact, we have the following situation : 

Lemma 5. The  fundamental  cone F for  g = 4 is 9iven by 

F = ~ R+ eij + ~ R+ eij.k,k2k3, 
1~i<j___<5 l < i < j ~ 5  

in which eij, k,k2k3 depends only on (i,j). 
Proof. Consider an equation of the form 

tr(~ o u ytu) - tr(a o y) = - ni,jl Yi , j l  --  ni2j2 Yi2j2 , 

in which y is a variable po in t -of  ]). We exclude the known case where 
ni,j, = nl~j2 = O. Then the equation has a solution u in GL(4, Z) if and only if 
the right hand side is of the form -Yii  - Yik with distinct i, A k. In the same way, 
we can analyze an equation such that t r (aoUytu) - t r (aoy)  consists of three 
terms. In particular, an equation of the form 

tr(aou y'u) - tr(aoy) = - Y i t i 2  - Y i 2 i a  - Y i 3 i ,  , 

in which il, i2, i3, i4 are distinct, has a solution u in GL(4, Z). In both cases, 
we can write down the solutions explicitly. Suppose that y is a point of F 
not in C. Then, one of its normal coordinates, say Yah, is strictly positive. Then, 
for k 4: a, b, we have - Yah -- Ypk ~-~ 0 for p = a, b. If yo~ is the only coordinate 
which is strictly positive, the point y is in the chamber 

R+ eo + R+ e,b,klk2k3 . 
(i j )  =k (a b) 

On the other hand, if there is another coordinate which is strictly positive, it 
is of the form Ycd with distinct a, b, c, d. Moreover, if k is the remaining index 
among 1, 2, 3, 4, 5, we have --Yab--ypk>---O for p = a , b  and - - y c d - - y p k ~ O  
for p = c, d. Also we have - Yob -- Ycd -- Y~j ~-- 0 for i = a, b and j = c, d. Therefore, 
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the point y is in the chamber 

R+ e i / +  R+ eab.cdk + R+ eca,abk. 
(i j) • (ab), (ca) 

Moreover, there is no other possibilities for the point y. We have thus shown 
that F can be decomposed into three types of "simple chambers" with C at 
the "center". At any rate, the lemma is proved already. 

We note that, in the case g = 4 ,  the matrices e~,k,k2k3 and the matrices 
2a~,j, are conjugate with respect to GL(4 ,  Z). This can be proved by mini- 
mizing the quadratic form u ~ tr(tr o u trffu) on GL(4,  Z). In particular e~j.k, k2k3 
are interior points of ~ ÷  for g =4.  We can show that R+ e~i, kik~k 3 are "edges" 
of the fundamental cone F not only for # = 4 but also for all g > 4. 

Now, suppose that y is a point of the central cone C satisfying y ,  > 0 
for i = 1, 2 ,  ..., g + 1. Then, we can introduce an equivalence relation in the set 
of g + 1 indices. We say that i is equivalent to j if there exists a sequence of 
indices ko = i, kl . . . . .  k, = j  all satisfying 1 < k < g + 1 such that - Yk~k~ +, > 0 
for p = 0, 1 . . . . .  n -- 1. We shall show that the number of equivalence classes 
is equal to g + 1 - rank(y). We consider the matrix Y associated with y, i.e., 
the matrix of degree g + 1 with coefficients y~j for 1 < i, j < g + 1. We apply 
a permutation to the g + 1 indices so that indices of each equivalence class 
become consecutive. If there are n equivalence classes, we then have a splitting 
of Y of the following form 

y =  Y2. 

°'""'%" Ytl 
Therefore we have 

n__ 
rank(y) = rank(Y) = ~ rank(Yi) 

i=1 

~ (deg(Y,)-  1) 
i=! 

= g + l - - n .  

Consequently, our statement will be proved if we can show that we have 
r a n k ( Y ) = g  provided g + 1 indices are equivalent to each other. Therefore, 
it is sufficient to show that y is positive, non-degenerate when g + 1 indices are 
equivalent to each other. Consider the quadratic form u ~ t r ( t r u y t u )  for any 
positive, non-degenerate tr. If we have tr(tru ytu) = 0, we get t(u~ - u j) tr(u~ - u j) = O, 
hence u~ = uj whenever - Y~i > 0. Since all indices are equivalent to each other, 
we get ul = u2 = " " =  ug+ a = 0, and this proves the assertion. 

We shall introduce a notation. If F is a group of integer matrices, for any 
positive integer 2, we shall denote by F(2) the kernel of the homomorphism 
F ~ F  mod2. We shall consider G L ~ ,  Z)(2) in the next lemma: 
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Lemma 6. Suppose that y is an interior point of  ~ + contained in C. Let a 
denote either a o or a 0 for 1 < i <j  ~ g + 1. Then we have 

tr(auytu) - t r (ay)  _>_ 0 

for every u in G L(g, Z)(2)  provided 2_~ 3. Moreover, the equality sign holds if 
and only if u = lg. 

Proof. F o r  a momen t ,  we shall denote  the co lumn vector  u~ in the special 
case u =  lg by ei for i =  1, 2 . . . .  , g +  1. Suppose  that  x is an integer vector  
satisfying x - ei - ey m o d Z  Then  we have ' xax  ~ 1 and the equal i ty sign holds  
if  and  only if x = e i - e  i. There  is one exception,  and  tha t  is the case when 

= ai~ for  the s ame  i,j as above.  In  this case, we have  ~xax __> 2 and  the equal i ty 
sign holds  if and  only if x = e i -  e i. The  verification is s t ra ightforward.  There-  

fore, we have  tr(auY tu) = E ( - y i i ) t ( u i -  ui)a(u i - uj) 
t ~_i<j<=g+ 1 

>- ( -  y , j ) %  - e i) a(e  - el) 
l < i < j ~ g + l  

= tr(o'y). 

The  equal i ty  sign holds  if and  only if u i - u  s = e i -  e j, i.e., u~-  e~ = u j - e j  
whenever  - Y o  > 0. Since we are assuming that  y is positive, non-degenerate ,  
the g +  1 indices are equivalent  to each o ther ;  hence u l -  el = u  2 -  e 2 . . . .  
= %+ ~ - eg+ ~ = 0. This  proves  the assertion. 

We shall consider  a sequence of  points  in ~ .  Suppose  that  y is a " typical  
t e rm"  of  the sequence. We  say tha t  the sequence tends to ~ if y - y'  eventual ly  
becomes  posit ive for any  given y'. We  shall express this fact by  y-~  ~ .  If  we have 
y -~  oo and  if u is an a rb i t ra ry  element  of  GL(g, R), we also have u y t u ~  ~ .  
Moreover ,  if we consider  a submat r ix  Y~ ofy  consist ing ofy~j for i,j = k~, k2,..., ]ca, 
say, then we also have Y1-~ ~ (in the space ~)d). Finally, in the case g = 1, 
we have y -~  oo if and only if y -~  + ~ on R. Combin ing  them together,  we see 
tha t  y ~  implies y u ~  + ~ for i =  1, 2 . . . . .  g +  1. After these remarks ,  we 
shall p rove  the following l e m m a :  

Lemma 7. Suppose that a sequence of  points is [liven in ~ with the property 
y ~  oo and with the normal coordinates of y bounded above. Define a point yO 
of C by the condition 

{ O1 Yob°unded  
(Y°)ii = - otherwise 

for 1 <= i < j  < g + 1. Then yO is an interior point of  ~) +. 
Proof. Since y ~  or, we have  yi~-~ + oo, hence y~-~ - o0 for some  j. This  

implies (y°)~i= - 1 ,  hence (y° )u>  1 for i =  1, 2, .. . ,  g + 1. Suppose,  now, tha t  
yO is no t  an inter ior  poin t  of  ~ +. Then,  we have  rank(y  °) < g - 1. Therefore,  by  
apply ing  a pe rmuta t ion  to  the g + 1 indices, we can  assume tha t  the mat r ix  y o  
associa ted with yO splits into n parts ,  say. Accordingly,  if we write 

y =  Y 2 . . .  . 

~g , . .  
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the *-parts have bounded coefficients. Moreover Y1 is a part of y, hence Y1 ~ oo. 
Therefore, if we put deg(Y0 = d and if we consider the matrix associated with 
Y1, its (d+ 1, d + l)-coefficient has to tend to + oo. On the other hand, it is 
bounded. This is a contradiction. The lemma is thus proved. 

2. The analytic local ring (9 

We shall fix our terminology first. Suppose that X is an analytic space. In 
other words X is a ringed space which locally looks like a piece of complex- 
analytic subvariety of a finite dimensional vector space over C. The analytic 
space X is called normal if all of its local rings are integrally closed, integral 
domains. On the other hand, suppose that X is a quasi projective variety over C. 
In other words X is isomorphic to a locally closed subvariety of a complex pro- 
jective space, i.e., a projective space over C. Then X carries a unique structure 
of an analytic space, which is normal in the analytic sense if and only if it is 
normal in the algebraic sense. In order to distinguish these two structures, we 
shall, if there is an ambiguity, use "Hausdorff topology" and "analytic local 
rings" etc. vis-a-vis "Zariski topology" and "algebraic local rings" etc. We 
refer to SERRE [18] for basic results concerning this subject. We say that a 
normal analytic space is almost non-singular if it admits a non-singular covering 
locally at every point. The V-manifold in the sense of SATAKE [15] is almost 
non-singular (the converse of which seems to be unknown). 

We shall also recall basic facts about the Satake compactifications (cf. 1, 2). 
Consider the vector space of symmetric matrices of degree g with coefficients 
in C. Ifz is a point of this vector space over C, we shall denote its real and imagi- 
nary parts by Re(z) and Im(z). They are points of the vector space ~3 over R. 
If Im(z) is in the interior of ~ +, we say that z is a point of the Siegel upper-half 
plane ~g of degree g. Clearly G 0 is an open convex cone. We know that the 
group of complex-analytic automorphisms of ~g is given by Sp(g, R)/+_ 12g. 
Moreover, if 

is an element of Sp(#, R), the complex-analytic automorphism of ~g determined 
by + M is z ~ M- z = (az + b) (cz + d)- 1. If F is a discrete subgroup of Sp(#, R), 
it operates properly discontinuously on ~g. Hence the quotient v a r i e t y / ~ a  
is defined, and it is a V-manifold. I f F  operates without fixed points, the quotient 
variety is even non-singular. In the case when F is commensurable with 
Sp(g, Z), we consider, for every integer k, the vector space A(F)k over t2 of 
Siegel modular forms of weight k, i.e., holomorphic functions ~p on ~g satisfying 
~p(M.z) = det(cz + d)ku2(z) for every M in F. These vector spaces generate a 
positively graded ring 

A(r) = Q 
k__.o 

which is integrally closed and of finite type over A(F)o = 12. The projective 
variety 5~(F) associated with A(F) contains a Zariski open set which is complex- 
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analytically isomorphic to / ~ . q .  Furthermore, the boundary r e ( F ) - / - ~ g  
is a disjoint union of a finite number of quasi projective varieties each complex- 
analytically isomorphic to quotient varieties of the form Fo\~go for 0 < go < g. 
We shall explain re(F) more in detail in the case when F is the principal con- 
gruence group/ 'o(2 ) = Sp(g, Z) (2) of level 2. 

We write g in the form g = g o  + g l  for 0 < g 0  < g. Accordingly, write a 
typical point z of ~g as 

or simply as z =(t,  z, w), in which z, for instance, is a go x 91 matrix. Then, for 
every ~p in A(Fg0.)), we define ~lp as 

(~/i~p) (t) = lim ~p(z). 
Ira(w)--* go 

This limit always exists and it depends only on t, hence ~tp is well defined. 
Moreover ~ gives a weight-preserving ring homomorphism A(Fg(2))~ A(Fg(2)), 
which is almost surjective in the sense it is surjective for all high weights. 
Consequently, we get a complex-analytic embedding ~* : 6e(Fgo(2))~ra(Fg(2)), 
and the image of Fao(2)\@ao, which we simply call the image of ~go, is a quasi 
projective subvariety of 6e(Fg(2)). Now 6~(F9(2)) admits Sp(g, Z/;tZ) as a group 
of (complex-analytic or algebraic) automorphisms. This group transforms 
the image of ~go to its conjugates. The fact is that these varieties considered for 
go = 0, 1, ..., g - 1 are mutually disjoint and their union is the entire boundary 
~ (Fa(2) ) -  F0(2)\~ a. Because of this, as long as local properties of 6e(Fg(2)) at 
the boundary points are concerned, we have only to investigate 6P(Fg(2)) at 
those points lying on the image of ~go by ~* for some go. 

Suppose that to is a point of ~go and consider its image in ~(Fg(2)). In the 
following, we shall describe the analytic local ring • of S~(F9(2) ) at the image 
point of t o more or less explicitly using Fourier-Jacobi  series by PYATETSKI- 
SI-IAPmO ([ 14 ], cf. also [ 10 ]). We shall denote by 3 the vector space of go × 91 
matrices with coefficients in C and, for t in ~go and z, z' in 3,  we put 

Lt(z, z') = (¼) ('z Im(t)- 1(~, _ z') + t(~, _ z') Im(t)- 1 z). 

Then Lt(z, z') is in the vector space of symmetric matrices of degree gl with 
coefficients in C. Moreover Lt(z, z') is "quasi-hermitian" in the sense it is 
C-linear in z, R-linear in z' and 

(1 /2 ( -  I) ~) (Lt(z, z') - Lt(z', z)) = (¼) Im(tz Im(t)- ' ~' + t~, Im(t)- ' z) 

is real, i.e., ~lg,-valued. We also note that, because of 

Re(Lt(z, z)) = tim(z) Im(t)- 1 Im(z) 

for every t in ~ o ,  the point z is contained in ~g if and only if Im(w) - Re(L~(z, z)) 
is positive, non-degenerate, i.e., in the interior of ~ +. We take an open neigh- 
borhood V of to in ~go and an element r of ~ ,  and define an open subset S(V, r) 
of ~g as the set of points (t, z, w) such that t is in V and Im(w) - Re(Lt(z,  z)) - r 
is in the interior of ~1+. Then we have S(~go, 0) = ~g. What is more important 
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is that, if we take V sufficiently small and r sufficiently large, the elements M 
of Sp(o, Z) with the property M .  S(V, r)c~S(V, r) 4:0 are of the following form 

M = a22 * 

k011 00 0 dl l  " 

We shall denote by P the subgroup of Sp(g, R) consisting of elements of this 
form, and by Pz the subgroup of P of integer matrices. We note that, if M 
is an element of P and if we denote by M 0 the element of Sp(go, R) defined by 
a11, bll ,  c11, dia and put u=a22 , we have 

M" S(V, r) = S(M o • V, ur'u). 

Now, suppose that f is a holomorphic function on S(V, r) with the property 
f ( M ' z ) = f ( T )  for all M in Pz(2) for which Mo = 12,o and u =  1~,. Then it 
admits a convergent Fourier expansion 

f( t ,  z, w) = ~, O~(t, z) e((1/2) tr(aw)), 
~r 

in which e( ) = exp(2n( -  1) ~r ) and tr runs over half-integer matrices. The con- 
vergence means "normal convergence" in every compact subset (of S(V, r)). 
Furthermore (t, z)~O,(t,  z) defines a holomorphic function on V x 3 with 
the property 

(0) O,(t, z + tin' + m") = O,(t, z) e(-(1/2) tr(a(Z'm'z + 'm'tm'))) 

for all go × 91 integer matrices m', m" satisfying m', m " - 0 m o d 2 .  Therefore, 
for a fixed t, it is a theta-function with 

(2/2) tr(tr(*z Ira(t)-1Z')) 

as its Riemann form (2t). Since the real part of a Riemann form is positive, we 
see that a is positive. This so-called KtJcher effect subsists except for the case 
when go = 0, gl = 1 and, in this case, we make the well-known modification. 
On the other hand, if we evaluate the imaginary part of  the Riemann form at 
(tm' + m", tn' + n'), we get 

(2/2) tr(tr('m' n" - 'm"n')).  

We know that the reduced Pfaffian of this Z-valued alternating form defined 
on the lattice of points tin' + m" in 3 with m' ==- m" =- 0 mod2 gives the dimension 
of the vector space of theta-functions O.(t, z) (for a fixed 0. We note that this 
is independent of t and, in the case when a is non-degenerate, it is given by 
(det(2tr) M') 8°. 

Now, if f is invariant by all M in Pz(2) for which we only assume Mo = 12ao, 
we get 

O,,.,(t, z) = O,(t, z'u) 

for all u in GL(91, Z). Therefore, if we put 

H,(t, z, w) = ~; O,(t, z'u) e((1/2) tr(auw'u)), 
Ig 
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we have 

f( t ,  z, w)= ~ '  H,(t, z, w). 
¢r 

The primes in the summations indicate that in the first one it is taken over 
distinct 'uau for u in GL(gl, Z) (2) and in the second one it is taken over in- 
equivalent, half-integer, positive matrices a, the equivalence being taken with 
respect to the same group. 

Conversely, suppose that a is a given half-integer, positive matrix. Then a 
holomorphic function O,,(t, z) in V x 3 satisfying the functional equation (0) 
can be constructed by theta-series. Hence we can define H~(t, z, w) by O~(t, z) 
formally as above. The problem is whether the series for H~(t, z, w) actually 
defines a holomorphic function in S(V, r), for some r, invariant by all M in 
Pz(2) for which M o = 12 go" This is just a problem of convergence. 

Lemma 8. Suppose that r is positive and non-degenerate. Then, for (t, z) 
in a compact subset of  V x 3 and for w such that Im(w) - Re(Lt(z, z)) - r is 
positive, the series 

H.(t, z, w) = ~ '  0.(t, ztu) e((1/2) tr(~ruwtu)) 
U 

is dominated by a series o f  the form 

const. ~ '  exp(- /~ tr(tuau)), 
U 

in which the summations are taken over distinct tucru for u in GL(gl, Z)(2) 
and p > O. 

v roll Proof. If we let all coefficients of m, vary from 0 to 2, the corresponding 
point tin'+ m" describes a compact subset of 3. We write ztu in the form 
Zo + tin' + m" with zo in this compact set and with m', m" satisfying m', m" = 0 mod2. 
Then, observing that the exponential factor in the functional equation (0) is 
e ( - ( ( -  1)~/2)tr(aLt(Zz + tin'+ m", tm' + m"))), we have 

IO,(t, z'u) e((1/2) tr(auWu))l 
= IOn(t, Zo)[ exp( - (2n /2 ) t r ( a  Re(L,(zo, Zo)))) × 

× exp(- (2~t;t) tr(o-u(Im(w) - Re(L,(z, z)))'u)) 
_-< const, exp( - (2~/2) tr(gurtu)) =< 

const, exp(-  # tr('utru)) 

for #x=(2n/2)-times the smallest eigen-value of r, and the summation of 
exp(-p tr(o")) over all half-integer, positive matrices a' is convergent (cf. 19). 
This proves the lemma. 

We can, now, give a description of the analytic local ring ~ of ~(F~(2)) 
at the image point of to. We observe that the stabilizer of to in Fgo(2) is a finite 
group. If we take an element M of Pz(2) such that Mo is in this finite group 
and if we write down the invariance condition for the corresponding trans- 
formation 

(t, z, w)-+(Mo" t, t(clit + dll  )- iz, w - t z ( c l t t  + d l l ) - l  c l l z ) ,  
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we get 

(0') O , (Mo . t , ' ( c~ t+d~) -~z )=O~( t , z ) e ( (1 /2 ) t r ( c r ' z ( c~ t+d~) - t c t i z ) ) .  

Conversely, if we use such O,(t, z) for the construction of H,(t, z, w), it is in- 
variant by all elements M of Pz(2) for which Mo" to = to. We shall summarize 
our results in the following way: 

Theorem t. Suppose that t o is an arbitrary point o f  @go. Then the analytic 
local ring (9 of  ~gv(Fg(2)) at the image point of  t o consists o f  convergent series o f  
the form 

f( t ,  z, w) = ~ '  H~(t, z, w), 
¢F 

in wich 

H~(t, z, w) = ~'O~(t, ztu) e((1/2) tr(auw'u)). 
u 

The conditions for O~(t, z) are that it is holomorphic in V x 3 for some unspecified 
open neighborhood V of  to and satisfies the functional equations (0) and (0'). 

The analytic local ring (9 describes the variety ~(Fa(2)) in some (Hausdorf0 
neighborhood of the image point of to. In order to examine the boundary 
~ (Fa (2 ) ) -  Fa(2)\~g in this neighborhood, we shall determine the ideal .~ in (9 
associated with this closed subset of 3P(Fg(2)). For  this purpose, we take an 
arbitrary element f of (9 and try to examine its restriction to the image of 
~(Fa_l(2))  by ~*. In other words, we examine the limit o f f ( t , z ,  w) when 
Im(walgl)-~ + oo. We shall use the original Fourier expansion 

f ( t ,  z, w) = ~ O~(t, z) e((1/2) tr(aw)). 
~r 

Since the convergence is normal for (t, z) in any given compact subset of 
V x 3 and for w such that I m ( w ) -  Re(Lt(z, z ) ) -  r is positive for some r, the 
summation and the limit process are commutative. We see that the terms which 
survive are only those for which a is of the following form 

°0) 
In this case, if we denote by w* the symmetric matrix of degree gl - 1 obtained 
from w by deleting its gl-th line and column vectors, we have tr(aw) = tr(a* w*). 
Incidentally, also in this case, ff we denote the gl-th column vector in z by z** 
and put z = (z* z**), then O,,(t, z) is periodic in z** with (t lao) as its period 
matrix. Therefore O~(t, z) is independent of z** and it canbe written as O~(t, z*). 
In this way, the said limit of f ( t ,  z, w) takes the following form 

f*( t ,  z*, w*) = ~O¢.(t, z*) e((1/2) tr(a*w*)). 
a* 

In particular, we have f *  = 0 if and only if 0,o(t, z*) = 0 for all a*, i.e., if and only 
if O,(t, z) = 0 whenever a splits as above. On the other hand, we observe that 
the ideal J is stable by the subgroup of Pz consisting of elements M for 
which M o ' t o  = to. Hence, the ideal J is certainly stable under the transfor- 
16 Math. Ann. 168 



242 J. IousA: 

mation f(t, z, w)- , f ( t ,  z'v, vwtv) for v in GL(gl, Z). Therefore, f f f  is an element 
of . f ,  we get O~(t, ztv)= O, i.e., Oa(t, z)= 0 whenever twv  splits as before. Since v 
is an arbitrary element of GL(gt, Z), this simply means that cr is degenerate. 
Conversely, suppose that 0¢(t, z)=O whenever a is degenerate. Then, this 
property is preserved under every automorphism of • coming from an element 
M in Pz for which Mo.to  = t o. Therefore, the restriction of f vanishes not 
only on the image of Y'(Fg_ 1 (2)) but also on all of its conjugates passing through 
the image point of t o. Then f vanishes along the boundary in the neighborhood 
of the image point of t o, hence f is contained in J .  We have thus obtained the 
following result: 

Supplement. The ideal J in ~ associated with the boundary ~(Fg(,~)) - Fg(A)\ @9 
consists of  those convergent series in Ha(t, z, w) for which ~ is positive and non- 
degenerate. 

Theorem i and this supplement provide all that is necessary to investigate 
the blowing up of ¢ with respect to ,f. We note that, in the case when a is 
positive, non-degenerate and if we take 2 ~ 3, the only element u of G L(g 1, Z) (,:~) 
for which tutru = ~ holds is lg,. In fact, the set of such elements forms a finite 
group and we know, on the other hand, that I gl is the only element of G L(ff z, Z) (2) 
with a finite order for ;t >= 3. Consequently, if ~ is positive and non-degenerate, 
the series for H is extended over all elements u in GL(g 1, Z) (2) provided ;t > 3. 
Also, in the case when ;t => 3, the functional equation (0') for Oo(t, z) disappears 
because the stabilizer of t o in F~o(2 ) consists of lg o only. 

3. The monoidal transform ~(Fg(,~)) 

We shall consider the monoidal transformation ~t'(Fg(2))--,~(Fg(2)) for 
A > 3 along its boundary. We shall recall the definition of a more general process 
of "blowing up". Suppose that A is a noetherian integral domain and let I 
denote an ideal in A. Then we can introduce the following graded ring 

B = • (I ° = A) .  

We see that B is also an integral domain and it is of finite type over A; hence B 
is novtherian. Algebraically speaking, the graded ring B is the blowing up 
of A with respect to I. A geometric interpretation which we shall use is the 
following one. We consider the set of all maximal ideals in A and denote it by 
spec(A). This can bc converted into a ringed space. Similarly, we consider the 
set of all graded maximal ideals in B not containing 

B+ = ( ~ P ,  
n > O  

and denote it by proj(B). Again, this can be converted into a ringed space. 
In the case when fl,  f2 . . . .  ,fp form an A-module base of I, proj(B) can be 
covered by the open subsets spec(A[fff f t ,  f2/f~, . . . , fp/ft]) for f i  4=0. I fy  is a 
point of proj(B), then x = A n y  is a point of spec(A). The correspondence 
y ~ x  gives a morphism proj(B)-*sp~(A), which is called the blowinff up of 
spec(A) with respect to the ideal I. The blowing up is surjective and it is an 
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isomorphism outside the zeros of I. If I is an intersection of prime ideals, it can 
be considered as the ideal of a closed subset of spec(A). In this case, the blowing 
up proj(B)~spec(A) is called the monoidal transformation along this closed 
subset and proj(B) is called a monoidal transform of spec(A). In general, if we 
wish to investigate the blowing up locally, we have only to take the correspond- 
ing local ring 0 and consider the blowing up of spec(O) with respect to OI. 
In the case when A is an integral domain of finite type over C, we can also use 
analytic local rings for this purpose. At any rate, since the processes of blowing 
up and localization are compatible, we can define the blowing up globally 
using a sheaf of ideals. We refer to GROTHENDmCK [6 ] and also to [7, 23 ] 
for basic results concerning this process. 

Now, as we have said in the beginning, we shall denote by .gC(Fe(2) ) the 
monoidal transform of Se(Fg(2)) for 2 ~ 3 along its singular locus 6e(Fg(2))- 
-Fg(2)~g.  If we denote by I(Fg(2)) k the vector subspace over C of A(rg(2))~ 
consisting of cusp forms and if we consider the graded ideal 

x(r,(2)) = • I(r,(2))~ 
k~O 

in A(F0(2)), this ideal, made inhomogeneous at the image point of t o, generates 
an ideal I in the algebraic local ring O of 5a(Fg(2)) at the image point of to. 
The ideal I is an intersection of prime ideals (corresponding to the conjugates 
of the image of S~(F 9_ 1(2)) passing through the image point of to), and so is 
0I. This implies d~I = J .  Therefore, we can investigate the monoidal trans- 
formation using the blowing up of spec(O) with respect to J .  We observe that 
Sp(#, Z/2Z) operates on A (Fg(2)) as a group of weight-preserving automorphisms 
keeping I(Fg(2)) stable. Therefore Sp(#, Z/2Z) operates not only on Se(Fg(2)) 
but also on ./¢(Fa(2)) as a group of automorphisms. We shall examine the 
singular locus of ~¢t'(Fo(2)). 

Lenana 9. Let a denote either ao or atj for 1 < i < j ~ #i + 1. Then, for (t, z) 
in a compact subset of V x 3 and for Im(w)~ oo with the normal coordinates of 
Im(w) bounded above, the series 

Ho(t, z, w) e(-(1/4) tr(crw)) = ~ O,(t, z'u) e((1/2) tr(('uau - a)w)) 
u 

will eventually be dominated by a series of the form 

const. ~ exp(-/~ tr(tuau)), 
u 

in which u runs over GL(ffl, Z) (4) for 2 >- 3 and I~ > O. Moreover H~(t, z, w) x 
x e(-(1/2)tr(aw)) converges to O~(t, z) for Im(w) - ,~  with the normal co- 
ordinates of Im(w) bounded above, and the convergence is uniform when (t, z) 
is restricted to the compact set. 

Proof. We put Im(w)= y. We shall first show that there exists a positive, 
non-degenerate matrix r satisfying yij~_ rti for 1._-< i <j_~ gl + 1, provided y 
is taken sufficiently large. Since y ~  oo with ytj_< r, say, we can associate a 
positive, non-degenerate matrix yO with (y°)i j ~--(J, - I for 1 __< i <j_<_ gl + t 
16" 
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to this sequence as in Lemma 7. We shall denote by ro the symmetric matrix 
defined by (ro)ti = ~ for 1 ~ i <j__< gl + 1. Put r = ~yO + ro with a in R. Then r 
becomes positive and non-degenerate for ~ sufficiently large. Moreover, 
according as Yt~-~ - oo or remains bounded, we have rij = - ~ + fl or ft. Therefore 
r satisfies our requirements. We shall next show that, for (t, z) in the given 
compact subset of V x 3, we have 

lOb(t, ztu)l <= const, exp(7 tr(tucru)) 

for some y in R. In fact, we take a positive, non-degenerate matrix rl sufficiently 
large so that rl - Re(Lt(z, z)) - r remains positive for all (t, z) in the compact 
set. Then, we have only to take w =  ( -1)~r l  in Lemma 8 and put ~ = (2~/2)- 
times the largest eigenvalue of r l - r .  Finally, we observe that y - 6 y  ° - r  
will eventually be contained in the central cone C for any 6 in 1L and it tends to oo 
with y. In fact, according as y~ ~ - ~ or remains bounded, we have (y - c~y ° - r)~j 
= Yi j -  r o +  ~i or y ~ j -  rij. Therefore, using Lemma 6 partially, we get 

tr((tucru - a) (y - c~y ° - r)) > 0 for every u in GL(g l ,  Z) (2), provided y is taken 
sufficiently large. Consequently, for (t, z) in the compact set, we eventually 
have the following estimation 

IOn(t, z~u) e((1/,t) tr((tuau - or) w))l -< 
< const, exp(y tr(tuau)) x 

x exp(-(27r/~)tr((tu~u - a)(~yO + r))). 

Since 6 is arbitrary in R, if we take it sufficiently large, the matrix (27c/2) x 
x (cSy°+r)-~,lg, becomes positive and non-degenerate. Therefore, if we 

denote its smallest eigen-value by p, we have 

IO~(t, z~u) e((1/2) tr((tuau - tr) w))t < 
< const, exp((2~/2) tr(a(6y ° + r))) exp(-/~ tr(tu~u)). 

Clearly, the first exponential factor can be included in the constant factor. This 
proves the first part. As for the second part, because of what we have shown, 
it is enough to prove that, each Oo(t, z tu )e ( (1 /2 ) t r ( ( tu~u-~)w) )  for u4=lg~ 
tends uniformly to zero for Ira(w) = y ~  oo. If we use the estimation we have 
obtained above, we get 

lOs(t, ztu) e((I/2) tr((tu~u - tr)w))l 
=< const, exp(-/~ tr(tu~ru)) x 

x e x p ( -  (21r/2) tr(('ucru - ~) (y - 6y ° - r))). 

Therefore, applying Lemma 6 now in full, we see that this tends to zero for y ~ ~ .  
This completes the proof. 

In the same way, but this time without using Lemma 6, we can show that, 
if a is an arbitrary half-integer, positive, non-degenerate matrix, the series 
for Ha(t, z, w) e( - (1/2) tr (o '0w))  has the same kind of dominant series. 

Now, take an arbitrary point co of,/t'(Fg(2)). We shall examine the analytic 
local ring of .af(Fa(2) ) at co. Since the monoidal transformation ~/(Fg(2))-* 
~ ( F g ( A ) )  is an isomorphism over F s ( 2 ) ~  and since this is non-singular, 
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we have only to consider the case when the projection of co is on the boundary. 
We apply an automorphism to ~g(Fg(2)) so that the projection of g9 is the image 
point of a point to of ~go for some go < g. We then take a sequence of points 
in Fg(2)\~g which converges to a~. We are regarding Fg(2)\~g not only as an 
open subset in Sa(Fg(2)) but also as an open subset in ~¢/(Fq(2)). Then we take 
representatives in ~g of these points and thus obtain a sequence of points with 
(t, z, w), say, as a typical term. By taking a subsequence if necessary, we can 
assume that (t, z) converges to (to, Zo), say, and that Im(w)~ oo. We can also 
assume that Re(w) converges to some point of R N for N=(½)gl(gl + 1) and 
that some of the normal coordinates of Im(w) are convergent whenever they 
are bounded. Again, by applying an automorphism to Jl(Fg(2)) coming from 
a transformation of ~g of the form (t, z, w)~(t,  ztv, vwtv) with v in GL(gl, Z) 
and taking a subsequence if necessary, we can assume that Im(w)~ go in the 
fundamental cone F. Although we have replaced 09 by one of its conjugates, 
we have not made any restriction on the nature of the point o9. Now we make a 
rather strong assumption that we have Im(w) ~ go with the normal coordinates 
of Im(w) bounded above. According to Lemma 4, this is not a restriction in the 
case when gl ~ 3. In fact, we could assume that we have Im(w)--* go in the central 
cone C. At any rate, in the case when Im(w)~ go with the normal coordinates of 
Im(w) bounded above, the analytic local ring of ~¢/(Fg(2)) at o9 is regular. In fact, 
we can give a set of local parameters explicitly. For this purpose, we shall 
denote the coefficients of the matrix w by w~j for 1 =< i, j ~ gl and introduce w~j 
for 1 < i, j < gl + I as before. Furthermore, we put 

C,j = e((1/2) ( -  w,j)) 1 < i <j  ~_ 91 + 1. 

Then, there exists a point Co in C N for N=(½)g l (g l+ l  ) such that ~ ¢ o  
when Im(w)~ co with the normal coordinates of Im(w) bounded above. We 
shall show that the analytic local ring of ~/(Fg(2)) at o~ contains local parameters 
of @go at t o, local parameters of 3 at Zo and local parameters of C N at Go, and 
they form a set of local parameters in the analytic local ring. 

We shall denote the said local parameters symbolically by t -  to, z - Z o  
and ~ -  Co. Then, for any half-integer, positive matrix o-, the corresponding 
H,(t, z, w) can be considered as a convergent power-series in t - t o ,  z - Z o  
and in ~ provided Im(w) is very large with the normal coordinates of Im(w) 
bounded above. On the other hand, if a is also non-degenerate, the Riemann 
form of O,(t, z) is 2-time another Riemann form. Since we are assuming that 
2 > 3, by an important theorem in the theory of theta-functions (cf. 21), the 
vector space of theta-functions O,(to, z) gives rise to a projective embedding 
of the complex torus, which is the quotient variety of 3 by the lattice of points 
tom'+ m" with m', m " =  0 mod2. Therefore, using this theorem only partially, 
we can find d im(3)+  1 theta-functions Ooo.i(t, z) for i =  0, 1 . . . .  , gogl such that 
Ooo(to, Zo)= Ooo,o(to, zo)4:0 and such that the Jacobian at zo, say J(to, Zo), 
of the complex-analytic mapping 

z-~((O~o.dO.o)(to, z ) ) i = l  . . . . .  g o ~  
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is different from zero. We also choose one Oo,~(t, z) for each ¢rij such that 
O~,j(to, Zo)•  O. We can assume that O~o.l(t, z) and O¢,j(t, z) are all holomorphic 
in V x 3 for some V. Then, if we denote by ( the product of all Cu, we get 

H~o(t, z, w) = O~o(t, z) ~(1 + ' " )  
H,,j(t, z, w) = O¢,j(t, z) ~Co(1 + ""), 

in which the unwritten parts are convergent power-series in t - t o ,  z - Z o  
and in (~q)a such that they vanish term-by-term at C = Go. This follows from 
Lemma 9. Similarly, if we denote by H¢o,i(t, z, w) the series for O~o,i(t, z), we get 

Hoo.i(t, z, w) = ~(O¢oj(t, z) + "'), 

in which the unwritten part is a convergent power-series in t - to, z - zo and 
in (Cq) a such that it vanishes term-by-term at C = Co. Therefore, its derivative 
with respect to any C~j vanishes also term-by-term at ~ = Co. On the other hand, 
the remark following Lemma 9 shows that, if ¢r is an arbitrary half-integer, 
positive, non-degenerate matrix, the quotient (He~Hoe) (t, z, w) is a convergent 
power-series in t - to, z - z o, ~. Therefore, the analytic local ring of JW(Fg(2)) at 
co is contained in the ring of convergent power-series in t - t o, z - Zo, C - Co 
with coefficients in C. On the other hand, the analytic local ring 0 always 
contains the ring of convergent power-series in t - t o. In fact, any holomorphic 
function in V can be considered as He(t, z, w). Also, the Jacobian at (t o, z o, Co) 
of the system of functions 

(Hoo, JH~o ) (t, z, w) i = 1 . . . . .  gogl 
(H.. /H.o) (t, z, w) 1 <= i < j  ~ 01 + 1 

with respect to the coefficients of z and C is equal to 

S(to, Zo) " I-I (o.,,IO0o) (to, Zo). 
l_~i<j_~gl+ 1 

Since this is different from zeroby assumption, wc can conclude that z-Zo 
and C-Co are contained in the analytic local ring of ~(Fg0t)) at co. This proves 
the assertion. 

What we have shown implies that the projection to ~(Fg(A)) of the singular 
locus of .W(Fe(2)) is contained in the union of all conjugates of the image of 
Ae(F#o(2)) for go = 0 - 4. More precise information are contained in the follow- 
ing statement: 

Theorem 2. The projection o f  the singular locus of  .$t(Fg(~)) to ~(Fg(~)) 
is precisely the union of  all conjugates of  the image of  Ae(Fgo(A)) for go = g - 4. 
The situation does not improve even i f  we apply a monoidal transformation to 
• ,w(ru($) ) along its singular locus. In particular .~(Fg(A)) is non-singular for g < 3. 

Let (to, Zo) denote an arbitrary point of ~go × 3. We know by Lemma 5 
that the fundamental cone F of degree g! = 4 can be decomposed into three 
types of simple chambers with C at the center. In order to obtain a singular 
point of.#F(rs(A)) lying over the image point of to, we have to take a sequence 
such that Ira(w) stays outside the central cone C. Consider the following neigh- 
boring chamber: 

C12 = ~. R + e q + R + e t z ,  
(tj)*(12) 
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in which st2 = e12,345. We take a sequence in C12 which tends to oo without 
approaching to any one of its walls. We can simply take pWo with 

Wo = (-- 1)½ (~12 + ~ eo) 
(t j ) * (12)  

for/~ --* + oo. We shall denote by co the point of.~(Fg(2)) which is determined by 
the sequence (to, Zo, #wo). Also, we shall denote by 01 the analytic local ring 
of ~W(Fg(2)) at the point co. In order to examine d~t, we shall introduce new para- 
meters r/q for 1 < i < j  ~ 5 such that we have an identity of the form 

e((1/2) tr(aw)) = r/'[2 ~120) ( I-I r/~ (e'J°)) 
\1 i j ) * (12)  

for every half-integer matrix a. This is the way suggested by SIEGEL [20] tO 
introduce local parameters. We note that the parameters ~o could have been 
introduced in the same way by 

e((1/2) tr(aw))= I-I m(,',j~) ~i j  • 

l ~ i < j _ ~ g t +  1 

In both cases, the matrix ~r is determined uniquely by the corresponding 
monomial. (In fact, we have only to solve systems of linear equations with 
unimodular coefficient matrices.) The new parameters are related to the old 
parameters as follows 

f l / ~ 1 2  (ij) = (12) 
rio = ~ 1 2 ~ o  i =  1,2; j = 3 , 4 , 5  

I.~,j (ij)=(34), (35), (45). 

Moreover, if Im(w) is in C12, we have I%1 _-< 1 for 1 < i < j  __6 5. We shall denote 
all of the ~/ij symbolically by r/. In the case when w = p w o ,  we have ~/--*0 for 

Lemma t0. Let a denote an arbitrary half-integer, positive matrix of  
degree four. Then we have tr(acq) > 2 except for the case when a = O. Moreover, 
if a is non-degenerate, we have 

tr(aeo) > tr(aoeo) = 4; 

the equality sign holds if and only if we have a = a O. 
The lemma implies that Ct2 is a part of the central cone associated with 

a12. At any rate, the proof  we know requires some case-by-case examination 
similar to the proof  of Lemma 4. We shall leave the proof as an exercise to the 
reader. 

As a consequence, we see that, if or is a half-integer, positive matrix satis- 
fying tr(ae12)= 2, we have 

H,(t,  z, w) = (~ t 2) 2 t/~, j, rh~j2 rh~ j,-times a convergent 
power-series in t - to, z - zo, t/ 

for some indices i l , j l ,  i2,j2, i3,j3. On the other hand, if a is non-degenerate 
and if we denote the product of the ten r/q by ~, we have 

H¢(t, z, w)=  (r/t 2)3 ~-times a convergent power-series in t -  t o, z -  Zo, 17. 
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Moreover, there exists one and only one 0. for which Ha(t, z, w) is not divisible 
by (t/12) 5, and it is 0-12. Furthermore, we have 

Ho,~(t, z, w) = Oo,2(t, z) (r/t2)3~(1 + ""), 

in which the unwritten part is a convergent power-series in t - t o, z - z o and 
in (~/i~) x such that it vanishes term-by-term at t / =  0. We are assuming that we 
have 0¢~2(t o, zo)~: O. Therefore, in order to obtain functions belonging to ¢~1, 
we have to adjoin quotients of H¢(t, z, w) by Ho~:(t, z, w) to the analytic local 
ring g~. All these quotients, except for the one corresponding to a = o-12, are 
divisible by r/t2. Furthermore, there exists, in each case, a non-degenerate 
matrix a such that the expansion of Ho(t, z, w) takes the following form 

['(~h2) 4 ¢(I + "') 
:(~/12) 4 t/o ~(I + "') (i j) • (12) 

O~(t, z)-times ~(~/12)4 ~/23 ~34 ~(I + "") 

t,(~h2) s r/o ~(1 + "") i= 1, 2; j = 3, 4, 5. 

We are assuming that we have Oo(to, zo)4= O. It is important to observe that 
there is no a which corresponds to (rh2)s~. The 0. is assumed to be a half- 
integer, positive, non-degenerate matrix. We shall show that the analytic 
local ring d?l is not regular. We shall denote by f2 the ring of convergent power- 
series in t - t o ,  z - Z o ,  r/. Then ~1 is contained in ft. Moreover, we can show, 
as before, that ~1 contains the ring of convergent power-series in t -  to, z -  Zo. 
Let ml denote the maximal ideal of d?l. Then ml is contained in ~/12f2, and 
ml contains t - t o, z - Zo and 

rh 2, rh2 rio(i j) #: (12), r/12 r/2 a r/34. 

If we consider these elements modulo (m02, they are linearly independent 
over t~/m~ = C. Consequently¢ the dimension of the Zariski tangent space 
ml/(m~) 2 over d?~/ml is larger than the dimension of the variety. Hence d~l 
is not regular (22). This proves the first part of the theorem. We, now, apply 
a monoidal transformation to ~¢¢(Fg(2)) along its singular locus. Let ¢2 denote 
the analytic local ring of  the monoidal transform of ~t'(Fg(2)) at the point which 
corresponds to t = t o, z = Zo, t /=  0. Also, let m2 denote the maximal ideal ofO 2. 
Then ¢P2 is contained in 12. Moreover d~2 contains the ring obtained from ~ 
by adjoining quotients of  elements of ml by r/t2. In particular m2 contains 

rhi (ij)4:(12), rh2qi~ i =  1,2; j = 3 , 4 , 5 .  

If we consider these elements modulo (m2) 2, they are linearly independent over 
¢92/m 2 = C. Therefore ¢~2 is not regular. This proves the second part of  the 
theorem. 

It is possible to blow up Se(F4(2)) suitably along its singular locus to get 
a non-singular projective variety and we can give the ideal of blowing up 
explicitly. However, since we do not know the meaning of this non-singular 
model and since the mere existence of a non-singular model is generally 
guaranteed by the theorem of HraONAr~ [7], we shall not discuss it here. 
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4. F i b e r s  o f  ~g(fg (~)) -~ ~ ( f  o (~)) 

As before, we shall assume that 2 > 3  and denote by Jg(Fg(2))~S~(Fg(2)) 
the monoidal transformation along the boundary. The monoidal transforma- 
tion is an isomorphism over Fg(2)\~g. We shall determine the fiber of 
~'(Fg(2))~Ae(Fg(2)) over the image point of a point t o of ~go for g o > g - 2 .  
This can be done by the argument which precedes Theorem 2. 

We shall first consider the case when go = g -  1. In this case, the analytic 
local ring d~ of 6e(Fg(2)) at the image point of to consists of convergent series 
of the form 

Ok(t, z) ~ ~ . 
k=O 

in which ~ = e(w/2). Moreover Ok(t, z) is holomorphic in V x 3 for some'open 
neighborhood V of t o, which does not depend on k, and satisfies the functional 
equation 

Ok(t, z + tin' + m") = Ok(t, z) e ( -  (k/A) (2tm' z + tm'tm')) 

for m', m" = 0 m o d 2 .  Therefore Z--~Ok(t, 2Z) is what is known classically as a 
"theta-function of order 2k2". On the other hand, the ideal J consists of con- 
vergent series which start from k = 1. Therefore, the fiber of ~'(Fg(2)) over the 
image point of to is obtained as the image of 

z-- , (Ol( to,  z)) ,  

in which we take a suitable base over C of the vector space of theta-functions 
corresponding to k = 1. For  instance, if we denote by O,(t, z) the classical theta- 
function of characteristic n (cf. 9), the following (22) ~° theta-functions 

z ~ 0(~') (22t o, 2z) 22n' = 0 mod 1 

form such base. At any rate, the fiber is an abelian variety which is complex- 
analytically isomorphic to the complex torus 

T~o(to) = Cgo/(to lgo) (,tZ) ~ °  

with go = g - 1. 
We shall next consider the case when go = g -  2. We choose a base 

(O,~o(t o, z)) over C oftheta-functions belonging to a o . Also, for (ij) = (12), (13), (23), 
we choose a base (O~,~(t o, z)) over C of theta-funcfions belonging to a O. Then, 
using the notation of the previous section, a part of the fiber of ~(Fg(2))~  
~6°(rg(2)) over the image point of t o has a projective embedding of the form 

(z, ~o)~(Ooo(tO, z), 0~,~(to, z)(~o)~j). 
The point Go is the limit of the point ~ when Im(w)~ oo with the normal co- 
ordinates of Im(w) bounded above. Therefore Go is a point of C 3 such that the 
product of any two of its coordinates is zero. Consequently, the point ~o is on 
the union, say A, of the three coordinate axes in C 3, and every point of A 
can be obtained in this way. Therefore, the part of the fiber we are talking about 
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is an extension by A of an abelian variety, which is complex-analytically iso- 
morphic to T,o(to) 2 with go = g -  2. Moreover, the entire fiber of .~'(Fg(2))~ 
--. Y'(F~(2)) over the image point of to consists of a certain number of its copies 
pieced together in a suitable manner. These copies are obtained by applying 
the following transformation (to, z, w)--,(to, zfv, vwtv) with v in GL(2, Z). 
We know that we get the original part if v is contained in GL(2, Z) (2). We shall 
examine how the original part and its neighboring copies are pieced together. 
We will have to use certain information about  the cone C and its neighboring 
cones. In order to obtain such information, we shall employ the well-known 
correspondence between the Cayley model and the Poincar6 model. 

If y is an interior point of $9 +, its inverse y -  1 is also an interior point of 
~)+. We shall denote by ~ the root with positive imaginary part of the associated 
.binary quadratic form. Since we have 

y-1 = (1/det(y)) (_Y2y12 -Y12~,yl ] 

the root of y2~ 2 - 2y12( + Yl = 0 is given by 

( = (Y12 + ( -  1) ~r det(y)½)/y2 • 

We say that ( is obtained from y. It is clear that the correspondence y ~ (  
gives rise to a homeomorphism of the space of rays R + y  to the ordinary 
upper-half plane ~1. 

Lemma i t .  The image of the interior of the central cone C under y - , (  
is the interior of the non-euclidean triangle defined by - 1 __< Re(0  _~ 0, I( + ½1 >-- ½. 
Moreover, the set of  limit points of ~ for y - ,  oo with a finite limit for YI2 is the 
union (-- 1)½R+ u go. 

Proof. We have Re(() = Y12/Y2, hence - 1 < Re(0  < 0. Since J( +½12 - (½)2 
= (Yl + YI2)/Y2, we have I( + ½{ > ½. Conversely, if ~ satisfies these inequalities, 
the above two equations in y~ 2/Y2 and Y~/Y2 c a n  be solved, and we get an interior 
point of C. This proves the first part. The second part is also straightforward. 

Suppose that v is an element of  GL(2, R). Then, for ( in 61,  we put 
v'(=(v1~(+v12)(v21(+v22) -~. If v is contained in SL(2 ,R)=Sp(1 ,R) ,  
this definition becomes a special case of the action of Sp(y, R) on ~e. At any 
rate, if ( is obtained from y, the point obtained from v f v  is v. ( or its complex 
conjugate according as det(v) is positive or negative. Also, if v is contained in 
GL(2, Z), we shall denote by v. ~ the image point ofvwtv under w- ,  ~. 

Before we state and prove the next lemma, we shall introduce two finite 
subgroups of GL(2, Z) /± 15. The first one is ± ~te, + ~ for g~ = 2, and it consists of 

If ± v is one of them, as v.  ~ we respectively get 

(~,~, ~1++ ~23), (~,3, ~23, ~12), 

+(_'1 I)  

('~2 3, '~13, '~12). 
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The second one is the following four group 

+ 1 2 , +  (_01 10) ,  + ( ~  10),  +-( -10 01). 

If + v is one of them, as v" ~ we respectively get 

(~12, ~13, ~23), (1/~2, (~2) 2 ~23, (~2) 2 ~3) 
(~2, ~23, ~1~), (1/~2, (~12) 2 ~3,  (~12) 2 ~23). 

At any rate, we shall refer to these groups as  D 6 and D+ with their elements 
ordered as above. 

Lemma t2. Suppose that a sequence with a typical term ~ is given in ((2*) 3, 
i.e., in C 3 minus the three coordinate planes. Then ~--,(rl, O, O) and v " ~ ~(~I', O, O) 
with rl, r I' ~ O, oo are compatible i f  and only i f  + v is an element o f  D+ ,and if  
rf =rl, 1/~l, rl, 1/rl respectively. Similarly ~ ~ 0  and v.  ~--,(r/',0,0) with rl' @ ov 
are compatible i f  and only i f  + v is an element o f  D 6 and i f  rf = O. 

Proof. Since the if-part is clear by our previous observation, we shall prove 
the only if-part. Suppose that ~ ~ (r/, 0, 0) and v. ~ ~ (r/', 0, 0) with P/, ~/' ~ 0, 
are compatible. If we consider the absolute values of the coe~cients  of ~ and 
v. ~, we get y, vytt)--+O0 with finite limites for Y~2 and (0ytv)t2. Therefore, 
passing to the Poincar6 model, we get two sequences with typical terms (, v" ( 
both converging to points of (-1)+rR+uoo. This follows from Lemma 11. 
Since we can modify both sequences by the elements of D+, we can assume from 
the beginning that v is an element of SL(2, Z). By the same reason, we can assume 
that they converge to some points of the imaginary axis above or equal to 
( -  1) ½ and compactified by ~ .  Then + v is the first, or the second element of D+. 
This proves the first part. We shall pass to the second part. Again, the sequences 

~ 0 and v. ~-~ (r/', 0, 0) with +7' + oo give rise to two sequences with typical 
terms (, v.  ( both converging to some points of the non-euclidean triangle of 
Lemma 1. Actually, the first sequence is contained in the triangle although 
the second sequence may not be. At any rate, since we can modify the first 
sequence by the elements of D 6, we can assume from the beginning that v 
is an element of SL(2,  Z). By the same reason, we can assume that ( converges 
to the part of the triangle defined by - 1  < Re(0_<0, I~l _>-1, I (+  11-> 1. We 
observe that this is a "fundamental domain" of SL(2, Z) =/'1(1) operating on 
~ t .  Moreover, the following seven transformations are the only ones which 
will transform this fundamental domain to neighboring fundamental domains 

~ ,  ~ - 1, - 1 - 1/(1 + 0,  - 1 - 1 / ( , -  1/(1 + 0,  - 1/(, ( + 1. 

Therefore, the transformation ~ v .  ~ has to be one of them. We note that 
~--. ~, - 1 - 1/(, or - 1/(1 + ~) is precisely the transformation ~ v "  ~, in which 
_ v is the first, the second or the third element of D e. On the other hand, if 

( ~  v. ~ corresponds to one of the remaining four transformations, we respectively 
have (v.~)23 = 1/~12 ~ 00, (v '02s  = 1/~23 -~ 00, (v.0~2 = 1/~2 ~ 00, 
or (v. ~)~2 = 1 /~2~00 .  Therefore, they are not permissible. This completes 
the proof. 
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We shall, now, go back to the problem we had before. We shall denote by (z) 
the point of the complex torus Tg ° (t0) 2 with z as a representative in 3. Suppose 
that an element v of GL(2, Z) transforms the original part of the fiber to a neigh- 
boring copy. Then there exists a sequence in (C*) 3 with a typical term 4 such 
that 4 and v- 4 converge to some points of A. Lemma 12 gives a complete list 
of such +_ v. For instance, the second element of D4 will map the part of the 
412-axis in the closed unit disc to the part of the 412-axis outside the unit disc. 
In this way, we get the entire complex projective line P1 (C), or the Riemann 
sphere, along the 412-axis. Since D6 operates transitively on the three coordinate 
axes, we can conclude that the entire fiber is an extension of the abelian variety 
complex-analytically isomorphic to Too(to) 2 by a reducible rational variety 
which is a union of a certain number of P1 (C). Since we know that O4GL(2, Z) (2) 
is the stabilizer of PI(C) in GL(2, Z) and since GL(2, Z) operates transitively 
on the set of the projective lines, we see that this number is the corresponding 
index, i.e., it is 

(1/4) [SL(2, Z): SL(2, Z) (2)] = (1/4) 29 1-I (t - p-2). 

Moreover, the way these projective lines meet is exactly like the three coordinate 
axes in the 4-space meet at the origin. Since we know that D6GL(2, Z)(2) 
is the stabilizer of the origin in GL(2, Z) and since GL(2, Z) operates transitively 
on the set of the origins, we see that the number of such points is the correspond- 
ing index, i.e., it is 

(1/6) [SL(2, Z) : SL(2, Z)(2)] = (1/6) 231-I (1 - p-2). 

Now, if we fix not only the image point of to but also a point in the first factor 
of the product Too(to) 2, the fiber will become an extension of T0o(to) by a re- 
ducible rational variety which consists of 2 projective lines meeting like edges 
of an 2-gon. In fact, under this restriction, the group GL(2, Z) from which we 
take v is replacedby its subgroup defined by v~2 = 0. Since the stabilizer in this 
subgroup of the 412-axis consists of the first and the fourth elements of D4, 
we have as many copies of the ¢ 12-axis as there are elements of the form 

(~ ~) kmod2.  

For each k, the corresponding transformation in T~o(to) is (z2)~(z2 +kzO, 
in which z = (z~ z2). Furthermore, for k = 1, the transformation in the 4-space 
is given by 

(¢12, 413, 423)-'I'(I/~13, ¢12(413) 2, (413) 2 423)" 
This transforms the 41 a-axis to the 412-axis with the coordinate transformation 
rl--, 1/q accompanied. Therefore, if we take 2 copies of the extension of Tao(to) by 
P:(C) determined by zl and identify (z2) × ((3) in the k-th copy with (z2 + Zx)× (c~) 
in the (k + 1)-th copy for k rood2, we get the fiber in question. This kind of 
varieties appeared, at least in the case 0o=0, in the works of KODAIRA [11] 
and N/~RON [13]. 
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We can also discuss the case when go = g - 3. We can show, for instance, that 
the fiber of J/(Fg(2))~Se(Fa(2) ) over the image point of t o is an extension of 
an abelian variety complex-analytically isomorphic to the complex torus 
Tgo(t0) 3 by a reducible rational variety which is a union of 

(1/24) 2" I-I (1 - p -  2) (1 - p -  3) 
pig 

copies of the monoidal transform of P1 (C) 3 along 

(0, 0, ~)u(0, ~, 0)u(~, 0, 0)u(~, ~,  ~) .  

Therefore, if ~ 12 denotes the coordinate of the first factor of the product P1 (C) 3, 
the fiber of this monoidal transform over ~12 is PI(C) 2 in general. However, 
over ¢12=0,  the fiber becomes the monoidal transform of PI(C) 2 along 
(0, ~ ) u  (~,  0). This fiber contains six exceptional curves of the first kind meeting 
like edges of a hexagon. We shall probably examine the combinatorial schema 
of the entire fiber on some other occasion. We shall only state the results for 
91 = 1, 2 in the following theorem: 

Theorem 3. The fiber of ,/t'(Fo(2))~Sg(Fg(2)) over the imaoe point of(to) , 
in ~9o is an abelian variety complex-analytically isomorphic to the complex 
torus Tgo(to), or simply the abelian variety Tgo(to) , for go = g -  1, and an extension 
of the abelian variety Tgo(to) 2 for 90 = g - 2  by a reducible rational variety 
composed of 

(1/4) 23 1-I (1 _ p - 2 )  

projective lines P1 (C) meetin 9 three at each one of the 

(1/6) 23 1--[ (1 _ p - Z )  
pla 

points just like three coordinate axes in C 3. Moreover, the combinatorial schema 
of the reducible variety is like edoes of a tetrahedron for 2 = 3, a cube for 2 = 4, 
a dodecahedron for 2 = 5 and of a polyhedral decomposition of the Riemann 
surface associated with the elliptic modular function field of level 2 in 

(1/2) 22 1--I (1 - p -  2) 
pla 

2-gons for 2 > 3. 
We remark also that, if we consider the irreducible part of JC(Fg(2))~ 

~5~(Fg(2)) lying over the image of ~(/'~_ 1(,~)) by ~*, i.e., if we consider the 
so-called proper transform of ~* 5a(Fg_ 1(2)) under the monoidal transforma- 
tion, we get a fiber system of abelian varieties complex-analytically isomorphic 
to Tg_ a(t) for t in ~g_ 1 and their limit varieties. Furthermore, if we put 

(,o 
t ~ tZ 1 Wl 

with to in ~g-2  and use ¢12, ~13, ¢23 as before for Oo = 0 - 2 ,  we have ¢23 = 0  
and we see that the abelian variety degenerates for Ira(w0--, + ~ to the 2-gon 
with the ~ 12-axis and the ¢ x 3 -axis as two of its edges. This shows that the faces 
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of the polyhedral decomposition stated in Theorem 3 correspond to distinct 
conjugates of ~*~(Fg_ 1(2)) passing through the image point of t o. 

5. The blowing up ~(F)- - ,  Ae(F) for g :  2, 3 

We shall consider the special case 0 -< 3 (excluding the trivial case g = 1). 
In this case, the monoidal transform .~'(Fg(2)) of ~(Fe(2)) is non-singular by 
Theorem 2. Furthermore, if q is a positive integer, we have a morphism 
.4l(Fg(qA))--,.Jl(Fg(2)), which is a covering, such that the monoidal trans- 
formation commutes with this morphism and with the known morphism 
.gP(Fg(qA))--,~(Fg(A)). In fact, if we take the product of the morphisms 
.4f(Fe(qA))-,b"(Fg(qA)), ~(Fg(qA))-,~(Fg(2)) and the birational transforma- 
tion ~(Fg(2))--,.W(Fg(2)) in this order, we got a rational transformation 
.~(Fg(q2))-.,.~(Fg(2)). Moreover, the information obtained in Section 3 about 
analytic local rings of the monoidal transforms show clearly that this rational 
transformation is a complex-analytic morphism, and hence it is an algebraic 
morphism. We shall show that this morphism is a covering. We know that 
every point of ~¢¢(Fg(2)) is conjugate to a point 09 such that the analytic local 
ring ¢9 of ~W(Fg(2)) at co is the ring of convergent power-series in t - to, z - zo, 

- ~o with coefficients in C. Moreover, the analytic local ring of ./¢(Fg(q2)) 
at any point lying over o9 is obtained by adjoining (~i) ~/~ to & Therefore, if 
we put N=(½)gi(g~ + 1), the morphism J[(Fa(q2))--,~Ct(Fg(2)) is a covering, 
and it is locally abelian of type (q, q, .... q) such that the branch locus locally 
looks like the union of a certain number of coordinate hyperplanes in C N. 
We note that this type of ramifications is the simplest we can expect. 

We shall now define a normal projective variety ~ ( F )  for every subgroup F 
of Sp(g, R) in the commensurability class of Sp(g, Z). We take a subgroup 
F' of Fc~Fs(1 ) which is normal of finite index in F. This is certainly possible. 
On the other hand, we know that g'  contains Fg(2) for some large 2, say 2 > 3. 
This is a special case of a recent result by M~r~ic~:E and independently by 
BAss-LAZARD-SmtRE (cf. [ 12 ]). Then we take the quotient variety of ~¢t(Fg(2)) 
by F'/Fg(2) and then its quotient variety by FLY'. If we denote this quotient 
variety by Jr'(13, it is a normal projective variety, and, dearly, it is uniquely 
determined up to an isomorphism by F. Furthermore, we have a morphism 
de(F)--, ~(F),  and this defines a natural transformation of functors ./(--, 6 e. 
In fact, the birational transformation ./((13--, 6e(13 which induces the identity 
o n / ~ g  is at most finitely many valued. Since ~t'(F) is normal, therefore, the 
birational transformation is a morphism. The naturality of ~/(/')--,3a(F) is 
clear. Now the problem is to examine .W(F). In the following theorem, the 
group Fg(2, 24) denotes the subgroup of Fg(2) introduced in (9): 

Theorem 4. The projective variety .,¢¢(13 is almost non-singular and the 
morphism .1((F)-, 6e(13 is a blowing up of 6"(13 which is an isomorphism over 
l ~ g .  Moreover ~¢((Fg(2, 24)) does have singular points and ~¢l(Fg(2, 24))--, 
~Se(Fg(~, 24)) is not a monoidal transformation along the boundary for 2 > 3. 

Proof. Since de(F) has a global non-singular covering, it is almost non- 
singular, On the other hand, the birational transformation ~(13--,,t((F) is 
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finitely many valued in /~  ~g but not on the boundary. Therefore, the morphism 
~ g ( F ) ~ ( F )  is an isomorphism o v e r / ' ~ g ,  and this is the largest open subset 
over which the morphism is an isomorphism. Since ~ ( / ' )  and ~g(F) are 
projective varieties over C, the morphism .At (F) ~ Y (F) is a blowing up 
of ~ ( F )  (6, III, p. 106). This proves the first part. We shall prove the second 
part. In order to use the previously introduced notations without alter- 
ations, we take an even integer 2 at least equal to 6, and put F=Fg((½)A, 2). 
We also take a point to of ~go for go = 0 -  2. Then, we know that t - t o ,  
z - z 0, C - C0 form a set of local parameters of ~¢t(Fg(2)) at the point co 
determined by (t, z ) ~  (to, z0) and by Im(o~)~ 0o with the normal coordinates 
of Im(w) bounded above. This sequence also determines a point oY, say, of 
.~'(F). We shall assume that Co = 0. Then, we see that the stabilizer of o~ in 
F/Fg(2) contains one and only one element different from the identity, and the 
corresponding transformation keeps t - t  o, z - Z o  invariant while changing 
C to -C. Therefore t -  to, z -  z0, (Co) 2 and ~/C+~ for ~ = C12 C13 ~23 form a base 
of the maximal ideal of the analytic local ring of~g(F) at co'. Furthermore none 
of these elements is redundant. Therefore, the Zariski tangent space of Jt'(F) 
at co' is of dimension larger than the dimension of the variety, and hence oY 
is singular on +/#(F). On the other hand, the analytic local ring ~', say, o f ~ ( F )  at 
the image point of to can be considered as a subring of the analytic local ring ~. 
The condition for an element 

E H,(t, z, w) 

of d~ to belong to d~' is that a is not only a half-integer matrix but an integer 
matrix. After this remark, we consider all sequences in ~g of the form (t, z)--, 
--+ (to, Zo) and the normal coordinates of Im(w) tending to - oo satisfying the 
condition Yt2 >Y13, Y23- Then we certainly have C--+0. Moreover, if we take 
O~2(t, z) such that we have O,,2(to, Zo)4=O, the quotient (H,/H,,2)(t,z, w) 
is finite along the sequences for every integral, positive, non-degenerate matrix o'. 
Among these quotients, we find 

(no,v/n~,2) (t, z, w) = (0,,J0,,2) (t, z) (¢t3/C12) (1 + ...) 

for i=  1, 2. Moreover (~13/~12, C23/~12) can approach to any point of the 
product of two copies of a closed unit disc in C provided we take the limit 
Im(w)~ 0o suitably. This implies that the fiber at the image point of to of the 
monoidal transform of 6D(F) along its boundary is of dimension one more than 
the fiber of ~(F)~6e(F) at the image point of to. Therefore ~'(F) is not the 
monoidal transform of 6e(F) along its boundary. This completes the proof. 

We note that the blowing up ~(F)~6a(F) can be analyzed along the quasi 
projective varieties of the form Fo\ ~ao for go = # - 1, contained in the boundary. 
In fact, it is the partial desingularization of S~(F) along the image of Fo\~go, 
provided F operates without fixed points on ~ (cf. i0). We also note that most 
of the groups in the commensurability class of Sp(g, Z) has "undesirable" 
properties stated for Fo(2, 22). We shall not try to give a precise form to this 
statement. 
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We shall examine ~¢/(F~(2)) for 2 = 1, 2. Although a part of the following 
investigations can be carried out also for # = 3, we shall limit ourselves to the 
ease g = 2. We are interested in eg(F2 (2)) for 2 = I, 2, because we know ~(F2(2)) 
explicitly for the same values of 2(8). We keep in mind that they are defined as 
quotient varieties and not as monoidal transforms. We take a point to of 61. 
Since to is not a fixed point of any element of F1(2) different from + 12, the 
analytic local ring ¢ of ~ ( F 2  (2)) at the image point of to consists of convergent 
series of the form 

Ok(t , Z) e(kw/2) . 
k=O 

The coefficient Ok(t , Z) is holomorphic in V × C for some V and Z--~Ok(t , 2Z) 
is a theta-function of order 4k, which is even in the sense it is invariant under 
z ~  - z .  This follows from Theorem 1. Moreover, the ideal ~ consists of con- 
vergent series which start from k = 1. Furthermore, there exists a base (01(t o, z)) 
over C of the vector space of even theta-functions of order four such that each 
O~(t,z) is holomorphic in some V x C and such that the correspondence 
z - ,  (01(t, z)) gives rise to a complex-analytic embedding of the quotient variety 
of Tl( t )  by its involution z--*-z ,  which is PI(C), as a plane curve of order 
two. Therefore, if we take monoidal transform of 2T(F2(2) ) along its boundary 
in the neighborhood of the image point of t o , we get the quotient variety of 
the monoidal transform of 6:(/'2(2) ), for any even 2 at least equal to 3, along 
its boundary in the neighborhood of the image point of t o . In the same way, 
we can conclude that the morphism .At'(F2(1))~ 6e(F2(1)) is a monoidal trans- 
formation in the neighborhood of the image point of to provided to is not a 
fixed point of any element of/'1(1) different from + 12. We shall next consider 
the case when to is a fixed point of an element of F~(1) different from + 12. 
We can assume that to is the fixed point of either t ~ - 1/t or t ~ - 1 - 1/t. 

We shall first consider the case when to is the fixed point of t - - , -  l i t .  
We start from an analytic local ring of 6e(F2(2)) at the image point of to for some 

> 3. Then we take its invariant subring d~', say, with respect to the subgroup 
of the group Pz, introduced in Section 2, consisting of elements M with 
Mo = _ 12. The ring ~' consists of convergent series of the form 

Ok(t, Z) e(kw) , 
k=O 

in which Oh(t, z) is holomorphic in V x C for some Vand 7,"~Ok(t , Z) is an even 
theta-function of order 2k. In this ring, the set of convergent series which 
start from k = 1 forms an ideal f ,  say. Moreover, if we blow up 0 '  with respect 
to J ' ,  we get the quotient variety of.//(F2(2)) by the subgroup of Pz defined by 
Mo = + 12 over some neighborhood of the image point of to in a similar quotient 
variety of ~(F2(2)). In order to obtain ./t'(F2(1)) over some neighborhood of 
the image point of to, we have to take further quotient under the automorphism 
coming from the transformation of the form (t, z, w ) - - , ( -  l / t ,  z/t ,  w - z 2 / t ) .  
Now the analytic local ring tP' is regular. In fact, if we denote by O0(t, z) for 
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i, j = 0, 1 the wellknown elliptic theta-functions, a set of local parameters in 0'  
is given by t - to and any two linear combinations of Oij(t, z) 2 e(w) with co- 
efficients which are holomorphic in some V such that they are linearly inde- 
pendent over C at t = to. We shall try to obtain local parameters from globally 
defined functions. 

We know that, if ~v4, ~v6 denote modular forms of weights 4, 6 and Xlo, X12 
the cusp forms of weights 10, 12 respectively belonging to F2(I ), they are unique 
up to constant factors. We also know that A(F2(1)) (2) coincides with 
C[W4,~o6, Zlo, Z12]- Therefore 6e(F2(1)) is the projective variety associated 
with this graded ring. We have seen also that the constant factors can be 
normalized in some way, and the normalized forms can be expanded into 
Fourier-Jacobi series as follows 

~,4(t, z, w) = ~4(t) + " "  

lp6(t , Z, W) = ~b6(t ) + "'" 

Zlo(t, z, w) = (1/28) (0oo 0ol 01o) (06 01 l(t, Z) 2 e(w) + "'" 

Z12(t, z, w) = (1/283) (0oo 0ol 01o) (04 (000(01° Ooo(t, z) 2 -- 
- Ool(t)l°Ool(t ,  z) 2 - Olo(t) l°Olo(t ,z)2)e(w ) + ..., 

in which both ~ ,  and ~b 6 have 1 as their constant terms as power-series in e(t). 
All these, except for the Fourier-Jacobi series expansions, are in (8). We mention 
also that, in calculating the Fourier-Jacobi series for X12(t, z, w), we used the 
following expression 

Zl2  = (1/217 32) ~ (0,~, 0m~ ... 0.~) 4 , 

in which each 0,1 is a theta-constant of degree two. Also, the product is taken 
over six even characteristics whose sum is zero mod2 and four of which form 
an azygous quadruple, and the summation is extended over forty-five sets of 
such six even characteristics. We note that the coefficients of e(w) in Zlo(t, z, w) 
and X12(t, z, w) are linearly independent as functions of z for every t. This is 
based on the fact that 00000101o does not vanish at any point of 61.  

Now, we recall that qb6(t)2/q~4(t) 3 has a zero of order two at t = to. Therefore 
qb6(t)/4p4(t) 3/2 and t - to differ by a unit in the ring of convergent power-series 
in t - to with coefficients in C. Consequently, if we put 

?/1 = ~/36/(/~4) 3/2' ?/2 = ~10/(~34) 5/2, ?/3 = ~12/(IP4) 3 , 

the analytic local ring ~' becomes the ring of convergent power-series in 
?/1, r/2, ?/3 with coefficients in C. Moreover, the blowing up of dT' with respect 
to J '  is defined by tV [?/3/?/2 ] and d~' [~/2/?/3 ]" We observe that the transforma- 
tion (t, z, w ) ~ ( -  1/t, z/ t ,  w -  z2/t) simply changes the signs ofrh,  ?/2, keeping r/3 
invariant, Therefore, the analytic local ring d~ of 6"(F2(1) ) at the image point 
of to is the ring of convergent power-series in 

(?/1) 2' ?/17/2' (?/2) 2' /~3" 

Moreover, the invariant subrings of t7 [?/J?/2 ] and ~'  [?/2/?/3 ] are respectively 
[711 ?/3/~'12, (?/3/?/2) 2 ] and d~ [?/1 ?/2/?/3, (?/2/?/3) 2 ]" T h e s e  r ings  define the blowing 

17 Math. Ann. 168 
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up of • with respect to the ideal generated by 

(~/2) 2, ~/1 r/2r/3, (~/3) 2, 

and this blowing up describes the morphism ~(F2(1))-,~(F2(1)) over some 
neighborhood of the image point of to. 

In a similar manner, we can describe the morphism .~¢(F2(1))-~A"(F2(1)) 
over some neighborhood of the image point of the fixed point to of t ~ - 1 - 1/t. 
If we put 

(1 = ~ 'J(~6)  2:3, (2 = X10/(~6:/3,  (3 = X12/(~6) 2, 
the analytic local ring t~ of ~(F2(1)) at the image point of to is the ring of 
convergent power-series in 

((1) 3, ((1)2(2'  (1((2) 2 ' ((2) 3 ' (3 

with coefficients in C. Moreover, over some neighborhood of the image 
point of t o, the morphism .4((F2(1))--,$e(F2(1)) is described as the blowing up 
of • with respect to the ideal generated by 

((2) 3, (1(~2)2(3, ((1)2~2(~3) 2, ((3) 3 . 

This determines the morphism .,/((F2(,~))--,A:(F2(~)) for ~=  1, 2 except at the 
image point of ~o and at its conjugates. 

We shall denote ~o symbolically by ~ .  Then the morphism J/f (F2(2))-+ 
--+ :(F2(2)) over some neighborhood of the image point of oo looks almost the 
same as in the case of higher levels. It is a monoidal transformation locally 
around the image point of oo and the fiber over the image point of oo consists 
of three projective lines PI(C) meeting at one point just like three coordinate 
axes in C 3. In fact, if we put 

~ = e ( -  wo/2 ) (ij3 = (12), (13), (23) 

we have 

Hoo(w) = ~(1 +'"), H~,,,(w) = (~o(l +'"), 

provided Ira(w) is very large with the normal coordinates of Ira(w) bounded 
above. The rest is the same as in the case of higher levels. 

We shall finally consider the morphism ~K(F2(1))-*~(F2(1)) over some 
neighborhood of the image point of ~ .  The result is that it is locally monoidal 
along the boundary. In the following, we shall give our first proof for this 
result. We put 

tl  = IP6/0~)4) 3/2' t2 = ZlO/(lP4) 5/2, f3 ~--- Z12/(lP4) 3" 

Then the analytic local ring of ~9°(F2(1)) at the image point of oo is 
C ( ( t l -  1, t2, t3)), which means the ring of convergent power-series in t l -  1, 
t2, t3 with coefficients in C. Moreover, the ideal of the boundary is generated 
by t2, t3. Therefore, the monoidal transformation is defined by the two rings 
C<(t t -  1, t2, t3> > [t3/t2] and C ( ( t l -  1, t2, t3) ) [t2/t3 ]. We shall determine 
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the integral closures of these rings in the field of fractions of the analytic local 
ring 6 of SO(F2(2)) at the image point of oo. In order to state the result, we intro- 
duce the following functions 

X 1 =(0010001000/0110000000) 2 X2=(Olo0001100/O010000000) 2 

x3 = (011oo 00100/01000 00000) 2 • 

Then the result can be stated as follows: 
Lemma t3. The integral closure of  C( . , t l -  1, t2, 13)) [t3/t2] in the field 

of  fractions of 0 is 

0 [x 1, x 2, x 3, 1/1(1 -- Xl), 1/(t -- x2), 1/(1 -- x3) ] . 

In the spectrum of the integral closure of  C~,t 1 - 1, t z, t3~ [ta/t z ] in the same 
field, there exist six points lying over the point given by the residue homomorphism 
(t 1, t 2, t 3, t2/t3)~(1, O, O, O) over C, and the corresponding analytic local rirrgs 
are given by C (( x i -  1, xj, x~)), C~(I/x+, xj, xk~, in which (i,j, k) is a permutation 
of (1, 2, 3). 

Since the proof of this lemma involves long and technical calculations 
depending on our results in (8), we shall not reproduce it here. We observe that, 
if Im(w) is very large with the normal coordinates of Ira(w) bounded above, 
we have 

Xl =4¢12(1 + ""), X2 =44!3(1 + ""), x3 ---4~23(1 + ""), 

in which the unwritten parts are convergent power-series in Go without constant 
terms. Therefore, we see that, if we take the monoidal transform of S~(F2(1)) 
along the boundary in some neighborhood of the image point of 0% the part of 
~/(F2(2)) over some neighborhood of the image point of Qo in SO(F2(2)) is a 
covering of the monoidal transform. Since the processes of taking Galois 
coverings and taking quotient varieties by finite groups are the inverses of 
each other, we can conclude that the morphism ,~¢/(F2(1))--,S~(F2(1)) is the 
monoidal transformation of S~(F2(1)) along its boundary in some neigh- 
borhood of the image point of oo. We shall summarize our results in the 
following way: 

Theorem5. The blowing up .//(F2(2))--,6P(F2(2)) is the monoidal trans- 
formation of  S~(F2(2)) along its boundary. Moreover ~W(F2(2)) is non-singular 
and the fiber over the image point of  go consists of three projective lines PI(C) 
meeting just like three axes in C a. The blowing up ~¢t'(F2(1))--*Sa(F2(1)) is a 
monoidal transformation of 5~(F2(1)) along its boundary except at the two singular 
points of 6e(F2(1)) on the boundary. The sheaf of  ideals with respect to which 
this blowing up is defined is given "homogeneously" by 

(Zig, X12P 
in general 

((~10)2, lp6 Xl0 ~12, (X12)2) 3 at lp6 = Xl0------ X12 ----- 0 

((~10) 3, /p4(~10)2 ~12, (~04)2 ~10(~12) 2, (~12)3) 2 a t  IP4 = ~10 = ~12 ~-" 0 .  

We note that ~t'(F2(1)) appeared in SATAKE'S first paper on compactifica- 
tions as a V-manifold (15). It was shown later by BAILY that .//(F2(1)) is a 

17" 
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normal projective variety (cf. 16, p. 259; Notice also an incorrect statement on 
p. 260 that 6a(F2(1)) is not a V-manifold), and a problem was left open as to 
whether .gc(Fz(1)) is a monoidal  transform of re(F2(1) ) along its boundary 
or not (cf. 1, p. 363). Theorem 5 gives this blowing up explicitly. It also gives 
the structure of J//(F2(1)) because the structure of Se(F2(1)) is known by our 
earlier work. 
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