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§ 1. Introduction

In the paper “Local uniformization on algebraic surfaces over ground
fields of characteristic p = 0", Annals of Math., vol. 63 (1956), which will
be cited as U, we proved that any valuation of a two dimensional algebraic
function field L over an algebraically closed ground field k of characteristic
p == 0 can be uniformized (and hence L/k has a nonsingular projective model)?).
The delicate part of this proof was Theorem 4 of U which asserted the follow-
ing.

Theorem (1.1). Let K be a two dimensional algebraic function field over an
algebraically closed ground field k of characteristic p == 0, let K* be a Galois
extension of K of degree p, and let w be a rational nondiscrete valuation of K[k
having only one extension w* to K*. Assume that w con be uniformized. Then
w* can be uniformized.

The proof of (1.1) given in U was rather complicated. In the present paper
{which is meant to replace §§ 7, 8, 9 of U) we give a simplified version of this
proof?). As in U, the main part of the proof of (1.1) consists of reducing the
multiplicity of a p-fold singularity; this part is formulated as Theorem (2.2)
in § 2 and its proof is given in § 5. In § 3 we deduce (1.1) from (2.2). For the
purpose of (1.1) we need to prove (2.2) only for rational nondiscrete valuations
{which was the only case considered in U). Owing to the simplification in the
proof we have been able to prove (2.2) for irrational valuations as well. We have
included this because it might throw some light on the problem of “resolution
of embedded surface”. As in U, along with (2.2) we consider the “pure insepa-
rable case’; this is stated as Theorem (2.1} in § 2 and its proof is given in § 4.

Given a local domain (R, M) and a valuation w of a field containing R,
we say that w has center in R if R, >R and M, N R = M where R, is the
valuation ring of w and M, is the maximal ideal in R,

* This work was supported by the National Science Foundation under NSF-G 25225.

1) This was generalized to perfect £ in the subsequent paper ““On the field of definition
of a nonsingular birational transform of an algebraic surface”, Annals of Math., vol. 65
(1957), pp. 268—281. Erratum: on page 279 line 21 of this paper, replace “‘any finite
algebraic” by “any’.

%} For corrections to §1 to §6 of U see Annals of Math., vol. 78 (1963) pp. 202—203.

Although §§ 7, 8, 9 of U contain many misprints we need not give errata to them.
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Let (R, M) be a local ring. For any r € E we set:
ordgpr = maxq suchthat r ¢ M.

For any polynomial f(Z) = }’ r,Z? in an indeterminate Z with coefficients r,
H
in R we seb:

ordgf(Z) = min (i + ordgr,) .
t

Let B be an integral domain, let z and y be nonzero elements in R, and let
}(Z) € R[Z] be monic of degree n in Z. An element f' (Z) € R[Z] is said to be an
[R, x, yl-translate of f(Z) if there exist elements r and ¢ in R where f equals a
unit in R times a monomial in (2, y), i.e., { = da*y? where » and v are non-
negative integers and 4 is a umit in R, such that

f(Zy=t"fRZ +r).

Note that f'(Z) is then monic of degree n in Z.

Let p be a prime number. For an integer ¢ we write a = 0(p) to mean a
is divisible by p, and we write a = 0(p) to mean a is not divisible by p. For
integers @ and b we write (s, b) == 0(p) to mean a= 0(p) and b= 0(p), and
we write (a, b) == 0(p) to mean either a == 0(p) or b = 0(p).

From §7 of U we take over Lemmas 12, 13, 14 and Proposition 5. For
convenience we restate the last proposition thus.

(1.2). Let R be a two dimensional local integral domain such that the comple-
tion R of R is also an integral domain. Let K and K be the quotient fields of R
and R respectively. Let w be a real nondiscrete valuation of K having center in R.
Then w has a unique extension i to K having center in B. Furthermore i has
the same residue field and the same value group as w. In particular @ is real.

In Proposition b of U we have proved this under the assumption that B
is algebraic (which is the only case needed for the proof of (1.1)). This assump-
tion was used only in Lemma 14 of U which asserted that: if ¥ is any nonreal
valuation of K having center in R then  is discrete of rank two. By a result
which we have proved elsewhere?) it follows that Lemma 14 of U holds without
assuming R to be algebraic. From (1.2) we deduce

{1.3). Let (R, M) be a two dimensional regular local ring with quotient field K.
Let (z, y) be a basis of M and let w be a valuation of K having center in R. Assume
that there exist elemenis 1,1y ... tn B and positive integers q{l), q(2), ...

!
such that w (y -2 r,-x‘) > g{n) w(x) for every positive integer n and g{(n)—>co as
i=1

7~ oo, Then w is discrete (of rank one or two ).

Proof. Let R be the completion of R and let K be the quotient field of E.
Let

o n 0
4
Z‘~=?/*2"ew‘, zn“—"y“zriw‘: 2y = Z ot
o1 =1 i=n+1

%) Bee Theorem 1 on p. 330 of “‘On the valuations centered in a local domain”, Am.
J. Math., vol. 78 (1956).
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where z and z, are regarded as elements in R. Then z < 0 and z = z, — 2,,
for every positive integer n. Suppose if possible that w is not discrete. Then w
is real nondiscrete®) and hence by (1.2) w has a unique extension @ to X having
center in R, and i has the same value group as w. By assumption @(z,) >
> g(n) @(z); also an+! divides 2, in R and hence #(z) = w(@"+!) > n ¥ (x).
Since z = 2z, — 2, we get that @ (2) > min(n, q(n)) @ (z) for every positive integer
n. This is a contradiction because @ is real and min(n, ¢(n)) > co ag n— oo,

§ 2. Quadratic transforms

Let (R, M) be a two dimensional regular local ring with quotient field K.
Assume that K is of characteristic p 4 0, E/M is algebraically closed, and R
contains a subfield £ which maps (isomorphically) onto R/M under the natural
homomorphism of R onto R/M. Let w be a real nondiscrete valuation of K
having center in B. It follows that the residue field of w coincides with the residue
field of R, i.e., k maps (isomorphically) onto R,/M,, under the natural homo-
morphism of B, onto R,/M,3). Let (x, y) be a basis of M.

A basis (2, y,) of M is said to be canonically obtained from (z, y) if (xy, ¥,)
= (z,3) or (y, 2).

Let (R,, M,) be the immediate quadratic transform of R along w?%). If
w(y) = w(x) then let 2’ = x and ¥’ = (y/x) — « where « is the unique element
in k such that w(y’) > 0; if w(x) = w(y) then let ¥’ = y and 2" = (xfy) — 8
where § is the unique element in k such that w(z'’) > 0. In the first case (z', y')
8 a basis of M, and in the second case (z”, ') is a basis of M,. A basis (z,, ¥;)
of M, is said to be canonically obtained from (2, y) if (2, 3) = (#',¥') or
', «') in the first case and {z, y,) = (&', ¥’} or (¥"’, 2"’} in the second case.

If (R, My) = (B, M) and (R;, M,) is the immediate quadratic transform
of (B;_y, M;_,)along wiori=1,...,n then we say that (R,, M,) is the n'*
quadratic transform of R along w. If (x,, y,) = (¢, y) or (g, z) and {x;, ¥;) Is &
basis of M, which is canonically obtained from (;_,,y,_,) fori=1,...,n
then we say that the basis (z,, y,) of M, is canonically obtained from (x, y).
Note that if f_,(Z) is a monic polynomial in Z with coefficients in R and
f:(Z) is an [R,, x,, y,)-translate of f,_,(Z) for ¢ =0, 1, ..., n then },(Z) is an
[R,, 2, y,]-translate of f_, (Z).

A local ring B* is said to be a quadratic transform of R along w if R* is
an »'" quadratic transform of R along w for some nonnegative integer n.

Given a monic polynomial f(Z) of degree p in Z with coefficients in R,
we say that the system {f, R, x, y} can be resolved (relative to w) if there exists
a quadratic tranform (R*, M*) of R along w, a basis (2*, y*) of M* which is
canonically obtained from (z, y), and an [R*, a*, y*]-translate f*(Z) of f({Z)
such that 0 < ordp. f*(Z) < p. From the above observation about translates
we get the following: Let (B*, M*) be a quadratic transform of E along w,
let (2*, y*) be a basis of M* which is canonically obtained {from (z, y), and let
f*(Z) be an [R*, z*, y*]-translate of f(Z); if the system {f*, R*, z*, y*} can

%) For the definition and properties of quadratic transforms see § 2 of the paper cited
in Footnote 3.
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be resolved then the system {f, R, z, y} can be resolved. This remark will
tacitly be used in § 4 and § 5.

With this terminology, Theorems 5 und 6 of §7 of U can be stated as
follows.

Theorem (2.1). Let f(Z) = Z? + F where F ¢ R is such that the completion
of R does not contain FY?, Then {f, R, x, y} can be resolved.

Theorem (2.2). Let f(Z) = Z? + (x*y®)? 1 6Z + F where § is a unit in R,
u and v are nonnegative infegers, and F € R. Then {f, R, x, y} can be resolved?).

The following lemmas will be used in the proofs of the above theorems which
will be given in § 4 and § 5 respectively.

(2.3). Let R, be the immediate quadratic transform of R along w. If w(y) =
= w(x)and F ¢ M9 then F € x1R,.
Proof. F € M4 implies that F = 2 F,xty with F;; € R. Since w(y) =

Pl
w(x) we have that y/x € R,. Hence iF = g2F* where F* = ) F,;(yfx)’ € R,.
(2 4). Suppose w(y) = w(x). Let y, = (y/x) — oy with o, €k such that
w(y,) > 0. Suppose w(y,) = w(x). Let y, = (y,/x) — oy with oy, €k such that
w(yy) > 0. So on. This cannot happen indefinitely, i.e., for some n we must have
w(ga) < w(z).
Proof. Otherwise there would exist elements a, &, ... in k such that

n
w ( 2oy x’) > n w(x) for every positive integer n, and by (1.3) this would
i=1

imply that w is discrete.

(2.5). Let R, be the immediate quadratic transform of R along w. Assume that
w(y) = w(x). Let v, =z and y, = (yfx) — o« with a €k such that w(y,) > 0.
For 0+ F' ¢ R let q be the greatest integer such that qp < ordp F'. Let F,
=P F' ¢ R,. Let

=2F,(i’j) xiyj and FIZZFl(i,j) x;y’l

be the expansions of F' and F, in the completions k[[x, y1] and k[[x,, y;]] of R
and R, respectively (where F'(i,5) and F\ (i, ) are elements in k). Assume that
there exist infegers a, b such that: F'(a,b) + 0, and F'(i,7) = 0 for all (¢,j)=
=0(p) with i +j < a + b. Then there exist integers a,, b, such that: a, < p,
bysa+b, (a,b)%x0(p), Fila,b)=+=0, and Fi(2,9) =0 for all ¢ < a,. If
F'(i,7) =0 for all i < a then we can choose a,, b, so that furthermore b, < b.

Proof. Let d = ordgF'. Let @y = d — ¢p. Then a, < p. Since F'(a,b) 50
we get d < a + b. Let b, be the greatest integer such that F'(d — by, b)) == 0.
Then b, < d < a -+ b. Since F' (3, j) = 0 for all (4,§) = 0(p) with¢ +j =< a + b,
we must have (d — b,, b,) == 0(p). Hence (a,, b,) == 0(p). If F'(i,§) = 0 for all
it<a,thena < d—b,ie,a+b =<d, and hencea + b, < a -+ b,ie, b < b
Let

F=F —~ ) F@,j)ay.
i+ti=d

%) In Theorem 8 of U we proved (2.2) only when w is rational. This is the only case

needed in the proof of (1.1).
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Then
Fi=ai0 =i Pyt X F(60) o+ o
Now F ¢ Mé+! and hence by (2.3) "
z P F Captl R, .
Therefore
D F G iy, =ap Y F(0,9) (- a)
isa it+i=d

Consequently F, (¢,7) = 0 for all { < a;, and
Fia, b)=F'(d—b,b)F0.

§ 3. Proof of Theorem (1.1)

Using (2.2) we shall now prove (1.1). By definition, w can be uniformized
means there exists a projective model of K/k on which the center of w is at
a simple point. Let R’ be the quotient ring of this point. Since K* is a Galois
extension of K of degree p, there exists a primitive element 2’ of K* over K
such that the minimal monic polynomial f'(Z) of 2’ over K is of the form

fZ)y=2r+G?1Z+F, 0+=GcK, F' ¢cK.
Upon multiplying 2z’ by a suitable element in R’’ we can arrange that ¢ and
F’ are in R”. By Proposition 3 of U, there exists a quadratic transform (&', M)
of R along w and a basis (2, y') of M’ such that G equals a unit in R’ times
a monomial in (x’, ')%). By (2.2) there exists a quadratic transform (R, M)
of R’ along w, a basis (2*, y*) of M which is canonically obtained from (', '),
and elements 7 and ¢ in R where ¢ equals a unit in B times a monomial in (z*, y*),
such that 0 < ordgpf*(Z).< p where f*(Z)=t?f(tZ + r) ¢ R[Z]. Let
z* = (2’ — r)/t. Then z* is a primitive element of K* over K, f*(Z) is the minimal
monic polynomial of 2* over K, and
*(Z) =27+ Gr-1Z 4 F*

where F* ¢ R, and G equals a unit in R times a monomial in (z*, y*). Since
w* is the only extension of w to K*, there is only one local ring (R*, M*)
in K* lying above R. Let (R*, M*) and (R, M) be the completions of R* and R
respectively and let E* and E be the quotient fields of R* and R respectively,
where we are regarding £ and K* to be subfields of £*. Since there is only
one local ring in K* lying above R, by Proposition 1 of U it follows that f*(Z)
is irreducible in R [Z]. If G were a unit in R then f*(Z) would factor modulo M
into coprime factors and then by HENSEL’s lemma, f* (%) would factor in R [Z].
Therefore ¢ is a nonunit in R and hence ordgp(Z? + G?-1Z) = p. Let
n = ordy f*(Z). Since 0 < n < p, we must have ordzgF* = n. Let A*(X, ¥)
be the form of degree # in indeterminates X, ¥ with coefficients in & such that
F* — A*(z*, y*) ¢ Mn+1, Take 6 €k such that A*(1,8)=40. Let z = x*,
y=y*—0da* AX,Y)=A%¥X,Y + 0X). Then (x,y) is a basis of M,
A (X, Y)is aform of degree nin X, Y with coefficients in k, 4 (x, y) = A*(x*,y*),
and 4 (X, 0) =+ 0.

¢} Also see Theorem 2 of the paper cited in Footnote 3.
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Now R == k[[z,y]] and E = k((z,y)). By a theorem of CHEVALLEY?),
k((z, y)) and k(z, y)V/? are linearly disjoint over k{x, y). Since K is a subfield
of E, we get that K and k(x, y)'/® are linearly disjoint over k(z, y), and hence K
is separable over k(z, y). Therefore K* is separable over k(x, ), i.e. (z,y) is a
separating transcendence basis of K*/k, and hence (dx, dy) is a K*-basis of the
vector space W of all simple differentials of K*/k. In particular dz* = a dx +
+ B dy with « and § in K*. Take v € k such that « + 9 3= 0. Let z =2* 4 y.
Then dz = (« + y) dx + B dy and hence (dy, dz) is a K*-basis of W. Therefore
(y, 2) is a separating transcendence basis of K*/k. Also z isa primitive element of
K* over K. Let f(Z) = f*(Z — y«). Then f(Z) is the minimal monic polynomial
of z over K and

fZy=2°+ G Z+ F
where F' — A4 (x, y) € M*+1 and hence
ordpf(Z) = ordpl = n .
Since 4 (X, 0) = 0 and f(2) = 0 we get
an € R* N\ (y,2) B* = (y, 2) R*.
Now (z, y) R* is primary for M* and hence (y, 2) is primary for M*.

Let (8, N) be the quotient ring of %[y, 2] with respect to the maximal
ideal generated by y and 2. Then § is the quotient ring of a simple point on
a projective model of & (y, 2)/k and the restriction of w* to k(y, 2) has centerin S.
Now N R¥ is primary for M* ad hence by Zariskr's “Main Theorem” R*
is a local ring in K* lying above S8). Consequently the completion S=Fk[[y,2]]
of § can be regarded as a subring of B*. Let

Gr-1= Y Q(,7) 2*y’ and F = X F(1,j) x'y
be the respective expansions of G#-! and F in k[[z, y]] where G(s,) and
F (3,7) are elements in k. Let
B(X,Y,Z)=2*+ (2G(,)) XiY)Z + ZF(i,5) Xt Y/ ck[[X, Y,Z]].
Then
B(X,0,0) — AX» ¢ Xn+1[[X]] where 04+ A¢Ek.
Therefore by the Weierstrass preparation theorem
BX, Y,Z)y=0C(X,Y,Z2)D(X,7Y,Z)

where C(X, Y,Z) and D(X, Y, Z) are elements in k[{X, Y, Z]] such that
C(X, Y, Z) is a monic polynomial of degree n in X with coefficients in k[{¥,Z1]
and D(0, 0, 0) % 0. Then

O=f(2) = -B(x? Y, Z)== C(x,y,z)D(x»?/’z)

and D(z,9,2) is a unit in E* Therefore C(x,y,2)=0. Consequently
[k((y, 2)) (x) : k((y, 2))] < n. Let H be the integral closure of k[[y,2]] in

7} See Proposition 1.5 in: C. CHEVALLEY, ‘‘Some properties of ideals in rings of power
series”, Trans. Am. Math. Soc., vol. 55 (1944), pp. 68—84.
%) See the proof of Proposition 1 of the paper cited in Footnote 1.
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k((y, 2)) (). Then H is a complete local ring and it is a subspace of R*. Also
«¢H and y € H. Therefore R = k[[x,y]]CH and z¢H. Consequently
k((z, 1)) (2) Ck((y, 2)) (x). Now zis a primitive element of K* over K and hence z
is a primitive element of E* over E by Proposition 1 of U. Therefore
E((z, ¥)) (z) = E* and hence k{(y,?2)) {x) = E*. Consequently d(R*:S)
= [E*: k((y. 2))] = n < p. Therefore w* can be uniformized by Corollary 2
on p. 510 of U¥).

§ 4. Proof of Theorem (2.1)
Let
F= ZF(’“?) xi?/j’ F(i,j) €k,

be the expansion of F' in the completion k{{x, y]] of R.

By assumption F ¢ k[{x®, y?]]. Let d be the smallest integer such that
{(a, b) == 0 for some (a, b) == 0(p) with a -+ b = d. Let ¢ be the greatest integer
such that gp < d. Let

r= ) Fpjp*a'y ¢cR,
itise

let F' = F — 2, and let 2 F' (4, §) «*y’ be the expansion of F' in k[[z, y]]. Then
F’(a,b):f:O F'(¢,7) = 0 for all (¢,9)= 0(p) with 2 +j < a + b, and ¢ is the
greatest integer such that ¢gp < ordpF’. Relabel x and y so that w(y) = w(x).
Let #;, = x and y, = (y/x) — o with « € & such that w(y,) > 0. Let R, be the
immediate quadratic transform of R along w. Let F| = 279 F’ and let

F,(3,) «! 5} be the expansion of F, in k[[2,, y,]]. By (2.5) there exist integers
@y, by such that: a, < p, (a,, b;) = 0(p), Fy(ay, b)) &= 0, and F,(i,j) = 0 for all
i < a;. Now

fi2)=a P (@2 — 1) =27 + F,

is an [R,, z;, y,]-translate of f(Z) and hence it is enough to show that {f,, R,,
@, 3;} can be resolved. Upon replacing {f, R, z, y} by {f;, B, 2, 4} it thus
suffices to prove the following.

(4.1). Assume that there exist integers a, b such that: ¢ < p, (a, b) = 0{p),
Fla,b)=+=0, and F(i,§) =0 for all ¢ <a. Then {f, R, x, y} can be resolved.

Proof. Let ¢’ be the greatest integer such that ¢'p < @ + b. Let

r= 2 Flip,jp)?a'y ¢ R,
i+isy
let ' =F — 77, and let X F'(i,) 'y’ be the expansion of F' in k[[z, y]].
Then F’(a, by=F(a,b)+=0, F'(¢,§) = 0 for all ¢ << a, and F'(i,§) = 0 for all
(1,5)=0(p) with 1+7=<a+b. Since a-+b=0, we have F (0,0) =
ie., ordz F' > 0.

We shall prove (4.1) by induction on b. If b =0 then 0 < ordp " <a+ b
= a < p and we are done. Now let b > 0 and assume that (4.1) is true for all
values of b smaller than the given one. Let R, be the immediate quadratic
transform of R along w.

®) This is the only place in the proof of (1.1) where we are using the assumption that w
is rational.
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(I). Suppose w(y) < w(x). Let y, = y and z, = zfy. If ordx ¥’ < p then we
are done. Now assume that F' ¢ M?. Let

W@y =y fpZ —r)=2Z7+ Fy.

Then Fy = y7? F’ € R,. Let X F,(i,j) 2y, be the expansion of F, in k[[x;, 5,]].
Let by=a + b — p. Then b, < b and {(a, b)) == 0(p). Computing in k[[x,, 1]
we get
Fi=yr Y Fjay= X F@j)aigitmr.
itizpiza itizp iza

Therefore F,(a, b)) = F'(a, b) 4 0, and F, (i, ) = 0 for all ¢ < a. Since b, < b,
{tss Ry, 21, 31} can be resolved by the induction hypothesis.

(I1.) Suppose w(y) = w(x), Let x, =2 and g, = (y/r) — « with «Ck
such that w(y,) > 0. Let ¢ be the greatest integer such that gp < ordgpF’. Let

[ilZ) =a P f(@]Z — 1) = 2%+ F,

where Fy = 2797 F' ¢ R,. Let Z'Fy (i,7) %] be the expansion of Fy in k[[x,,y,]].
By (2.5) there exist integers a;, b; such that: a, < p, b, = b, (a;, b)) = 0(p)},
Fi{a;, b)) + 0, and F,(3,9) = 0 for all i < a,. If b, < b then {f,, B,, z,, y;} can
be resolved by the induction hypothesis. So now assume that b, = b.

If w(y,) < w(xz,) then {f,, Ry, @, 4,} can be resolved as in (I) with f,, B, 2., ¥,,
a, replacing f, R, z, y, a. If w(y,) = w(x,) then proceed as in (II) with f;, R;,
x,, Y1, @, replacing f, R, z, y, a. By (2.4) this cannot happen indefinitely.

§ 5. Proot of Theorem (2.2)
Recall that now

f(Z) = Z? + (a*y”)?-16Z + F
where « and v are nonnegative integers, § is a unitin B, and ¥ ¢ B. Let
F=2XF@j)aty, Fj)ck,

be the expansion of F in the completion k{[x, y]] of R. Consider the following
conditions.

A;. There exist integers a,b such that: a +- b <np, Fla,b)+0, and
F(i,5)=01for all (¢,§)=0(p) with ¢ +j < a + b.

B;,. max(u,v) < n.

C,. u> 0 and there exist integers a, b such that: a < p, b < up, (a,b) =
%= 0(p), F(a,b) %0, and F(i,5) = 0 for all ¢ < a.

Let A, (resp.: B,, C,) be the statement that {f, R, z, ¥} can be resolved
if condition A4, (resp.: B, C,) is satisfied. In (5.5, 5.6, 5.7) we shall respectively
prove that foralln = 0: 4, = B,, B,=> C, 4, C, ;1 = 4, 4. Since 4y is never
satisfied, it would follow that B, is true for all n = 0. Then upon taking
n = max(u, v), by B, it would follow that {f, R, z, y} can always be resolved.
The special considerations needed in the proof of (5.5) when w is irrational are
made in (5.2', 5.4', 5.4", 5.4'""); the proof of (2.2) when w is rational does not
depend on (5.2, 5.4', 54", 5.4"").
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In (5.1, 5.2, 5.2, 5.3) we shall consider the existence of suitable [R, z, y]-
translates of f(Z), and there for any & € R by G(i, ) we shall denote the coeffi-
cient of z?y? in the expansion of ¢ in k[[x, y¥]].

(5.1). Assume that uw > 0. For r ¢ R whose existence is asserted below let
F' = f(r).

{5.1.1). Given n there exists r ¢ R such that: F' (0,7} = F (0, ) for all § == 0(p),
and F'(0,7p) = 0 for all j = n.

(5.1.2). Given n there existsr € R such that: F'(1,§) = F(3,9) forall i < p, and
F'(ip,jp) =0 whenever 0 < i < uandj < n.

(6.1.3). There exists r € R such that: F'(i,7) =F{i,§) for all i < p, and
F'(ip, jp) = O whenever i +§{ < u-+vand { > 0.

(6.1.4). There exists r ¢ R such that: F'(1,§) = F(i,§) for all i < p, and
F'(ip, jp) = O whenever i + § < max{(u,v) and i > 0.

(56.1.5). There exists r ¢ R such that: F'{0,§) = F(0,) for all j == 0(p), and
F'(ip,jp) = O whenever ¢ + ;i = max(u, v).

Proof of (5.1.1). Take r= — 23 F(0,jp)i/ry.

®
Proof of (5.1.2). By inductlorjx on m (0 < m < u) we shall find r,, € R such
that for F,, = f(r,,) we have: I, (i,§) = F(i,§) foralli < p, and F,, (i p,jp) = 0
whenever 0 <7 < m and j £ n; it will then suffice to take r == r,,_;. Form = 0
take 7y = 0. Let m > 0 and suppose we have found r, _,. Take

T == Py = 2 Fm 1(mp, 7p)1/pxmyy .
isn

Proof of {(5.1.3). By induction on m (0 < m < u + v) we shall find r,, ¢ B
such that for ¥, = f(r,,} we have: F, (i,§) = F(¢,) for all ¢ < p, and F,, (¢p,jp)
= 0 whenever i + 4 = m and ¢ > 0; it will then suffice to take r =1r,,,_;.
For m = 0 take r; = 0. Let m > 0 and suppose we have found r,,_,. Take

Tm = Tmy ™ 2 Fm——l (ip’?'p)llpmiyj .
id+f=m,i>0

Proof of (5.1.4). If v %= 0 then max{u, ») < « + v and we can apply (5.1.3).
Now suppose v = 0. Then max {(u, v) = u. Taking n = 4 in (5.1.2) we find s € B
such that for F* = f(s) we have: F*(:,7) = F(¢,§) for all ¢ < p, and F*(sp,jp)
=0 whenever 0 <i<wu and § £ u. Since k is algebraically closed, there
exists o € k such that: o? + o + F*(up, 0) ¢ M. Take r = s + az®.

Proof of (5.1.5). Taking » = max{u, v} in (5.1.1) we find s € R such that for
F* = f(s) we have: F*(0,§) = F(0, ) for all § = 0(p), and F*(0, jp) = 0 for all
7 < max (s, v). Let f*(Z) = f(Z + s). Then

¥ (Z) =27 + (x*y*)?13Z + F* .

Hence by (5.1.4) there exists ¢ ¢ R such that for F' = f*(t) we have: F’(i,)
= F*(i,7) for all i < p, and ¥’ (¢p, jp) = 0 whenever i + j < max(u, v) and
©> 0. Take r = s + ¢ and note that F’ = f*(f) = f(r).

{6.2). Assume that u > O and there exist integers a, b such that: a < p, (a,b) =
£0(p), F(a,b)==0, and F(i,§) = 0 for all ¢ < a. Then there exists r ¢ R such



90 SHBREERAM ABHYANKAR:

that for F' = f(r) we have: F'(a, b) == 0, F'{(§,§) = O forall i < a, and ¥’ (¢,§) = 0
for all (i,7) == O(p) with i + § < p max(u, v).

Proof. If @ 5= 0 then apply (5.1.4), and if @ = 0 then apply (5.1.5).

(8.2). Assume that min{u, v) > 0 and there exist integers a,b such that:
a<p, b<2p, (a,b)=0(p), Fla,b)=0, and F(i,j) =0 for all i < a. Then
there exists r ¢ B such that for F' = f(r) we have: F'(a, b) + 0, F' (1, §) = 0 for all
i<a,and F'(5,5) =0 forall 5,§)=0(p) withi +j < a + b.

Proof. By (8.2) there exists s ¢ B such that for F* = f(s) we have:
F*(a, b) 4= 0, F*(1,9) = 0 for all : < a, and F*({p,jp) = 0 whenever i +j =<
= max(u, v).

By assumption @ + b < 3p; hence if max(u,v) = 2 then we may take
r = 3. Again by assumption max(u,v) = 1; also if a =0 then a4 b < 2p;
hence if @ = 0 then we may again take r = s.

We are now left with the case when ¢ 4= 0 and max{«, v) = min(x, v) = 1,
ie., whena > 0 and v = v = 1. Let f*(Z) = f(Z + s). Then

[*(8) = 27 + (zypr-10Z + F*.

Let § be the unique element in k such that § — § € M. Since & is algebraically
closed, there exists o € k such that

19). o + 8o+ F*(p, p) =0
Let r = s -+  where
29, t = axy — F*(2p, 00/Pa2 .
Then
39). F' = f(r) = f*(t) = t* + (xy)? 16t + F*.

By 29 and 3°% we get
F'= F*modz? R
ie.,

F'(5,5) = F*(i,5) forall i<p.

In particular F'(a, b) = F*{a, b) + 0, and F'(i,§) = F*(3,§) = 0 for all : < a.
Since a > 0 we get that (0, 0) = F'(0, p) = F' (0, 2p) = 0. By 19, 2°) and 39
we get

F'= F* — F*(p, p)a?y® — F*(2p, 0)22? — F*(2p, 0)/?§z? +1y?-1 mod M27+1,

Therefore F'(p, p) = F'(2p, 0) = 0, and F'(p, 0) = F*(p, 0) = 0. Thus
F'(ip,jp) = 0 whenever ¢ +j < 2p. Since a+ b < 3p, we conclude that
F' (i, ) = 0 for all (i, )= 0(p) with i +j < a + b.

(5.3). There exists r € R such that for F' = f(r) we have: F'(i,§) = 0 for all
{2, 7)== O(p) with i + § < p max(u, v).

Proof. If max(u, v) = 0 then we can take r € ksuch that:r? + dr + F ¢ M.
If max (u, v) > O then upon relabelling x and y we may assume that « > 0, and
then we can apply (5. 1.5).

(5.4). If u=v=0then {f, R, x, y} can be resolved.
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Proof. By (5.3), {(Z) always has an [R, x, y]-translate
f(Z) =27 + @ y")»-18Z + F' with F' ¢ M.
If u=v=0 then 0 < ordgf (Z) < p and hence {f, R, x, y} can be resolved.
(5.4"). Assume that w(x) and w(y) are rationally independent and v + v = 1.
Then {f, R, x, y} can be resolved.
Proof. Upon relabelling  and y we may assume that

f(Z)=2Zr + yr-18Z + F.
v (5.3}, {(Z) has an [R, z, y]-translate
f{Zy=27 4 y»- 3Z + F' with F ¢M.

Let R, be the immediate quadratic transform of E along w.

(I). Suppose w(y) <w(x). let =y, yy=xfy. If F' ¢ M? then 0 <
< ordpf (Z) < p and we are done. Now assume that F’' ¢ M?. Let f,(Z)
= a7 Pf (2, Z). Then

hZ)y=2?+8Z+ F, with F,¢R,.

Now {f,, R,, #;, ¥} can be resolved by (5.4).

(II). Suppose wiy) > w(x). Let x, = x, y; = y/x. Then w(x,) and w(y,) are
rationally independent. I F' ¢ M? then 0 < ordgpf (Z) < p and we are done.
Now assume that F' ¢ M?. Let f,(Z) = a7?f (x,Z). Then

f((Z) =27 + yp=18Z + F, with F,CR,.

If w(y,) < w(z;) then {f,, By, x,, 3} can be resolved as in (I). If w{y;) > w ()
then proceed as in (IT). This cannot happen indefinitely ; namely, (II) can recur
at most d times where d is the greatest integer such that d < w(y)/w(x)

(5.4""). Assume that w(z) and w(y) are rationally independent, min (u, v) > 0,
and there exist integers a, b such thut: a < p, b < 2p, (@, b) = 0(p), F(a, b) &+ 0,
and F(i,§) = 0 for all ¢ < a. Then {f, R, z, y} can be resolved.

Proof. We shall prove this by induction on b. By (5.2"), f(Z) has an [B,x,y]}-
translate

2y =27 4 (xry*y»-16Z + F'
such that for the expansion 3 F’ (3, j) 2ty of F' in k[, y]] we have: F’ (a,b) +0,
F'(1,9) = 0forall i < a,and F'(¢,7) = 0 for all (4,9) = 0(p) withe +j < a + b.
If b = 0 then 0 < ordgpf'(Z) < a + b < p and hence {f, R, x, y} can be resolved.
Now let b > 0 and assume that (5.4"') is true for all values of b smaller than the
given one. Let R, be the immediate quadratic transform of R along w.

(I). Suppose w(y) < wix). Let y, =y, x; = zfy. Then w(x,) and w(y,) are
rationally independent. If F' ¢ M? then 0 < ordyf'(Z) < p and we are done.
Now assume that F' ¢ M?. Thena + b = p. Let by =a + b — p. Then {(a, b,) =
% 0(p) and b; < b. Let f,(Z) = y7? f (4, Z). Then

f1(2) = Z? + (apyy)yr—20Z + F; with F, €Ry,
where w; =4 >0, v, =u-v— 1> 0. Let J F,{i,)x yi be the expansion
of F, in k[[#;, y,1]- Computing in k([z;, y;1] we get

Fi=yr?F' = ) FG,jadyitie.
i+igpiza
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Therefore F, (a, b)) = F'(a, b) == 0, and F, (¢, j) = 0 for all ¢ < a. Since b, < b,
{f, By, xy, y,} can be resolved by the induction hypothesis.

(II). Suppose w(y) > w(x). Let 2, = x, y, = yfx. Then w(z,) and w(y,) are
rationally independent. Let g be the greatest integer such that ¢p < ordgzF".
Then ¢ < a + b < 3p and hence ¢ = 2. Let f,(Z) = x797f (1Z). Then

h(Z) = 27 + (g2 107 + F,
where Fy = a7 PF' R, uy=u+v~¢q¢=20,0,=9>0 Hu =0thenoy, =1
and hence {f;, Ry, #;, 4} can be resolved by (5.4'). Now assume that u, > 0,
i.e., min(u;, v;) > 0. Let 3 F,(,7)aty) be the expansion of F; in k[[z;, 3 ]].
By (2.5) there exist integers a,, b, such that: ¢, < p, b; < b, {ay, b)) = 0(p),
Fi{ay, by) == 0, and Fy(i,7) = 0 for all 7 < a;. If by < b then {f,, By, 2, y,} can
be resolved by the induction hypothesis. So now assume that b, = b.

T w(y,) < wix) then {f;, By, z,, #,} can be resolved asin (I). w(y,) > w(x,)
then proceed as in (II). This cannot happen indefinitely ; namely, (I} can recur
at most d times where d is the greatest integer such that d < w(y)fw(x).

(5.4"). Let n> 0 be given. Suppose that A, is true and also suppose that:
(D) f min(u, v) < max(u, v) = n then {f, B, z, y} can be resolved. Now assume
that: w(x) and w(y) are rationally independent; 4 = v = n;and 1 < w(y)jw(x) <2
or 1 <w(x)w(y) < 2. Then {f, R, x, y} can be resolved.

Proof. Upon relabelling z and y we may assume that 1 < w(y)/w(z) < 2.
Let (R;, M;) be the ¢* quadratic transform of R along w. Let z; = 2, y, = y/x,
Ys = Y, 3 = X,/y;. Then (z;, y;) is a basis of M, which is canonically obtained
from (=, y) for ¢ = 1, 2; also w(x,) and w (y,) are rationally independent.

By (5.3), f(Z) has an [R, z, y]-translate

f¥(Z) = ZP 4 (xny™)P-20Z + F* with F*CR,
such that for the expansion 3 F* (7, j)xiy’ of F*in k[[x, y]1 we have: F*(i,§)=0
for all (¢,7)= 0(p) with ¢ + j = np. For a moment suppose that ordpF* =
= (n+ 1)p. Let f/ (Z) = a7 # V2% (4211 7). Then

f(Z)=2Z7 + (¥y)y-20Z + F' with F'€R,,
where u' =n — 1 = 0 and ¢ = n. In particular min (%, v') < max(u, v) =n
and hence {f’, R,, #;, y;} can be resolved by (D). Now assume that ordpF* <
< (n + 1)p. Take integers a, b such that: F*(a,b)==0, and F*({,j) =0
whenever ¢ + j < @ + b. By the previous conditions on F* (¢, j) we then have:
a+b<i{m+ 1)p, (@, b)==0(p), and F*({,§)=0 for all (,j)= 0(p) with
t+j=a+b Ifa+b<npthen {f* R,z y} can be resolved by 4,,. So also
assume that a + b = np, ie., ordpF* = np. Let f(Z) = a7"?* (2} Z). Then

hiZ) =27+ (2}y})?-10Z + F, with F,CR,.
Let X' Fy(i, )iy} be the expansion of ¥, in k[[x;, 4;]]. Let a; =a + b — np,
by="5Thena, <p,b=b=< a-+b<(n+ 1)p and (a;, b,) = 0{p). Computing
in k{2, 1] we get

Fy=aimF*= Y F*G,j)aiti—rry] .
itiznp

Therefore F,(a;, b)) = F*(a, b) 4= 0, and F,(3,§) = O for all { < a,.
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Since n > 0, by (6.2), f(Z) has an [R,, x, y, -branslate
f1(2) =27 + (@ytyr—10Z + Ft

such that for the expansion }' F¥(i,j)aiy] of F¥ in k[[, y,]] we have:
F¥la, b)) =0, F¥(i,5) =0 for all ¢ < a;, and F¥(¢,§) = 0 for all (¢,§)==0(p)
with ¢ + j = np. For a moment suppose that ordg F¥ = (n 4 1)p. Let {7 (Z)
= yg WT VP (yp T 1Z). Then
[(B) =27+ (@ Y P18Z + F" with FCR,,

where v’ = n and v"” =n — 1 = 0. In particular min (", v"") < max(u", v")
=n and hence {f", Ry, ,, y,} can be resolved by (D). Now assume that
ordp F¥ < {(n + 1)p. If F¥(,§) &= 0 for some ¢,§ with ¢ + j < mp then
{f¥, Ry, =y, y,} can be resolved by 4,,. So also agsume that F¥ (i, j) = 0 whenever
t+j<np, ie., ordg F¥ = np. Then in particular @, + b, = np. Let f,(2)
= ¥z "Pft (43Z). Then

folZ) = 27 + (dBy8)"~*0Z + F, with Fy¢R,.

Let Y F,(i, )2 y] be the expansion of Fyin k[[xy, y,1]. Let ay = a;, by= a, +
+ b —np. Then ay <p, by<p+ (n+ 1)p—np=2p, and (a,, by) = 0(p).
Computing in k[[x,, y,1] we get
Fy=ypmeFt= X FH( it
i+jznpiza,
Therefore Fy(ay, by) = F¥(a,, b)) 0, and Fy(7,§) = 0 for all { < a,. Conse-
quently {f,, R, ,, y,} can be resolved by (5.4").

(6.5). Foranyn = 0:4, = B,.

Proof. We make induction on n. B, is true by (5.4) and hence (5.5) is trivial
for n = 0. Now let » > 0 and assume that 4, ;= B, _;. Note that for all
m =< n: Ay, = A, and hence 4, = A,,. In particular, now 4, = 4, ;= B, .

Thus we may assume that 4, and B, _, are true. We are given that
max(u, v) = n, (r > 0). We want to prove that {f, R, z, y} can be resolved.

Let (R;, M) be the ¢ quadratic transform of R along w. We define z,, ¥,
Ty, Yy, - - - a8 follows. Let &, = @, y, = y. Suppose we have defined z,, ,, . . ., %;,
Yo (¢ 2 0). If w(y,) = w(z,) then let z; ;= x;, iy = (yif2) — o with &, €k
such that wiy,) > 0; if w(y,) < w(z) then let z,,; = ¥;, ¥; 4y = ®;/y;. Then
{x;, y,) is & basis of M, which is canonically obtained from (, y) for all s+ = 0.
Next we define integers ug, vy, %, vy, - . . by the following recurrence equations
where we take uy = %, v, = v.

10}' Ui o3 = Uy + ¥; — N,
0 if wly)=mw)
V=30 i wiy)>w)
u, i wly) <wix).
For a moment suppose that max(u;, v;) = n for all ¢+ = 0. Then by 1)

and 2°) we get that min(u,, v;) 2 0 for all ¢ = 0. Let if possible j = 0 be such
that min (u;, v;) < n. Then u;,, < n by 19); hence v, , = n because max (%;,,

29),
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¥;44) = . Thus min (u;, v;) < n implies that u,  ; = min (u; 1, v; ;) < n=v; ,,
and this in turn implies that u; , = min(u;,,, v;.,5) <7 =v;,, and so on.
In other words we now have u, < v, = » for all e > j. Consequently by 29),
w(y,) > w(z,) for all e > j. Whence from the definition of x; ,, ¥, ., we get that
for all e>§: w(y,) > w(®,)s o1 = %, Yoiq1 = ¥/, By (2.4) this contradicts
the fact that w is real nondiscrete!?). Thus we have proved

(I). If max(u;, ;) = nfor all ¢ = 0 then ;= v, = nforalls = 0.

If w(x;) and w(y;) are rationally dependent for some ¢ = 0, then for some
7 = + we must have w(y;) = w(z;) and hence v; .; = 0 by 29). Therefore by (I)
we get

(I1). If max(u;, v;) = n for all ¢ = 0 then w(x;) and w(y,) are rationally
independent for all 7 = 0.

Having made these two observations we proceed to prove that {f, R, z, y}
can be resolved.

If max(u, v) < n then we are done by B, _,. Now assume that max (u,v)=n.
By (5.3), f(Z) has an [R, x, y]-translate

1'(2)= 2% + (a*y")>~10Z + F'

such that for the expansion }; F' (¢, §)aty? of F'in k[[z, y]] we have: F'(i,j)=0
for all (7,5) = 0(p) with ¢ + §j < np. If F'(a, b) &= 0 for some a, b with a + b <
< np then {f', R, «, y} can be resolved by 4,. Now assume that F'(a,b) =0
whenever a + b < np, i.e., ordgF' = np. Let f,(Z) = 27"?f (2%Z). Then

h(Z) =27+ (x'{'y;")p_lalz + F,

where F, € R), 6, is a unit in R,, max(u,, v;) < n, and min(u,, v,) = 0. If
max (u,, ¥;) < n then we are done by B, _;. Now suppose that max (u,;, v,)=mn.
Thus either {f, R, x, y} can be resolved, or f(Z) has an [R,, x,, y,]-translate

f1(Z) = Z? + (x'{’y;")p'lalz + Fy

where F, € R,, 6, is a unit in R,, max (4, v,) = »n, and min(u,, »;) = 0.
Upon replacing f, R, x, y by f,, By, ,, %, in the above argument we deduce
that either {f,, B;, z;, ,} can be resolved or f,(Z) has an [R,, x,, y,]-translate

f202) = 27 + (xpryy)? 16,2 + Fy

where F, € Ry, 6, is a unit in R,, max (u,, v,) = n, and min (u,, v,) = 0.
Repeating this procedure we conclude the following:
(III). Either {f, R, #, y} can be resolved or for all = 0 we have: max (u;,v;)
= n, min(4;, v;) = 0, and f(Z) has an [R,, z,, y;]-translate

fi(Z) = 27 + (xffy;)*-19,Z + F;

where F; ¢ R, and §; is a unit in R,.
In view of (I) and (I1), by (III) we get (IV) and (V):
(IV). 1f min (u, v) < max(u, v) = n then {f, R, «, y} can be resolved).

19) Actually it even contradicts the fact that w is real.
1) We are assuming 4, and B, _,.
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(V). Either {f, R, x, y} can be resolved or 39%: for all ¢ = 0 we have that
w{z;) and w(y,) are rationally independent and f(Z) has an [R,, x,, y,]-translate
felZ) = Z* + (a?y?)?—18,Z + F,

where F, ¢ R; and 8, is a unit in R1%),

We may now assume that 3% prevails. If w(y) > w(x) then let d be the
greatest integer such that d + 1 = w(y)/wi{x), and if w(y) < w(z) then let d
be the greatest integer such that d + 1 < w(x)/w(y). Then d = 0, and either
T <wlygldfwxy) <2 or 1< wxy)fw(y;) < 2. Therefore in view of (IV),
{f2» R4, 24, y4} can be resolved by (5.4"").

(6.8). Foranyn = 0: B, = C, ..

Proof. We are assuming B,. We are given that ), _, is satisfied. By induc-
tion on b we shall show that {f, R, x, y} can be resolved. By (5.2), f(Z) has an
[R, x, y]-translate

f(2) =20+ @iy 162 + F'

such that for the expansion 3 ¥ (i, j)ziy’ of ' in k[{z, y]] we have: F' (a, b) &0,
F'(,7) = 0 for all ¢ < a, and F'(7, §) = 0 for all (3, j) = O(p) with ¢ + § <
< pmax(u,v). If b=0 then 0<ordzf(Z)<a+b=a<p and hence
{f, R, z, y} can be resolved. Now let b > 0 and assume that {f, R, #, y} can be
resolved for all values of b smaller than the given one. Let R, be the immediate
quadratic transform of B along w.

(I). Suppose w(y) <w(x). Let y,=y and =, =zfy. If F' ¢ M? then
0 < ordpf (Z) < p and we are done. Now assume that F' ¢ M?. Thena + b = p.
Letb, = a + b — p. Then b, < band (a, b)) == 0(p). Let /,(Z) = y7?f (y,Z). Then

fZ)y =Z? + (afyt v~ Yyp-18Z + F;, with F,€R,.
Let 3 F, (4, §)«t 3, be the expansion of F; in k[[w,, y,1]. Computing in & [[#;, 1,11
we get
Fi=y?F' = 3}  F(i,)aiyi™™?.
itizpize
Therefore F,(a, b)) = F'(a,b) + 0, and F,(7,§) = 0 for all i < a. Since b, < b,
{1, By, ,, y,} can be resolved by the induction hypothesis.

(II). Suppose wly) = wix). Let x,=x and y, = (yfx) — a with a ¢k
such that w(y,) > 0. Let ¢ be the greatest integer such that ¢p < ordzF’. Then
gp=at+b<p+(n+1)p={(-+2)pandbenceqg < n+ 1. fmax(u,v)<n
then we are done by B,. So assume that max{(u,v) =2+ 1. Nowa 4+ b <
<{n-+ 2)p, and F'(z,§) = O for all (¢,§)== 0(p) with ¢ +j = (n + 1)p. There-
fore F’ (1, ) = Ofor all (7, j) = O(p) with¢ +7 < a + b. Let ,(Z) = P f (2 Z).
Then

h(Z) =27 + (apyp)—26,Z + Fy

where F; = 279?F' ¢ R,, §,isaunitin By, gy =u+v—-¢=0,and 0 < v, <v.
Let 3 F, (s, j)xiyi be the expansion of F, in k[[x,, ,]]. By (2.5) there exist
integers @y, b, such that: a, < p, b < b, (a5, b)) = 0(p), Fy(a;, b;) + 0, and

12) This completes the proof of (5.5) when w is rational.
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F(¢,7) = O for all ¢ < a,. If max(u,, v;) < n then {f;, B, ;, 4} can be resolved
by B,. So assume that max{u;, v;) 2n+1. fv<n then v, Sv=<n and
hence ;= n+1>0;ifv>nthenyy=utv—-—g2l+-n+1)—-{n+1)
= 1. Thus in either case u, > 0. If b, < b then {f,, R,, #;, y;} can be resolved by
the induction hypothesis. So now assume that b, = b.

If w(y,) < w(x) then {f,, R, z;, o} can be resolved as in (I). If w(y) =
= wz,) then proceed as in (II). By (2.4) this cannot happen indefinitely.

(8.7). Foranyn>0:C,=>A4,.

Proof. We make induction on 7. Since 4, is obviously true, (5.7) is trivial
forn = 1. Nowlet n > land assume that C,,_, = A4, _;. Forallm < n: 0}, = C),
and hence C, = C,,. In particular C, = C,_,. Also by (6.5}, 4,,_; = B, _,.

Thus we may assume B, _; and C,, {n > 1). We are given that 4, is satisfied,
i.e., there exist integers a, b such that: a + b < np, F(a,b) += 0, and F (3,5} =0
for all (4,7)= O(p) with i 4+ § < @ + b. We want to show that {f, R, z, y} can
be'resolved. Upon relabelling # and y, we may assume that w(y) = w(x). Let
2, =« and ¥y, = (y/z) — o with « € k such that w(y,) > 0. Let R, be the imme-
diate quadratic transform of R along w. If max (u, v) < = then we are done by
B, _;. Now assume that max (u, v) = n. Let ¢ be the greatest integer such that
gp < ordpF. Then gp < ¢ + b < np and hence g =< n — 1. Let f,(Z)
= a ??f(2{Z). Then

f1lZ) = Z7 + &Py 162 + Fy
where Fy = o79?F, §;isaunitin B, 4, =u+v—¢g= max{u, o)~ (n— 1} =
Zn—(n—1)=1, and v, 2 0. Let } F,(i,j)aiy] be the expansion of F, in
E{[z;, 1,]]. By (2.5) there exist integers a,, b, such that: a, <p, b, < a +
+ b < np, (a, b) = 0(p), Fy(ay, b)) == 0, and F, (¢, j) = 0 for all ¥ < a,. Therefore
{f» Ry, 2y, 31} can be resolved by C,,.
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