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1. Introduction 
In a recent note [ t i ]  the author has given a highly condensed and largely 

unmotivated account of the basic notions in a theory whose aim is to bring 
to light and exploit certain apparently far reaching analogies between group 
theory and ergodic theory. Somewhat more motivation is contained on pages 
652--654 of [I0], but the brief account given there is embedded in a description 
of certain rather technical developments in the theory of infinite dimensional 
group representations. Moreover, some essential conceptual improvements 
in the theory were made between the times at which [10] and [11] were written. 
It is the purpose of this paper to give a leisurely account, with a minimum of 
mathematical technicalities, of the considerations which led to the formulation 
of the definitions and theorems in the first three sections of [11]. 

2. Subgroups and transitive actions 
Let G be a group and let H be a subgroup. Let SH = G / H  be the set of all 

right H cosets. For  each s = H y  in SH and each x ~ G let s x  = H y x .  Then the 
mapping taking s, y into sy is a mapping of SH × G into S~ which defines an 
ac t ion  of G on SH in the sense that conditions (i) and (ii) below are satisfied. 

(i) ( s x l ) x  2 = s x l x  2 for all x I, x 2 in G and all s in SH, 

(ii) se  = s for all s in Sn where e is the identity of G. 
This action is clearly t rans i t i ve  in the sense that for each pair si, s2 of 

elements of S H there exists an element x of G such that Slx = s2. Equivalently S n  

has no invariant subsets except the empty set and its complement. (An invariant 
subset is a subset S 1 such that s x  ~ S 1 whenev s e S 1 and x e G.) 

Conversely let s, x - - ,  s x  define a transitive action of G on the set S and let H s 
be the subgroup of all x with s x  = s. Then the mapping x - ~  s x  defines a many-one 
mapping of G on S which is constant on each right coset. Thus it defines a one- 
to-one mapping 0 of Sns on S. Evidently 0 has the property that O(sx) = O(s)x  

so that the actions of G on S and S n ,  are equivalent in an obvious sense. Thus 
every transitive G action is equivalent to one defined by a subgroup. One verifies 
easily thai two subgroups define equivalent actions if and only if they are con- 
jugate and hence that there is a natural one-to-one correspondence between the 
transitive actions of a group G and the conjugacy classes of  its subgroups. These 
facts are of course elementary and well known. We review them in detail because 
they play such a central role in motivating what is to follow. 
14 Math. Ann. 166 
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3. Measure theoretic actions and ergodicity 
In the group actions that occur in analysis, the group G and the space S 

come equipped with topologies and the mapping s, x - , s x  is continuous. We 
shall be mainly interested in measure theoretic questions and accordingly find 
it convenient to replace the topologies of S and G by their underlying Borel 
structures. By a Borel  space we shall mean a set together with a distinguished 

field of subsets called its Borel sets. By a Borel mapping of the Borel space St 
into the Borel space $2 we shall mean a mapping 0 such that 0-  t (E) is a Borel 
subset of St whenever E is a Borel subset of $2. Two Borel spaces St and S2 will 
be said to be isomorphic if there exists a one-to-one Borel mapping 0 of $1 on $2 
such that 0-  ~ is also a Borel mapping. Let G be a separable locally compact 
group. By a Borel G space we shall mean a G space S which is also a Borel space 
and in such a way that s, x ~ s x  is a Borel function from S × G to S. When H 
is a closed subgroup of G then the coset space Su is a topological space in a 
natural way and hence is a Borel space. Since s, x ~ s x  is continuous it is certainly 
a Borel function and S n is a transitive Borel G space. Moreover Sn as a Borel 
space is "standard" in the sense that it is isomorphic as a Borel space to a Borel 
subset of a separable complete metric space. Conversely let S be any transitive 
Borel G space where S is standard and G is separable and locally compact. It is 
known ([8], p. 284) that for each s e S the subgroup H~ of all x with s x  = s is 
closed and that the mapping 0 of§ 2 is a Borel isomorphism between Sns and S. 
Thus when G is a separable locally compact group we have the following 
analogue of the result reviewed in § 2 : The possible transitive actions of G on 
standard Borel spaces correspond one-to-one to the conjugacy classes of closed 
subgroups of G. 

Let S be a standard Borel G space where G is separable and locally compact 
and let # be a measure defined in S; that is let g be a function from the Borel 
subsets of S to the positive real numbers augmented by + ~ which is additive 
on countable unions of disjoint sets and which is tr f in i te  in the sense that S is a 
countable union of subsets Sj such that/~(Sj) < ~ .  If t~(Ex) = #(E) for all x ~ G 
and all Borel subsets E of S we shall say that # is invariant. If#(Ex) = 0 whenever 
x ~ G and #(E) = 0 we shall say that # is quasi invariant. Two measures with the 
same sets of measure zero will be said to be in the same class, and a class of 
measures (=  measure class) will be said to be invariant if E ~ I ~ ( E x )  is in the 
class whenever x is in G and # is in the class. It is clear that the class of a quasi 
invariant measure is invariant and that every member of an invariant measure 
class is quasi invariant. It is known ([6], p. 106) that Sn = G / H  admits a unique 
invariant measure class whenever H is a closed subgroup of G but that Sn 
admits an invariant measure only for rather special choices of H. One is also 
lead naturally to invariant measure classes which do not need to contain in- 
variant measures whenever S is a Coo manifold and the mappings s ~ s x  
preserve the differential structure. Thus, although classical ergodic theory is 
chief concerned with those G spaces S which have an invariant measure, it 
seems natural and is convenient to deal here with the more general situation in 
which our G spaces have only an invariant measure class. 
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Let G be as above and let C be an invariant measure class in the standard 
Borel G space S. Suppose that the action is not transitive and that E is an in- 
variant subset. Then S - E is also invariant and E and S - E will be independent 
G spaces of which S is a direct sum in a natural way. If E is a Borel set they will 
both the standard and if E (resp. S - E) is not of measure zero we obtain a non 
trivial invariant measure class in it by taking any member # of C and then taking 
the class of its restriction to E (resp. S - E). Thus i fE is a Borel set and neither E 
nor  S - E has measure zero we obtain S, C as the direct sum of two invariant 
subsystems. However, even when G is the additive group of the integers or of 
the real line it is possible to choose S and C in such a way that 

(1) Every measurable invariant subset of S is either of measure zero or the 
complement of a set of measure zero 

(2) Every invariant subset of S on which G acts transitively is of measure 
zero. 

For  example if G is the additive group of the integers we may choose S to be, 
the unit circle Izl -- 1 in the complex plane, C to be the measure class of the 
length measure and the action of G on S to be such that zn  = ze  ~ z ~  where 0c is 
an irrational number. Thus mere lack of transitivity does not ensure the possi- 
bility of a direct sum decomposition - -  even if we ignore invariant sets of 
measure zero. One is forced to replace transitivity as the basic notion by a more 
inclusive and sophisticated one which is sometimes called ergodicity and some- 
times metric transitivity. We say that the action of G on S is ergodic (or metrically 
transitive) with respect to C if condition (I) above holds. This condition holds in 
particular when the action of G on S is transitive. It also holds when the action 
is essentially transitive in the sense that there exists an invariant subset of 
measure zero on whose complement G acts transitively. When conditions (1) 
and (2) above both hold, that is when the action is ergodic but not essentially 
transitive we shall say that the action is strictly ergodic. 

4. The virtual subgroup point of view 
Let G be a separable locally compact group. Since the ergodic actions of G 

constitute a natural generalization of the transitive actions (§ 3) and since the 
transitive actions correspond one-to-one in a natural way to the conjugacy 
classes of closed subgroups of G (§ 2) it is natural to ask the following question. 

(a) Is there a generalization of the notion of closed subgroup such that the 
ergodic actions bear the same relationship to these generalized subgroups that 
the transitive ones do to actual subgroups? We shall show in the sequel that such 
a notion does exist and in further publications that a surprisingly large number 
of the notions and theorems of group theory have analogues which apply to it. 
We shall not only be able to define the notion of virtual subgroup of a genuine 
group G but also the notion of "virtual group" in the abstract. Before doing 
either of these things however we shall show that many of the developments 
which the notion of virtual group make possible may be carried out  without 
actually defining virtual groups. The idea is this. Since a transitive action deter- 
mines and is determined by a conjugacy class of closed subgroups we may hope 
14' 
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to be able to translate properties of these closed subgroups into properties of 
the action. When this is possible one may hope in addition that these translated 
properties continue to have meaning when applied to ergodic actions. To the 
extent that they do, we may think of them as being the definitions of properties 
of the "virtual subgroups" defining the ergodic actions. 

Here is an example. Let H be a closed subgroup of G. Every transitive action 
of H is defined by a closed subgroup K of H. But every closed subgroup K of H 
is also a closed subgroup of G and hence defines a transitive action of G. Hence 
every transitive action of H is canonically associated with a transitive action 
of G. If every "virtual subgroup" of H is automatically a virtual subgroup of G 
as it will be if the notion of virtual subgroup has reasonable properties then the 
above canonical association should have a generalization which associates an 
ergodic action of G to every ergodic action of H. It does and here it is. Given an 
invariant measure class C in the standard Borel space G space S form the 
auxiliary space S x G. Make S x G into an H x G space by setting (s, x) (h, y) = sh, 
y~.~h.  The action of H alone defines an equivalence relation in S x G. Let 
S x G n denote the space of all equivalence classes and let ~0 be the mapping 
taking s, x in S x G into its equivalence class; that is into the set of all sh, xh  
for h e H. Since the action of G on S x G commutes with the action of H the 
action of G maps each H equivalence class into another and we obtain a well 
defined action of G on S ~  H by setting tp(s, x )y  = ~o(s, y - i x ) .  We give S~'x--G H 
a Borel structure by defining a subset E of S'-~-G ~ to be a Borel set whenever 
~0-1 (E) is a Borel subset of S x G. It is not hard to show that S'-'~-"G r~ is a standard 
Borel space. Let Co denote the measure class of Haar  measure in G. Then the 
measures # x v where # e C and v e Co all lie in a common measure class which 
we denote by C x Co. It is easy to see that this measure class is invariant under 
the H x G action. Using it we obtain an invariant measures class C in S'-'~-G u. 

is the common class of all measures & where co varies over the finite measures 
in C x Co and &(E)=a~(~0-1(E)). It is straightforward to prove that (~ is 
invariant under G and is ergodic under G if and only it C is ergodic under H. 
Thus we have found a canonical way of associating an ergodic action of G to 
every ergodic action of a closed subgroup H. In the special case in which 
S = H / K  for some closed subgroup K of H so that the H action is transitive 
one verifies at once that the G action on S x G ~ is also transitive and that this 
transitive action is defined by the subgroup of K of G. 

Consider the special case in which G is the additive group of the real line. 
The most general non-trivial H is the set of all integer multiplies of a positive 
real number ,1 and hence is isomorphic to the additive group of the integers. 
Thus our general construction yields in particular an assignment of an ergodic 
action of the additive group of the real line (a so called ergodic flow) to every 
pair consisting of a positive real number ,l and an ergodic action of the integers. 
Such an assignment is well known in ergodic theory. Given an ergodic action 
of the integers on a space S with invariant measure class C one forms the 
product  S x 14 where 14 is the interval 0 = x <,1. Then one defines (s,x) t for each 
s, x in S x I4 and each real number t as sn, t' where 0 ~ t' < 2, n is an integer and 
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x + t = 2n + t'. The resulting flow is sometimes known as the flow (of height 2) 
built over the transformation s ~ s- 1. It is easy to see that our general construc- 
tion, specialized as indicated, yields precisely the flow built over s ~ s .  1 and 
having height 2. The virtual subgroup point of view has thus led us to a natural 
and rather far reaching generalization of this apparently rather special 
construction. Strictly speaking the virtual subgroup point of view has only led 
us to conjecture the existence of our construction. The actual construction was 
simply written down ad hoc. However we shall show below that we can be led 
in a natural way to this construction as well as much more general ones by 
seeking to assign a meaning to the notion of "homomorphism" for virtual 
subgroups. 

5. Homomorphisms of "virtual subgroups" into groups 

Let G t and G 2 be separable locally compact groups. Let H be a ,closed 
subgroup of G1 and let tp be a continuous homomorphism of H into G2. Then the 
group H ,  of all pairs x, tp(x) with x in H is clearly a closed subgroup of G1 x G2 
which uniquely determines H and ¢p. As such H ,  determines (and up to conju- 
gacy is determined by) a certain transitive action of the product group GI x G 2 ; 
namely the natural action on the coset space (G~ x G2)/H,. It is easy to see that 
the transitive actions of G~ x G2 so obtained from subgroups H ,  have the 
following properties : 

(i) The e x G2 action is "free"; that is e, y leaves a point of (G~ x G2)/H, 
fixed only when y = e. 

(ii) The orbits in (G~ x G2)/H~, under the e x G2 action form a standard 
Borel space. 

(iii) The action of G1 x e on the e x G2 orbits is equivalent to the action of 
G1 on G1/H. 

Conversely, let S be any standard Borel space on which G1 x G2 acts 
transitively in such a manner that (i), (ii) and (iii) hold. Because the action is 
transitive it is the natural action of Gt x G2 on GI x G2/H' for some closed 
subgroup H'  of G~ x G 2. The fact that (i) holds implies that H'  n (e x G2) = e, e. 
Thus if x, y ~ H' then y is uniquely determined by x so that H'  is the set of all x, 
¢p(x) for x ranging in some subset H" of G~ and ¢p is some function from H" 
to G2. Since H ,  is a group, H" is a subgroup of Gt and ¢p is a homomorphism. 
There is a natural mapping of the e x G2 orbits on the H" cosets in Gt and it 
follows from (ii) and (iii) that H" is closed and conjugate to H. Finally the closed- 
ness of H ,  can be used in conjunction with the continuity of Borel homomor- 
phisms to show that ¢p must be continuous. In other words the properties (i), 
(ii) and (iii) characterize the transitive actions of G~ x G2 defined by the pairs 
H, ¢p where H is a closed subgroup of GI and ¢p is a homomorphism of H 
into G2. We can use this fact to "describe" the homomorphisms tp of a fixed H 
into G2 in a manner which refers only to the G t space Gt/H and never to H. 
They "are" the standard transitive actions of Gt x G2 which have properties 
(i), (ii) and (iii). 
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Replacing G1/H by an arbitrary standard ergodic Ga space $1 we may 
"define" the homomorphisms of the virtual subgroups of G1 associated with 
the action on S~ to"be" the ergodic G~ × G2 spaces having the obvious analogues 
of properties (i), (ii) and (iii). Of course two different G~ x G2 spaces may define 
the same homomorphism and we must indicate the appropriate equivalence 
relation. However, we shall find it convenient to proceed slightly differently and 
replace the ergodic G~ x G2 spaces having properties (i), (ii) and (iii) by certain 
mappings which define them. 

Let S be a standard G1 x G2 space which is ergodic with respect to a measure 
class C in S. Let the e x G2 actions be "free" in the sense described in (i) above 
and let the e x G2 orbits form a standard Borel space. Then, as follows from 
Theorem 2.9 of [3] there exists a Borel subset St of S which meets each e x G2 
orbit just once. Thus each element s of S may be written uniquely in the form 
s = t y  where t e S 1 and y e G 2. Thus sz = t y z  for each z e G 2. In other words, 
we may replace S by S~ x G2 and when we do (t, y) z = t, yz .  Applying the map 
t, y ~ t, y -  ~ we may also replace S by S~ x G2 in such a way that (t, y) z = t, z -  1 y 
and we chose to realize S in this way. The action of G1 on S is somewhat more 
complicated. Since (t, y) = (t, e) y -  1 we have (t,. y )x  = (t, e ) y -  1 x = ((t, e ) x ) y -  1 
= O(t, x), yn( t ,  x)  where 0 is a Borel function from $1 x G2 to $1 and n is a Borel 
function from S l x G ~  to G2. Thus (t, y) (x, z )=O( t ,  x), z - l y n ( t ,  x) for all 
t, y e S1 x G2 and all x, z e G~ × G2. Moreover, a straightforward computation 
proves the following: Let 0 be an arbitrary Borel function from S~ × Gx to Sa 
and let n be an arbitrary Borel function from Sa x GI to G2. Then the definition 
(t, y) (x, z) = O(t, x), z -  l yn ( t ,  x)  converts St × G2 into a Ga x G2 space if and 
only if the following conditions hold: 

(a) t, x ~ O ( t ,  x) converts St into a Borel Gt space. 

(b) rr(t, x t x 2 )  = n(t,  x l )  n ( t x l ,  x2) for all t e $1 and all xl, X2 ~ G1 x G 2 . 

Evidently, the action of G~ on $1 defined by 0 is equivalent to the action 
of G~ on the e x G 2 equivalence classes. 

It is now clear that in order to find the most general Ga x G 2 space which 
has properties (i), (ii) and (iii) with respect to a Gt space Sx we have only to find 
the most general Borel mapping n from St x G1 to G 2 which satisfies (b) above. 
Then our space will be S~ x $2 and G 1 x G 2 will act upon it according to the 
rule. (s, y) (x, z) = sx ,  z -  rye(s ,  x) .  

It is not difficult to see that whenever Ct is an ergodic measure class in St 
and C2 is the Haar measure class in G2 then C1 x C2 will be an ergodic measure 
class in S~ x G2. Finally then, if we are to identify homomorphisms of the 
"virtual" subgroup of Ga defined by Sa, Ca with certain ergodic Gt x G2 spaces 
we may equally well identify them with functions satisfying the identity (b). 
Of course, two different functions satisfying (b) may lead to the same Ga x G2 
space (changing the cross section will change n) and we have already alluded 
to an equivalence relation between G~ x G2 spaces. Thus the correspondence 
between homomorphisms and functions n satisfying (b) is not one-to-one. It 
turns out that both causes of non one-to-one-ness produce the same identifi- 
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cation of r:s. We shall not go into detail but simply announce the result. 
Following terminology familiar in homological algebra let us call a Borel 
function n from S 1 x Gt to G 2 a one cocycle whenever is satisfies the identity (b) 
above. If rc is any one cocycle and a is any Borel function from St to G2 let 
7ra(s, x)= a(s)rr(s, x)a(sx)-1. Then ~f is clearly a one cocycle. If rc 2 = ~ for 
some a we shall say that zq and re2 are cohomologous. An analysis which we shall 
omit shows that two one cocycles define the "same" homomorphism if and only 
if they are cohomologous. In the sequel then we shall think of a cohomology 
class of one cocycles as "being" a homomorphism into G2 of the "virtual sub- 
group" of G1 defined by the ergodic action of Gt on S~, C 1. 

As a sort of a check let us consider the special case in which $1 = GI/H for 
some closed subgroup H of Gt. Let s o = H so that H is the subgroup leaving s o 
fixed. Then for x ~  H the identity (b) reduces to n(s, xlx2)=n(s, xl)n(s, x2). 
Thus z~ defines an honest homomorphism of H1 into G2 (which is continuous 
because it is a Borel homomorphism). It is straightforward to verify that two 
z:s are cohomologous if and only if they define homomorphisms of H into G2 
which are conjugates. 

In the general ergodic case one should of course make certain further identi- 
fications when things are equal almost everywhere and one should generalize (b) 
by replacing identity by identity almost everywhere. However, technical dif- 
ficulties arise when one tries to do this in a straightforward manner and the 
resolution of these difficulties seems to require that we cast the theory in the 
more sophisticated form toward which we are gradually working. Moreover, 
the central notions can be explained more simply if we have only genuine 
identities to deal with. For these reasons we shall, for the time being, avoid 
dealing with this ultimately necessary refinement. 

6. A generalization of  the concept of  a flow built under a function 

Let H, G x. G 2 and (p be as in § 5. Then the kernel Kof~p is a closed subgroup 
of GI which defines a transitive action of Gx and the range ~p(H) of ~p is a sub- 
group of G2 whose closure rp(H) defines a transitive action of G 2. The virtual 
subgroup point of view suggests that we seek formulations of the definitions 
of these actions in which reference to H and ~0 is replaced by reference to GI/H 
and a one cocycle n defining ~0. If these definitions make sense when GI/H is 
replaced by an arbitrary ergodic GI space S 1, C1 and lead to ergodic actions of 
G1 and G2 respectively then we may think of these ergodic actions as being 
defined by "virtual subgroups" which are the kernel and the closure of the range 
respectively, of the "homomorphism" defined by ~t. In this section we shall show 
that such a formulation is possible for the action of G2 defined by q~(H) 
and that the general construction to which it leads contains the well known 
construction of a "flow built under a function" as a very special case. 

Consider the action of G 1 x G 2 defined by the dosed subgroup H, .  The 
G I x e orbits correspond one-to-one to the H ,  : G1 x e double cosets and hence 
to the q~(H) right cosets in G2. Now by Theorem 7.2 of [7] the space of all q~(H) 



194 G.W.  MACKEY: 

right cosets in G 2 is a standard Borel space if and only if tp(H) is closed and it 
follows easily that the space of all G 1 x e orbits (with this natural Borel structure) 
is a standard Borel space if and only if ~o(H) is closed. Now, since the GI x e 
action commutes with the e x G2 action each G~ x e orbit is carried into another 
by each element of e × G2. Thus G2 acts on the space of all G1 x e orbits and 
when ~o(H) is closed this is a standard Borel space. An easy calculation shows 
then that this G2 action is transitive and equivalent to the G2 action on the coset 
space G2/tp(H). When ~o(H) is not closed, things are a little more complicated. 
Let us say that two G1 x e orbits are conjugate if the ~o(H) right cosets which 
define them belong to the same tp(H) right coset. Then the set of all conjugacy 
Classes of G~ x e orbits is a standard Borel G2 space. Moreover the action of G2 
on this space is equivalent to its action on G2/tp(H). The action of G2 on the 
conjugacy classes ofGt x e orbits may be define~ in a more readily generalizable 
manner as follows. Let B denote the Boolean algebra of Borel sets mod null sets 
in Gt x G2/H,. Let B' denote the subalgebra of all elements left fixed by each 
x, e e Gt × e. Then the action of G2 takes each element of B' into another element 
of B' and defines an action of G2 on B'. As shown in [9] such a Boolean algebra 
action is derivable in an essentially unique way from a point action and in this 
case the point action is equivalent to that on the conjugacy classes of G t x e 
orbits. From another point of view (and somewhat vaguely stated) one writes 
the G~ x e action as a direct integral of ergodic parts and considers the action 
of G2 on the space of ergodic parts. 

Guided by the preceding, we now make the following construction. Let Gt 
and G2 be as above and let C~ be an ergodic invariant measure class in the 
standard Borel GI space S 1. Let n be a Borel one cocycle from S~ x G1 to G2 
and convert $1 x G2 into a GI x G2 space by setting (s, y) (x, z) = sx, z -  lyn(s, x). 
Then (as indicated above) if C2 is the Haar measure class in G2, C~ x C2 will 
be an ergodic invariant measure class in S~ x G2. Let S' be the space of all 
GI x e orbits. If this is standard under the quotient Borel structure it will be a 
standard G2 space in a natural way and the measure class C' defined in S' by 
C~ x C2 will be ergodic and invariant. We shall speak of this ergodic action of 
G2 as defined by the "virtual subgroup" of G2 which is the image under the 
"homomorphism" defined by ~z of the "virtual subgroup" of G~ defined by the 
given ergodic action of G~. If S' is not standard we pass to the Boolean algebra 
of Borel sets mod null sets in $1 x G2 and consider the action of G2 on B' the sub- 
algebra of all elements which are left fixed by all x, e in Gt x e. This action is 
associated with an essentially unique point action which will be ergodic. We 
shall speak of this ergodic action of G2 as defined by a "virtual subgroup" of G2 
which is the closure of the image under the "homomorphism" defined by rr of the 
"virtual subgroup" of G1 defined by the given ergodic action of G1. 

If ¢ is any Borel homomorphism of G1 into G2 we obtain a one cocycle rd 
by setting rd(s, x)= e(x). Clearly the Borel cocycles of the form r~ are just those 
which are independent ofs. In the special case in which G~ is a closed subgroup 
of G2 and 0 is the identity, the construction of an ergodic action using rd reduces 
to that of § 4. 
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Now consider the special case in which G1 is the additive group Z of all the 
integers. Let Xo be a generator. Then for any cocycle n, n(s, x )  is determined 
uniquely by the Borel function s ~ n ( s ,  Xo). Indeed 

rr(s, x~) = rr(s, x~- 1) rc(sx~- 1, Xo ) 1 = lr(s, e) = rr(s, Xon)n(sx - i  n, x~) .  

Furthermore given any Borel function g from S to G2 there exists a unique Borel 
cocycle rrg such that rig(s, Xo) = g(s). In other words, in this case, the Borel one 
cocycles correspond one-to-one to the Borel functions from S to G 2 and our 
general procedure allows us to construct an ergodic action of G2 whenever we 
are given an ergodic action of Z and a Borel function from the Z space S to G2. 
The special case in which this function is a constant, g(s)= Yo, coincides with 
that in which rc = nQ where o(n) = y~. If the cyclic subgroup generated by y is 
closed we may identify Z with this subgroup and our construction reduces to 
that of § 4. 

Let ~ be a Borel automorphism of the standard Borel space S and let C be 
a measure class in S which is invariant and ergodic under the action of ~. Let f 
be a positive real valued Borel function on S. In the special case in which C 
contains a finite invariant measure/a there is a standard construction in ergodic 
theory allowing one to pass from the triple S, ~, f to an ergodic action of the 
real line - -  a so-called ergodic flow. This flow is called the flow buil t  under the 
function f .  We wish to show that this construction is included as a very special 
case in the general construction described above. Generalized slightly so as not 
to demand a finite invariant measure this standard construction may be 
described as follows. Let S' be the set of all pairs of points s, y where s E S and 
y is a real number. Let C' be the product  of the measure class C in S and the 
Lebesgue measure class in the line. Let S" be the set of all s, y E S' with 0 -< y < f ( s )  
and let C" be the restriction of C' to S". We obtain the required ergodic flow by 
letting the real line act on S" as follows. For  each s, y ~ S" and each x > 0 choose 
the unique positive integer n such that f ( s ) +  f ( s a ) +  "" + f ( s a  n-  l < ) = y + x <  
< f ( s )  + f ( s ~ )  + "" + f ( s ~  ~) and let (s, y)  x = sv: ,  y + x - f ( s )  - f (soO . . . . .  
_ f ( s a , -  1). Then define (s, y ) x -  1 so that (s, y ) x -  I x  = s, y .  It follows from the 

ergodic theorem that ~ f ( s a  k -  1) diverges for almost all s so that we may 
k = l  

assume that n exists. To compare this construction with our general one make 
S into a Z space by setting sn  = (s)a ~ and form the product of S with R the addi- 
tive group of all real numbers. For  each s, y~ S x R let fl(s, y)  = set, y - f ( s ) .  
Then ~ is a Borel automorphism of S x R and setting (0, y) n =/P(s,  y) converts 
S x R into a Z space in such a manner that S" c= S' = S x R meets each Z orbit 
just once. In other words we may identify S" with the space of all Z orbits in 
S × R under the indicated action. Now (s, y) x = s, y + x makes S x R into an R 
space and this action of R commutes with the Z action. Thus the space of Z orbits 
is an R space and we verify at once that the action of R on S" which we thus obtain 
by identifying it with the space of Z orbits is the same as that defined above. In 
other words the construction of a flow built under a function can always be 
obtained as the action of R on the Z x e orbits in the Z x R action on S x R 
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defined by setting (s, y) (1, x) = s~, y - f ( s )  + x and via the automorphism 
s, y ~ s ,  - y  this action is equivalent to that defined by setting (s, y)(1, x )=  s~, 
y + f ( s ) -  x. But this latter action is precisely what our general construction 
yields when Gt = Z, G2 = R and n = roe. Thus the flow built under the function 
f is just the ergodic action of the real line whose associated "virtual subgroup" 
is the range of the "homomorphism" defined by n I. Since there is a cross section 
for the Z orbits the orbit space is standard and we may speak of the range itself 
rather than of its closure. 

A remarkable theorem of AMBROSE [1] states that every ergodic flow (at 
least when there is a finite invariant measure in the measure class) is equivalent 
to a flow built under a function. Let us call a "virtual subgroup" unimodular 
when the associated ergodic action has an invariant measure and let us call a 
unimodular "virtual subgroup" big when this invariant measure is finite. Then 
AMaROSE'S result has a corollary which may be stated as follows. Every big uni- 
modular "virtual subgroup" of the additive group of the real line is a "homo- 
morphic" image of a big unimodular "virtual subgroup" of the additive group 
of the integers. This corollary is only weaker than the theorem itself to the 
extent that that "homomorphisms" defined by cocycles ng with g > 0 are more 
special than those in which g is not restricted. Could it be that nh is cohomologous 
to r~g for some positive g whenever the "homomorphism" defined by ztg has a 
closed range? 

This formulation of AMBROSE'S theorem suggests a number of questions and 
possible generalizations. 

(1) Can one remove the restriction to "virtual subgroups" which are big and 
unimodular? 

(2) For how large a class of separable locally compact groups G is it true 
that every (big, unmodular) "virtual subgroup" of G is a homomorphic image 
of a (big, unmodular) "virtual subgroup" of Z? 

(3) Same question as (2) with Z replaced by "some countable closed sub- 
group of G." 

(4) Same question as (2) with Z replaced by "some proper closed subgroup 
of G." 
The author has not yet given any serious thought to these questions. How- 
ever, he believes them to be interesting and worthy of investigation. 

7. Kernels of "homomorphisms" and the skew products of ANZAI 
We now consider the other of the two questions raised at the beginning of 

§ 6; that of defining an analogue of the kernel of a homomorphism when the 
domain of the "homomorphism" is a "virtual subgroup." Let H, Gt, and G 2 
and ~p be as in § 5 and § 6 and let K be the kernel of ~p. If cp(H) is closed and 
we replace G 2 by ~p(H) (which of course does not change the kernel of ~p) we 
see that the action of G 1 x e on G I x Gz/H  ¢ is transitive and that the defining 
closed subgroup of GI is K. If we do not replace G2 by ~p(H) then the action of 
G1 x e on G1 x G z / H ,  is a direct integral [over the ~p(H) right cosets in G2] of 
transitive actions all having K as defining subgroup. Now suppose that K = {e} 
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but that ~0(H) is not closed but is dense in G 2. Then the action of G1 x e on 
GI x G2/H. will be ergodic and not transitive and in view of the above it will be 
useful to think of the "virtual subgroup" of G t defined by this ergodic action 
as the kernel of ~o even though this kernel as usually defined is trivial. In other 
words, if one introduces"virtual subgroups" then an honest homomorphism can 
have a non-trivial kernel even when it is one-to -one provided that it actually weak- 
ens the topology; that is, fails to have a continuous inverse. More generally, 
whether or not K = {e} the action of G1 x e on G 1 x G2/H ~ will be ergodic 
if and only if ~o(H) is dense in G2 and we shall agree to call the"virtual subgroup" 
of Ga defining this action the kernel of ¢p. This "virtual subgroup" will be a real 
subgroup if and only if ~o(H) = G2 and then will coincide with the actual kernel 
of ~0. 

Now let S~, C~ be any ergodic G 1 space and let n be a Borel one cocycle from 
S~ × GI to G2. As in § 6 we convert $1 × G2 into a G1 x G2 space (generalizing 
G 1 x G2/H,) by setting (s, y)(x, z )=sx ,  z-ly~r(s, x). Also, we introduce the 
ergodic invariant measure class C1 x C2. Guided by the above considerations, 
we shall say that the "homomorphism" defined by n has range which is dense in 
G2 whenever the G~ × e action on S~ x G2 is ergodic. Moreover, if this range is 
dense we shall call the "virtual subgroup" of G~ defined by the action the kernel 
of the "homomorphism." Of course, even when the range is not dense it may be 
dense in some subgroup. That is, 7t may be cohomologous to n' where rd takes 
its values in a subgroup H2 of G2 and where the range of the "homomorphism" 
defined by n' is dense in H2. In that event we may define the kernel of our 
"homomorphism" using re' and H 2 instead of rc and G 2. When G 2 is compact 
such a pair rd, H 2 always exists and the action of G1 x e on S~ x G 2 will itself be 
ergodic if and only if no n' exists with values in a proper closed subgroup of H 2. 

Consider now the special case in which Gx is the additive group Z of all the 
integers and G 2 is the multiplicative group of all complex numbers of modulus 
one. Then G 2 is c o m p a c t  and its only proper closed subgroups are the finite 
subgroups Hp where p is an integer and Hp is the group of all p-th roots of unity. 
Since Gt = Z each ~ may be written in the form rcg for some Boret function g 
from the Z space S to G 2. It is easy to see that n91 is cohomologous to ng2 if and 
only if 01 (s) -g2(s)  h(s)/h(s~) where s~ = s- 1. Thus, by the result quoted above, 
r~a will define a homomorphism whose range is dense in G 2 if and only if for no 
positive integer p do we have g(s~ -- h(s)/h(sx) for some h. Moreover when this 
condition holds we obtain an ergodic action of Z on S x G 2 b y  setting 

(s, y) n = (s, y) fl" where (s, y) fl = s~t, yo(s). 

In the subspecial case in which S = G2 and ct is rotation through an irrational 
angle fl is what ANZAZ [2] calls the skew product of 7 and g and our condition 
for ergodicity reduces to ANZAfS. We see then that ANZAfS ergodic skew product 
transformations may be considerably generalized and as "virtual subgroups" 
are the kernels of certain "homomorphisms." It could be of some interest to 
investigate the extent to which the other results of ANZAZ'S paper may be 
generalized. 
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8. Further examples of "homomorphisms" in ergodic theory 

(A) If one looks at the range of a "homomorphism" in the special case in 
which both G1 and G2 are Z one is led to KAKUTANfS concept of "induced 
measure preserving transformation" [5]. We leave details to the reader. 

(B) Let S be a standard Borel G space and let C be an ergodic invariant 
measure class. Let/~ be any member of C. For each x e G let/~x(E) = I~(Ex). 
Then/z  x and/z  are measures with the same null sets and we may form the 
Radon-Nikodym derivative s-* Ox(s) of #x with respect t o / z  Of course, this 
derivative is only determined almost everywhere and it can be shown that the 
choices can be made so that s, x ~ Qx(s) is a measurable function from S x G to 
the positive real numbers. As such it is equal almost everywhere to a Borel 
function. Moreover, it follows at once from the definitions that for each xl and 
x2 we have Oxlx2(s)= O~(s)Qx2(sxl) for almost all s. Let us set n(s, x)= O'(s) 

- - k  t where O',,(s) O,,(s) for almost all pairs s, x and s, x Q~(s) is a Borel function. 
Then, except for the fact that the relevant identities hold only almost every- 
where, n is a Borel one cocycle from S x G to the multiplicative group of all 
positive real numbers. Of course rc depends upon the choice of/z but an easy 
calculation shows that changing # to another measure in the same class changes 
n to a cohomologous cocycle. If we ignore almost everywhere considerations, 
as we have agreed to do for the time being, we see that our ergodic action is 
canonically associated with a "homomorphism" of the associated "virtual 
subgroup" into the multiplicative group R ~ of all positive real numbers. 
Moreover, this "homomorphism" is trivial (in the sense of containing the co- 
cycle n which is identically one) if and only if the measure class C contains 
an invariant measure. In the special case in which S = G/H for some closed 
subgroup H of G our "virtual subgroup" becomes the genuine subgroupHand 
our canonical homomorphism becomes h--*6(h)/A(h) where 6 and A are the 
modular homomorphisms of H and G into RX; that is A (x) is the (constant) 
Radon-Nikodym derivatives of right invariant Haar measure with respect to 
left translation by x and similarly for 6(h). Thus the known fact ([12], pages 
43 44) that G/H admits an invariant measure if and only if A and 6 agree in H 
becomes unified with the functional equation condition for the existence of an 
invariant measure in an invariant measure class ([4], page 751). 

(C) Let Gx, G2, St, and C1 be as in § 5 and consider the one cocycles from 
$I x G1 to G 2 of the form ~ as defined in § 6; that is rcQ(s, x) = O.(X) where 0 is a 
Borel (and hence continuous) homomorphism of GI into G2.We may think of 
the "homomorphism" defined by nQ as the restriction to a "virtual subgroup" 
of G1 of the genuine homomorphism 0. The question then arises as to when r~ 
defines the trivial homomorphisrn, that is as to when the kernel of ~ "contains" 
the "virtual group" defined by the ergodic action of G1 on $1, C. When G2 is 
commutative the set of all such homomorphisms 0 is a group A~2 and this group 
of homomorphisms of G1 into G~ is an invariant of the given ergodic action 
of GI. In the special case in which Gt is commutative and in which G2 is the 
group Tofall  complex numbers of unit modulus AG2 is a subgroup of the charac- 
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ter group t~ i of G 1. Let us see what this subgroup looks like. By definition X e (~ 1 
is in Ar if and only if X(x)= f(sx)/f(s) for some Borel function f in S and all s 
and x. In the special case in which S admits a finite invariant measure/z such 
an f has a constant absolute value. Hence it is in S°2(S,/~). But the identity 
X(x) = f(sx)/f(s) may be also written as f(sx)=-X(x)f(s) and this says t h a t f  
defines a one dimensional invariant subspace of ~a2(S, p). Conversely, every 
one dimensional invariant subspace of S°2(S,/~) is associated with a unique 
X e A~2 and we see that A~2 in this case is precisely the so-called point spectrum 
of the given action of G1. Now those actions of G1 in which ~2(S, ~) is a direct 
sum of one dimensional invariants subspaces are said to have pure point 
spectrum and it is known that an action with pure point spectrum is determined 
to within equivalence by its spectrum. This suggests that it might be possible 
to classify a large class of actions by showing that they are determined to within 
equivalence by the family of subgroups A~, AG~, AGI etc. for suitably chosen 
groups G2, G~, G~ .... Note however, that if the point spectrum is trivial then 
every .~Atk) will also be trivial. Indeed if 0 is a non identity member of A~2 for 
some G2 and X is any member of G2 which is not identically one in the range of 

then X 0 Q will be a non identity member of A r. Thus one can only hope to 
apply the method to actions with non trivial point spectrum. 

9. Toward a formal definition of virtual subgroup 

Until now the phrase "virtual subgroup" has been used as a suggestive 
locution rather than as the name of a well defined mathematical concept. We 
have shown that many concepts in ergodic theory are suggested by the analogy 
between transitive actions and ergodic actions and have used terminology in- 
volving the undefined term "virtual subgroup" in order to emphasize this 
analogy. In this section and the next two sections we shall Show that we need not 
continue to use suggestive undefined terms in order to pursue the analogy in 
question. One can introduce an honest mathematical object which plays the role 
we have implicitly defined by our development of the virtual subgroup point of 
view. In order to motivate the definition let us note that the notion of iso- 
morphism between topological groups leads to a natural equivalence relation 
between transitive actions of (possibly different) separable locally compact 
groups. Indeed each transitive action of G is defined by a conjugacy class of 
closed subgroups and one obtains an equivalence relation (which we shall call 
similarity) if we state that the G1 action on G1/H1 is similar to the G2 action on 
G2/H 2 whenever HI and H 2 are isomorphic as topological groups. Now every 
Borel homomorphism of one separable locally compact group into another is 
necessarily continuous. Thus we may define similarity equivalently as follows. 
The G1 action on G1/Ht is similar to the G2 action of G2/H2 if there exist Borel 
homomorphisms 0 t and 02 of HI into H 2 and of H 2 into H 1 such that 01 o 02 
and 02 o 01 are both the identity. If we had a notion of homomorphisms from 
one "virtual subgroup" to another we could use it as just indicated to define 
a notion of similarity for ergodic actions. We could then define a virtual group 
to be a similarity class of ergodic actions and a virtual subgroup of a group G 
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to be a virtual group together with a certain homomorphism of this virtual 
group into G. This is the path we shall follow. To do so we must develop the 
virtual subgroup point of view a little further and define the notion of homo- 
morphism when both the range and the domain are "virtual." Now we have 
already defined a "homomorphism" into G 2 of the "virtual subgroup" of G1 
defined by an ergodic action on $1, C1 to be a cohomology class of one cocycles 
from $1 × G1 to G 2. Moreover, we have seen that the "virtual subgroup" of G 2 

defined by the action of G 2 o n  a certain "quotient space" of $1 × G2 may be 
regarded as the "closure of the range" of this "homomorphism." Let us denote 
this quotient space of S 1 × G 2 by $2 and the mapping taking each element of 
$1 × G2 into its equivalence class by 0. Then 0 is a Borel map of $1 × G 2 onto $2 
which satisfies the identity. 

(*) O((s, y) (x, z)) = O(s, y)z for all s, x, y, z ~ S1 × G2 × G1 × G2. 

Conversely given any Borel map 01 satisfying * from $1 × G2 to an arbitrary 
ergodic G 2 space S i, C~ it will define a Borel map 0~ from $2 to Si such that 
0'1 (s x )= 0'1 (s)x for all s e $2 and all x ~ G2. In the transitive case such a map 
0' will exist if and only if $2 and S~ may be defined by subgroups H2 and H i  such 
that H i  ~ H2. Thus we may think of n, 01 as defining a "homomorphism" of the 
"virtual subgroup" of G1 defined by its action on $1, C1 into the "virtual 
subgroup" of G2 defined by its action on Si, C~. 

The identity (*) is somewhat complicated when written out and it us useful 
to observe that O(s, y) = (p(s) y -  1 where (p(s) = O(s, e) and that the condition on 
(p necessary and sufficient for the satisfaction of * is quite simple. Indeed if we 
write * out and set x = e, y = z it becomes O(s, e)= O(s, y)y and if we replace 
O(s, y) in * by (p(s)y -~ it reduces to 

(**) ~o(sx)- e(s) re(s, x). 

We are now ready to make our definitions. A homomorphism of the "virtual 
subgroup" defined by an ergodic action of G1 on $1, C1 into the "virtual 
subgroup" defined by an ergodic action of G 2 o n  $2, C 2 is a class of pairs n, q~ 
where n is a Borel one cocycle from $1 x G1 to G 2. q~ is a Borel function from 
$1 to S 2 and n and cp satisfy the identity (**). n~, q~l and n2, q~2 belong to the same 
class if and only if there exists a Borel function a from $I to G 2 such that 
cpt(s ) - q~2(s) a(s) and  a(s) nl(s, x) - rc2(s, x) a(s, x). Now let G1, G2 and G a be 
three separable locally compact groups and let Ci be an ergodic invariant 
measure class in the standard Borel Gi space St. Let nl, tPl define a "homomor-  
phism" of the first associated "virtual subgroup" into the second and let n2, q~2 
define one of the second into the third. Then s, x ~ q~l (s), rq (s, x) is a mapping 
of S 1 x G 1 into S 2 x G 2 which determines the pair qh, nl and s, x-~tp2(s), 
n2(s, x) is a mapping of $2 x G 2 into $3 x G3 which determines the pair q~2, n2. 
The composition of these two mappings is a mapping of S 1 × GI into S a x G3 
which maps s, x into ~02((~l(S))~7~2((~l(S), X). Moreover, one can prove that 
s, x ~ n2(tpl (s), x) is a Borel one cocycle, that this cocycle and q~2 o tpl satisfy ** 
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and that the cohomology class of the pair s, x~n2(~Ol(S) ,  x), tp 2 0 ~pl depends 
only on the cohomology classes of nl and n 2. This suggests that we define the 
composition of the homomorphisms defined by n~, ~o~ and n2, tp2 to be the 
homomorphism defined by ~P3, n3 where ¢P3 = ¢P2 0 tpl and n3(s, x) = n2(tpl(s), x). 
That this is the "right" definition is confirmed by the fact that it agrees with the 
usual definition when our G2 spaces are all transitive. Our goal seems to be at 
hand. Having defined homomorphism and composition we may now define 
similarity as indicated at the beginning of this section and define a virtual group 
as a similarity class of ergodic actions. Finally, we may define a virtual sub- 
group of a group G as a virtual group together with a particular homomor- 
phism of it into G. However, we have not made our peace with almost every- 
where questions and the technical difficulties that arise become quite 
troublesome when one tries to deal with composition of almost everywhere 
defined homomorphisms. In the next two sections we shall present a new point 
of view toward our definition which not only makes it easier to deal with almost 
everywhere questions, but suggests a broader framework for the whole theory. 
We shall see that a virtual group need not come to us as a subgroup of a g r o u p - -  
indeed that there may be virtual groups not embeddable in any group. In parti- 
cular, one can define ergodicity for equivalence relations, whether or not the 
relation is defined by a group, and every ergodic equivalence relation defines 
a virtual group. 

10. Ergodie equivalence relations 
Let C~ be an ergodic invariant measure class in the standard Borel Gx 

space S: and let us consider the important special case in which the action of 
G1 on $1 is free ; that is in which for all s ~ S I s x  = s implies x = e. We begin by 
observing that the "virtual subgroup" of G 1 defined by the G1 action on S~, C1 
depends only on the equivalence relation in $1 set up by the action and not at all 
upon the other features of the action. Indeed it follows from the identity (**) 
that in this case n is uniquely determined by ¢p and that a n will exist for a given ~p 
if and only if ~p(sl) and ~P(S2) lie in the same orbit whenever sl and s 2 lie in the 
same orbit. Given ~p ~ and ~P2 the question arises as to when the uniquely deter- 
mined one cocycles n~ and 7~ 2 are such that n~, ~Pl and n2, ~02 belong to the same 
class and an easy calculation yields the following answer, tp 1 and ¢P2 define pairs 
belonging to the same class if and only if ~Pl(S0 and tp2(s2) are in the same G2 
orbit whenever s~ and s2 are in the same G1 orbit; that is if and only if tpx 
and cp2 define identical  maps of the orbit space of St under Gt into the 
orbit space of $2 under G2. In other words in this case a homomorphism 
of the S~, C~, G~ virtual group into the $2, C2, G2 virtual group is a map- 
ping of the space of all G1 orbits into the space of all G2 orbits. However, 
not every mapping will do and the mappings which will do can not  be  described 
as those which are Borel mappings with respect to the natural Boret structure 
in the orbit spaces. These orbit Borel spaces are much too irregular to be useful. 
The mappings which define homomorphisms are those which can be "lifted" 
to be Borel maps of $1 into $2. 
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To say that the GI action on S t is free is the same as to say that the mapping 
s, x - ~ s ,  s x  is one to one from $1 x GI to a certain subset < of $1 x S r  This 
subset ~ is the set of all pairs s~, s 2 such that s I and s 2 lie in the same G1 orbit;  

that is the set of ordered pairs defining the equivalence relation set up by the 
G~ action. If we wish to emphasize the equivalence relation rather than the 
action it is useful to transfer our attention from S~ x G~ to ~ using the mapping 
s, x -~s ,  s x  to transform functions with domain $ I x  G~ into functions with 
domain ~.  From this point of view a one cocycle ~ from St x GI to G 2 becomes 
a Borel function from ~ to G 2 satisfying the identity 

~(sl, s~) ~(s~, s3) = ~(sl, s3) 

whenever sl, s 2 and s 2, s 3 are both in ~.  Moreover the one-cocycles lr~ and Ir 2 are 
cohomologous if and only if there exists a Borel function a from 81 to G2 such 
that ~1(sl, s2) = a(si) ~2(sl, s2) a(s2)- 1 

The fact that the above reformulations are possible suggests that we attempt 
to generalize our theory to include "ergodic equivalence relations" which do not 
come from an ergodic action of a group. Let us see how such a notion might be 
defined. Keeping in mind our ultimate confrontation with almost everywhere 
questions we shall want not only a measure class in S which is in some sense 
"invariant" but also a measure class in o ~ generalizing the product of the Haar  
measure class in G with the invariant measure class in S. Actually the measure 
class in S is uniquely recoverable from its product with the Haar measure class 
so it will suffice to be given a certain measure class in ~r. An ergodic equivalence 
relation may be defined as the system consisting of a standard Borel space S, 
a Borel subset ~r of S x S defining an equivalence relation in S and a measure 
class C in S x S satisfying certain conditions which we shall now discuss. 

Let S be a standard Borel space and let ~ be a Borel subset of S x S which 
defines an equivalence relation in S in the usual sense of the word. Let 
tr(sl, s2) = sx so that,r  is a Borel mapping o f~  on S and let O(sl, s2) = s2, sl so that 
0 is an involuntary automorphism of 6 P as a Borel space. For  each finite measure 
V in ~0 let/~ denote the measure in S such that/~(F) = # ( a - t  (F)). It follows from 
the "quotient measure theorem" (cf. [6], page 124 for a formal statement with 
references to proofs) that there exists an essentially unique assignment to each 
s E S o f a  measure Vs in tr- l(s) so that (in an obvious sense) we have # = S#,d~(s).  
It is easy to see that the class of/~ depends only upon the class of # and that for 
/~ almost all s in S the class of#s depends only upon the class of#. Thus for each 
measure class C in ~ we have a canonically defined measure class C in S and 
an essentially unique assignment to each s ~ S of a measure class Cs in cr- 1 (s). 
We shall speak of C and the Cs as the decomposition of C defined by or. Note 
that s, t-~ t is a one-to-one map of o'-1 (s) into the ~ equivalence class of s in S. 
Thus each C, defines a unique measures class C ° which is concentrated in the 
equivalence class of s. 

Now consider the special case in which ~ is the set of all pairs s, s x  for some 
free action of a separable locally compact group G on S. Then each C ° may be 
identified with a measure class in G via the mapping x - ~ s x .  Moreover  a 
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necessary and sufficient condition that C°1 = cos whenever sl, s2 e 8 is that each 
C ° coincides with the Haar measure class when this identification is made. 
When these equivalent conditions do hold it follows that C, transferred to 
S x G by the mapping s, x - . s ,  sx, is of the  form C1 × C~ where C~ is the Haar 
measure class and C1 = C is some measure class in S. Finally, it can be proved 
that when C (transferred to S x G) is of the form Ct x C~ then C~ is invariant 
under the G action if and only if C is invariant under 0. 

These facts suggest that we complete our definition of an ergodic equivalence 
relation as follows. It is a system consisting of a standard Borel space S, a Borel 
subset 8 of S x S defining an equivalence relation in S and a measure class C 
in 8 provided that C has the properties listed as (i), (ii) and (iii) below. 

(i) C is invariant under 0. 

(ii) In the decomposition of C defined by the mapping a we have C~ ° = Cs ° 
for C almost all pairs s~, s2 ~ 8. 

(iii) If f is a Borel function on S such that f ( s l ) =  f(s2) for C almost all 
pairs s~, s 2 e 8 then f is a constant C almost everywhere in S. 

If S, 8, C is an ergodic equivalence relation and S 1 is any Borel subset of S 
such that neither $1 nor S - $1 is of C measure zero then we may define a new 
ergodic equivalence relation $1, ~,  C1 by taking ~ to be the set of all s 1, s 2 e 8 
with s~ e S1 and s 2 e S~ and taking C1 to be the restriction of C to ~. Clearly 
then there exist ergodic equivalence relations whose equivalence classes are not 
manifestly the orbits of some group action. 

Having reformulated our virtual group concepts in terms of the ergodic 
equivalence relation canonically associated with a free ergodic action, it is clear 
that they may be formulated for any ergodic equivalence relation whether or not 
it comes from a free ergodic action of a group. If only all ergodic actions were 
free we would have a natural generalization of the theory outlined in the first 
nine sections which in particular would free us from the necessity of demanding 
that virtual groups be subgroups of honest groups. In the next section we shall 
introduce the notion of an ergodic groupoid and show that it bears the same 
relationship to the notion ofergodic action that the notion ofergodic equivalence 
relation bears to that of free ergodic action. Thus we shall obtain a notion of 
virtual group that includes both the virtual subgroups associated with arbitrary 
ergodic actions and the virtual groups defined by ergodic equivalence relations. 
At the same time we shall see that the notions of homomorphism and similarity 
take on a simple and more natural form when defined in terms of the groupoid 
associated with the underlying ergodic action. 

11. Virtual groups as similarity classes of ergodic groupoids 

Speaking loosely, a groupoid is a group in which multiplication is not 
necessarily everywhere defined. More precisely a groupoid is a set f~ together 
with a mapping x, y-* xy  from some subset ~ of fg x f~ to f# such that the 
following axioms are satisfied. 
15 Math, Ann. 166 
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(i) For  each x in (¢ there is a unique e in ff such that e x  is defined and e x  = x 

and there is a unique e' in f~ such that xe '  is defined and xe '  = x. We call e and e' 
the left and right units of x respectively. 

(ii) Each left or right unit is its own left and right unit. 
(iii) x y  is defined if and only if the right unit of x coincides with the left unit 

of y. 
(iv) If x y  and y z  are defined then ( x y ) z  and x ( y z )  are defined and 

( x y ) z  = xtyz). 
(v) For  each x in f¢ there exists a unique x -  1 in G (called the inverse of x) 

such that x x - 1  and x - I x  are the left and rights units of x respectively. 
Clearly a groupoid is a group if and only if ~ = ft. 
It is clear that an element of (q is a left unit if and only if it is a right unit 

and hence we may speak of the set S ,  of all units of fg. (The reader familiar with 
the theory of categories may find it useful to observe that a groupoid may also 
be defined as a category in which every morphism has an inverse. More precisely 
the elements of a groupoid are the morphisms of a category whose objects are 
the units). Given two units el and e2 there may or may not be an element x in f9 
such that e l x e  2 = x. If there is, we shall say that el and e2 are conjugate.  It is 
easy to show that conjugacy is an equivalence relation. Thus the groupoid 
structure defines an equivalence relation in the space S~ of all units. Let us say 
that our groupoid is principal if for each pair el, e2 of conjugate units there is a 
unique x such that e l x e  2 = x and let 8 denote the subset of S x S consisting 
of all conjugate pairs e~, e 2. Then x - - . x - ~ x ,  x x  -~  is a one-to-one map of f# 
onto 8. Moreover  if we use this map to transfer the groupoid structure in (# over 
to 8 we convert 8 into the groupoid defined as follows: (el, e2) (ca, e4) is defined 
if and only ire 2 = e a and then (e l, e2) (e3, e4) = el, e4. Conversely given any equiv- 
alence relation 8 '  in any set S' we may make 8 '  into a groupoid by copying the 
above definition. In this groupoid the units are the elements (s, s) and the units 
(s 1, sl) and (s2, s2) are conjugate if and only if (s l, s2) e 8'. In other words one 
has a natural one-to-one correspondence between principal groupoids on the 
one hand and sets with an equivalence relation on the other. 

Consider the special case in which our equivalence relation is defined by a free 
action of a group G on our space S. Then the mapping s, x - - ,  s, s x  permits us to 
transfer the groupoid structure from 8 back to S × G. We thus convert S x G 
into a groupoid in which multiplication is defined as follows: (sl, xl)  (s2, x2) is 
defined if and only if s ix  1 = s 2 and then (Sl, xl) (s2, x2) = sl, x l x 2 .  Now we make 
the important observation that this definition makes sense and converts S x G 
into a groupoid whether  the act ion is f ree  or not. Whenever S is a G space the 
above prescription converts S x G into a groupoid and it is easy to see that this 
groupoid is principal if and only if the action of G on S is free. 

We have now associated a groupoid structure both with an ergodic equiv- 
alence relation and with an ergodic action of a separable locally compact group. 
In each instance our  groupoid is also a standard Borel space equipped with a 
measure class. Converting our definition of "ergodic equivalence relation" 
into a definition of "principal ergodic groupoid" by using the equivalence 
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between the notions of groupoid and equivalence relation we find that it applies 
equally well to non principal groupoids and in particular to those of the form 
S x G. Slightly modified to permit almost everywhere considerations and a 
wider class of spaces it takes the following form. Let ~ be a groupoid and at the 
same time an analytic Borel space. Let C be a measure class in f#. Let tr(x) be 
the left unit of x for each x e (9 and let S~ be the space of all units in f9. We shall 
say that f#, C is an ergodic groupoid if the following conditions are satisfied. 

(i) The domain ~ of x, y ~ x y  is a Borel subset of ~. 

(ii) x, y--, xy  is a Borel function from ~ to f#. 
(iii) x ~ x-1 is a Borel function from f¢ to fg. 
(iv) C is invariant under x ~ x - i .  

(v) If T x is the one-to-one map y ~  xy  from a - i ( x - i x )  to c r - l (xx- l )  and 
t~, {Cs} is the decomposition of C defined by tr then there exists a (~ null set N 
in S~ such that for all x with xx  -1 q~N and x - l x q ~ N  the map T~ carries 
Cx- ix onto Cxx- 1. 

(vi) For every Borel function f on S~, f ( x -  ix) = f ( x x -  1) for almost all x 
in ~ implies that f is almost everywhere constant. 

To complete our program and define a virtual group as a similarity class of 
ergodic groupoids we must show that the notion of homomorphism introduced 
in § 9 may be expressed in terms of the groupoid structure of S x G in such 
a way as to make sense in the general case. Now it is natural to define a homo- 
morphism ofa  groupoid fgl into a groupoid (92 to be a function tp from f91 to f~2 
such that v2(xl) tp(x2) is defined and equal to tp(xlx2) whenever xl x2 is defined. 
When ~1 and (#2 are of the form S l × GI and $2 x G 2 respectively where S i is 
a G i space and Gj is a group we may write tp(s, x)=a(s,  x), ~z(s, x) where 
a(s, x) e S 2, re(s, x) ~ G2. Moreover a straightforward calculation shows that the 
pair a, rc defines a homomorphism in the indicated sense if and only if rc is a one 
cocycle, a depends only on s and a(sx, e ) -  a(s, e)re(s, x). In other words the 
pairs n, ¢p, equivalence classes of which were used in § 9 to define virtual group 
homomorphisms, are precisely those Borel functions from S1 × Gi to $2 × G2 
which are groupoid homomorphisms. The condition that rq, qh and n2, @2 define 
the same virtual group homomorphism may also be expressed in groupoid terms. 
When so expressed it says that there exists a Borel map0 from S~, to G 2 such that 
for all seS~l the left and right units of O(s) are ~pl(s) and ~p2(s) respectively and 
O(xx-1) tpl(x)= ~p2(x)O(x-ix) for all x e (#l. Here v21 and I/; 2 are the groupoid 
homomorphisms defined by nl, tp I and n2, q~2 respectively. We are indebted to 
Professor S. EILENBERG for pointing out that this relationship between tpl and 
~2 has a simple interpretation when fg~ and f~2 are regarded as categories. 
Indeed from the category point of view a groupoid homomorphism is a functor 
and the relationship in question is just what is known in category theory as 
"natural equivalence" of functors. 

One is tempted to define a homomorphism from the ergodic groupoid 
fg~, C1 to the ergodic groupoid f92, C2 to be a Borel function from fgl to (g2 
15" 
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which is a groupoid homomorphism. However this is not enough. One needs a 
further restriction involving the measure classes C1 and C2 and of course a 
suitable "almost everywhere" relaxation has to be formulated. The actual 
definition depends upon two auxiliary notions which we now introduce. Let 
if, C be an ergodic groupoid and let So be a Borel subset of S,  such that 
t r - l ( S ~ -  So) is a C null set. Let fq I So be the set of all x e cg with x x - l E  So 
and x -  ~ x e So. Then C restricted to f9 ~ So makes f# ~ So into an ergodic groupoid 
which we shall call an inessential contraction offq, C. Now let f#l, CI and fq2, C2 
be ergodic groupoids and let W be a Borel function from f#~ to fq2- We shall say 
that ~ is a strict homomorphism if (i) 1:(zl)V:(z2) is defined and equal to tp(zl z2) 
whenever zlz2 is defined and (ii)if t~ is the restriction of t: to S, ,  then t~-I(E) 
is a C~ null set whenever E is a C2 null set which is not contained in some S,2 
equivalence class of positive measure. We remark that the definition of strict 
homomorphism given in [ 11 ] is not quite correct and should be replaced by the 
above. Finally we define a homomorphism of fql, C1 into f#2, C2 to be a Borel 
function from (q~ to (#2 whose restriction to some inessential contraction is a 
strict homomorphism. We define two strict homomorphisms W~ and V:2 to be 
strictly similar if there exists a Borel function 0 from S,I to f#2 such that for all 
s e S,1 the left and right units of O(s) are ~pl(s) and ~02(s) respectively and 
O(xx- 1) Wl(X) = W2(x) O(x- ix) for all x e f#l. We shall say that two homomor- 
phisms are similar if they have strictly similar restrictions to a common in- 
essential contraction of (9~, C r  

It is now easy to complete our program and define the notion of virtual 
group. Let ~p~ and ~02 be homomorphisms of the ergodic groupoids N~, Cx and 
if2, C2 into one another. If ~pl o 022 and ~P2 o ~p~ are each similar to the identity 
we shall say that if1, C1 and f#2, C2 are similar ergodic groupoids. We define a 
virtual oroup to be a similarity class of ergodic groupoids. 

12. Concluding remarks 

The notion of homomorphism "commutes" with the notion of similarity 
in such a way that a similarity class of homomorphisms between ergodic 
groupoids may be regarded as a homomorphism between the corresponding 
virtual groups. Similarly one can define a notion of "homomorphism from a 
virtual group into a group." Let the separable locally compact group G act 
ergodically in S, C where C is an invariant measure class in the standard Borel 
G space S. Let S x G, C x Co be the corresponding ergodic groupoid. Then the 
mapping s, x-~x defines a homomorphism 0 of the virtual group containing 
S × G, C x Co into G. Moreover, as stated precisely in theorem 4 of [11], the 
given ergodic action is uniquely determined by the virtual group and its 
"imbedding" 0 into G. In this way the problem of finding all ergodic actions of 
a given G breaks down into two problems: 

(a) Find all virtual groups. 
(b) Find all possible imbeddings of a given virtual group into G. It would 

be interesting to know whether this is a real division or whether one of problems 
(a) and (b) has a trivial solution. 
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