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A one-dimensional lattice model of a solid-solid interface is presented within which it is 
possible to characterize the scattering of phonons at the interface as a function of wave- 
length. The probability for a phonon to be transmitted across the interface is found generally 
to decrease with decreasing wavelength, although phenomena such as total reflexion and 
resonant transmission may occur. Conditions for the existence of a localized interface 
mode are given. The thermal boundary resistance for heat flow across the interface is ex- 
pressed in terms of an average temperature-dependent phonon transmission coefficient 
which generally increases with decreasing temperature and approaches the continuum 
value at very low temperature. Applications of these results to three-dimensional interfaces 
in general, and particularly to heat dissipation in catalysts, high-frequency phonon radia- 
tors, and Kapitza resistance, are discussed. 

1. Introduction 

When heat is conducted from one material to another, 
for most practical purposes the temperature can be 
regarded as a continuous function across the interface. 
This is not a good approximation, however, in a 
number of situations of experimental interest. It has 
been known for some time that heat flow from a solid 
to liquid helium is accompanied by a finite tempe- 
rature jump at the interface El]. A similar effect can 
occur at the interface between two solids, at least one 
of which is an insulator, if a large heat flux is involved 
[2-5]. 
This phenomenon of thermal boundary resistance has 
been rationalized on the basis that heat is transmitted 
by phonons across the interface. The transmission 
probability for phonons is determined according to the 
so-called acoustic mismatch theory [6, 7], i.e. by cal- 
culating the transmission coefficient of an elastic wave 
impinging on the interface. This theory provides a 
qualitatively satisfactory description of heat transfer 
across a metal-insulator interface at low [8, 9] as well 
as at high temperature [3-5]. The situation is less 
clear in the case of an interface involving liquid helium. 
The theory appears to be adequate for temperatures 
below 0.1 K if allowance is made for phonon attenua- 

tion in the solid [1, 10, 11]. Above OAK the theory 
predicts much too small a thermal boundary resistance. 
The mechanisms responsible for this surprisingly ef- 
ficient heat transfer into liquid helium are still being 
investigated [1]. 
As indicated above, the acoustic mismatch theory is 
basically a continuum theory. Hence it should be 
expected to be valid only for long-wavelength phonons, 
i.e. only at low temperatures. Because of its continuum 
character, the acoustic mismatch theory completely 
neglects the structure of the interface on an atomic 
scale. However, this structure is clearly crucial in 
determining the scattering of phonons whose wave- 
length is comparable with the thickness of the inter- 
face, i.e. with the distance over which the elastic 
properties change appreciably. 
In this paper, I shall present a simple one-dimensional 
lattice model of a solid-solid interface within which it 
is possible to investigate in some detail the effect of 
the atomic structure of the interface on the scattering 
of phonons. Specifically, I shall calculate the probabil- 
ity for a phonon to be transmitted across the interface 
as a function of wavelength. I shall also evaluate the 
heat flux due to phonons across the interface as a 
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function of temperature,  and I shall express this heat 
flux in terms of an average tempera ture-dependent  
transmission coefficient which will be the proper  
generalization of the cont inuum transmission coeffi- 
cient to higher temperatures• Finally, ! shall discuss 
the applicat ion of these results to three-dimensional  
interfaces in general, and particularly to heat dissipa- 
tion in catalysts, to high-frequency phonon  radiators 
and, briefly, to heat conduct ion from a solid to liquid 
helium• 

2. Model Equations of Motion and Solutions: 
Phonon Transmission Coefficients 

The model  system considered here is shown schemati- 
cally in Figure 1. Two linear harmonic  chains are con- 
nected by a spring. Assume for simplicity that the 
equilibrium distance between any two adjacent masses 
is equal to a. Let  uj be the longitudinal  displacement of 
mass j f rom its equil ibrium position. The equations of 
mot ions  for the uj are 

Uj ---- (02 (U j+ 1 ÷ U  j _  1 - - 2 U  j) j <  - 1 

ao + ( 0 f . _ ,  + (0f)Uo 

/~S = (1)22 U2 ÷ ~22 t/0 --  (~22 ÷ (02) L/12 

/i; = (02 (u~+ t + u j_ s - 2u j) j > 2 (1) 

with 

= A/m,  

a} = f3/m,, i =  1, 2. (2) 

We are interested in traveling-wave solutions to Equa- 
tions (1), i.e. in solutions of the form 

u j = e x p i ( j k 2 a + y t ) + b e x p i ( - j k z a + y t  ) j>=l 

u3=cexp i ( j k ta+f i t  ) j~O.  (3) 

These represent an incoming wave in medium 2, which 
is partially reflected and partially t ransmit ted to 
medium I. Fo  r Equat ions  (3)to be solutions of( l ) ,  one 
must  have f i=2.  On the other hand, because of the 
first and fourth equat ion in (1), 

f i = 2 %  sin½k l a  

7 = 2 m z sin ½ k 2 a .  (4) 

ml m2 
fl f3 f2 

j=-2 -I  o I 2 3 
Fig. 1. One-dimensional lattice model of solid-solid interface 

Hence 

(D 1 sin ½ k 1 a = ( 0  2 sin ½ k 2 a (5) 

which determines k t as a function of k 2 . After inserting 
Equat ions  (3) into the second and third of Equat ions  (1), 
one obtains 

fa exp ( - "  i k 2 a c ( e x p i k l a + f ~ l - 1 ) - b  ~ lk2a)=ff~ exp 

c ~ - b ( l + [ ~ - l J e x p ( - i k 2 a ) )  

= 1 + [ ~ -  1 ] exp i k 2 a. (6) 
f2 J 

It is s traightforward to solve these equations for b and c. 
In calculating the heat flux across the interface we will 
need Ibl 2 and Icl2• Let f31 and f32 be defined by 

f3, =f3/f~ i =  1, 2. (7) 

One then finds that  Ib] 2 and Ic] 2 can be expressed as 

IblZ=b,/d [c[2=cn/d (8) 

with 

b. = (f3s +f32 - 1) 2 + 1 +( f3 ,  - 1) 2 +(f32 - 1) 2 

+ 2[cos  kta ] [f31 - 1 - ( f 3 2 -  1)(f31 + f 3 2 -  1)] 

+ 2 [cos k 2 a] [f32 - 1 - ( f 3 s  - 1) (f3s +f32 - 1)3 

+ 2 [cos (k I + k2) a] (f31 - 1) (f3 z - 1 ) -  2 [cos (k 1 - kz)a ] 

• (f3s +f32  - 1) (9a) 

c. = 4 f~  s sin 2 k 2 a (9b) 

d-= (f31 + f 3 z  - 1) 2 + 1 +( f3 t  - 1) 2 +(f32 - 1) 2 

+ 2 [cos  k, a]  [ A s  - - (L2  - 1) (As + L 2  - 1)] 

+ 2 [cos k 2 a] [f32 - 1 - (f3t - 1)(f3s + f32 - 1)] 

- 2 [cos (k 1 + k 2) a] (f3s + f3 2 - 1) + 2 [cos (k s - k2) a] 

• (f~l - 1)(f3z - 1). (9c) 

Equat ions(9)  together  with Equat ion(5)  furnish a 
complete description, within our model,  of the scat- 
tering of an elastic wave at an interface as a function 
of  wave vector. 
The consistency of the expressions given for Ib[ 2 and 
Ic[ 2 can be checked by looking at the cont inuum limit 
and at energy conservation. In the cont inuum theory 
of acoustics it is well known [12] that at an interface 
between two media which do not  sustain shear stress, 
the reflection and transmission coefficients for a nor- 
mally incident wave are given by 

b(C) _ Pl vs - P2 v2 c(Cl .=_ 2p2  v2 ( lo)  
pxVs +p2v2' PlVx +PzV2 
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where Pi and vi stand for the mass density and the 
velocity of sound respectively in medium i. On the 
other hand, on expanding Equations (9) to order (k 2 a) 2 
and using Equation (5) one finds 

2 
l i e  Icl (el fl ~ 

1+ tm f 

1 - \ ~ 2 f 2  / 
l ie  Ibl-- ,m, A.~.  (11) 

,,, .o 1+ { li -T  _1 

Hence in the continuum limit Equations (9) reduce to 
the proper expressions if we make the obvious identi- 
fication piv~e-~(mifi) -~. Furthermore, it is easy to show 
that for all k e 

m l  Vl (k:l) Ib(k2)l = -4 Ic(k2)l 2 = 1 (12) 
m 2 V 2 (k2) 

if t J l (k l )=df i /dk  I and vz(k2)=dv/dkz, i.e. if the vi(ki) 
are the proper group velocities, k 1 being determined 
by k 2 through Equation (5). 
Figures 2 to 5 give some examples for the dependence 
of transmission coefficients on wave vector. Figure 2 
shows curves for [c(k2)[, the absolute value of the 
amplitude transmission coefficient, and Figure 3 shows 
corresponding curves for the power transmission 
coefficient cp(k2) , which is defined as 

m 1/)1(kl) 
cp(k2) = m2 v2 (k2) I c(G)12 (13) 

(cf. Eq. (12)). Note first that the continuum values may 
or may not be good approximations for [c(k2) [ and 
%(k2) at finite k2, depending on the values of the 

re,I/m2=2.0 
1.0 f3~ =0.25 

Cp 0.5 1.0 

"IT 
2 

k2o 
Fig. 3. Power transmission coeftlcient for a phonon going from 
medium 2 to medium 1 as a function of phonon wave vector. Note 
resonance phenomenon when f32=2.0 and total reflexion when 
f32 =0.25 
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, , , , , I , ~  
7r 7T 
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kz0 

Fig. 4. Dependence of phonon power transmission coefficient on 
interface spring constant f3. Curves a: fl  = 2f2; b : f l  = 8f2; 
f3 =0.25 fl ; ..... : f3 = 0 . 5 f l  

rnl/m2=2.0 
1.0 f3~ = 0.25 

' ~ 2 5  : f32 

Icl o.5  
~ / - 2 . 0  

7r 7r 
2 

kz0 
Fig. 2. Absolute value of amplitude transmission coefficient for a 
phonon going from medium 2 to medium 1 as a function of phonon 
wave vector. Total reflexion occurs in the case where fa2 = 0.25 
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z.o f 
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k2o 
Fig. 5. Dependence of phonon  power transmission coefficient on 
interface spring constant f3 for a one-dimensional grain boundary 
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model parameters. In addition, if 0) 2 > (.01, then k~ be- 
comes complex as soon as k 2 increase above some 
limiting value (cf. Eq. (5)), and the incoming wave is 
totally reflected. Such is the case for the curves with 
f 3 2  =0.25 in Figures 2 and 3. (In the continuum theory, 
total reflexion can only occur at oblique incidence [12]). 
Furthermore, although Cp(k2) in general decreases 
with increasing k2, it is possible for cp(k2) to exhibit 
some kind of resonant behavior (cf. curve with f32 = 2.0 
in Fig. 3). The importance of the interface bond is 
illustrated further in Figures 4 and 5 where the form 
of cp(k2) can be seen to depend strongly on the inter- 
face spring constant f3. 
With a view on studying heat transfer across the inter- 
face, we have concentrated so far on traveling-wave 
solutions to Equations (1). However, for some model 
parameter values there exists also a solution to Equa- 
tions (1) of the form 

u j = A e x p i ( j k z a - f i t ) e x p ( - [ j l l 2 a  ) j>=l 

u j = B  exp i ( jk ,  a -  fit) e x p ( -  Ijl I1 a) j < 0  (14) 

corresponding to a local mode. The simplest situation 
is that of a one-dimensional crystal with a grain 
boundary: m 1 = m2, f l  = f2 + f3. It is then straightfor- 
ward to show, by inserting Equations (14) into Equa- 
tions (1), that there is a local mode iff3 > f l .  This local 
mode splits off at the top of the band since 

f12 = 4 co} (2 f , / f  3 --(fl/f3)2) - 1  > 4 @  05) 

The situation just described is the dual analogue to a 
linear chain with a single impurity, where a local mode 
exists if the impurity atom is lighter than the other 
atoms [13]. In the slightly more complicated case 
where m 1 4 = m 2 and fl  = f3 + f2 one finds a local mode 
with 

f ie= 1 (fl ml --f2 m2) 2 (16) 
ml m2 (fl --fz)(ml --m2) 

if fl  > f2, ml > m2 and f l / f2  + mz/ml > 2. 
Equation (16) was also derived previously by Hori 
et al. [14] using a Green's function method. 

3. Heat  Flux across Interface : 
Thermal Boundary Resistance 

Let T~ and T 2 be the temperatures on either side of the 
interface. Then one can write down the following, 
within our model exact expression for the heat flux 
due to phonons from medium 2 to medium 1. 

2o~ 2 

q2 =½ .f [ exp(h~/k~) -  13-1 g~(0))h0)~(0)) 
o 

" c p 2 (0))d0). (17) 

In Equation(17) g2(0)) is the exact 1D density of 
states [13], v2(0) ) is the group velocity for phonons, 
and cp2 (0)) is the power transmission coefficient from 
medium 2 to medium 1. The factor ½ occurs because 
only half the phonons within the Brillouin zone move 
towards the interface. Equation (17) will be compared 
to the approximate expression 

rOD 

q(2 ~ =½ ~ [exp(h0)/k~T2)-  1]- '  g~D)(0))h0), v~V(~d0) 
o 

(18) 

where g(2D)(0)) stands for the Debye 1D density of 
states [13], v 2 for the usual velocity of sound, and F {c) 
for the continuum power transmission coefficient. 
From Equation (11) 

V(c) - 4(ml f ,  m2 f2) } 
[(ml fl)~ + (m 2 f2)~]2. (19) 

Let us also introduce an average transmission coeffi- 
cient F 2 (Te) by 

v2 F2 (T2) 
2¢02 

[exp(h0)/k s T2)- 1]-1 g2 (0)) h0) i ; 2 ( 0 ) ) c v 2 ( 0 ) ) d o  ) 
o 

2¢02 

[exp(h0)/kB T2)-  13 -1 gz (0)) h0) d0) 
o (20) 

The denominator in Equation (20) is equal to the 
energy density e2 (T2). This allows Equation (17) to be 
rewritten in the suggestive form [16] 

q2 = ½ e2 (T2)Vz I"2 (T2)- (21) 

F 2 (T2) is particularly useful for a comparison of the 
exact and the continuum treatment because 

lira F 2 (T2) = 1 r'(c) . 
TarO 

For the net heat flux q21 across the interface, from 
Equation (2 i), 

q21 = ½ e2 ( T2) v21"2 ( T2) - ½ el (7"1) vl F1 ( T1). (22) 

If T 2 -  T 1 ~T2, then q21 is proportional to T 2 -  T~. 
This means that heat flux from one medium to the 
other requires a finite temperature jump at the inter- 
face. 
The quantity (T 2 - T1)/q21 is called thermal boundary 
resistance. 
Figures6 and 7 present a numerical comparison 
between exact and continuum results for heat flux 
across the 1D analogue of a N i - A 1 2 0  3 interface. In 
order for the values of the model parameters to be re- 
presentative of real materials, mz/m 1 was set equal to 
Pz/Pl, and f z / f l  was determined by setting co2/% 
equal to 0DZ/0m, the ratio of Debye temperatures. (In 
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I.O - -  x Ni(2)'--AI203(1) 

f3 var;ed 

Oo(Ni) I ODl(AI20~) 
~'? ' I ' I ' I 

0.125 0.5 2 

 (I03K) 
Fig. 6. Average transmission coefficient as a function of temperature. 
The model parameters are chosen such as to represent a one-dimen- 
sional analogue of a Ni (medium 2) -A1203  (medium 1) interface: 
mr~m2=0.45, fl/f2 =2.3, f3 variable. Curves a: f3 = ( f l  f2)~; b: f3 = 
4(f 1 fz)÷; c:fa = 0.25(f I f2) ~. Heat flow is from AlzO 3 to Ni. Thermal 
matching is optimal for f3 =(fl fz)~ 

Ac) (c) 
Ni(2)--AI203fl) /ql /q2 
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Fig. 7. Comparison of exact and continuum results for average 
transmission coefficient F and heat flux q (arbitrary units). Same 
values for model parameters as in Figure 6, with f3 = ( f t  f2) -~- q~) 
denotes continuum heat flux from medium 1 to medium 2. Note 
that q~C)(T):I= q~)(T)in contradiction to thermodynamics 

one dimension, coocODo~v [-13].) However, the qualita- 
tive aspects of our results do not depend significantly 
on the precise values of the model parameters. Figure 6 
shows that the average transmission coefficient F(T), 
calculated from Equation(20), generally decreases 
with increasing T such that F (C) will not be a good 
approximation to F(T) for T>0 .1  0 D. In addition, 
Figure 6 demonstrates again the importance of the 
interface bond: F(T) depends appreciably on f3, and 
heat transfer across the interface is optimal if f3 = 
(f~ f2) ~. Figure 7 illustrates the correspondence between 
q(T) and F(T). Note also that the continuum treatment 
violates thermodynamics since it gives q(2C~=t=0 for 
T2 = T~. This is in contrast to the exact treatment, for 
which q2 t=0  if T 2 = T  1. From Figures6 and 7 we 

further conclude that F(T) is not a very strong function 
of T at high temperature. At the same time e (T)=  k~ T 
so that at high temperature q2t is again very nearly 
proportional to T 2 - T 1. 

4. Appl icat ions  

Before dealing with specific applications, we shall 
discuss to what extent the results of our one-dimen- 
sional model calculation apply to a three-dimensional 
interface in general. In real solids, propagating elastic 
waves must be described not only by their wave vector 
but also by their polarization. At a 3D interface, 
longitudinal and transverse waves are coupled to each 
other in a complicated manner [7]. The dispersion 
relation and the density of states also differ consider- 
ably between one and three dimensions [13]. In 
addition, very little is known about the structure of a 
solid-solid interface on an atomic scale. Most of the 
information available comes from experiments on the 
adhesive properties of thin films deposited on a sub- 
strate [15]. Although such experiments are notoriously 
difficult to interpret, it is clear that the strength of the 
film-substrate bond can vary within a wide range, 
depending on the conditions under which the film was 
formed. Also, except possibly for epitaxially grown 
films, the distance over which the elastic properties at 
the interface change appreciably will probably be of 
the order of several lattice constants. 
In view of all these problems, it is essential to realize 
that the important qualitative aspects of the results of 
our 1 D calculation are due basically to a dimensional 
effect: Phonons are scattered strongly by a lattice 
defect if their wavelength is comparable to the dimen- 
sions of the defect. In our case the defect is the inter- 
face, whose thickness is of the order of a few lattice 
constants. Hence interface scattering is strongest for 
short-wavelength phonons, and such phonons are 
present in higher proportion at high temperatures. In 
particular, Equation (22) for the net heat flux across 
the interface carries over to the 3D case, with F(T) 
being interpreted as a transmission coefficient properly 
averaged over all phonon branches [163. From the 
above arguments, this F(T) can also be expected to 
decrease with increasing temperature. 

4.1. Heat Dissipation in Catalysts 

Catalysts for many industrial processes consist of 
small transition-metal particles finely dispersed on a 
porous insulating substrate. Chemical reactions occur- 
ring on these metal particles often involve excited 
intermediates, and the processes by which this ex- 
citation energy is dissipated are crucial in determining 
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Fig. 8. Transient heating of a Pt catalyst particle (diameter 50/~), 
sitting on an AI203 substrate, when subjected to a heat pulse 
(30 kcal/mole, 10 -12 or 10 -11 s duration) from a chemical reaction. 
F=0.5  corresponds to perfect thermal matching between particle 
and substrate. F~Cl=0.06 (cf. Ref. 16). F(T)=O.2F (~) should be a 
realistic estimate at the temperatures involved 

the operation of a catalyst [16, 17]. Part of this ex- 
citation energy will be released to the catalyst in the 
form of short, fairly intense pulses of heat. Because of 
the thermal boundary resistance between the catalyst 
particles and their support, these heat pulses may lead 
to large local temperature fluctuations and thus affect 
chemical reaction rates as well as the stability of the 
catalyst [16, 17]. 
Figure 8 shows the temperature rise of a medium-sized 
(50/~) Pt particle on an A120 3 substrate subjected to 
a heat pulse (30 kcal/mole) from a moderately exo- 
thermic reaction. (For computational details see 
Ref. 16). The value of the phonon transmission coeffi- 
cient F at the particle-substrate interface is clearly 
crucial in determining the temperature rise and sub- 
sequent cooling of the catalyst particle. Note that at 
the temperatures involved F (C) is not a good approxi- 
mation to F(T). Also, for smaller particles heating 
turns out to be even more severe [16]. 

4.2. High-Frequency Phonon Radiators 

In recent years it has become possible to generate and 
perform experiments with phonons of very high fre- 
quency [2]. Superconducting tunnel junctions are able 
to produce fairly monochromatic phonons with fre- 
quencies up to ~ 1012 s t (Z~50/l). From heat pulse 
techniques using thin film radiators phonons with 
frequencies up to 1013 s -1 (2~5 A) are available. The 
propagation properties of these high-frequency pho- 
nons are a subject of interest in itself, but such phonons 
are also used e.g. as probes for electronic relaxation 
processes [2]. Our results are pertinent to such ex- 
periments since they all involve transmission of short- 
wavelength phonons across a metal-insulator inter- 
face. 

Superconducting tunnel junctions, whether used as 
phonon generators or detectors, typically consist of a 
metal film (e.g. A1) which is separated by an insulating 
layer (e.g. SiO2) from the material (e.g. Cu) in which 
phonon propagation is to be studied [2, 18]. Clearly 
the efficiency and spectral characteristics of the 
generator junction and the sensitivity of the detector 
junction both depend on the phonon transmission 
coefficient across the SiO2/Cu interface. Our results 
suggest that at the phonon frequencies in question, the 
continuum value is probably not a good approxima- 
tion to that transmission coefficient. Furthermore, in 
order to obtain a bulk scattering length for the pho- 
nons, one has to take into account scattering by grain 
boundaries. The presence of grains of different orien- 
tation not only leads to an effective average sound 
velocity for the phonons [18], but the grain boundaries 
themselves may give rise to considerable phonon scat- 
tering (cf. Fig. 5). Indeed phonon attenuation is found 
to be much larger in films with small grains [18]. 
As regards heat pulse phonon radiators, it should be 
noted that the continuum acoustic mismatch theory 
predicts well the radiation characteristics at low 
radiation temperatures. However, at higher radiation 
temperatures the measured phonon flux is usually 
smaller than predicted by a factor of 2 to 5 [3-5]. But 
this is precisely what would be expected from our 
results on the form of the transmission coefficient £(T). 
In addition, the importance of the atomic structure of 
the film-substrate interface is evidenced by the fact 
that radiators involving a Pb film were in general more 
efficient than predicted unless special precautions 
were taken to keep the substrate free of contaminants 
during film evaporation [3-5]. 

4.3. Kapitza Resistance 

As noted in the introduction, a modified continuum 
theory of thermal boundary resistance is able to 
describe heat conduction between liquid helium and a 
solid at temperatures below 0.1 K [1, 10, 11]. How- 
ever, it is not clear yet what mechanisms of heat trans- 
fer will give rise to the observed increase above 0.2 K 
and to the possible maximum around 6 K of the 
phonon transmission coefficient [1, 19, 20]. Heat 
transfer at these temperatures may at least in part be 
of gaskinetic origin [4, 21]. 
Our study, although focussing primarily on solid-solid 
interfaces, suggests that even in the case of a liquid 
helium-solid interface, the atomic structure of the 
surface of the solid may not be negligible. An inspec- 
tion of the phonon dispersion relation in liquid 
helium E22] reveals that at 1 K an appreciable number 
of phonons with Z< 100 • are present. On the other 
hand, it is well established from studies of the structure 
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of s ingle-crystal  surfaces [23-25]  tha t  such surfaces are 
d i so rde red  on a scale of  100 A, even after being electro-  
pol ished,  and  are  covered by one or  more  mono laye r s  
of  impur i t ies  (e.g. carbon)  unless they are  carefully 
c leaned and annea led  in ultra-high vacuum. Hence  a 
con t inuum theory  of  K a p i t z a  resistance may  be in- 
adequate ,  and  in compar ing  exper iments  with each 
o ther  and  with theory  careful a t ten t ion  should  be pa id  
to the state of the solid surface. There  is exper imenta l  
evidence showing tha t  in some instances surface prep-  
a ra t ion  does  affect the efficiency of  heat  t ransfer  
be tween a solid and  l iquid he l ium [1, 11]. 

5. Conclusion 

The ma in  results  of this pape r  have been a calculat ion,  
within a 1 D lat t ice model ,  of  t ransmiss ion  coefficients 
for phonons  across  a sol id-sol id  interface as a funct ion 
of  p h o n o n  wavelength,  and  a discussion,  with appl ica-  
t ions,  of  the rmal  b o u n d a r y  resis tance at high tem- 
pe ra tu re  in terms of  an average t empe ra tu r e -depe nde n t  
p h o n o n  t ransmiss ion  coefficient. 
These  results  suggest future research in two direct ions.  
Firs t ,  it would  be interes t ing to check the conclus ions  
a r r ived  at  here with a ca lcula t ion  using an ana logous  
3D mode l  of  a sol id-sol id  interface. Second,  experi-  
ments  on the rmal  b o u n d a r y  resis tance should  be per-  
fo rmed in which the a tomic  s t ructure  of the interface 
is con t ro l l ed  as carefully as possible.  One in t r iguing 
p rospec t  of such exper iments  is the deve lopmen t  of  
compos i t e  thin films which t ransmi t  an unusual ly  
large flux of phonons  or  only  phonons  within a na r row  
frequency range.  

I thank B. Belt for reading the manuscript. This work has been sup- 
ported in part by ARPA ONR grant No N 00014-75-C-1107. 
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