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A Partial Solution of the Pompeiu Problem* 

Stephen A. Williams 
Mathematics Department, Wayne State University, Detroit, Mich. 48202, USA 

A nonempty bounded open subset D of IR" is said to have the Pompeiu property if 
and only if for every continuous complex-valued function f on 1R" which does not 
vanish identically there is a rigid motion a of 1R" onto itself- takin9 D onto a(D) - 
such that the integral of f over ~(D) is not zero. This article 9ires a partial solution 
of the Pompeiu problem, the problem of J~ndin 9 all sets D with the Pompeiu property. 

In the special case that D is the interior of a homeomorphic image of an (n -  1)- 
dimensional sphere, the main result states that if D has a portion of an (n-1)- 
dimensional real analytic su~Jace on its boundary, then either D has the Pompeiu 
property or any connected real analytic extension of the surface also lies on the 
boundary of D. Thus, for example, any such refion D havin9 a portion of a hyper- 
plane as part of its boundary must have the Pompeiu property, since the entire 
hyperplane cannot lie in the boundary of the bounded set D. 

The Pompeiu Property 

It will be assumed throughout this paper that D is a nonempty bounded open 
subset of IR" with n_>_ 2. Let Z denote the group of rigid motions of IR" onto itself. 
Thus Z is generated by the translations and rotations of IR", and contains no 
reflection. We say that D has the Pompeiu property if and only if the only continuous 
complex-valued function f on IR" for which 

f ( X l ,  X 2 . . . . .  x,)dx=O forevery 0-~2~ 

is the function f - 0 .  Here a(D) denotes the image of D under the rigid motion a. 
Here and for the remainder of the paper, x=(x~, xz, ..., x,) denotes the generic 
point of lR". 

Sets not Having the Pompeiu Property 

Sets constructed by the methods of this section are the only ones known by the 
author not to have the Pompeiu property. 

* The research for this paper was done in part while on sabbatical at the Courant Institute of 
Mathematical Sciences, New York University. 
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A (solid open) ball of any radius R > 0 fails to have the Pompeiu property. 
The corresponding function f may be taken to be f ( x ~ ,  x2 . . . . .  x , ) = s i n ( a x l )  for 
any a > 0  satisfying J , / z ( a R ) = O ,  where Jz denotes the Bessel function of order 2. 
(In fact, the calculation of [1, pp. 141,142] which proves this for n = 2  can be 
generalized to the case n >2  using [2, p. 482, formula (19)], the identity Ja_ l(Z)Za = 
(d/dz)(z~J,(z)) ,  and the fact that J~(z) /z  ~ is an analytic function of z whose power 
series involves only even powers of z.) Thus for fixed a > 0  there is an infinite 
sequence 0 < R I < R 2 < ... such that the integral of sin (ax 1) over any ball of radius 
Ri (i = 1, 2, ...) is zero. (For information about zeroes of Bessel functions sufficient 
to give this, see [2, pp. 416, 496].) 

Clearly if B~, B2, ..., B N are disjoint balls with radii in this sequence, all con- 
tained in a ball B with radius in this sequence, then the region B ~ ( B l w B  z w .. .  w BN) 
fails to have the Pompeiu property with sin(ax 0 a corresponding f .  Clearly dis- 
joint unions of such regions fail to have the Pompeiu property again with sin(ax 0 
a corresponding f .  

Federbush gave a more complicated example: let R i and Rj be as above with 
R~< R j; consider two balls B 1 and B 2 of radius Rj whose boundaries intersect in 
an (n-2)-sphere of radius R~; let B be the unique ball of radius Rg with that 
(n-2)-sphere  on its boundary;  then the set whose characteristic function is 
Zs,+ZB~-Zn clearly fails to have the Pompeiu property with sin(ax 0 a cor- 
responding f.  (Here and for the remainder of the paper, for any set W, Zw denotes 
the characteristic function of W.) 

Finally, if a (relatively) closed set of measure zero is deleted from a set failing 
to have the Pompeiu property, obviously the resulting set also fails to have the 
Pompeiu property. 

Sets Having the Pompeiu Property 

The sets that will be discussed in this section are the only ones known to the author 
that previous literature has proved to have the Pompeiu property. 

In [1, Theorem 5.11, p. 150] it is proved in the case n = 2  that if there is an 
open half-plane H whose intersection with •D, the boundary of D, is a single 
Lipschitz curve, if there is a unique point p on this curve of maximal distance 
from ~H, and if one-sided tangent rays to the curve exist at p, do not coincide, and 
intersect 3H, then D has the Pompeiu property. Thus, roughly, a planar region 
has the Pompeiu property if it has a "corner" that "sticks out" from the rest of the 
region. As a very special case, the interior of any simple closed polygon in the 
plane has the Pompeiu property. Theorem 5.11 of [1] and its proof generalize 
directly to the case n > 2. 

In [1, Theorem 5.1, p. 143] it is proved in the case n =2  that any ellipse has the 
Pompeiu property. This theorem and its proof generalize easily to ellipsoids for 
n>2.  (Here we use the generalization of the calculation of [-1, pp. 141,142] 
discussed above.) 

Finally, if D has the Pompeiu property, then any bounded open set differing 
from it by a set of measure zero clearly also has the Pompeiu property. 
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A Conjecture 

Conjecture. I f  c?D is homeomorphic to the unit sphere in IR", then D has the Pompeiu 
property if  and only if  it is not a ball. 

This conjecture (which the author believes quite likely to be true) is consistent 
with the known facts and indicates the type of theorem one would hope to be 
able to prove eventually in this area. 

If t~D is homeomorphic to the unit sphere in IR " and fails to have the Pompeiu 
property, then Theorems 1 and 2 below show the existence of a function T and a 
complex number ~:I:0 such that A T + a T = - 1  on D, with T = O  and ~T/On=O 
on ?~D. (If 0D is smooth, it can be shown that c~ is real, so that T may be taken to 
be real-valued.) In view of this, the conjecture is very closely related to the result 
of James Serrin [10] that if ~ is a bounded open connected set with smooth 
boundary /g2 on which there exists a function u satisfying A u = -  1 on f2, with 
u = 0  and c~u/~= constant on ~?~, then (2 must be a ball. 

Notation, Definitions, and Preliminary Results 

Let g'(lR") denote the set of distributions of compact support on N". Let ~(IR") 
denote the set of all infinitely-differentiable complex-valued functions on ~". For 
feg(lR") and T~dO'(N"), let T ( f  (x 1, x 2 . . . . .  Xn) ) denote the complex number which 
results from applying the distribution T to the function f = f ( x ,  x z . . . . .  x,). For 
any T in g'(lR"), the Fourier-Laplace transform T ~ of T is defined by 

(T~)(zl, zz,  ..., z , )= T(e i~ . . . .  +z2~2+ ...+ . . . .  )) 

for all z 1, zz, .. . ,  z, in ~. If9 is a Lebesgue-integrable function of compact support 
in IR", then 9 may be considered an element of g'(IR") by defining 

9 ( f  (x 1, x ;  . . . . .  x,)) = .[ f (x)9(x)dx 

for every f in NOR"). The proof in [1, Theorem 4.t, p. 136] in the case n = 2  has a 
straightforward extension to the case n > 2 which states that D fails to have the 
Pompeiu property if and only if there is an eetF with e:#0 such that (Zo')(zl, 
zz . . . . .  z , ) - 0  on the set M ~ =  {(zl, z 2 . . . . .  z , ) ~ " ;  zlZ + zz2 + ... + z , / = ~ } .  (An 
easy calculation shows that if r is the reflection of Ill" about any hyperplane in N" 
and if r(D) denotes the image of D under this reflection, then XD'~0 on M, if and 
only if ;Gem"-0 on M=. Thus if the definition of the Pompeiu property is modified 
by allowing reflections in Z, we obtain a new definition equivalent to the original.) 

The author is indebted to B. Schreiber for informing him of the following 
theorem and to U Brown, B. Schreiber, and B. A. Taylor for providing a detailed 
proof: 

Theorem 1. The set D jails to have the Pompeiu property i f  and only if  there is an 
~ with ~:~0 and a T~d~'(lR ") such that 

AT+o~T= --ZD. 

Proof. By the Paley-Wiener-Schwartz theorem [3, Theorem 1.7.7, p. 21], {W"; 
W~g'(IR")} is the set of all entire functions F on ~" such that for some real con- 
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stants A, C, and N we have IF(z)[ ~ (7(1 q-lzl)Ne al~m=l for all z = ( z  1, z 2 . . . . .  z , )e~",  
where Lzl=[IzdZ +lzzlZ + ... +lz,12] 1/2 and I I m z l = [ l I m z l l 2  +lImz2[2 + ... + 
IImz,12] 1/2. The map W ~ W  ~ of eY'(IR") onto  {W';  Weg'(IR")} is one-to-one. 

Suppose that D fails to have the Pompeiu  property.  Then there is an a e C  
with a # : 0  such that ~(D~=0 on M~. We claim that there exists a unique entire 
function F on ~" such that )~D*(Z)=(ZlZ~-z22Av ...-}-Zn2--a)F(z) for every z =  
(zl, z 2 . . . . .  z,) in ~". Clearly this is only a local question. Since )~D~(z) is entire, the 
claim is obviously true for points not on M,. Let z ° be any point  of M~ and con- 
sider germs of ho lomorph ic  functions about  that point. Since z12+z22+ ... + 
z,  2 - a  is irreducible as a polynomial  in z,, it is also irreducible as a ho lomorphic  
function about  z ° by [-4, L e m m a  5, p. 71]. The fact that F is ho lomorphic  on some 
ne ighborhood  of z ° then follows from the Nullstellensatz for principal ideals [4, 
Theorem 18, p. 90]. Since z ° was an arbi t rary point  of  M,,  F is entire. 

Next we claim that F = T" for some Te g'(IR"). By the Paley-Wiener-Schwartz 
theorem there are real constants  A, C, and N such that [)~o'(z)[ =< C(1 + ]zl)Ne allmzl 
for all z in ~7". Clearly for z in the set G - { z e ¢ " ;  I zx2+z22+ ... + z , 2 - a [ > l }  
we have IF(z)[< C(1 +lz])Ne Allm'l. N o w  consider any z ° = ( z ° l ,  z°2 . . . . .  z°,) in 
• " ~ G. Let H = {z e 117"; z ~ = z ° ~, z2 = z°2 . . . . .  z ,_  a = z°,_ ~ }. Let a + bi be either 
square root  of  a - ( z ° l ) 2 - ( z ° 2 )  2 -  . . . - ( z ° , _ 0  2. Since [ z . a - ( a + b i ) 2 l = l z ,  - 
(a + bi)l [ z , -  ( -  a -  bi)[, if zE H ~ G, then either z, is less than one unit f rom a + bi 
or z. is less than one unit from - a - b i .  Thus there is an r with 0 < r < 4  such that 
for all z in H with l z . - z ° , ]  = r  we have z e G .  Since F is an analytic function of z, 
on H we have by the m a x i m um  modulus  theorem that  

IF ( z ° ) [<max{ lF ( z ) l ; zEH and [ z , - z ° , [ = r } .  

But for z e H  with I z , - z ° , l = r  we have [ z - z ° [ < 4 ,  so 

IF(z)] < C(5 + [Z0I)Ne Allmz°l +,*A 

SO 

IF(z°)l < C5Ue4A(1  + Iz°i)Ue Allmz°l . 

Thus by the Paley-Wiener-Schwartz  theorem there is a Te #'(IR') such that T ~ = F. 
Finally we note that  

(A T +  a T)~(z) = ( -  z12 _ z22 _ ... _ z 2 + a)(T*(z)) 

-..m.~(Zl 2 -~Z22-{ - . . .  - k zn2- -a ) ( - -F( z ) )  

= -ZD~(z). 

Since W~-~W ~ is one-to-one,  we have A T + a T =  - Z D .  
Conversely, if there is an a e ~  with a # 0  and a T~ g'(lR") such that A T +  a T =  

-ZD,  then ) ~ t f ( z ) = ( - A T - a T ) * ( z ) = ( z 1 2 + z 2 2 +  . . . + z , Z - a ) ( T * ( z ) )  which ob- 
viously vanishes on M,,  so that D fails to have the Pompeiu  property. This 
completes the proof. 

Theorem 2. Any  solution T ~ ' ( I R " )  o f  A T + a T = - X o  for  a ~  and a4:0 is a 
function of  compact support. This function (after redefinition, i f  necessary, on a 
set o f  measure zero) is given by 

Z(x) = - ~ 7 ( Ix -  y l )dy ,  (l) 
D 
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where y =(Yl, Y2 . . . . .  Yn), I X -  Y] = [ (XI  - - Y l )  2 + ( X 2  - -  Y2) 2 "F . . .  + ( X  n --yn)2] 1/2, ]//~ is 
either square root of a, and for r> O, 

2 /2 r -c"- N , . _  r), (2) 7(r) - 2n/Z + lTcn/2 1 

where N e is the Neumann function of order ft. 
The function T is real analytic in D, where it satisfies A T + a T = - 1  in the 

classical sense. It is also real analytic in the complement of D, where it satisfies 
A T + a T = 0  in the classical sense. It vanishes identically on the unique unbounded 
component of the complement of D. 

The function T is in C 1 (IR"), and first order derivatives are 9iven by differentiation 
of (1) under the integral sign. 

Proof. By [5, p. 193], any TeN'0R") which solves A T + a T = - Z D  is given by 
T= 7"(-Xo), where 7 is a fundamental solution of the operator A + a  and where ,  
denotes convolution. By [5, p. 259] with C = 0  and ]f12= - i l f £ ,  ~ can be taken to 
be the function given by (2) above, interpreting r as Ixl. 

By [6, Corollary 4, p. 1708], since - g o  is infinitely differentiable on D and 
on ~/5 (the complement of/5), since A + a  is an elliptic formal partial differential 
operator, and since T is a distribution with ( A + e ) T = - Z o  on D and on ~/) ,  
T is (after redefnition if necessary on a set of measure zero) an infinitely-dif- 
ferentiable function on D and ~/) .  That T satisfies AT+ e T= O on ~ b  and 
A T + e T = - 1  on D in the classical sense then follows from A T + e T = - X o  to- 
gether with [6, Lemma 6, p. 1647]. By [7], T is (real) analytic on D and on ~/5. 
Since T is of compact support, it vanishes identically in some neighborhood of 
infinity and hence, by the uniqueness of analytic continuation, vanishes on the 
unique unbounded component of --~/5. 

It remains to prove that T is in CI(IR"), with first-order partial derivatives 
computable by differentiation of (1) under the integral sign. Define 

Tx,(x) = - f 7 '(ix- Yl) ,x~-~ dy,  (3) 
D IX--yl 

for l~_i<_n. From [2, pp. 484,496,500,501] we have that 7(r)=An(r)r 2-~ for 
odd n, ~'(r) = AE(r ) In r + B2(r ) for n = 2, and 7(r) = A.(r) In r + B,(r) + C~(r)r 2 - ~ for n 
even with n>2,  where for any n the functions A,(r), B~(r) and C~(r) are entire 
analytic functions of r. By differentiating these expressions, we get corresponding 
formulas for 7'(r). For any R > 0  we can get upper bounds for 17(r)l and [7'(r)1, valid 
for 0<r__<R, by replacing A.(r), A'~(r), B,(r), B',(r), C~(r), and C'~(r) by the maxima 
of their absolute values on [0, R] and replacing In r by Iln rL. Fix any point x ° 
in IR", choose R so large that the ball of radius R - 1 > 0 centered at x ° contains 
the set D. Using the upper bounds just derived for [7(r)l and I7'(r)l, and doing the 
integration with these upper bounds using spherical coordinates with origin at x, 
for any x in IR" with ]x -x ° l  < 1, proves that the integrals of (1) and (3) for T(x) 
and T~,(x) converge and that the contributions to these integrals from any subset 
of B;(x)~D (here B;(x) denotes the open ball of radius ( > 0  centered at x) can be 
made small (uniformly for I x - x ° l  < 1) by taking ( > 0  small. Let e>0  be given. 
Choose ( with 0 < ( <  1 so that the contributions to the integrals of (1) and (3) from 
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any subset of B;(x)~D are in absolute value less than e/3. For I x - x ° t < ( / 4  we 
then have 

j" [ + 2E/3 IT(x)-  T(x°)l < Io~B:,~<~o~ ? ( I x - y t ) - 7 ( I x ° - y I ) d Y .  

with a similar formula for T~,(l<i<n). By the uniform continuity in (x,y) of 
~'(tx-y[) for y ~ D ~  B;/2(x °) and I x -  x°l < (/4, the integral on the right-hand side 
of the above inequality may be made smaller than e/3 by taking x sufficiently close 
to x °. The same may be done for the corresponding integral for T~, using the 
uniform continuity in (x, y) of 7'(Ix - yi)(xi - Yi)tx - y[- ~ for y~ D--~ B;/2(x °) and 
I x -  x°l < (/4. Thus Tand T~,(1 < i<  n) are continuous at x °. Since x ° was arbitrary, 
T and T~,(t < i < n) are continuous on IR". 

It remains to show that 8T/8x~ = T~, for 1 _< i _< n. Denoting the i-th coordinate 
unit vector by e~ we have by the Fubini theorem that for given Zo < z~ and l _<i_ n 
we have 

rl Xi + T__ y i 

- ~ 7 ' ( I x+ze , - y l ) I x+ze~-y l  dydz= T ( x + z l e i ) -  T(x+zoel) .  
~:o D 

Since for fixed x in IR" and 1 <_i<_n the function Tx,(x+rei) is continuous in z, this 
last equality shows by the fundamental theorem of calculus that (d/dz)(T(x + zej))= 
T~(x + zel). Thus 8 T / ~  i = T~, as required. 

This completes the proof. 

The Main Result 

Definition. By the outer boundary ~f D we will mean that subset of ()D which is in 
the closure of  the unbounded component of  ~ D. We will denote it by ~*D. 

Since the function T of Theorem 2 vanishes identically on the unbounded 
component of -,-/3 and is in Cl(lR"), T a n d  VTare zero on 0*D. 

Note that by the Jordan-Brouwer separation theorem [8, Theorem 15, p. 198], 
i fa  set B in P4' is homeomorphic to the unit sphere in IR" and if we take D to be 
the unique bounded component of IR" ,-~ B, then ~*D = B = 0D. 

Definition. A subset S of  IR n is an (n - D-dimensional real analytic surface/f  and 
only if S is nonempty and if for every point x in S, there is a real analytic one-to-one 
map of  the open unit ball BI(O ) in lR n onto an open neighborhood J of  x such that 
B 1(0)c~ {x ff lR n; x, = 0 } maps onto Jc~ S. 

The author would like to thank J. Ralston for two important suggestions that 
evolved rapidly into the following theorem: 

Theorem 3. I f  D fails to have the Pompeiu property, if an ( n -  D-dimensional real 
analytic surface S is contained in O*D,/f there is a point yO in S and a 6 > 0 such 
that y~B~(y°)nt?D implies that yeS ,  if W is a connected (n-D-dimensional real 
analytic surface with Sc= W, and if the distance between Wand OD,,~(~*D) is positive, 
then W c= 8* D. 

Note. It may be helpful to the reader, in order to understand the statement of the 
above theorem, to see what it asserts about the set of the Federbush example. 
Proof. At each point x in W, use the Cauchy-Kowalewsky theorem [9, pp. 39, 40] 
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to solve the equation A U + a U = - 1  on some open neighborhood N x of x subject 
to the initial data U = 0  and OU/~n = 0  on WnN,, (here OU/~ denotes the normal 
derivative of U). Using the Holmgren uniqueness theorem [9, p. 238] and the 
uniqueness of real analytic continuation, we may piece together these local 
solutions to obtain a real analytic function U defined on an open set N containing 
W, with AU+~U= - 1  on N and with U = 0  and 8U/On=O on W. 

Fix any point x of W. Since AU(x)+eU(x)=-1  and U(x)=0, there is an i 
with l < i < n  such that (82U/~x2)(x)+O. Thus by the implicit function theorem, 
OU/Oxl = 0  defines the graph in a sufficiently small neighborhood of x of a continu- 
ously differentiable function of (x~ . . . . .  xi- 1, xi + 1 . . . . .  x,,). But VU=0 and hence 
8U/Oxi---O on W. Thus the points of W near x are in the graph of this function 
(therefore the hyperplane tangent to W at x is the hyperplane tangent to the graph 
of the function at x, which is known by the implicit function theorem not to be 
parallel to the xi-axis ). Thus there is an open neighborhood of x such that if 
(VU)(y)=0 for a point y of that neighborhood, t h e n y e  W. Thus there is an open 
set/V with WC_NC_N such that (VU)(y)=O and y e N  imply that yeW. 

Let yO be the point of S mentioned in the statement of Theorem 3. Let ~b be a 
real analytic one-to-one map of BI(0) onto an open neighborhood J of yO such 
that JC=B~(y °) and Bl(0)c~{xelR"; x , = 0 }  maps onto Jc~S. Since yeB~(y°)c~SD 
implies that yeS, and since y°eS*D with D open, either e~({xelR";x.>O})C=D 
and qS({xelR"; x,<0})__IR",,~b or vice versa. Since D fails to have the Pompeiu 
property, Theorems 1 and 2 give the existence of a function T as in Theorem 2. 
Since S c= 8*D, T= 0 and VT= 0 on S while A T +  ~ T=  - 1 on D. Assume for definite- 
ness that it is ~b({x e IR"; x. > 0}) which is contained in D. By the Holmgren unique- 
ness theorem [9, p. 238] there is a 2 > 0  such that T(x)=U(x) for all x e G ~ -  
Bz(y°)nq~({xelR";x.>O}). Clearly we may take 2 > 0  so small that Gx is con- 
nected. By the uniqueness of analytic continuation we have T=-U on that com- 
ponent C of Dc~N which contains Gx. 

Let W * =  Wc~?*Dc~C. Since y°e  W*, W* is not empty. Since ~*Dc~C is closed 
in IR", W* is closed in the relative topology of W. Since Wis connected, once it is 
proved that W* is open relative to W we have W* = W, so that W= ?*D and the 
theorem is proved. Let x ° be any point of W*. Let e > 0  be less than the distance 
from W to OD,,~(8*D); we may assume, taking e > 0  smaller if necessary, that 
B~(x °) c= ~ and that B~(x °) ~ W consists of precisely two components, C~ and C2. 
Since C is open and x°e  (5, C has nonempty intersection with one of these com- 
ponents, say C 1. We claim now that Cx ~ C. If not, then there would be an x e  C~ 
with xe  c~C. Since C~ ~]V, x would have to be in t3D. By the choice of ~ and since 
C~ c=B~(x°), x would have to be in 8*D. Thus VT(x)=O. But T=--U on C, and both 
Tand U are in CI(CO, so also VU(x)=O. Since x e N  we have xe  IV, a contradiction 
of the fact that xe  C v Therefore the claim that C~ ~ C is established. We claim now 
that C2c~C is empty. If not, then by the argument just given we would also have 
CzC=C, so that Clk.)C2CD and thus x°¢~lR",-~/3), contradicting .the fact that 
x°eO*D. Thus C2c~C is empty. If any point x of B~(x°)c~W were in D, then an 
open neighborhood of that point would be in Dc~N, and C2c~C would not be 
empty. Thus B~(x°)c~WC=SD and hence B~(x°)c~W~ 8*D. Thus B~(x°)nWC= Wc~ 
O*Dn (~ = W*. Since x ° was an arbitrary point of W*, this proves that W* is open 
relative to W and completes the proof of the theorem. 



190 St. A. Williams 

References 

1. Brown,L., Schreiber, B., Taylor, B.A.: Spectral synthesis and the Pompeiu problem. Ann. Inst. 
Fourier, Grenoble, 23, 125--154 (1973) 

2. Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. I. New York: Interscience 1953 
3. H6rmander, L.: Linear partial differential operators. Berlin, Heidelberg, New York: Springer 1969 
4. Gunning, R ,  Rossi, H. : Analytic functions of several complex variables. Englewood Cliffs, N. J. : 

Prentice-Hall 1965 
5. Tr6ves, F.: Linear partial differential equations with constant coefficients. New York: Gordon 

and Breach 1966 
6. Dunford, N., Schwartz, J.: Linear operators. Vol. II. New York: Interscience 1963 
7. Morrey, C.B.,Jr.: On the analyticity of the solutions of analytic non-linear elliptic systems of 

partial differential equations. Part I. Amer. J. of Math. 80, 198--218 (1958) 
8. Spanier, E.: Algebraic topology. New York: McGraw-Hill 1966 
9. Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. II. New York: Interscience 1962 
10. Serrin, J.: A symmetry problem in potential theory. Arch. Rat. Mech. Anal. 43, 304~-318 (1971) 

Received February 18, 1976 


