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0. Introduction 

0.1. At the moment little is known about the classification of algebraic vector 
bundles on IP,. This paper will not improve much upon this situation, although it 
presents some properties of stable rank-2 bundles over IP,, which might be useful for 
classification purposes, at least in the case of this kind of  bundles. 

The ground field will always be ~. Rank-r bundle will always mean algebraic ~'- 
bundle. The definition of stability to be used is due to Mumford and Takemoto 
[13]: A ranks2 vector bundle is stable (resp. semistable) if q(V)< 2cl(~ ) for every 
torsion-free rank-1 quotient sheaf.~ of V(resp. ~). Stability of Von IP, is equivalent 
with End(V) ~ .  

0.2. The following is the basic technical tool (if one wants to describe vector bundles 
on IP, and not to use resolutions): Whenever Visa rank-2 bundle on IP, and L C IP, is 
a line, then by Grothendieck's theorem [3, p. 126], the restriction V]L splits 

VIL~-(~L(kl)®¢L(k2), kl +k2=cl(V). 

The integers k a and k 2 are uniquely determined by V]L. Put 

d( V IL  ) :=  tlq - I%1 

d(V) :=mind(VIL), LC IP,. 

Schwarzenberger [11, §8] constructed quite a lot of bundles on IP 2 with d(V) 
arbitrarily large, but all of  them are unstable. The reason for this fact was recently 
given by Grauert and Mtflich [2, § 6, Satz 2]. Their result can be formulated as 
follows. 

Theorem 1 (Grauert-Mtilich). I f  V is a stable (or even semi-stable) rank-2 bundle on 
IP., then 

d(V)=O for caW) even 

d(V)=l for ca(V) odd. 
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Since this result is quite basic for my purposes, and since Grauert and Miilich 
formulated their theorem in a less general way, for the convenience of the reader I 
shall include here a somewhat simplified version of their proof. 

0.3. It is a consequence of the semi-continuity theorems for proper flat morphisms, 
that d(V[L)=d(V) for all lines L parametrized by some Zariski-open set in the 
Grassmannian Gr(1, n). Let me calljumpin9 lines those L for which d(V[L) > d(V). If 
d(V)=0, these lines form a divisor S on Gr(1,n). A consequence of Theorem 1 is 

Theorem 2. Let V be a semi-stable rank-2 bundle over IP, with even first Chern-class 
cl ( V ). The divisor S C Gr(1, n) of jumpin9 lines then has degree-A(V)/4,  where 

A(V)=cI(V) 2 - 4c2(V ) 

is the discriminant off the bundle V 
It is a byproduct of the proof of this theorem, that this divisor S depends 

algebraically on V. This becomes particularly interesting in the case of 1P~, where 
Maruyama [9] established the existence of coarse moduli-schemes M(A) for stable 
vector bundles with fixed Chern classes. For even c a, the map V ~ S  defines a 
morphism 

M(A)-~IPN, N = ( 2 2  A°) - 1 ,  A o = - A / 4 .  

This morphism cannot be surjective i f - A  > 16, since M(A) is a manifold of 
dimension - A - 3. Although it is not injective either in general, one may hope that 
this morphism bears some significance. 

A similar statement for odd Chern classes fails, because the jumping lines in 
Gr(1, n) may then lie in codimension 1 and/or 2. 

0.4. Stability of rank-2 bundles V is preserved under 
(1) small deformations of V; 
(2) lifting Vvia ramified coverings ~z'IP,~IP.; 
(3) extending V from IP, to IP,+ 1 (if this is possible); 
(4) restricting V to general hyperplanes IP,_ ~ C IP,, if n>4.  

Invariance of stability under (1), (2), (3) is quite obvious. In fact, invariance (1) 
should be viewed as part of any reasonable definition of stability. Nevertheless, (2) 
combined with the theorem of Grauert-Mtilich, describes the splitting of V on the 
general (not necessarily linear) rational curve in IP.. (This is made precise in 5.2.) 

Invariance (4) however seems quite interesting to me, mainly because it fails for 
n = 3, and then for one stable bundle only. The precise formulation is 

Theorem 3. Let V be some stable rank-2 bundle on IP,. I f  n > 4, then there is an open 
subset 0 ~ U C IP*, such that the restriction of  V to all hyperplanes parametrized by U is 
stable again. The same holds for n = 3, unless V = V o is a null-correlation bundle. 

A null-correlation bundle V o is homogeneous under the complex symplectic 
group Sp(2, ( )  C GL(4, ~), V o is uniquely determined up to tensoring by line bundles 
and up to automorphisms of IP 3. The restriction of V o to any plane in 1P 3 is semi- 
stable, From Theorem 3 one obtains the following corollaries. 
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Corollary 1. I f  V is a stable rank-2 bundle on IP,, then necessarily A (V) < 0. (For n = 2 
this was observed by Schwarzenberger [11, Theorem 10].) 

Corollary 2. I f  V, W are stable rank-2 bundles on P,, n >= 4, which become isomorphic 
when restricted to all hyperplanes in IP, parametrized by some open 0 4= U C lP*, then 
V_W. (For n=2 this is not true, and for n=3 ,  I do not know.) 

0.5. The reader will notice that most of  the methods in this paper are generalizations 
of  ideas from Van de Ven's article [14]. 

Additionally many conversations with Van de Ven had on this paper an influence for which I am 
very grateful. I also should like to thank H. Grauert for explaining to me the details from [2]. 

2. Preliminaries 

2.1. Notation. I do not want to distinguish between a vector bundle and its 
associated locally free sheaf of  sections. A subsheaf however is not necessarily a 
subbundle ( =  subsheaf of a locally free sheaf, which locally is a direct summand). 

A decomposable bundle is a direct sum of line bundles. The hyperplane bundle 
on IF' n is denoted by (9~(1). For  any (9~-sheaf ~ one puts ~(k)=~®e~Un~(1)  ®k, 
k~7~. In particular (9~(k)=(9~(1) ®k. The same notation can be applied to the 
Grassmann variety Gr(m, n) of  projective m-planes E C IP.. Indeed, Pic(Gr) ~- 7/, and 
we may denote the positive generator by (gGr(1). If  one uses the PRicker-embedding 

tn+lt Gr(m,n)C1P N, N =  \ m +  1 ] -  1, then (9~r(1) is the restriction of  (gu, N(1). The flag- 

variety F = F(0, m, n) can be embedded in IP, x Gr(m, n) with canonical projections 
p :F~IP , ,  q : F ~ G r .  Sometimes I shall employ the notation (gr(kt,k2) for the 
bundle p*(9~,(kl)®q*(gG~(k2). 

Since H 2(Ip,, 2g) = H4(Ipn, 2g) = 2~, the Chern-classes c 1 (V) and c2(V) can be viewed 
as integers, which will be done throughout this article. The first Chern class without 
ambiguity already is defined on the complement of any codimension-2 subvariety 
in lP,. Since any torsion-free rank-1 sheaf ~ is locally free on such a complement we 
may associate with 2~ a Chern-class el(~ ) too. This classs coincides with c1(~** ). 

I f  f f  is any sheaf, then put 

~ *  = Ytf~( .~ ' ,  (9) 

r ~ - = ~ @  . . . @ ~  (r-times). 

I f  V is a vector bundle of  rank r, put 

P(V) = the IP~_ 1-bundle associated with V; 
S*V=l-fold symmetric product of  V; 
det V =  A'V. 

I f  V, W are vector bundles of  rank r both, and aeHom(V,W),  then 
det(a)eHom(det  V, det W) is the determinant morphism. 

I f  not specified otherwise, then "variety". will mean both, a reduced quasi- 
projective scheme over 112 or a reduced complex space. If  YCX is a subspace and o ~ 
some (gx-sheaf, then ~ I Y  :=o~®~,,(gr. A morphism between two varieties can 
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mean both, morphism of schemes or complex spaces. If f :  X - * Y i s  such a morphism 
with X irreducible, then rank f = dimf(X). If Y is nonsingular, this rank coincides 
with the rank of the differential dr: Tx(X)---~Tzx(Y ) in almost all points x of the 
nonsingular part of X. 

2.2. Direct Image Sheaves. If f:X---,Y is a morphism and .,~ an Cx-sheaf, then we 
denote by f ,o~ = f ,0  o~ the direct image sheaf and by f , i ~  the higher direct images. 
The same notation will be applied in the case f f  = V, a vector bundle. 

Sometimes without further notice the following fundamental theorems are used. 

Coherence. If f is proper, the direct images are coherent. 

Semi-continuity. If additionally ~ is d~y-flat via f and if Y is reduced, then the 
functions h~(~lf  - ly), y~ y,, are upper-semi-continuous in the Zariski-topology of Y. 
I.e., the sets {ye y:hi(~,~lq - ly)>const} are Zariski-closed. 

Base-change. If in addition the function hi(~lq - ly) is constant on II,, then q , i Y  is 
locally free and the canonical morphism (q,i~)[Yo~(q[q ' I  Yo),i ~ is an isomor- 
phism for every subvariety Y0 C Y. In particular ( q , i ~ ) / , J  r . q , i ~ 7 - - - r H i ( o ~ l q  - ly) is 
bijective for every ye Y (JyC (9~ the ideal sheaf of y). 

As a reference one can use [10]. 
There will also be needed the following very primitive criterion for sheaves f , ~  

to be locally free: 

Definition. Let X be nonsingular. A coherent (gx-sheaf ~ is called normal, if 
restriction F(Y[ U)-o F (~ t  U \ A )  is bijective for every (Zariski-)open U CX and every 
closed subvariety A C U of codimension > 2. 

Lemma 1. A coherent rank-1 Ox-shea f ~ is locally free if and only if it is free of 
torsion and normal. 

Proof. Let ,~- be of rank i, free of torsion, and normal. The assertion is obvious, i f g  
is locally an ideal sheaf, i.e., a subsheaf of some locally free rank-1 sheaf. Since W is 
free of torsion, it canonically embeds in its double dual ~'**. We only have to show 
that W** is locally free, or more general that ~-* is. Take a local resolution 
k C - - * l O ~ , ~ O .  Then o~* embeds in 1(9, and choosing a suitable projection IC~C, 
we may embed it in C. So Y*  locally is an ideal sheaf. Using that 1C is normal and kC 
torsion-flee, one easily checks that g *  is normal too. 

2.3. The Subspace Defined by a Section s. Let V be some rank-2 bundle on IP n and 
O#-seF(V). 

Lemma 2. I f  s vanishes on a hypersurface, then h°(V( - 1)) 4= 0 and h°(V) > n + 1. 

Proof. Assume that s vanishes on the hypersur face with equation f = O, f ~  F(g)u,(k)), 
k>0.  Then s / f  is a nontrivial section in V(-k) ,  in particular h ° ( V ( - k ) ) # O  and 
therefore h°(V(-  1))4:0 too. I f g varies in F((C~(k)), then gs/ f  varies in a subspace o f 
F(V) of dimension h°(C~e(k)) > n + 1. 

Lemma 2'. I f  c t (V)<0 and h°(V( - 1))=0, then either h°(V)= 1, or cl (V)=0 and 
V~-2C~,. 
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Proof Assume first, that  s does not vanish at all. Then ¢;-sC V is a trivial line 
subbundle  and V fits into an extension 0~0~,V-- , (9(cl)~0.  Since c 1 < 0 ,  this 
extension splits, showing V ___ (9 ® (9(c 1). Then either c a = 0 and V-~ 2(9, or  h°(V) = 1. 
Assume that  s does have zeros. Let  s'eF(V) be an arbi t rary  o ther  section. 
s ,', s ' e  F(det  V)=  F(O~(c t)) vanishes identically. Hence s'/s is some rat ional  function 
f Since s has zeros in codimension 2 only (Lemma  2), f i s  constant  and  s ' = c o n s t ,  s. 
This shows h°( t / )=  1. 

Assume now, that  s vanishes in codimension 2 only. Use local tr ivializations 
V~-2(9~, to write locally s =  (s 1, s2), with s~ and  s 2 copr ime in each point  o f  s = 0 .  
Define the ideal sheaf  J locally as (gsl + (gs 2 C 6). It is easy to see that  J < (5'~, gives a 
global ideal sheaf  defining a subspace (E (9~,/A) suppor ted  on s = 0 .  

L e m m a  3. There is an exact sequence 

O ~ ( ~ V - . J ( k ) - - ~ O ,  k=c~(V).  

Proof Put  d : = V / ~ . s .  Then we have locally commuta t ive  diagrams of  exact 
sequences 

0 , (_9 s ~ 2(Y -~ ~ ....... -~ 0 

• I ?  

0 , (9 ~ 2 & 0 ~ . ~ ¢  ..... , 0  

and find ~ - ~ J  locally. Then globally ~ - ~ . ¢ .  ~** with ~** a line bundle of  degree 
cl(V). 

2.,1. Jumping Lines. Let V be some rank-2  bundle on 1P, and define the integers 
d(VtL) and d(V) as in the introduction.  Call those lines L with d(V[L)> d(V) jumping  
lines. 

Lemma  4. The jumping lines form a closed subl~ariety S C Gr(1, n). I f  d(V) = O, then S is 
a hypersurface (or empty). 

Proof. We may replace V by a bundle V(k), k~Z, to obta in  VIL_~(5~L(-1) 
®(gL(--d-- l) for those lines L with d(VIL)=d(V). In par t icular  L is a jumping  line 
i f and only i f h°( VI L) > 0. Next  use the s tandard  m orphisms Gr(1, n) ~ F(0, 1, n)--~IP~. 
Since q is locally a product ,  p*V is fiat over  (gG~. Semi-continuity applied to q.p*V 
then shows, that  the j umping  lines form a closed subvariety.  Assume next that d(V) 
= 0 .  Then  V[L~--2(gL(-- 1) for the general  line L. F r o m  deformat ion  theory follows, 
that  p roper  deformat ions  of  2(gL(- 1) can occur  in codimension 1 only (compare [1, 
Satz 6.2])• 

The  set o f  jumping  lines for a given bundle V can in general be determined only 
with some efforts, except in the following special case: 

Lemma  5. Assume that c 1 ( V) <_ 0 and that V admits a non-trivial section s vanishing in 
codimension 2 only. Put Y = {s = 0} C ]P~. Then L is a jumping line, if and only if it 
intersects Y In particular one has d(V)--- - c  1. 

Proof I f  LevY=O, then one has an exact sequence 

0 ~ OL ~ VIL ----, ~QL(Cl) - +  O. 
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Since c 1 < 0, this extension splits and d(V[L)= - c  1. I f  L intersects Y in finitely 
many points, put V[L"~(gL(k)O(gL(k-d), d=d(VlL).  If  k < 0 ,  then VIL would not 
admit nontrivial sections with zeros. Hence k > 0  and from c l = 2 k - d  follows 
d(V]L) = - e 1 + 2k > d(V) = - c 1. Assume finally that L CX. Fix one point xe  L and 
some plane E C IP, not contained in Y Consider the 1-dimensional family of  lines 
through x in E. Its general member  L' is not contained in Y, though it intersects Y in 
x. We know already that L'  is a jumping-line and since the set of  jumping lines is 
closed, L belongs to this set too. 

2.5. In the proof  of  Theorem 3 there will be needed the following simple 
consequence of Lemma 4: 

Lemma 6. Let  V be some rank-2 bundle on IP,. I f  there is at least one plane E C IP, such 
that ViE is trivial, then so is V itself. 

Proof  In view of  Van de Ven's theorem [14], it suffices to show that the set 
S C Gr(1, n) of  jumping lines for V is empty. But i fS would not be empty, it wouId be 
a hypersurface by Lemma 4. Since every hypersurface on Gr(1, n) intersects every 
subvariety in Gr(1, n) of  positive dimension, there would be jumping lines for V 
contained in the plane E. This would contradict the triviality of  VIE. 

2.6. Lemma 7, Let  X C ( be the unit disc and 

O---~ V h-, W---~.~--~ O 

be an exact 6)x-sequence with V, W free and ~ supported in OeX.  Then 12[ : =  h°(~) 
equals the vanishing order o f  det(h) at O. 

Proof  The statement is obvious if either 4.~1=0 or r : = r a n k  V = r a n k W =  1. To 
prove the lemma for rank r > 1 and q : = I~1 > 0 by induction, assume that it has been 
proven for 

r a n k r ' < r  and all q' 

r ankr  and all q ' < q .  

Then distinguish two cases: 
i) h vanishes at 0, i.e., h(V) is contained in z. W, z the coordinate function. Then we 

have a diagram 

0 - - - - *  V 

0 ' V 

0 0 

t L 
a'~ W - - - ~  ~ '  ~ 0  

t t 
(F ~ = (F ~ 

i t 
0 0 
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Hence, t021 = 102'1 + r and h = z. h', so de t (h)=  z r-det(h'). We are reduced to the case 
q' <q. 

ii) h does not  vanish at  O, i.e., there is a section s :(9~V such that  h(s) does not  
vanish at all. Then we have a d iagram 

Since h = ( 1 ,  

0 0 

l t 
( 9 - -  (9 

~ V  h , W  

1 1 
, V '  h ' , w ' -  

0 0 

; 0 2  , 0  

>02' , 0  

h' ' we have d e t h = d e t h ' .  So we are reduced to the case r ' < r .  

3. On the Definition of Stability over IP, 

3.1. Here  are given some equivalent  definitions of  stabili ty and  some easy 
consequences. Fo r  IP 2 the equivalences are well-known (Takemoto  [13, Corol la ry  
18 and Propos i t ion  4.1], Schwarzenberger  [11, 12]), but  for n > 2, there seems to be 
no reference. Although it is no problem,  to generalize f rom IP 2 to IP,, let me  do it here 
for the sake of  completeness.  

Definit ion (Mum ford, T a k e m o t o  [ 13]): A rank-2 bundle V on IP, is called stable 
(resp. semi-stable) if 

c1(V)<2q(02) (resp. < )  (1) 

for every torsion-free rank-1 quot ient  02 of  K The bundle V is called unstable, if it is 
not stable, and properly unstable, if it is not  semi-stable. 

Every semi-stable V with odd Chern  class c~(V) must  be stable. So the distinc- 
tion between semi-stable and unstable becomes  illusory unless cl(V) is even. In- 
equality (1) is invariant  under  tensoring with l ine-bundles (9~(k), so V is stable 
(resp. semi-stable) if and only if V(k) is. Every 2-bundle on IP~ is properly unstable, 
except the semi-stable bundles 2(gp,(k), ks  •. 

3.2. L e m m a  8. Let O ~ X ~  V--*02~0 be an exact sequence with r a n k Y  = rank02 = 1. 
Then ~ is torsion-free if and only if ~ is a line-bundle with the inclusion-morphism s : 
~--* V vanishing in codimension 2 only. 

Proof Assume °2 to be torsion-free. Since V is normal ,  this implies that  ~ is no rma l  
too, hence Y{~-(9~(k) is a line bundle by L e m m a  1. I f  s would vanish on a 
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hypersurface, say with equation f =0,  f s  F((9~ (I)), then s / f  would embed (9~.(k + l) 
as a subsheaf in V, and the image in ~ of this subsheaf would be isomorphic with 
(9~(k + I) / f  . (9~e(k), a torsion-sheaf. 

Assume now, that s : (9~,(k)~ V vanishes in codimension 2 only. From Lemma 3 
follows that 2 - - - ~ . ~ * *  is torsion-free. 

Since c l(V) = c1(• ) + c1(.~), from this lemma follows the equivalence : V is stable 
(resp. semi-stable) if and only if for every morphism s: (fi~(k)-. V vanishing in 
codimension 2 only we have 2k <ct (V  ) (resp.<). 

If s vanishes in codimension 1, we may replace s by some morphism s/f: 
C~,(k + l)--, V, f e  F(6)n,(l)), l > 0, vanishing at most in codimension 2. This shows, that 
we may replace the above restriction on s by: s is not vanishing identically. 

3.3. The following description of stable bundles is less elegant, but in many cases 
easier to work with: Call V normalized, if either c 1 (V) = 0 or cl(V) = - 1. For every V, 
there is a unique normalized bundle V,o~m = V(l), some l~2g. Putting the integer k 
above equal to zero, one obtains: 

V is stable (resp. semi-stable) if and only if h°(]~norm) = 0 (resp. h°(Vnorrn( - 1)) = 0 
in case cl(V ) is even). In view of Lemma 2' the condition h°(Vn .... ( - 1 ) ) = 0  is 
equivalent with h°(Vnorm)<l or V~orm-----2C ~. Occasionally I need the following 
characterization too: V is stable if and only if End(V)~_1I;, i.e., if V does not admit 
endomorphisms other than homothethies. (Bundles with this property were called 
simple by Maruyama [8]. Unstable bundles o n  tti2 were called almost-decomposable 
by Schwarzenberger [11, 12] and ,,der triviale Fall" by Grauert-Miilich [2].) 

To prove this last equivalence, assume first that dim End(V)> 2. I f  x~ IP, is an 
arbitrary point, restriction to the fibres over x (vertical arrows) and the determinant 
map (horizontal arrows) define a commutative diagram 

End(V) , 1-(~¢~le) 

1 
End(V(x)) , iI~(x). 

This proves the existence of some non-trivial endomorphism ~ with d e t e - 0 .  Put 
2 : =  imc~ and ~ = ker c~. Since 2 C V, it is torsion-free and X is locally free. Together 
with 2 also the locally free sheaf ~** embeds in V. Furthermore c~(V)=c~(J~) 
+ c 1 (2), so the conditions 2c 1 (2) < c a (V) and 2c 1 (~f) < c i (V) cann ot hold simul- 
taneously, i.e., V must be unstable. 

Assume now that Vis unstable and let 0--, (9~(k)--, V - ~ 2 ~ 0  be an exact sequence 
with Q torsion-free and cl(V)>2c~(~ ). Then 2 embeds in 2** and 

c ~ ( 2 * * ) = c ~ ( 2 ) < c l ( V ) - c ~ ( 2 ) = k ,  

so there is a nontrivial morphism 2**~(gre(k ). Composing 

V-,.~-~ 2** ~(9~,(k)-, V 

one obtains an endomorphism of V which is not a homothethy. 

3.4. Next there are given some simple consequences of  stability. 

Proposition 1. Let S be a reduced variety and V some rank-2 bundle over S x IP,. The 
points seS  such that U]{s} x IP, is unstable, form a Zariski-closed subset of S. 
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Proofl  Since ~ ® ~ *  is an (gs-flat sheaf via the projection S x IP,-~S, the assertion 
follows from the semi-continuity of  the function d imeEnd(~ l{s}  x IP,), seS.  

Proposition 2. Let V be a rank-2 bundle over IP, and rc : P , ~  IP , a finite coverin,q. I f  V is 
stable (resp. semi-stable, unstable, properly unstable), then so is rc*V. 

Proof Put  ,q = deg~. Since n*(V(k))= (re* V)(,qk), the bundle g* V will be stable (resp. 
semi-stable etc.) if rc*(V(k)) is. So we may tensorize V by some line bundle to obtain 

h°(V)+O, but h ° ( V ( - 1 ) ) = 0 .  

Assume first that  V is unstable (resp. properly unstable). This implies cl(V ) <0 (resp. 
<0). Then cl (n*V)=g*c~(V)=,q.c l (V)~O ( resp.<0)  too. Since V admits a non- 
trivial section, so does n'V, and n*V will be unstable (resp. properly mlstable). 

Assume next that  Vis stable (resp. semi-stable). This means cl(V ) > 0 (resp. >0). 
Then c t0z*V)>0  (resp. >0)  too, and we have to show h°((rc*V)( - 1)) = 0. Since n 
is finite, the higher direct images vanish, and we have 

H°((~ * V) ( - 1)) = H°(n,((~ * V) ( - 1))) 

= H°(V®n,((Pfe(-  1))). 

Since the covering-space is nonsingular,  the sheaf ~,(9~( - 1) is locally free of  rank g. 
All cohomology  groups 

H'(0z,(9~,(- 1)) (k)) = Hi(62~(- 1 + gk)) 

vanish for i =  1 . . . . .  n -  1 and all ksT/. F rom Horrocks '  theorem [5, Theorem 7.4] it 
follows that ~ , ( 9 ~ ( -  1) is decomposable.  

~,¢~(- 1)-  (9~(kl) ®... ®¢~ (k.). 

Since h°(rc,6/g,(- 1))= h°((gu,(kl))+... + h°((gn~(ko)) vanishes, all integers k 1 ..... k o are 
negative. This shows 

H°(V®n.ef f , (  - 1)) = H°(V(k,))@...  +H°(V(ka))=0 

and n*V will be stable (resp. semi-stable) too. 

Proposition 3. Let V be some rank-2 bundle on IP, and P._  1 C P,  some hyperplane. I f  
V]IP._ 1 is stable (resp. semi-stable), then so is V. 

Proof We show that c 1 (V(k)) > 0 (resp. > 0), whenever h°(V(k)) # O. I f s is a nontrivial 
section in V(k), then sliP._ 1 is a nontrivial section in the restricted bundle, or s 
vanishes along 1P,_ ~ with a certain multiplicity, say 1. Then s defines a non-trivial 
section in V ( k - I )  not vanishing identically on IP,_ 1. This shows 

e l (V(k) )=2t+c~(V(k- I ) )>O ( resp ,>0) .  

In 9.2 we also shall need "that  the space of  stable rank-2 bundles is hausdorft" .  
This is proved in very general form in [7]. For  the benefit of  the reader, let me 
include here a short p roof  of  this fact in our  special case. 
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Proposition 4. Let X CtF be the unit disc with origin O. Let ~/~ and ~i¢/" be two rank-2 
bundles over X x IF' n and put ~g~ : = f l { x }  x IP,, ~/~ : = ~ t  {x} x IP,. Assume that 

for all x e X  the bundles ~f~ and ~trx are stable 
for all 04=xEX the bundles ~ and #~x are isomorphic. 

Then ~ o and ~ltr o are isomorphic too. 

Proof Consider on X x IP, the rank-4 bundle ~ : = ~L~m(~/r, ~ ) .  For  all 04=xeX, 
h°(~l{x} x lP , )= l  by assumption. Let r ~ : X x l P , ~ X  be the projection. The 
coherent (gx-sheaf ~,J~f' then is of  rank 1 and torsion-free, hence locally free. We 
even may assume r ~ , ~  ~-(9 x. Use the canonical morphism 

h : (9 x × ~. = ~*(9 x = 7z*~z.~C'~)r¢ ' = ~ (~¢ '~ ,  #~) 

to obtain a morphism h :~ / / - - ,~ ,  which is nontrivial, hence an isomorphism, 
outside the fibre {0} x IP~. Let ~ C ~ o  be the image of ~o under h. Then there are the 
following three possibilities: 

1) rank ~ = 2. This means that ~ coincides with ~ o  almost everywhere. The 
determinant det(h)sF(C)x×e) then vanishes at most on a subvariety of  codimension 
=>2, i.e., it cannot vanish at all. But this implies, h :#'--*~/~ is an isomorphism 
everywhere, in particular ~r o -~ ~f-o- 

2) rank _~ = 1. As a subsheaf of  #~0, .~ is torsion-free over {0} x IP,. Since f ;  was 
stable by assumption, c~(~f~o)<2c~(~). I f  ~ embeds in ~o ,  then so does the line 
bundle ~**. Since # o  was stable too, 2q(_~)=2c1(~**)<c1(~o). One obtains 
q ( fo )<Cl (~fo) ,  a contradiction, because the Chern classes of  % and ~//~, are 
independent of  x. 

3) rank _~ =0.  This means that h vanishes identically on {0} x IP,, say of  order #. 
I f z  is the coordinate onX,  one may replace h by h/z ~, to obtain a regular morphism 
~ ' ~  which does not vanish identically on {0} x IP,,. This however is covered by 
one of the two other cases. 

4. The Standard Construction 

4.1. Let Gr  = Gr(m, n) be the grassmann variety parametrizing m-planes E C lPn and F 
=F(O,m,n) the flag variety of  pairs (x,E) with xeEC1P,. There is the standard 
diagramm 

G r ~ q  F 
| 

(D,.) 
[e q :(x, E ) ~ { E  ~ . e G r  
IP. p:(x,E)~-~xelP,. 

The projections p and q are locally trivial with fibres G r ( m - 1 ,  n - 1 )  and IP m 
respectively. 

Fix some r-bundle V on. IP,. Whenever ECIP n is some m-plane with e ~ G r  its 
corresponding point, then p* induces an isomorphism VIE~p* VIq- ~ e. Since p*Vis 
an (96r-flat sheaf via q, semi-continuity shows that the function 

h°(p*Vlq - le )=  h°(VtE), e e G r  
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is upper-semi-continuous in the Zariski-topology of Gr. In particular there is some 
Zariski-open U C Gr where this function assumes its minimum 

min { h°(VIE), E C IP~} . 

4.2. Consider now the situation where this minimal dimension is 1. The coherent 
sheaf q ,p*  V on Gr then will be of rank 1. This sheaf shares with p* Vthe property of  
being free of  torsion and normal, hence it will be locally free (Lemma 1). We already 
observed that Pic(Gr)=2g and that it is generated by Co,(1). So we may put 

q , p * V ~ - ( g c r ( - l )  for some le7Z. 

Denote the canonical morphism 

q*(_PG, ( -  I) = q*q ,p*  V-+p* V 

by s. For ee U, this morphism induces an isomorphism 

(9~r(l)e/~%(gcr(l)e ~ F(p* V lq -  1 e) (base change). (2) 

So s will not be trivial. If we fix some xe  IP, and write V_  ~ rCn, in a neighborhood 
of  this point, then on the fibre p-  1 x ~- Gr(m - 1, n - 1) the morphism s restricts to a 
morphism. 

s ip-  t x = (sl . . . .  , st) : q*(9or( - I) Ip-  i x  ~ (9c~(,,- 1,,,- 1)( - I) 

--+ V ip -  * x ~- rCa~{, ._  a.-  , , . -  1 )" 

This morphism cannot be trivial for all xc  IP,, showing that l >0  (and thus justifying 
the choice of the sign for I). 

Observe t h a t / = 0  if and only if 

h°( V) = h°(p * V) = h° (q ,p  * V) = h°(Ccr(-  l)) =t= 0. (3) 

Lemma 9. The  zero-set  Z C F o f  the morphism s does not contain a hypersurface.  

Proof.  Assume that H is a hypersurface in F on which s vanishes. By assumption 
h°(p * VIq-  1 e) = 1 for all ee U. So p* Vlq-  i e contains a non-trivial section (unique up 
to multiplication with constants) which can vanish only in codimension > 2 (Lemma 
2). Since s lq-  ~e is a nontrivial multiple of this section by (2), H cannot intersect the 
general fibre q-~e, ee U. Therefore H = q - ~ H '  with H ' = q ( H ) C G r  some hyper- 
surface. Let h~F(g)G~(k) ) be an equation for H'. Then s/q*h is a nontrivial, regular 
morphism of q * C c ~ ( - l + k )  into p'V, inducing an injection 

(9~,( - I + k ) ~ q , p *  V = (9~( - l). 

This is impossible, unless k = 0  and H = H ' = O .  

4.3. Now replace Vby its associated IPr_ ~-bundle P(V) and p* Vby P(p* V) = p'P(V). 
The image of  s is a subsheaf of p'V, locally free of rank 1 outside Z. It determines a 
rational cross-section F C P(p* V) which degenerates only over Z. We may assume F 
to be irreducible. I f E C 1P, corresponds to some point ee U and xe  p-  I e \ Z ,  then the 
meaning o f F at the point (x, E)e F is this: Let ~ : P(p* V)-, P(V) be the map induced 
by p. This ~ maps the value of F at (x, E) onto the point in P(V(x))  defined by the 
direction in V(x) of the unique section in VIE. 
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Lemma 10. l>O if and only if }(F)CP(V) has dimension>n+ 1. 

Proof. Assume first t h a t / > 0 .  For general xelP, write as above 

sip- Ix =(sl  .... ,s,), Si~F((;Or(m- ~,,- i)(l)). 

Since the common zero-set ofs  1 . . . . .  s, is Zc~p- ~x, it is of codimension > 2 in this 
fibre. The sections s 1 . . . . .  s, thus span a vector space of dimension > 2. Since the part  
o f  F over p -  ~x is mapped under ~ by (st • ... :s,), its image has dimension > 1, and 
d i m N C ) > n +  1. 

Assume next 1 = 0. Then s = p's, with a unique section s o e F(V). Hence }F is the 
rational cross-section in P(V) determined by s o, which has dimension n. 

5. The Theorem of Grauert-Miilich 

5.1.Here will be given the proof  of  Theorem 1 from the introduction, first in the case 
of  stable bundles. 

Let V be a stable rank-2 bundle on IP, with d(V)>= 2. After tensoring V by some 
line bundle, we may assume that 

VIL ~- (-Q L 1~ (ilL( - -  d) 

on the general line L C ~,. In particular c 1 (V)= - d  and h°(V)= 0. We perform the 
standard construction (§ 4) for the case m = 1. Since h°(VIL) = 1 on the general line L, 
(3) tells us that p.p*V"~(9~r(1,,)(-l) with l>0.  The map ~ :F--.P(V) will therefore 
be surjective by Lemma 10. We shall obtain a contradiction by proving that the 
differential of  ~[F at a general point of  F cannot be surjective: 

To this behalf fix some line LC IP. corresponding to a point ee U C Gr(1, n). The 
fibre L : = q - l e C F  then does not intersect Z and F will be a regular section over 
some neighborhood of  L. Let A Cp*P(V)IL be the part of  F over L. Under ~ this 
cross-section A is mapped onto the cross-section BCP(V)tL determined by the 
trivial subbundle 

(gL C VtL = (gLYCOL(-- d). 

We have the commutative diagram 

A C F > F 

B C P(V) , IP. 

with horizontal arrows the bundle projection rc in p*P(V), resp. P(V). The 
differentials dp and @ define linear maps of normal bundles 

Na/r ~ NL/v 

NB/p(v ) a~ ) NL/Fe. 
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Use the well-known identifications 

NL/r 

, ( n -  1 )Cu , , ( -  1) , 2 ( n -  1)(gn, ~ , 0 

and 

0 ~ NB/ptvlL) ~ N~/e(v) ~ NL/~, ' - - *  0 

0 , C n , ( - d  ) ~ NB/P(VI > (n -1 )6~: (1 )  ~ 0 

to obtain a commutat ive  diagram 

0 , (n -1)O~,1( -  t) ...... , NA/r 

0 , (9~ . ( -d )  ~ N~/e(v) 

NL/w. 

(n- 1)c%,(1) 

, 0  

, 0  

> (n-1)(gw~(1) , 0 

,~ (n -1) (9~ , (1 ) -  , 0 

We assumed d > 2. The left-hand vertical arrow vanishes therefore. The image of  
NA/r under d b then will be some rank-(n - 1) subbundle of  the rank-n bundle Ns/p~v) 
and @ cannot  be surjective near A. This proves Theorem 1. 
5.2. It was observed by Van de Ven, that  one may use Propos i t ion  2 to generalize 
Theorem 1 in order to determine the restriction o f  V to the general (not necessarily 
linear) rational curve in IP.. To be precise : A rational curve in IP. is a non-cons tan t  
morphism ~0 : IP~ --* IP,. A family o f rational curves is a morph ism 45 :X x IP 1 ---~IPn,X a 
connected curve, which is not  constant  on any fibre {x} x IP I. 

Corollary of  Theorem 1. Let  V be a stable rank-2 bundle over lP. and q) : IPI ~IP . a 
rational curve in IP n. Then there is a Jdmily o f  rational curves q) :X x IP 1 ~ IP n such that 

q) = @1{0} x IP 1 for  some point 0GX, 
d(q~*Vl{x} x I P 0 = 0  ( i f  c l (~*V)  is even) o r=  1 ( i f  cl(CI)*V) is odd) 

for  all points x contained in some Zariski-open subset o f  X.  

Proo f  Take homogeneous  coordinates z o . . . . .  z, on IP. and polynomials 
Jo ..... f , e  F((fvl(k)), k > 0, with fv = q~*zv, v = 0  ..... n. Take some linear embedding 
IP: ~IP, .  For  v = 0  ..... n, successively one can find polynomials  Fo ..... F ,e  F((gn,(k)) 
without  c o m m o n  zeroes such that F~IIP 1 =j~.  Let g :  lP,--*lP, be the covering o f  
degree k" given by Fo, ..., F,. Then gllP I = q~. 

By Proposi t ion 2, the bundle n* V on l i ' , is  stable again. Theorem 1 shows that  
d(VIL)=O, resp. 1, for the general line LCIP,. After fixing such a line L, one can 
choose an appropria te  curve X in the grassmannian o f  lines in t[',, to  connect  IP1 
with L. The restriction o f  n to the family o f  rational curves parametrized by X will 
define a morphism 4~ with the properties wanted. 

Spec ia l  case. I f  V is a stable rank-2 bundle on IP,, then d(Vl C) = 0 for  the general conic 
section C C IPn. 
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5.3. Semi-stable Bundles 

Theorem l holds for trivial reasons in the case of semi-stable bundles too: If V is 
semi-stable, then h°(Vnorm)= 1 or Vnorm"~ 2C9~by3.3 and Lemma 2'. In the first case 
Lemma 5 shows d( V) = d( Vno,m) = O, and in the second case d(VIL)=0 for all lines L. 

6. The Jumping Lines of a (Semi-)Stable Rank-2 Bundle with even First Chern Class 

6.1. Let V be a semi-stable rank-2 bundle over IP, with Cl(V ) even. We just saw that 
d(VIL) =0 for the general line LC IP, (Theorem 1). By Lemma 4 the set SCGr(1, n) of  
jumping lines of  V must be of  codimension 1 everywhere (or perhaps empty). We 
want to determine the degree of S. This can be done in a very simple way, if one 
views S as a divisor, i.e., if one admits components with higher multiplicity. 

Definition of the Multiplicities. Tensor V such that c~(V)=-2. Then L is a 
jumping line if and only if hl(VIL)=#O. So SCGr(1,n) is the support of the sheaf 

: =q,lp*V, 

where p and q are the projections in diagram (D1). 
Take a resolution of V 

0-~ U--, + (9~(k~)~ V-*0 (4) 
i = 1  

with all k~ <0. Since VIL = 2(9L(-- 1) on the general line L (theorem of Grauert- 
Miilich) the sheaf q,p*V vanishes. One obtains an exact sequence 

r 

O~q, lp*U & @ q, lP*(gve(ki) ~ ¢ f  ~O- 
i = l  

Now h l((gLiki)) is independent of L, and base-change implies that the shea fin the 
middle of this exact sequence is locally free on Gr(1, n). But from the exact sequence 

O~ H°(VIL)~ HI( UIL)~ ® HI((g L(k~)) 
--,HI(VIL)-~O 

and from the constancy of h°(VIL)-hI(VIL) it follows that q,~p*U is locally free 
too. 

So 2 is a morphism between two locally free sheaves of  the same rank, and one 
can define the divisor 

S :=divisor of zeroes of det(2). 

That the multiplicities assigned to the components of  S in this way are 
independent of  the resolution (4), this follows from the 
Interpretation of these Multiplicities. Let ee S be an arbitrary point. Choose local 
coordinates x~ ..... x2t ._ ~) concentrated at e such that the disc X = {xx =0} inter- 
sects S transversally at e. The multiplicity #e(S) of the divisor S at e then equals the 
vanishing order of det(2)[X at e. 

Now restriction onto X is right-exact, hence 

(q,, p* U)IX ~ (~ (q, l p*(glr,(ki))lX ~ ~-¢f~--* 0 
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is exact. But 2IX is injective, since it is so outside S. Lemma 7 now implies that the 
vanishing order  at e o fdet  (2N) = det (2)IX equals h°(LPlX), an integer independent  of  
the resolution (4). Furthermore,  if L is the line corresponding to e, then one has the 
inequality 

~ e ( S ) = h ° ( ~ P ; )  

= h° (Se / (x2  . . . . .  x2(.- 1))~) 
> h°(~ / (xp . . . ,  x2(.- 1))5'¢) 

=> hl(p * V]q- le) 

= hl(VI L) = d(VIL)/2. (5) 

6.2. Theorem 2. The divisor S on Gr(1, n) defined this way has the properties: 
i) degS = Ao(V) : =  - A(V)/4. 

(Recall that A(V)=c 2 - 4 c  2 and that Ao(V ) is an integer if c 1 is even,) 
ii) d(VIL) < 2/6(S) if L is the jumping line corresponding to eES. 
iii) S = S(V) depends analytically, resp. algebraically on V 

Proof of i). It is no loss o f  generality to assume here that n = 2. Then one can choose 
a resolution of  V by line bundles 

r r + 2  

0---~ @ (_gm(ki) --~ @ (9n,(li)-* V-+O, (6) 
i = 1  i = 1  

with ki, li<O. I f  one puts 

K "= + q,lp*(gm(ki) 
i = l  

r + 2  

L : =  @ q,lp*(gm(li), 
i = 1  

then the direct image of  this sequence under q,~p* will be 

O--+ K & L--,q,lp* V ~O. 

Since the divisor of  det(2) has the degree 

q ( L ) - q ( K )  

one only has to compute  first Chern classes. Compar ing  Chern classes in (6) one 
finds 

S k  i - Z l  i = 2 

E k i k j -  Z lilj = 2 Z k i -  c2(V ) 
i < j  i < j  

and consequently 

= (Sk,) 2 - (Xl,) 2 - 2 Z k,kj + 2 E lilj 
i < j  i < j  

= 4,~1 i + 4-- 4Xk i + 2c2(V ) 

----- 2c2(V) -- 4. 
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Next  embed the flag variety F(0, 1, 2) in H "  = IP 2 x IP* as divisor of  bidegree 
(1, 1). Then for kET/ there  is the exact sequence 

O~(9n(k - 1, - 1)~(gn(k , O)-~(9v(k, 0 ) ~ 0 .  

I f  k <0 ,  the direct image under  q ,  will be 

O ~ q ,  1CF( k, O)~q,2(grl(k - 1, - 1)--* q ,  2(9//(k, 0)-*0. 

N o w  

q,2(gn(k, O) = h°((fre2( - k - 3))- (_gnu, 

has trivial Chern classes. Since the first Chern class of  q , 2 C n ( k - 1 ,  - 1 )  equals 

- h2(C~,~(k- 1)) = - h°(C~,~(- k -  2)) = - ½(k 2 + k) 

one finds for k < 0 :  

c 1 (q, 1Cv(k, 0)) = - ~(k 2 + k). 

N o w  one can add over  all k i and I i to obtain 

- ~Z(l,  + li) +½Z(k~ + k,) c I ( L ) - c , ( K ) =  t 2 

= ( c  2 - 2 ) +  1 

= c 2 ( V ) - l : A o ( [  3. 

Proof of  ii), This is the inequali ty (5). 

Proof of  iii). Take  a va r ie tyX and a family of  semi-stable bundles o v e r X  × P,,  i.e., a 
rank-2  bundle ~ ove rX  x IP, such that  all bundles ~U~ :=  ~Ul{x} × IP, are semi-stable 
with c l (Ux)=  - 2 .  Locally (w.r, to X) one can find resolutions 

0 ~  ® ( ; ' ( k 3 ~ 0  

where (9(k~) means  the pul l-back to X x IP. o f  (gl,(ki). 
Forming  q, ,p*  s imultaneously for all x e X ,  one obtains over X × Gr(1, n) an 

exact sequence 

O~q ,ap ,q l  A , (~q,  lp,d)(ki)__,q, lp,~t/-~O. 

N o w  the divisor o f zeroes of  det (A) on X × Gr(1, n) restricts on {x} × Gr(1, n) to 
the divisor of  det(A)l{x} × Gr(1, n), which by 6.t. is the divisor S(¢fx). This means  
that  the divisors S(~U~), x~X,  form an analytic, resp. algebraic family. 

7. The Null-Correlation Bundle V o on IP 3 

Here  will be given some equivalent  definit ions of  V 0. This bundle on IP 3 belonged to 
the first known examples  o f  indecomposable  2-bundles on IP 3 and its propert ies  are 
well-known. I want  to discuss them here in some detail, mainly  because one 
part icular  result (Lemma  11) is needed in the p roo f  of  Theorem 3. 
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7.1. Some Old Terminology 

Put in this paragraph 

P = IP 3 , G = Gr(1, 3). 

Using Pliicker-coordinates one may embed G C IP 5 as nonsingular quadric hyper- 
surface. 

A line complex is a hypersurface S C G. The degree of this complex S is its degree 
as divisor on G. It coincides with the degree of the cone described by those lines 
through a general point x e P  which are parametrized by S. A linear complex is a 
complex of degree one, i.e., the intersection of the Pliicker quadric G with some 
hyperplane IP 4 C IPs. There are the two species of linear complexes S: 

a) S is special, if the hyperplane touches G at one point e. Let L C P  be the line 
corresponding to this point e, then S parametrizes precisely the lines in P 
intersecting L. 

b) S is 9eneral, if the hyperplane intersects G transversally in every point of  S. 
Then S itself is a nonsingular variety. 

A null-correlation is an isomorphism N :P-~P*, x--*E x, with x~E x for all x. Ex is 
called the null-plane of x and the uniquely determined point x~e E with E = Ex~ is 
called the null-point ofE.  N determines an involution L ~ L *  of G. L* C P is the line 
having the two equivalent properties 

i) the points of  L* are the null-points of  the planes through L; 
ii) the planes through L* are the null-planes of  the points on L. 
Either LolL* = 13, or L = L*. The lines L = L* fixed under the involution form a 

general linear complex. 
If  S and S' are two different linear complexes, then Sc~S' is always the 

intersection of two special linear complexes, i.e., there are two lines L and L' C P such 
that Sc~S' parametrizes the lines intersecting both L and L'. The lines L and L' are 
uniquely determined and are called the directrices of SnS' .  

For details see the classic [6]. 

7.2. First Description of V o 

Fix a null-correlation N. After the choice of  coordinates x o ..... x 3 for P and dual 
coordinates 40 .... .  43 for P*, N can be defined by a nonsingular alternating 4 × 4 
matrix A: E x is the plane with dual coordinates 4 = A.x. After the right choice of 
coordinates, A will be in normal form 

A =  0 0 - 

1 

and E x is the plane with coordinates ~ = ( x l , - x  o ,x3 , -xz) .  Use the standard 
diagramm (O2) putting P * =  Gr(2, 3). The flag-variety F = F(0, 2, 3) is a divisor on 
P x P* with equation -rxi4i = 0. Use the letter N also to denote the graph in P x P* of 
the null-correlation. It satisfies the equations ~ = A. x. Let J C (gv be the ideal sheaf 
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of  N. Use the notat ion Cv(kl, k2) as explained in 2.1 and define analogously (9(kl, k2) 
= (gp × p,(kl, k2). Then we have exact sequences 

0 

1 
J(0, 1) 

o , e ( - 1 , o )  , e ( o , 1 )  , e ~ ( o , 1 )  , o 

" [ \ 

ON(O, 1) 

1 
0 

where the first horizontal  morph ism is multiplication by Sx  i- ~i. The dot ted ar row is 
restriction, but after using p ,  to identify ON(0, 1)~(gu,(1), this ar row maps 
~o .. . . .  ~4 onto  xl,  - xo, x3, - x 2 respectively. N o w  apply p ,  to these exact sequences 
to obtain : 

0 

1 
p,J(O,  1) 

1 
0 , C e ( - 1 )  (xo ....... )) 4(9p , p,Ce(0, 1) , 0. 

" "  
\ \  

( x l ,  --  Xo, X3, --x2) " - . \  

ep(1)  

l 
0 

The horizontal  sequence became the well-known representation o f  T e ( - 1 )  
--~p,CF(0, 1). We put V o :=p,~¢(0,  1) and find that we can identify it with the sub- 
bundle o f  T p ( -  1) consisting o f  elements ,Sai~/Ox i satisfying 

aox 1 - a l x  o n t-a2X 3 - a 3 X  2 = 0 .  

F r o m  the exact sequence 

0-+ V o ~ Tp(-  1)-~Cge(1)~0 

one computes the Chern classes Cl, c 2 o f  V o to obtain 

C1=0 , c2 - -1 .  
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Proposition 5. h°(V0) = 0, i.e., V o is stable, but for every plane ECP, h°(VolE)= 1, i.e., 
Vole is semi-stable and not stable. 

Proof The direct image sheaf q . j ( 0 ,  1) vanishes, therefore 

h°(Vo) = h°(p.Y(O, 1))= h°(J(0, 1)) = h°(q.J(O, 1))= 0. 

For every fibre p-  ~x, xe  P, the restriction J(0,  1)I p-  ~ x is generated by its two global 
sections. The canonical morphism 

p* V o -= p*p .J(O, 1)~J (0 ,  1) 

therefore is surjective and fits into an exact sequence 

O~(gv(O , - 1)~P*Vo-.Y(O , 1)-.0 

with s vanishing only along N. Restricting this exact sequence to any fibre q-~e, 
e~P*, one finds that Vote ~-p* V[q-ae has a nontrivial section vanishing simply at 
the null-point x~ = p ( N ~ q - l e )  of E. Since ca(Vo)= O, this section generates F(VtE), 
hence VIE is semi-stable. 

7.3. Second Description of V o 

By Lemma 5, the jumping lines of V o through an arbitrary point x~P  are just the 
lines through x contained in the null-plane E x. The jumping lines of V o therefore are 
parametrized by the general linear complex S C Gr(1, 3) determined by the null- 
correlation N. For any jumping line L 

r o l l  ~- ~L(1)@OL(- -  1), 

because x~ was a simple zero of the unique section in VolE. 
Next use the standard diagram (D1) and put 

S = q -  1S C F(0, t, 3) 

: = pIS :S--, P 

fl :=qlS : S'-, S 

(9~(k a, k2) = ~*~p(k  1 )®/~*(gs(k2) • 

By base-change, the sheaffl,c~* Vo(- 1) is a line bundle on S and fl*(fl,c~* Vo(- 1)) 
is a line-subbundle of e* Vo( - 1). Using the Chern classes of  V o and the fact that x e is 
a simple zero of the non-trivial section in F(VolE), one even finds fl,ct*Vo(-1) 
~-(gs(- 1). On S one therefore has an exact sequence 

0--+(f)g(1, - 1)~e* Vo~6'~(- 1, 1)--.0. 

This shows that one might also define V 0 as % 6 ~ ( -  1, 1). 

7.4. For later application we have to know some direct-image sheaves. 

Lemma 11. a) a,(9g(O,l)=(StVo)(I) (l>0) 
b) %1(9g(0,-1)=(S*-2Vo)(-t)  (I>0). 
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Proof. a) The  case l = 1 is our  second description of V o. I f  l > 1, on every open U C P 
we have a natural  morph i sm 

s~(F(~ - 1 u ,  (¢~(0 ,1 ) ) )~  r ( a -  1 u ,  (~ (0 ,  l)) 

commut ing  with restrictions and bijective on the a-fibres. Sheafifying and using 
base-change for the a-fibres, one obtains  a sheaf i somorph i sm 

(S'Vo) (1) = S'( Vo(1))-, a , (~(0 ,  l). 

b) The  case l =  1 is trivial. Let us prove  the case 1 = 2 : Choose  another  linear 
complex  S'C Gr(1, 3) and put  D = Sc~S' and /}  = fl - 1D. We m a y  choose S' such that  D 
is non-singular  and such that  the directrices L, L'  C P o f  D are skew lines. Then there 
is the exact sequence 

0~C~(0,  - 2 )  s' , (~ (0 ,  - 1)-*C~5(0, - t ) - , 0 .  

The  direct image sheaves of  C~(0, - l) under  a vanish. Hence  

a ,  lg0~10, - 2) -~ %CD(0, - 1). 

To  compute  the line bundle c%Cb(0, - 1), fix a line M C P interesting neither L 
nor  L'. Then 

o~la- l M c~b~ M 

is an i somorphism and f i le-1Mc~/)  identifies this curve with a conic C C Gr(1, 3) 
parametr iz ing the regulus o f lines intersecting L, L', and M. So the degree o f (9~( - 1)  

on C i s - 2  and 

%C.(0, - 1 )  ~- Ce( - 2 ) .  

I f / > 0 ,  over  every open UCP we have the cup-product  pairing 

F ( a -  1 U, (~(0, l --  2 ) ) @ H l ( a -  1 U, C(0, - l)) 

- - , H ' ( a -  1 U, C(0, - 2)). 

It commutes  with restrictions and on the a-fibres becomes the perfect pairing of  
Serre-duality. We obtain  a perfect pair ing of  sheaves 

a .C~(0 ,1 -  2)®~pa,  1Cg(O, - I)~C e ( -  2) 

showing 

c%, (gg(0, - l) ~-St-  2(Vo(1))* ®Cp( - 2) 

_~ ( s  ~- 2 vo*) ( - t).  

Because o f  V o -~ V* this proves our  assertion. 

7.5. Third Description of l/o 

Via a ,  the spaces F(Cg(O, 1) = F((gs(1)) and F(V0(1)) can be identified. Any nontrivial  
section in F((gs(1)) defines another  linear complex S' and a set D as above  with two 
skew directrices L, L 'C  P. The  corresponding section in F(V(1)) vanishes at LuL '  
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only and there of  order one (as ca(V(1) ) = 2 tells us). We therefore might also define 
V 0 by an extension 

0 ~ ( ~  Vo(1)-~ JL,~L,(2)--*0 

(compare Lemma 3). 

8. Restricting Stable Bundles to Hyperplanes 

8.1. Here will be given the proof  of  Theorem 3 from the Introduction. So fix some 
stable rank-2 bundle V over IP,, n>3 ,  I f  VIE is stable for one hyperplane E, 
Proposition 1 tells that it is stable on almost all hyperplanes E. So assume that VfE is 
unstable on all hyperplanes E C IP,. 

After replacing V by V, . . . .  one may assume that either c I = q(V) = 0 or c 1 = - 1. 
Stability of  V then is equivalent with hO(V)=0 and instability of  Vie with 
h°(VIE)>O. Lemma 6 shows that VbE can never be trivial. 

One has d(V)=0 or 1 by the Theorem of Grauert-MiJilch (Theorem 1), i.e., 
d(VtL) = 0  or 1 for the general line LC IP,, Every hyperplane E C IP, containing such a 
line must satisfy d(VlE)=O or 1 too. The Lemmas 2' and 5 then can be applied to 
show that h°(VIE) = 1 for such an E. Next one can apply the standard construction 
in the case re=n-1  (putting P* = G r ( n - 1 ,  n)). In particular one obtains from 

4.1. an open set U C 1P* parametrizing the hyperplanes E with h°(VlE)= 1. The 
complement of  U in IP* even is a subvariety A of  codimension >2.  

4.2. a morphism s:q*6:p.(-l)-.p*V, 1>0, vanishing at a subvariety ZCF of 
codimension 2. ( I fZ  were empty, then V would be decomposable, hence unstable.) 
Whenever ee U, then Zc~q- l e is of codimension 2 in q-  ~e too, and is mapped under 
p on the zero-set of the unique non-trivial section see F(VIE), E C IP, the hyperplane 
corresponding to e. 

4.3. a rational cross-section F C p*P(V) degenerating over Z only and a surjective 
morphism ~ : F-*P(V). If  ee U with E the corresponding hyperplane, xeE, and if 
(x,E)¢Z,  then the point of  F over (x,E) is mapped onto the point in P(V(x)) 
determined by the subspace IF-sE(x ). In particular the direction tl;. sElx ) in the fibre 
V(x) changes, if E varies. 

For all E parametrized by points ee U, the jumping lines LC E of  V appear in 
codimension one (Lemma 5). The jumping lines therefore form a hypersurface 
S C Gr(1, n). Whenever L is a jumping line, then VIL contains a unique positive sub- 
line bundle (VIL) + C VIL. I f  E is a hyperplane corresponding to ee U, then selL 
completely lies in (VIL) +. This shows in particular: 

(7) Whenever e l, e2e U correspond to hyperplanes E~, E 2 having in common a 
jumping line L, and i f xeL  is a point with (x, E1)¢Z, (x, E2)¢Z, then the subspaces 
Ir.se,(x ) and K.se~(x) in V(x) coincide. 

8.2. The Proof of Theorem 3 in the Cases n > 3 

The points xelP,, such that all lines through x are jumping lines, form a proper 
subvarietyX C IP,. Fix a point xe  IP,",X and two hyperplanes E~, E 2 through x with 
corresponding points e 1, e 2 e U. Since n > 4, E~ and E 2 will have in common at least a 
plane, and through every point of this plane, in particular through x, there will pass 
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at least one jumping line L C E1 hE2. Whenever (x, El)~ Z and (x, E2)¢ Z, then SEl(X) 
will be a multiple ofse~(x ) by (7) above. This means that b is constant on the part  o f f  
lying over p- l(x)\(q- 1AuZ). Over the complement in F of p -  l(X)uq- I(A)uZ, the 
morphism ~]F then has rank n only, a contradiction with 4.3. 

8.3. Proof that S is a General Linear Complex 

Let now be n = 3. Assume that the hypersurface S C Gr(1, 3) has degree > 1. Then the 
cone described by the jumping lines through a general point xe  IP 3 is not linear. Fix 
a point xe  IP 3 not on 

the set X described in 8.2; 
the degeneration set of  ptZ; 
the degeneration set o f  Ptq- a A. 

Then all planes E through x - e x c e p t  perhaps finitely many, say E1 .... .  E k -  are 
parametrized by points in U and sE(x)4:0. Whenever L1, L 2 are two jumping lines 
through x not contained in the same plane E i, i=  1 ..... k, then they span such a 
general plane E and determine in V(x) the same subspace (VILO+(x)= (VILz)+(x) .  
For  general x, not all jumping lines through x can be contained in the same plane El. 
So all of them, except perhaps L o =El n...c~E k determine the same direction in 
V(x). This will then be the direction ¢ .  sE(x ) for all E 4: Ex .... .  E k not containing L 0. 
Again we arrive at the contradiction with 4.3: For general xEIP,, }IF is constant 
over an open set of  p-ix.  

Assume next that degS = 1, but that the linear complex S be special. Let L 0 C 11' 3 
be the line determining S. Whenever E is a plane not through Lo, the jumping lines in 
E form the pencil of  lines through xe = E n L  o. In particular s~ vanishes in this point 
x E only. Whenever E o contains L o, then all lines in E o are jumping lines and VIE o is 
properly unstable. In particular there is some k > 0  with h°(V(--k)tEo)=t by 
Lemma 2'. The unique non-trivial section in V( -k) lE  o has finitely many zeroes 
only. In all points xE E o except these finitely many, the jumping lines L determine 
the same subspace (VIL) + (x)C V(x). Varying E 0 through L o, one obtains a Zariski- 
open subset of those points xe  IP3\L 0. Whenever E is a plane not through Lo, then 
again II~.se(x)CV(x ) is independent of  E. Once more we arrive at the same 
contradiction with 4.3. 

8.4. Proof that d(VIL) is Constant for all Jumping Lines L 

So far we found that the jumping lines form a general linear complex S. In particular 
there is no plane containing jumping lines only. Therefore h°(VlE) = 1 for all planes 
E, and each restricted bundle VIE admits a section s E (unique up to multiplication by 
constants) vanishing in a single point x~eE only, the null-point of E. x e is the 
intersection of all the jumping lines in E. Every jumping line L carries the bundle 
VIL ~- (gL(k) • (9L( -- k + c 1) with k = k(L) > 0 and c 1 = 0 or = - 1. 

k(L)= l for all jumping lines L.  (8) 

To prove this, fix an arbitrary plane E C IP3 and some line M q~ E intersecting E in 
its null-point xe. The planes through M are parametrized by a line R C IP*. Put/~ 
: = q -  1R C F and or: = pl/~. This map a is the converse ofdilatating 1P 3 along M. Also, 
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if/~ : = a - l E C / ~ ,  then al/~ is the converse of dilatating the plane E in x E. The 
situation is this 

R , q k ~ E ~ O'-I(XE) 

I I l 
IP3 3 E ~ x E. 

Let M* be the line associated with M by the null-correlation (see 7.1). Since M is 
not a jumping line, Mc~M*= O. Furthermore, M* is contained in E and does not 
pass through x E. The restriction ~ of s : q*Cn, , ( - l )~p*V to/~ vanishes only in hT/. 
= a -  1M*. Whenever L C E is a jumping line in E, hence containing xE, and L C/~ its 
proper transform, then 

a*VlL~--rlL~-CL(k)OCL(cl--k), k=k(L) .  

Near L, the morphism ~ is just an ordinary section in p*V. The image of ~]L 
therefore lies in the positive subbundle of a* VIL. The point ~/c~L is the only zero of 
?IL, hence ?IL must vanish there of order k(L). 

Now recall that s E had its only zero at x E. Ovei /~\cr-l(x~), cr*sg therefore 
generates a trivial line subbundle ~.cr*@ of a 'V, which on every line L coincides 
with the positive subbundle of a*vIL. Therefore over E \a - l (xE) ,  the morphism 
g:q*CR(--l)~a*V really has its image in this subbundle IF.a*@, and one may 
view that morphism there as a section in q*CR(l ) vanishing only in the points 
Lc~M of ~ / a n d  there of order k(L). First of all this means that k = k(L) is constant, 
independently of L. Secondly this means that over E\a-X(x~) the two bundles 
q*.OR(l ) and [~/]k are isomorphic. Intersecting with the inverse image of a line 
in E different from M* and not passing through xe, one finds indeed k = 1. 

8.5. At this point we can forget the standard-construction based on the planes in 
IP 3. Rather we have to use now the standard diagram (DI) and the IPl-bundles 

S ,  ~ ~ ~ , I P  3 

as in 7.3. In 8.4 we proved 

~*Vlfl- ly~--Cle,(l)OCle,(Cl -- l), Cl =Cl(V)=O or - -1 ,  

for all points y~S. The base-change principle is applied again, to show that 
fl,~* V( - l )  is a line bundle on S. We need that 

fl,~* V( - l) -~ (gs( - I). (9) 

To prove this, fix some point x~IP 3. The jumping lines LCE:¢ through x are 
parametrized by a curve R, 

RCSCGr(1,3)CIP s 

of degree one. Put again 

F.=fl-1RCS,  a : =al/~ :/~-+E~. 

By base-change from S to R we only have to verify 

(fllE),~* V ~- e 'R(- 1). 
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Let C : =  ~ -  l(xE)C/~ be the exceptional  curve. The section a*s E in a* V vanishes 
only along C, and there of  order  t, i.e., the bundle o -*V®[C]  -~ admits  a section 
without  zeroes. This proves  

(/~l~:),(~*v® Ec] -') ~- (~R- 
Formula (9) then follows readily f rom the i somorphism 

~* v ( -  l)_~ ~* v® [c]-~ ®/~*¢R(- t). 

8.6. The End o f  the Proof  The image of  the canonical  morph i sm 

fl* e s( - l) = fl* fl , ~* V ( - l )-~ ~* V ( - l) 

is a line subbundle  of  c~*V(-l) and gives rise to an exact sequence 

0--,(~(0, - l ) ~ a *  V ( -  l)-,(9~(c, - 21, l)--,O. (10) 

Since l >  0 and since V ( - l )  is trivial on the fibres a - i x ,  x~ IP 3 this sequence 
cannot  split, hence it defines a non-tr ivial  class in H~((9~(2l- c~, - 2l)). F r o m  L e m m a  
1 lb)  and a), one finds using Leray 's  theorem 

h t ((9~(21- c 1, - 21)) = h°(a ,  1 (9~(2I- cl,  - 2l)) 

= hO((S l- 2 V) ( - c 1)) 

= h°(6~(2 - 21 - c 1, 2l - 2)) 

= 0  

if 2 - c l  - 2 1  is negative. This shows that  necessarily l =  1. Now apply  e .  to the 
sequence (10) to obtain 

V-~ %((9s(1, c 1 - 1 ) ) .  

Indeed, up to tensoring with (9n,(Cl), the bundle V coincides with the null- 
correlation bundle V 0 (compare  7.3). But the case c~ :t:0 can finally be excluded, 
since it leads to the contradict ion c a = 2c v This proves Theorem 3. 

9. Corollaries of Theorem 3 

9.1. Schwarzenberger  showed in [11, Theo rem 10] that  any rank-2 bundle Vover  
the projective plane with discr iminant  

A(V)  = Cl(V)  2 - 4 c 2 ( V  ) > 0  

is unstable. This is now easily generalized to IP,, n > 2. 

Corollary 1. Let  V be some rank-2 bundle over IP, n>=2. l f  A(V)>O, then V must be 
unstable. 

Proof  Assume that  V is stable. I f  A(V)>0,  then V cannot  be the null-correlat ion 
bundle V0, and by repeated appl icat ion of  Theorem 3 one finds that  VIE is stable for 
the general plane EC1P,. Since A(V]E)=A(V),  this would contradict  
Schwarzenberger 's  result. 
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It should be mentioned here, that in [12, Theorem 8] Schwarzenberger 
constructed stable rank-2 bundles V over the projective plane with arbitrarily given 
discriminant 

A < 0 ,  A = 0  or t (mod 4), A4 = - 4 .  

That a bundle on 1172 with A = - 4  necessarily is unstable, was noticed later by 
Maruyama [8, Lemma 4.5]. Now accidentally A(Vo)= - 4  and the null-correlation 
bundle is the only stable rank-2 bundle over any lP, with d iscr iminant -4 .  

9.2. It is not hard to produce examples of  non-isomorphic stable (or unstable) 
bundles 1/, W on IP 2, which become isomorphic when restricted to any line. For  
classification purposes it would be quite useful to solve the corresponding problem 
on lP., n > 3 :  Given two stable rank-2 bundles on tP, with VqE~-WIE for every 
hyperplane E C IP,. Does this imply V ~  W? 

Unfortunately I do not know the answer in the most important case n =3,  
although Theorem 3 can be applied to settle this question affirmatively in 
dimensions n > 4, One even obtains a little more:  

Corollary 2. Let V, W be two stable rank-2 bundles on IP,, n>4. Assume that 
VIE ~- WIE for all hyperplanes E C IP, parametrized by some Zariski-open set U C IP*. 
Then V ~ W. 

Proof The null-correlation bundle V o does not survive on IP 4. This can e.g. be 
deduced from the integrality condition [4, Theorem 22.4.1] on the Chern classes of 
bundles over 1174. So if VIIP,, n>4 ,  is stable, repeated application of Theorem 3 
shows, that VIIP z is stable for the general plane lP 2 C ILl?,. Because of Proposition 3, 
VIE must be stable for all hyperplanes E containing such a plane. By Proposition 1, 
the hyperplanes EC IP, with VIE unstable form a Zariski-closed subset A C IP*. Since 
none of the hyperplanes E containing a general plane IP 2 belongs to A, the 
dimension of A cannot exceed 2. In the same way one defines a subvariety B C IP* for 
W. So the bundles V and W both are stable for all hyperplanes E C IP, parametrized 
by U o ' =  IP*\(AuB).  From Proposition 4 one concludes that U D U o. 

Now apply the standard construction to the bundle V* ® Win the case m = n -  1. 
On all hyperplanes E corresponding to points ee  U 0, 

F(V* ® WIE) = Horn(VIE, WIE) = End(VIE) ~- IF, 

hence 

q .p*(V*®W)"- (~e . ( - l ) ,  l>O. 

By (2) from 4.2, the canonical morphism 

s : q*6)~.( - t )~  JWy,~,(p * V, p* W) 

can vanish identically only on fibres q-  l e, e ~ A u B. But since V[E -~ WIE is stable for 
all hyperplanes corresponding to points ee U 0, the restriction slq- le must be an 
isomorphism for all these e. One may view s as a morphism p*V~p*W®q*(9~e.(l) 
with det(s) vanishing on q-~(AuB)  only. Since q-~(AtJB) does not contain a 
hypersurface, det(s) cannot vanish at all, This implies l=0,  and s becomes an 
isomorphism p*V~p*W, Obviously this isomorphism descends to IP.. 
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