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0. Introduction

0.1. At the moment little is known about the classification of algebraic vector
bundles on IP,. This paper will not improve much upon this situation, although it
presents some properties of stable rank-2 bundles over IP,, which might be useful for
classification purposes, at least in the case of this kind of bundles.

The ground field will always be €. Rank-r bundle will always mean algebraic €'-
bundle. The definition of stability to be used is due to Mumford and Takemoto
[13]: A rank-2 vector bundle is stable (resp. semistable) if ¢, (V) < 2¢,(2) for every
torsion-free rank-1 quotient sheaf 2 of V' (resp. £). Stability of Von P, is equivalent
with End(V)~C.

0.2. The following is the basic technical tool (if one wants to describe vector bundles
on P, and not to use resolutions): Whenever Visarank-2bundleon P, and LCP,is
a line, then by Grothendieck’s theorem [3, p. 126], the restriction VL splits

VIL=O,(k)®O(ky), k;+k,=c, (V).

The integers k; and k, are uniquely determined by V|L. Put
dVIL):=lky —k,|
d(Vy:=mind(V|L), LCP,.
Schwarzenberger {11, §87] constructed quite a lot of bundles on P, with d(V)
arbitrarily large, but all of them are unstable. The reason for this fact was recently

given by Grauert and Miilich [2, §6, Satz 2]. Their result can be formulated as
follows.

Theorem 1 (Grauert-Miilich). If V'is a stable (or even semi-stable) rank-2 bundle on
P,, then

dV)=0 for c¢,(V) even
dWy=1 for c¢(V)odd.
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Since this result is quite basic for my purposes, and since Grauert and Miilich
formulated their theorem in a less general way, for the convenience of the reader |
shall include here a somewhat simplified version of their proof.

0.3.1t is a consequence of the semi-continuity theorems for proper flat morphisms,
that d(V|L)=d(V) for all lines L parametrized by some Zariski-open set in the
Grassmannian Gr(1, n). Let me call jumping lines those L for which d(V|L) > d(V). If
d(V)=0, these lines form a divisor § on Gr(l,n). A consequence of Theorem 1 is

Theorem 2. Let V be a semi-stable rank-2 bundle over P, with even first Chern-class
c,(V). The divisor S CGr(1,n) of jumping lines then has degree — A(V)/4, where

A(V)=c1(V)2 —dcy (V)

is the discriminant of the bundle V.

It is a byproduct of the proof of this theorem, that this divisor § depends
algebraically on V. This becomes particularly interesting in the case of P,, where
Maruyama [9] established the existence of coarse moduli-schemes M(4) for stable
vector bundles with fixed Chern classes. For even ¢,, the map VS defines a
morphism

2+ 4,

M(4)- Py, N=( :

) -1, dy=-4/4.

This morphism cannot be surjective if — 4> 16, since M(4) is a manifold of
dimension — 4 — 3. Although it is not injective either in general, one may hope that
this morphism bears some significance.

A similar statement for odd Chern classes fails, because the jumping lines in
G1(1,n) may then lie in codimension 1 and/or 2.

0.4. Stability of rank-2 bundles V is preserved under
(1) small deformations of V;
(2) lifting V via ramified coverings = :IP,—>P,;
(3) extending V from P, to P, , (if this is possible);
(4) restricting V to general hyperplanes P,_,CP,, if n24,

Invariance of stability under (1), (2), (3) is quite obvious. In fact, invariance (1)
should be viewed as part of any reasonable definition of stability. Nevertheless, {2)
combined with the theorem of Grauert-Miilich, describes the splitting of V on the
general (not necessarily linear) rational curve in IP,. (This is made precise in 5.2.)

Invariance (4) however seems quite interesting to me, mainly because it fails for
n=3, and then for one stable bundle only. The precise formulation is

Theorem 3. Let V be some stable rank-2 bundle on W,. If nz 4, then there is an open
subset @+ U C P}, such that the restriction of V to all hyperplanes parametrized by U is
stable again. The same holds for n=3, unless V =V, is a null-correlation bundle.

A null-correlation bundle V, is homogeneous under the complex symplectic
group Sp(2,€) CGL{4, €}, V, is uniquely determined up to tensoring by line bundles
and up to automorphisms of IP,. The restriction of ¥, to any plane in IP, is semi-
stable. From Theorem 3 one obtains the following corollaries.
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Corollary 1. If Vis a stable rank-2 bundle on IP,, then necessarily A(V)<0. (For n=2
this was observed by Schwarzenberger [11, Theorem 10].)

Corollary 2. If V, W are stable rank-2 bundles on P,, n= 4, which become isomorphic
when restricted to all hyperplanes in P, parametrized by some open @+ U CIPX, then
V~W. (For n=2 this is not true, and for n=3, I do not know.)

0.5. The reader will notice that most of the methods in this paper are generalizations
of ideas from Van de Ven’s article [14].

Additionally many conversations with Van de Ven had on this paper an influence for which I am
very grateful. I also should like to thank H. Grauert for explaining to me the details from [2].

2. Preliminaries

2.1. Notation. I do not want to distinguish between a vector bundle and its
associated locally free sheaf of sections. A subsheaf however is not necessarily a
subbundle (=subsheaf of a locally free sheaf, which locally is a direct summand).

A decomposable bundle is a direct sum of line bundles. The hyperplane bundle
on P, is denoted by Op(1). For any Op-sheaf # one puts F(k)=F @, Op(1)®,
keZ. In particular Op(k)=0p(1)®*. The same notation can be applied to the
Grassmann variety Gr(m, n) of projective m-planes E CIP,. Indeed, Pic(Gr)~Z, and
we may denote the positive generator by 0 (1). If one uses the Pliicker-embedding

n+1
Gr(m,n)CPy, N= <m+1
variety F = F(0,m, n} can be embedded in P, x Gr{m, n) with canonical projections
p F-P, q:F-Gr. Sometimes [ shall employ the notation Ogk,, k,} for the
bundle p*Op(k)®¢*Uglk,).

Since H*(P,, Z) = H*(P,, Z) = Z, the Chern-classes ¢, (V) and c,(V) can be viewed
as integers, which will be done throughout this article. The first Chern class without
ambiguity already is defined on the complement of any codimension-2 subvariety
in IP,. Since any torsion-free rank-1 sheaf 2 is locally free on such a complement we
may associate with 2 a Chern-class ¢,(2) too. This classs coincides with ¢,(2**).

If # is any sheaf, then put

F*= Hom (F,0)
rYF=FD..BF (r-times).

) —1, then O (1) is the restriction of Op (1). The flag-

If V is a vector bundle of rank r, put

P(V)=the P,_,-bundle associated with V;
S'V =I-fold symmetric product of V;
detV= A"V

If ¥V W are vector bundles of rank r both, and aeHom(V, W), then
det{e)e Hom({det V, det W) is the determinant morphism.

If not specified otherwise, then “variety”. will mean both, a reduced quasi-
projective scheme over € or a reduced complex space. If Y CX is a subspace and #
some (@y-sheaf, then #|Y :=% ®,, 0y. A morphism between two varieties can
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mean both, morphism of schemes or complex spaces. If f: XY is such a morphism
with X irreducible, then rank f =dim f(X). If Y is nonsingular, this rank coincides
with the rank of the differential df : T(X)—T,(Y) in almost all points x of the
nonsingular part of X.

2.2. Direct Image Sheaves. If f:X—Y is a morphism and # an @-sheaf, then we
denote by f.# = f, . the direct image sheaf and by f, ;% the higher direct images.
The same notation will be applied in the case # =V, a vector bundle.

Sometimes without further notice the following fundamental theorems are used.

Coherence. If f is proper, the direct images are coherent,

Semi-continuity. If additionally # is @y-flat via f and if Y is reduced, then the
functions K{(F|f ™ 'y), ye Y, are upper-semi-continuous in the Zariski-topology of Y.
Le., the sets {ye Y:h{(Flq 'y)=const} are Zariski-closed.

Base-change. 1f in addition the function h*(#|q~'y) is constant on ¥, then g, % is
locally free and the canonical morphism (q,,%)|Y,—(qlq "' Y,),# is an isomor-
phism for every subvariety Y,CY. In particular (q,,.%)/.#, q,.F —>H(F|q"'y) is
bijective for every ye Y (#,C 0y the ideal sheaf of y).

As a reference one can use [10].
There will also be needed the following very primitive criterion for sheaves f, %
to be locally free:

Definition. Let X be nonsingular. A coherent @y-sheaf # is called normal, if
restriction I'(F|U)— I'F | U\ A} is bijective for every {Zariski-Jopen U CX and every
closed subvariety AC U of codimension = 2.

Lemma 1. A coherent rank-1 Oy-sheaf F is locally free if and only if it is free of
torsion and normal.

Proof. Let # be of rank 1, free of torsion, and normal. The assertion is obvious, if #
is locally an ideal sheaf, i.e., a subsheaf of some locally free rank-1 sheaf. Since & is
free of torsion, it canonically embeds in its double dual # **, We only have to show
that #** is locally free, or more general that #* is, Take a local resolution
kO —10—F —0. Then #* embeds in 10, and choosing a suitable projection 10— 0,
wemay embed itin @. So # * locally is an ideal sheaf, Using that I¢ is normal and k¢
torsion-free, one easily checks that #* is normal too.

2.3. The Subspace Defined by a Section s. Let V be some rank-2 bundle on P, and
O*sel'(V).

Lemma 2. If s vanishes on a hypersurface, then h°(V(—1))%0 and h°(V)=n+ 1.

Proof. Assume that s vanishes on the hypersurface with equation f =0, fe I'(Op(k)),
k>0. Then s/f is a nontrivial section in ¥{—k), in particular A°(V(—k}))#0 and
therefore h%(V(—1))#0 too. If g varies in I'(Op(k)), then gs/f varies in a subspace of
F(V) of dimension h%(Op(k))=n+ 1.

Lemma 2. If ¢,(V)<0 and h°(V(—1))=0, then either h°(V)=1, or ¢,(V)=0 and
V~20p.
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Proof. Assume first, that s does not vanish at all. Then €-sCV is a trivial line
subbundle and V fits into an extension 0—05V—0{c,)—0. Since ¢, =0, this
extension splits, showing V =~ 0@ 0{c,). Then either ¢, =0 and V~20, or h°¥V)=1.
Assume that s does have zeros. Let s'elI'(V) be an arbitrary other section.
s as'el{detV)=T{0p{c,)) vanishes identically. Hence 5'/s is some rational function
£- Since s has zeros in codimension 2 only (Lemma 2), f'is constant and s'=const-s.
This shows Ko(V)=1.

Assume now, that s vanishes in codimension 2 only. Use local trivializations
V~20, to write locally s=(s,,s,;), with s, and s, coprime in each point of s=0.
Define the ideal sheaf .7 locally as Os, + s, C 0. It is easy to see that .# C O gives a
global ideal sheaf defining a subspace (Y, Op/.#) supported on s=0.

Lemma 3. There is an exact sequence
0-0p>V-5(k)—0, k=c (V).

Proof. Put 2:=V/0.s. Then we have locally commutative diagrams of exact
sequences

0 1 5 20 2 0

0o —1 |

5 Vl J

S1 +
' (51.5,)
0 0 20 I 0

and find 2~.# locally. Then globally 2~ .#.2** with 2** a line bundle of degree
¢, (V).

?

24. Jumping Lines. Let V be some rank-2 bundle on P, and define the integers
d(V|L) and d(V) as in the introduction. Call those lines L with d(V{L)> d(V) jumping
lines,

Lemma 4. The jumping lines form a closed subvariety SCGr(1,n). If d(V)=0, then S is
a hypersurface {or empty).

Proof. We may replace V by a bundle Vi(k), keZ, to obtain VIL~@,(—1)
@0, (—d—1) for those lines L with d(V|L)==d(V). In particular L is a jumping line
ifand only if R°(V|L) > 0. Next use the standard morphisms Gr(1, n)% F(0, 1, n)2>P,.
Since g is locally a product, p*Vis flat over €, Semi-continuity applied to g,p*V
then shows, that the jumping lines form a closed subvariety. Assume next that d(V)
=0. Then V|L~2¢,(— 1) for the general line L. From deformation theory follows,
that proper deformations of 20, (— 1) can oceur in codimension 1 only (compare [ 1,
Satz 6.27).

The set of jumping lines for a given bundle ¥ can in general be determined only
with some efforts, except in the following special case:

Lemma 5. Assume that ¢, (V) <0 and that V admits a non-trivial section s vanishing in
codimension 2 only. Put Y={s=0}CIP,. Then L is a jumping line, if and only if it
intersects Y. In particular one has d(V)= —c,.

Proof. If LnY =0, then one has an exact sequence

0— 0, > VIL — Ofc,) — 0.
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Since ¢, £0, this extension splits and d(V|L)= —c,. If L intersects Y in finitely
many points, put VIL~0 (k)@ O (k~d), d=d(V|L). If k=<0, then V|L would not
admit nontrivial sections with zeros. Hence k>0 and from ¢, =2k—d follows
d(V|L)= —c; +2k>d(V)= —c,. Assume finally that L CX. Fix one point xe L and
some plane ECIP, not contained in Y. Consider the 1-dimensional family of lines
through x in E. Its general member L' is not contained in Y, though it intersects Yin
x. We know already that L’ is a jumping-line and since the set of jumping lines is
closed, L belongs to this set too.

2.5. In the proof of Theorem 3 there will be needed the following simple
consequence of Lemma 4:

Lemma 6. Let V be some rank-2 bundle on P, If there is at least one plane E CP, such
that V|E is trivial, then so is V itself.

Proof. In view of Van de Ven’s theorem [14], it suffices to show that the set
S CGr(1, nyof jumping lines for V is empty. But if S would not be empty, it would be
a hypersurface by Lemma 4. Since every hypersurface on Gr(l, n) intersects every
subvariety in Gr(1,n) of positive dimension, there would be jumping lines for V
contained in the plane E. This would contradict the triviality of V|E.

2.6. Lemma 7. Let X CC be the unit disc and

0-ThWw—-2-0
be an exact Oy-sequence with V, W free and 2 supported in 0eX. Then |9| : = h°(9)
equals the vanishing order of det(h) at 0.

Proof. The statement is obvious if either {2|=0 or r:=rankV=rankW=1. To
prove the lemma for rankr > 1 and ¢ : =[2| >0 by induction, assume that it has been
proven for

rank ¥ <r and all ¢

rankr andall ¢ <gq.

Then distinguish two cases:

i) hvanishes at 0, i.e., k(V)is contained in z- W, z the coordinate function. Then we
have a diagram

0 0
00— V k. W —s 9 —s 90

[

0 V -t W —s 2 —0
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Hence, |2|=|2'|+r and h=1z W, so det(h)=2"-det{h'). We are reduced to the case
q <q.

ii) h does not vanish at 0, i.e., there is a section s :¢0— V such that a(s) does not
vanish at all. Then we have a diagram

0 0
O = ¢
s h(s)
0 V s W 2 0
0 [ 9 0
0 0

. 10
Since h= ( N h’)’ we have deth=deth’. So we are reduced to the case r' <r.

3. On the Definition of Stability over IP,

3.1. Here are given some equivalent definitions of stability and some easy
consequences. For IP, the equivalences are well-known (Takemoto [13, Corollary
18 and Proposition 4.1], Schwarzenberger [ 11, 12]), but for n>>2, there seems to be
no reference. Although it is no problem, to generalize from IP, to P, let me do it here
for the sake of completeness.

Definition (Mumford, Takemoto [137]): A rank-2 bundle V on [P, is called stable
(resp. semi-stable) if

(M) <2¢,(2) (resp. £) (1)

for every torsion-free rank-1 quotient 2 of V. The bundle V is called unstable, if it is
not stable, and properly unstable, if it is not semi-stable.

Every semi-stable V with odd Chern class ¢,(V) must be stable. So the distinc-
tion between semi-stable and unstable becomes illusory unless ¢,(V) is even. In-
equality (1) is invariant under tensoring with line-bundles Op(k), so V is stable
(resp. semi-stable) if and only if V'(k) is. Every 2-bundle on P, is properly unstable,
except the semi-stable bundles 205 (k), ke Z.

32. Lemma 8. Let 0> A — V—3—0 be an exact sequence with rank 4 =rank 2=1.
Then 2 is torsion-free if and only if A" is a line-bundle with the inclusion-morphism s :
A =V vanishing in codimension 2 only.

Proof. Assume 2 to be torsion-free. Since V is normal, this implies that ¢ is normal
too, hence 4 ~(y(k) is a line bundle by Lemma 1. If s would vanish on a
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hypersurface, say with equation =0, fel'(Op(]), then s/f would embed Op(k+ 1)
as a subsheaf in ¥, and the image in 2 of this subsheaf would be isomorphic with
Oplk+1D/f Oplk), a torsion-sheaf.

Assume now, that s: Og(k)— V vanishes in codimension 2 only. From Lemma 3
follows that 2~ .- 2%* is torsion-free.

Since ¢, (V)=c(X")+ ¢,(2), from this lemma follows the equivalence: V is stable
(resp. semi-stable) if and only if for every morphism s: Op(k)—V vanishing in
codimension 2 only we have 2k <c,(V) (resp. ).

If s vanishes in codimension 1, we may replace s by some morphism s/f:
Oplk+ DV, fe P{Op(D), 1> 0, vanishing at most in codimension 2. This shows, that
we may replace the above restriction on s by: s is not vanishing identically.

3.3. The following description of stable bundles is less elegant, but in many cases
easier to work with: Call V normalized, if either ¢, (V)=0o0r ¢ (V)= — 1. Forevery V,
there is a unique normalized bundle V, = V(l}, some e Z. Putting the integer k
above equal to zero, one obtains:

V'is stable (resp. semi-stable) if and only if RV, ..} =0 (resp. KoV, .(—1))=0
in case c,(V) is even). In view of Lemma 2’ the condition h°(V, .(—1))=0 is
equivalent with h°(V,,, . )<1 or V. ~20p. Occasionally I need the following
characterization too: V is stable if and only if End(V)~@, i.e., if V does not admit
endomorphisms other than homothethies. (Bundles with this property were called
simple by Maruyama [8]. Unstable bundles on P, were called almost-decomposable
by Schwarzenberger (11, 12] and ,der triviale Fall* by Grauert-Miilich [2].)

To prove this last equivalence, assume first that dim End(V)2 2. If xe P, is an
arbitrary point, restriction to the fibres over x (vertical arrows) and the determinant
map (horizontal arrows) define a commutative diagram

End(V) —— T'(Op)
End(V(x)) — C(x).

This proves the existence of some non-trivial endomorphism « with detoa=0. Put
2:=imaand 4 =kero. Since 2C V, it is torsion-free and & is locally free. Together
with 2 also the locally free sheaf 2** embeds in V. Furthermore ¢,(V)=c,(¥")
+¢,(2), so the conditions 2¢,(2)<c, (V) and 2¢,{#)<c,(V) cannot hold simul-
taneously, i.e., ¥ must be unstable.
Assume now that Vis unstable and let 0— O p(k)— V — 20 be an exact sequence
with Q torsion-free and c¢,(V)=2¢,(2). Then 2 embeds in 2** and
2 =, (D)Z e, (V) — e, (2) =k,
so there is a nontrivial morphism 2**-»0p(k). Composing
V3 3%* 5 Op(k)—V
one obtains an endomorphism of ¥ which is not a homothethy.
3.4. Next there are given some simple consequences of stability.

Proposition 1. Let S be a reduced variety and ¥~ some rank-2 bundle over S x P,. The
points s& S such that ¥"\{s} x P, is unstable, form a Zariski-closed subset of S.
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Proof. Since ¥"®¥"* is an O4-flat sheaf via the projection S x P, — S, the assertion
follows from the semi-continuity of the function dimgEnd{(¥"|{s} x .}, seS.

Proposition 2. Let V be a rank-2 bundle over P, and . : P,— P, a finite covering. If V is
stable (resp. semi-stable, unstable, properly unstable ), then so is n*V,

Proof. Put g =degmn. Since n*(V(k))=(n*V)(gk), the bundle n*V will be stable (resp.
semi-stable etc.) if #*(V(k)) is. So we may tensorize V by some line bundle to obtain

h°(V)£0, but h(V(—1)=0.

Assume first that V is unstable (resp. properly unstable). This implies ¢, (V) <0 (resp.
<0). Then ¢;(n*V)=n*c,(V)=g ¢, (V)=S0 (resp. <0) too. Since ¥ admits a non-
trivial section, so does #*V, and n*V will be unstable (resp. properly unstable).

Assume next that Vis stable (resp. semi-stable). This means ¢,(V)>> 0 (resp. 20).
Then ¢, {n*V)> 0 (resp. 2 0) too, and we have to show h°(z*V}(—1)) = 0. Since =
is finite, the higher direct images vanish, and we have

HY(@*V) (= 1) =H%n (x*V) (- 1)))
=H (V@ (Ug(-1)).

Since the covering-space is nonsingular, the sheaf n, Og(— 1) islocally free of rank g.
All cohomology groups

HY{(n, Op(— 1) (k)= H{Og(— 1 +gk))

vanish fori=1,...,n—1 and all ke Z. From Horrocks’ theorem [5, Theorem 7.4] it
follows that 7, Og(—1) is decomposable.

T, Op(—1)=0pk,)®...®Op(k,).

Since h(n, Op(— 1)) =h°(Op(k,)) + ... + h°(O(k,)) vanishes, all integers k..., k, are
negative. This shows

HY(V®n, 0p(— 1)=H(V(k,)®... OH°(V(k,))=0
and 7*V will be stable (resp. semi-stable) too.

Proposition 3. Let V be some rank-2 bundle on P, and P, _ ; CIP, some hyperplane. If
VIP,_, is stable (resp. semi-stable), then so is V.

Proof. We show that ¢, (V(k))> 0 (resp. 2 0), whenever h%(V(k)) 30, If s is a nontrivial
section in V(k), then s|IP,_, is a nontrivial section in the restricted bundle, or s
vanishes along P, _, with a certain multiplicity, say I Then s defines a non-trivial
section in V(k—1{) not vanishing identically on P,_,. This shows

e, (Vk)=21+c(V(k—D)>0  (resp.20).
In 9.2 we also shall need “that the space of stable rank-2 bundles is hausdorff”.

This is proved in very general form in {7]. For the benefit of the reader, let me
include here a short proof of this fact in our special case.
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Propesition 4. Let X CC be the unit disc with origin 0. Let ¥~ and #~ be two rank-2
bundles over X x P, and put ¥ =Y Hx} xP,, #,:=W|{x} x P, Assume that
for all xeX the bundles ¥, and W, are stable
Jor all 0% xeX the bundles ¥ and ¥, are isomorphic.
Then ¥, and W, are isomorphic too.

Proof. Consider on X x P, the rank-4 bundle # :=#m(¥", #"). For all 0% xeX,
K (H#|{x} xP,)=1 by assumption. Let n:X xP,»X be the projection. The
coherent Oy-sheaf n, # then is of rank 1 and torsion-free, hence locally free. We
even may assume 7, ~ . Use the canonical morphism

h:0yyp, =n*Og=n*n H —>H =KoV, W)

to obtain a morphism h:¥ —¥", which is nontrivial, hence an isomorphism,
outside the fibre {0} x IP,. Let 2C#, be the image of ¥, under A, Then there are the
following three possibilities:

1) rank 2=2. This means that 2 coincides with #, almost everywhere. The
determinant det(h)e I'(O . p) then vanishes at most on a subvariety of codimension
=2, ie., it cannot vanish at all. But this implies, h:¥ > %" is an isomorphism
everywhere, in particular ¥, ~ %7,

2yrank 2=1. As a subsheaf of #7, 2 is torsion-free over {0} x IP,. Since ¥, was
stable by assumption, ¢,{(¥,)<2¢,(2). If 2 embeds in #7, then so does the line
bundle 2** Since ¥ was stable too, 2¢,{2)=2¢,(2**)<c,(#3). One obtains
c (7o) <c(#), a contradiction, because the Chern classes of ¥ and # are
independent of x.

3)rank 2=0. This means that & vanishes identically on {0} x P,, say of order y.
If z is the coordinate on X, one may replace h by h/z", to obtain a regular morphism
¥ —# which does not vanish identically on {0} x IP,. This however is covered by
one of the two other cases.

4. The Standard Construction

4.1. Let Gr =Gr(m, n) be the grassmann variety parametrizing m-planes ECP,and F
=F(0,m,n) the flag variety of pairs (x, E) with xe ECIP,. There is the standard
diagramm

Gr(_i_

F

D |

(Dn) q:{x, E)y~{E'eGr
P, pix, Ey—xeP,.

-]

The projections p and g are locally trivial with fibres Gr(m—1, n—1) and P,
respectively.

Fix some r-bundle V on P, Whenever ECIP, is some m-plane with eeGr its
corresponding point, then p* induces an isomorphism VIE—p*V]g ™ te. Since p*Vis
an O, -flat sheaf via ¢, semi-continuity shows that the function

Kp*Vig 'e)=h°(VIE), eeGr
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is upper-semi-continuous in the Zariski-topology of Gr. In particular there is some
Zariski-open U C Gr where this function assumes its minimum

min{h%V|E),ECP,}.

4.2. Consider now the situation where this minimal dimension is 1. The coherent
sheafq,p*V on Gr then will be of rank 1. This sheafshares with p*V the property of
being free of torsion and normal, hence it will be locally free (Lemma 1). We already
observed that Pic{Gr)=Z and that it is generated by 0, (1). So we may put

4, p*V=0s(—-0) forsome I[eZ.
Denote the canonical morphism
G*0sd— )=q*qp*V—-p*V
by s. For ee U, this morphism induces an isomorphism
O Defm 0 (D, ~T(p*Vig™'e) (base change). 2

So s will not be trivial. If we fix some xe P, and write V =~ r@, in a neighborhood
of this point, then on the fibre p~ !x~Gr(m—1,n— 1) the morphism s restricts to a
morphism.

S|p*1X:(Sl, '--7Sr) :q*(pGr(_l)lp_lx:(OGr(m—l,n—l)(*l)“)
_>V4p~]xgr@Gr(m—l.—l,n—l)'

This morphism cannot be trivial for all xe P, showing that I =0 (and thus justifying
the choice of the sign for ).
Observe that [==0 if and only if

o (Vy=ho(p*V)=h%qp*V)=h"(Cg(—1)=+0. (3)
Lemma 9. The zero-set ZCF of the morphism s does not contain a hypersurface.

Proof. Assume that H is a hypersurface in F on which s vanishes. By assumption
ho(p*V|q~'e)=1forall ee U. So p*V|q ™~ 'e contains a non-trivial section (unique up
to multiplication with constants) which can vanish only in codimension =2 (Lemma
2). Since s|q ~ e is a nontrivial multiple of this section by (2), H cannot intersect the
general fibre ¢ 'e, ee U. Therefore H=q 'H’ with H' =q(H)C Gr some hyper-
surface. Let he I'((0g,(k)) be an equation for H'. Then s/g*h is a nontrivial, regular
morphism of g*Og,(—I+k) into p*V, inducing an injection

Ol —1+k)—>q,p*V=05(—1).
This is impossible, unless k=0 and H=H'=@.

4.3.Now replace V by its associated P, _ -bundle P(V)and p*Vby P(p*V)=p*P(V).
The image of s is a subsheaf of p*¥, locally free of rank 1 outside Z. It determines a
rational cross-section I' C P(p* V) which degenerates only over Z. We may assume I’
to be irreducible. If E C IP, corresponds to some point ec U and xep~ 'e\Z, then the
meaning of I' at the point (x, E)e F is this: Let p : P(p*V)— P(V) be the map induced
by p. This p maps the value of I' at (x, E) onto the point in P(V(x)) defined by the
direction in V(x) of the unique section in V|E.
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Lemma 10. [>0 if and only if J(I')CP(V) has dimensionzn+ 1.

Proof. Assume first that [>0. For general xeP, write as above

SIPT x =51 -, ), SE N (Ogrm—1.0-1){D)-

Since the common zero-set of s, ..., s, is Znp ™ x, it is of codimension = 2 in this
fibre. The sections s,, ..., 5, thus span a vector space of dimension 2 2. Since the part
of I over p~ 'x is mapped under p by (s, : ... :s,), its image has dimension 2> {, and
dimp(N=zn+1.

Assume next [=0. Then s= p*s, with a unique section s, I'(V). Hence pI" is the
rational cross-section in P(V) determined by s,, which has dimension n.

5. The Theorem of Grauert-Miilich

5.1.Here will be given the proof of Theorem 1 from the introduction, first in the case
of stable bundles.

Let V be a stable rank-2 bundle on P, with d{V) = 2. After tensoring V by some
line bundle, we may assume that

VIL~0,@0,(~d)

on the general line LCP,. In particular ¢, (V)= —d and h°(V)=0. We perform the
standard construction (§4) for the case m= 1. Since h°(V|L) = 1 on the general line L,
(3) tells us that p p*V =0, ,(—1) with [>0. The map p : I'—P(V) will therefore
be surjective by Lemma 10. We shall obtain a contradiction by proving that the
differential of p|I" at a general point of I" cannot be surjective:

To this behalf fix some line L CIP, corresponding to a point ee U CGr(1, n). The
fibre L :=q~ 'eCF then does not intersect Z and I" will be a regular section over
some neighborhood of L. Let ACp*P(V)|L be the part of I' over L. Under p this
cross-section A is mapped onto the cross-section BC P(V)|L determined by the
trivial subbundle

O, CVIL=0,80,(—d).
We have the commutative diagram
Ac I — F
A
B C PV) — PP,

with horizontal arrows the bundle projection n in p*P(V), resp. P(V). The
differentials dp and dp define linear maps of normal bundles

NA/F NL/F

ldﬁ ldp

d
NB/P(V) = NL/[P,,
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Use the well-known identifications

dp
N L/F > N L/, — 0

H |

0 — (n—=DOp(~1) — 2(n~1)0p, — (n—1)0p (1) — 0
and

dn
0 NB/P(VEL) NB;’P(V) NL/IPn 0

H H |

0 — Op(—d) — Ngpyy — (n—1)0p, (1) — 0
to obtain a commutative diagram

0 — n=1)0p (1) —> Nyr —> (110 (1) — 0

| f |
0—  Op(~d) — Nypy, —> (1= D0 (1) — 0

We assumed d = 2. The left-hand vertical arrow vanishes therefore. The image of
N ,,r under dp then will be some rank-(n— 1) subbundle of the rank-n bundie N p(,
and dp cannot be surjective near A. This proves Theorem 1.
5.2. It was observed by Van de Ven, that one may use Proposition 2 to generalize
Theorem 1 in order to determine the restriction of ¥ to the general (not necessarily
linear) rational curve in IP,. To be precise: A rational curve in IP, is a non-constant
morphism ¢ : P, —1P,. A family ofrational curvesisa morphism @ : X x P, »P, X a
connected curve, which is not constant on any fibre {x} x IP,.

Corollary of Theorem 1. Let V be a stable rank-2 bundle over P, and ¢ :IP,—>®, a
rational curve in P,. Then there is a family of rational curves @:X x P, — P, such that

@=®}{0} x P, for some point 0eX,
d(@*V|{x} x P,)=0 (if ¢,(P*V) is even) or=1 (if c,(P*V) is odd)

for all points x contained in some Zariski-open subset of X.

Proof. Take homogeneous coordinates z,,...,z, on P, and polynomials
Jose s [,€ T (Op (K), k>0, with f,=¢@*z,, v=0,...,n. Take some linear embedding
P, > P, Forv=0,..., n, successively one can find polynomials Fy,..., F,e I (Op,(k))

without common zeroes such that F [P, = f,. Let n:IP,— P, be the covering of
degree k" given by Fy, ..., F,. Then 7|, =¢.

By Proposition 2, the bundle n*V on ﬁ’,, is stable again. Theorem 1 shows that
d(V|L)=0, resp. 1, for the general line LCP,. After fixing such a line L, one can
choose an appropriate curve X in the grassmannian of lines in P, to connect IP,
with L. The restriction of z to the family of rational curves parametrized by X will
define a morphism & with the properties wanted.

Special case. [f V is a stable rank-2 bundle on P, then d(V|C)=0 for the general conic
section CCP,.
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5.3. Semi-stable Bundles

Theorem 1 holds for trivial reasons in the case of semi-stable bundles too: If V is
semi-stable, then h°(V,, }=1or V. ~20pby3.3and Lemma 2’ In the first case

Lemma S shows d(V)=d(V, )=0,n oarnd in the second case d(V|L)=0 for all lines L.

orm

6. The Jumping Lines of a (Semi-)Stable Rank-2 Bundle with even First Chern Class

6.1. Let V be a semi-stable rank-2 bundle over P, with ¢,(V) even. We just saw that
d(V|L)=0 for the general line LCP, (Theorem 1). By Lemma 4 the set SCGr(1, n) of
jumping lines of V must be of codimension 1 everywhere {or perhaps empty). We
want to determine the degree of S. This can be done in a very simple way, if one
views S as a divisor, ie., if one admits components with higher multiplicity.
Definition of the Multiplicities. Tensor V such that ¢, (V)= —2. Then L is a
jumping line if and only if A'(V]L)#0. So SCGr(1,n) is the support of the sheaf

3::q*1p*V,

where p and ¢ are the projections in diagram (D,).
Take a resolution of V

0=U— @1 Oplk) =V >0 @)

with all k; <0. Since V|L=2¢,(—1) on the general line L (theorem of Grauert-
Miilich) the sheaf g, p*V vanishes. One obtains an exact sequence

Oﬂq*zp*U‘Z“’ @ q*lp*@n’(ki)_’g_’o .
i=1

Now h'(0(k,)) is independent of L, and base-change implies that the sheafin the
middle of this exact sequence is locally free on Gr(1, n). But from the exact sequence

0—HV|L)~H U|L)» ®@HY0(k,))
—HYV|L)~0

and from the constancy of h®(V|L)—h*(V|L) it follows that q,,p*U is locally free
too.

So 4 is a morphism between two locally free sheaves of the same rank, and one
can define the divisor

S :=divisor of zeroes of det(/).

That the multiplicities assigned to the components of S in this way are
independent of the resolution (4), this follows from the
Interpretation of these Multiplicities. Let e S be an arbitrary point. Choose local
coordinates X,,..., X, ;) concentrated at e such that the disc X = {x, =0} inter-
sects § transversally at e. The multiplicity 4,(S) of the divisor S at e then equals the
vanishing order of det(1)[X at e.

Now restriction onto X is right-exact, hence

(@4 1P*UNX > D(g, 1 p* Oplk))IX > L1X -0
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is exact. But A|X is injective, since it is so outside S. Lemma 7 now implies that the
vanishing order at e of det(A}X) = det(A)|X equals h°(#|X), an integer independent of
the resolution (4). Furthermore, if L is the line corresponding to e, then one has the
inequality

1(S)=h(ZIX)
:ho(g/(xz, < Xom— 1))3))
ého(g/(xp s Xon— 1))3)
Zh'(p*Vig~'e)
=hY(V|L)=d(V|L)/2. (5)

6.2. Theorem 2. The divisor S on Gr(1,n) defined this way has the properties :

i) degS=A4,(V):=—A(V)/4.
(Recall that A(V)=c}—4c, and that Ay(V) is an integer if ¢, is even.)

i) d(VIL)<2u(S) if L is the jumping line corresponding to e€S.

i) S =S(V) depends analytically, resp. algebraically on V.
Proof of i). Itis no loss of generality to assume here that n=2. Then one can choose
a resolution of V by line bundles

r+2

0— @1 Oplk;)— 6:)1 Op(l)—>V -0, (6)
with k;, [;<0. If one puts

K:= @ 44 1P*Oplk;)
r+2
Li= D a.1p*Cplly),
then the direct image of this sequence under q,,,p* will be
0-K4L—g,,p*V—-0.
Since the divisor of det(4) has the degree
¢y(L)—cy(K)

one only has to compute first Chern classes. Comparing Chern classes in (6) one
finds

Sk,—3l=2
S kik;— Y L=2Zk—c,(V)
i<j P<j

and consequently
Zk?—XI?
=(Zk)? — (L} =2 kk;+2 Y 1l

i<j i<j
=431, +4—4Zk,+2c,(V)
=2¢,(V)—4.
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Next embed the flag variety F(0,1,2) in IT :=WP, x IP¥ as divisor of bidegree
(1,1). Then for keZ there is the exact sequence
0—-0pk—1, = 1)—=0Oy(k,0)— Op(k,0)—-0.
If k <0, the direct image under g, will be
09,106k, 0)=¢,,0pk— 1, = 1)>4,,0,(k,0)—0.
Now
0420n(k, 0)=h*(Opal — k= 3))- Opps
has trivial Chern classes. Since the first Chern class of g,,0p(k~—1, ~ 1) equals
~ W (Opa(k —1))= — h(Opa —k — 2))= — 3(k* +k)
one finds for k<0:
€@y, Op(k,0)= —4(K> +1).
Now one can add over all k; and [; to obtain
()=, (K)y=—3Z(2 + 1)+ 12 (k? + k)
={c,—2)+1

=6 (V)—1=4,(V).
Proof of ii). This is the inequality (5).

Proof of iii). Take a variety X and a family of semi-stable bundles over X x P, i.e.,a
rank-2 bundle ¥ over X x IP, such that all bundles ¥, : = ¥"|{x} x IP, are semi-stable
with ¢,(¥)= —2. Locally {(w.r. to X) one can find resolutions

0-Y—-»POk)—¥ -0

where O(k;) means the pull-back to X x P, of Op(k,).
Forming g, ,p* simultaneously for all xeX, one obtains over X x Gr(1,n) an
exact sequence

0-q,  P*UL—Dq,  p*Ok)—q, ,p*? 0.

Now the divisor of zeroes of det(A4) on X x Gr(1, n} restricts on {x} x Gr{l,n) to
the divisor of det(A){{x} x Gr(1, n), which by 6.1. is the divisor S(¥7). This means
that the divisors S(¥7), xeX, form an analytic, resp. algebraic family.

7. The Null-Correlation Bundle 1, on P,

Here will be given some equivalent definitions of V. This bundle on P, belonged to
the first known examples of indecomposable 2-bundles on P, and its properties are
well-known, I want to discuss them here in some detail, mainly because one
particular resuit (Lemma 11) is needed in the proof of Theorem 3.
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7.1. Some Old Terminology
Put in this paragraph
P=P,, G=0r(1,3).

Using Pliicker-coordinates one may embed G CIP5 as nonsingular quadric hyper-
surface.

A line complex is a hypersurface S C G. The degree of this complex S is its degree
as divisor on G. It coincides with the degree of the cone described by those lines
through a general point xe P which are parametrized by S. A linear complex is a
complex of degree one, i.e., the intersection of the Pliicker quadric G with some
hyperplane IP, CP.. There are the two species of linear complexes S:

a) § is special, if the hyperplane touches G at one point e. Let L C P be the line
corresponding to this point e, then S parametrizes precisely the lines in P
intersecting L.

b) S is general, if the hyperplane intersects G transversally in every point of S.
Then S itself is a nonsingular variety.

A null-correlation is an isomorphism N : P— P* x—E_,with xeE, forall x. E is
called the null-plane of x and the uniquely determined point xze E with E=E__is
called the null-point of E. N determines an involution L—L* of G. L* C P is the line
having the two equivalent properties

1) the points of L* are the null-points of the planes through L;

ii) the planes through L* are the null-planes of the points on L.

Either LnL*=@, or L= L*. The lines L = L* fixed under the involution form a
general linear complex.

If S and § are two different linear complexes, then SNS’ is always the
intersection of two special linear complexes, 1.e., there are two lines L and L' C P such
that SnS’ parametrizes the lines intersecting both L and L'. The lines L and L' are
uniquely determined and are called the directrices of SnS'.

For details see the classic [6].

7.2. First Description of V,

Fix a null-correlation N. After the choice of coordinates x,, ..., x5 for P and dual
coordinates &, ..., &5 for P*, N can be defined by a nonsingular alternating 4 x4
matrix A: E_is the plane with dual coordinates ¢ = 4-x. After the right choice of
coordinates, A will be in normal form

and E,_ is the plane with coordinates &=(x,,— X, X3,—X,). Use the standard
diagramm (D,) putting P*=Gr(2,3). The flag-variety F=F(0,2,3) is a divisor on
P x P* with equation Xx,&; =0. Use the letter N also to denote the graph in P x P* of
the null-correlation. It satisfies the equations & = A -x. Let . C O be the ideal sheaf
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of N. Use the notation @(k,, k,) as explained in 2.1 and define analogously O(k,, k,)
=0p, p(ky, k,). Then we have exact sequences

0

|

£(0,1)

0 — O(-1,0) — 00,1) — 00,1) — 0

~
~
N
~
N

0,0,1)

0

where the first horizontal morphism is multiplication by Xx;- ;. The dotted arrow is
restriction, but after using p, to identify On(0, 1)-0Op(1), this arrow maps
Loy --rr €4 ONLO Xy, — X, X5, — X, TESpEctively. Now apply p, to these exact sequences

to obtain:
0

p.#(0,1)

0 — Op(—1) 40, p.0:0,1) — 0.

~
~

(x0,...,x4)

~

~
(x5 =Xy X3, —X3) N

* 0,(1)
|

0

The horizontal sequence became the well-known representation of Tp(—1)
~p,0x(0,1). We put V, :=p_ 40, 1) and find that we can identify it with the sub-
bundle of T,(—1) consisting of elements Xa,d/0x; satisfying

AgXq — A Xy + Ay X5 —a3%x,=0.
From the exact sequence
0V T (= )= 05(1)-0
one computes the Chern classes c,, ¢, of ¥, to obtain

¢, =0, ¢,=1.
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Proposition 5. h°(V,)=0, i.e., V,, is stable, but for every plane EC P, h°(Vy|E)=1, i.e.,
Vo|E is semi-stable and not stable.

Proof. The direct image sheaf ¢,.#(0, 1) vanishes, therefore
ho(Vo)=h"(p,#(0,1)) = h*(#(0, 1)) = h°(q,#(0,1))=0.

Forevery fibre p~'x, xe P, the restriction .£(0, 1)ip~ ! x is generated by its two global
sections. The canonical morphism

p*Vo=p*p,#(0,1)-.7(0,1)
therefore is surjective and fits into an exact sequence

0> 00, —1)5p*V,— £(0,1)-0
with s vanishing only along N. Restricting this exact sequence to any fibre g e,
ee P*, one finds that V,|E ~p*V|q™ 'e has a nontrivial section vanishing simply at
the null-point x; = p(Nnq~'e) of E. Since ¢,(V,)=0, this section generates I'(V|E),
hence VIE is semi-stable.

7.3. Second Description of V,

By Lemma 5, the jumping lines of ¥, through an arbitrary point xe P are just the
lines through x contained in the null-plane E,. The jumping lines of ¥, thereforc are
parametrized by the general linear complex S CGr(1,3) determined by the null-
correlation N. For any jumping line L

VolL= 0 (N@0(—1),

because x; was a simple zero of the unique section in Vy|E.
Next use the standard diagram (D,) and put

S=q 'SCF(0,1,3)
a:=plS:S—P
B:=q|S:S-§
Otk y, ky)=a*Opk )RP*Oglk,).

By base-change, the sheaf ,a*V,(— 1) is a line bundle on S and *(8,a*V,(— 1))
is a line-subbundle of «* ¥ — 1). Using the Chern classes of ¥, and the fact that xg is
a simple zero of the non-trivial section in I'(V,|E), one even finds f,a*Vo(—1)
~0y—1). On S one therefore has an exact sequence

0-0x(1, — )—=a*V,—0x(—1,1)-0.
This shows that one might also define ¥ as o, 03(—1,1).

7.4. For later application we have to know some direct-image sheaves.

Lemma 11. a)  «,050,D)=(S'V,)()) (I>0)
b) @, 050, —D=(S""2V)(—1)  (I>0).
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Proof. a) The case | =1 is our second description of V. If > 1, on every open UC P
we have a natural morphism

S (a™1U, 00, 1))~ T 'U, 0x0, 1))

commuting with restrictions and bijective on the a-fibres. Sheafifying and using
base-change for the a-fibres, one obtains a sheaf isomorphism

(Vo) () =S'(Vo(1) >, 050, 1).

b) The case I==1 is trivial. Let us prove the case |=2: Choose another linear
complex 8’ C Gr(1,3)and put D =SS and D=~ 'D. We may choose S’ such that D
is non-singular and such that the directrices L, L' C P of D are skew lines. Then there
is the exact sequence

The direct image sheaves of 050, — 1) under o vanish. Hence
01050, —2) =, Op(0, —1).

To compute the line bundle o, 050, — 1), fix a line M C P interesting neither L
nor L. Then

alo" *MAD-M

is an isomorphism and Bla~ M~ D identifies this curve with a conic CCGr(1, 3)
parametrizing the regulus of lines intersecting L, L', and M. So the degree of O(— 1)
on Cis—2 and

0, Op(0, =1} 0p(—2).
if I>0, over every open U CP we have the cup-product pairing
I 'U, 00,1 -2)@H (2" U, 00, — 1))

—>HYa 1U, 00, -2)).

It commutes with restrictions and on the a-fibres becomes the perfect pairing of
Serre-duality. We obtain a perfect pairing of sheaves

4, 00,1~ 2)® 5,041 05(0, =) > Op(-2)
showing
10500, — =52V (1)* @ OH(—2)
=(S" IV (D).

Because of V>~V this proves our assertion.

7.5. Third Description of V,,

Via a, the spaces I'(@5(0, 1)=I'(0(1)) and I'(V,(1)) can be identified. Any nontrivial
section in I'(O4(1)) defines another linear complex §” and a set D as above with two
skew directrices L, L'C P. The corresponding section in I'(V(1)) vanishes at LUL’
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only and there of order one (as ¢,(V(1))==2 tells us). We therefore might also define
V, by an extension

0-0-Vy(1)» I 1 (2)-0

{compare Lemma 3).

8. Restricting Stable Bundles to Hyperplanes

8.1. Here will be given the proof of Theorem 3 from the Introduction. So fix some
stable rank-2 bundle V over P, nz3. If V|E is stable for one hyperplane E,
Proposition 1 tells that it is stable on almost all hyperplanes E. So assume that V]E is
unstable on all hyperplanes ECP,.

After replacing Vby V... one may assume that either ¢; =¢,(¥)=0o0r¢; = — 1.
Stability of V then is equivalent with h°(V)=0 and instability of V|E with
h%V|E)>0. Lemma 6 shows that V|E can never be trivial.

One has d(V)=0 or 1 by the Theorem of Grauert-Miilich (Theorem 1), ie.,
d(V|L)=0or 1 for the general line L CIP,. Every hyperplane E C IP, containing such a
line must satisfy d(V|E)=0 or 1 too. The Lemmas 2’ and 5 then can be applied to
show that h°(V|E)=1 for such an E. Next one can apply the standard construction
in the case m=n—1 (putting P¥ =Gr(n— 1,n)). In particular one obtains from

4.1. an open set U CIP¥ parametrizing the hyperplanes E with h%V|E)=1. The
complement of U in P even is a subvariety 4 of codimension=2.

4.2. a morphism s:¢*0p{—1)—p*V, [>>0, vanishing at a subvariety ZCF of
codimension 2. (If Z were empty, then V would be decomposable, hence unstable.)
Whenever ee U, then Zng ™ 'eis of codimension 2 in g~ e too, and is mapped under
p on the zero-set of the unique non-trivial section sge I'(V|E), E CIP, the hyperplane
corresponding to e.

4.3.arational cross-section I' C p* P(V) degenerating over Z only and a surjective
morphism p: "> P(V). If ee U with E the corresponding hyperplane, xe E, and if
{x, E)¢Z, then the point of I" over (x, E) is mapped onto the point in P(V(x))
determined by the subspace C-sg(x). In particular the direction € sg{x) in the fibre
V(x) changes, if E varies.

For all E parametrized by points ec U, the jumping lines LCE of V appear in
codimension one (Lemma 5). The jumping lines therefore form a hypersurface
SCGr(1,n). Whenever L is a jumping line, then V|L contains a unique positive sub-
line bundle (V|L)* CV|L. If E is a hyperplane corresponding to ec U, then sg|L
completely lies in (V|L)*. This shows in particular:

(7) Whenever e, e,€ U correspond to hyperplanes E,, E, having in common a
jumping line L, and if xe L is a point with (x, E,)¢ Z, (x, E,)¢ Z, then the subspaces
C-sg (x) and C-sg (x) in V(x) coincide.

8.2. The Proof of Theorem 3 in the Cases n>3

The points xeP,. such that all lines through x are jumping lines, form a proper
subvariety X ¢ IP,. Fix a point xe P,\X and two hyperplanes E |, E, through x with
corresponding pointse,,e,€ U. Since n2 4, E, and E, will have in common at leasta
plane, and through every point of this plane, in particular through x, there will pass
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at least one jumping line LCE,;NE,. Whenever (x, E, )¢ Z and (x, E,)¢ Z, then s (x)
will be a multiple of s (x) by (7)above. This means that p is constant on the part of I
lying over p~}(x)\(g~ ' AU Z). Over the complement in F of p~ '(X)uq ™ Y{A)UZ, the
morphism p|I" then has rank n only, a contradiction with 4.3.

8.3. Proof that § is a General Linear Complex

Let now be n=3. Assume that the hypersurface S CGr(1, 3) has degree > 1. Then the
cone described by the jumping lines through a general point xe P, is not linear. Fix
a point xeIP; not on

the set X described in 8.2;

the degeneration set of p|Z;

the degeneration set of plg~ 1 4.

Then all planes E through x —except perhaps finitely many, say E,, ..., E, —are
parametrized by points in U and sg(x)=+0. Whenever L,, L, are two jumping lines
through x not contained in the same plane E,, i=1,...,k, then they span such a
general plane E and determine in V(x) the same subspace (V[L,}*(x)=(V|L,)" (x).
For general x, not all jumping lines through x can be contained in the same plane E,.
So all of them, except perhaps L,=E,;n...nE, determine the same direction in
V(x). This will then be the direction C-sg(x) for all E£ E |, ..., E, not containing L,,.
Again we arrive at the contradiction with 4.3: For general xeP,, p|I" is constant
over an open set of p~1x.

Assume next that degS =1, but that the linear complex S be special. Let L, C P,
be the line determining S. Whenever E is a plane not through L,, the jumping lines in
E form the pencil of lines through x; = EnL,. In particular s, vanishes in this point
x; only. Whenever E, contains L,, then all lines in E,, are jumping lines and V|E, is
properly unstable. In particular there is some k>0 with h%(V(—k)E,)=1 by
Lemma 2. The unique non-trivial section in V(—k)|E, has finitely many zeroes
only. In all points xe E,, except these finitely many, the jumping lines L determine
the same subspace (V|L)" (x)C V(x). Varying E,, through L,, one obtains a Zariski-
open subset of those points xe IP,\ L,. Whenever E is a plane not through L, then
again C-sy(x)C V(x) is independent of E. Once more we arrive at the same
contradiction with 4.3.

8.4. Proof that d(V|L) is Constant for all Jumping Lines L

So far we found that the jumping lines form a general linear complex S. In particular
there is no plane containing jumping lines only. Therefore h°(V|E)= 1 for all planes
E, and each restricted bundle V|E admits a section s (unique up to multiplication by
constants) vanishing in a single point xze E only, the null-point of E. x, is the
intersection of all the jumping lines in E. Every jumping line L carries the bundle
VIL=O (KYDO (—k+cy) with k=k(L)>0 and ¢, =0 or=—1.

k(Ly=1 for all jumping lines L. {8)

To prove this, fix an arbitrary plane E CIP; and some line M ¢ E intersecting E in
its null-point x;. The planes through M are parametrized by a line RC IP§. Put R
:=q 'RCFand o:=p|R. This map o is the converse of dilatating IP, along M. Also,
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if E:=0"'ECR, then o|E is the converse of dilatating the plane E in xg. The
situation is this

R«%Z R > E D o Yx)

Lol

P, D E> xg.

Let M* be the line associated with M by the null-correlation (see 7.1). Since M is
not a jumping line, M AnM* =¢. Furthermore, M* is contained in E and does not
pass through x,. The restriction 5 of 5: g*Op.(—)—p*V to R vanishes only in M:
=¢~'M* Whenever L CE is a jumping line in E, hence containing x,, and L CE its
proper transform, then

H*VIL~V|L~0,(K)®O(c, —k), k=Kk(L).

Near L, the morphism 3 is just an ordinary section in p*V._The image of 31L
therefore lies in the positive subbundle of 6*V|L. The point M~ L is the only zero of
3|L, hence 3/L must vanish there of order k(L). 3

Now recall that s; had its only zero at x;. Ovei EN\o ™ }(x;), o*s, therefore
generates a trivial line subbundle C-o*s; of ¢*V, which on every line L coincides
with the positive subbundle of ¢*V|L. Therefore over E\o ™~ '(xz), the morphism
§:q*0g(—)—o*V really has its image in this subbundle C-o*sg, and one may
view that morphism there as a section in g*Ug(l) vanishing only in the points
LAM of M and there of order k(L). First of all this means that k= k(L) is constant,
independently of L. Secondly this means that over ENo ™~ !(xg) the two bundles
q*-Og(l) and [M]* are isomorphic. Intersecting with the inverse image of a line
in E different from M* and not passing through xg, one finds indeed k=1.

8.5. At this point we can forget the standard-construction based on the planes in
IP,. Rather we have to use now the standard diagram (D,) and the IP,-bundles
S5 2, P,
as in 7.3. In 8.4 we proved
a*ViB~ ly:(ﬁlpl(l)@@n’,(cl =), ¢;=¢,(V)=0or —1,

for all points yeS. The base-change principle is applied again, to show that
B.o*V(—1) is a line bundle on S. We need that

Byo*V(=D=0g(=1). ©®

To prove this, fix some point xe[P;. The jumping lines LCE, through x are
parametrized by a curve R,

RCScGr(1,3)ClPy
of degree one. Put again
E=B"'RCS, 0:=0|E:E—E,.
By base-change from S to R we only have to verify

(BIE) 0%V ~Cr(—1).
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Let C:=0"1(xp)C E be the exceptional curve. The section o*sg in a*V vanishes
only along C, and there of order I, i.e., the bundle ¢*V@[C] ™' admits a section
without zeroes. This proves

BIE)(c*VRIC] ™) ~0p.
Formula (9) then follows readily from the isomorphism
V(=D =c*VR[C] ™ @F*Op(—1).

8.6. The End of the Proof. The image of the canonical morphism
BrO(—)=p*Boa*V(—h—a*V(=1)

is a line subbundle of «* V(1) and gives rise to an exact sequence

00450, — h—o* V(=) - Cslc, — 21, ) 0. (10)

Since />0 and since V(—I) is trivial on the fibres a~'x, xe P, this sequence
cannot split, hence it defines a non-trivial class in HY(03(2! — ¢,,—20)). From Lemma
11b) and a), one finds using Leray’s theorem

R (Og(20—c,, —2D)=hO0.,, Ox(20—c,, —21)
=S 2V) (—c,)
=h0s(2~21—c,,21—2))
=0

if 2—c¢, —2I is negative. This shows that necessarily /=1. Now apply «, to the
sequence (10) to obtain

Vo, (041,c,~1)).

Indeed, up to tensoring with Op(c,), the bundle V coincides with the null-
correlation bundle V, (compare 7.3). But the case ¢; +0 can finally be excluded,
since it leads to the contradiction ¢, =2¢,. This proves Theorem 3.

9. Corollaries of Theorem 3

9.1. Schwarzenberger showed in [11, Theorem 10] that any rank-2 bundle V over
the projective plane with discriminant

AV)=c,(V)? ~4cy(V) 20
is unstable. This is now easily generalized to IP,, n>2.

Corollary 1. Let V be some rank-2 bundle over P, n=2. If A(V)20, then V must be
unstable.

Proof. Assume that V is stable. If A(V)=0, then V cannot be the null-correlation
bundle V,, and by repeated application of Theorem 3 one finds that V|E is stable for
the general plane ECP, Since A(VIE)=A4(V), this would contradict
Schwarzenberger’s result.
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It should be mentioned here, that in [12, Theorem 8] Schwarzenberger
constructed stable rank-2 bundles V over the projective plane with arbitrarily given
discriminant

A4<0, A=0 or Il(mod 4), A=%-—4.

That a bundle on PP, with 4= —4 necessarily is unstable, was noticed later by
Maruyama [8, Lemma 4.5]. Now accidentally 4(V,)= —4 and the null-correlation
bundle is the only stable rank-2 bundle over any P, with discriminant —4.

9.2. It is not hard to produce examples of non-isomorphic stable {(or unstable)
bundles ¥, W on P,, which become isomorphic when restricted to any line. For
classification purposes it would be quite useful to solve the corresponding problem
on P, n=3: Given two stable rank-2 bundles on P, with VIE~WI|E for every
hyperplane ECIP,. Does this imply V= W?

Unfortunately 1 do not know the answer in the most important case n=3,
although Theorem 3 can be applied to settle this question affirmatively in
dimensions n=4. One even obtains a little more:

Corollary 2. Let V,W be two stable rank-2 bundles on P,, n=4. Assume that
V|E = W|E for all hyperplanes E C®, parametrized by some Zariski-open set U C P¥.
Then V~W.

Proof. The null-correlation bundle V;, does not survive on P,. This can e.g. be
deduced from the integrality condition [4, Theorem 22.4.17 on the Chern classes of
bundles over P,. So if ¥V|IP,, nZ 4, is stable, repeated application of Theorem 3
shows, that V|IP, is stable for the general plane P, CIP,. Because of Proposition 3,
VIE must be stable for all hyperplanes E containing such a plane. By Proposition 1,
the hyperplanes E CP, with V|E unstable form a Zariski-closed subset A CIP}. Since
none of the hyperplanes E containing a general plane P, belongs to A, the
dimension of 4 cannot exceed 2. In the same way one defines a subvariety BC P} for
W. So the bundles Vand W both are stable for all hyperplanes EC P, parametrized
by U, :=P"{4UB). From Proposition 4 one concludes that UD> U,

Now apply the standard construction to the bundle V¥*@ Winthecase m=n— 1.
On all hyperplanes E corresponding to points ee Ug,

MV*@QWIE)=Hom(V|E, WIE)=End(V|E)~C,
hence

4 pPHVFRW)=0p(—1), [20.
By (2) from 4.2, the canonical morphism

§ 1 q*Opd — D) > Howsep* V, p*W)

can vanish identically only on fibres ¢~ ‘e, ee AU B. But since V|E ~ W|E is stable for
all hyperplanes corresponding to points ee U, the restriction slq~ e must be an
isomorphism for all these e. One may view s as a morphism p*V—p*W®g*Op.(l)
with det(s) vanishing on ¢~ '(4UB) only. Since ¢~ '(AuB) does not contain a
hypersurface, det(s) cannot vanish at all. This implies /=0, and s becomes an
isomorphism p*V —p*W, Obviously this isomorphism descends to IP,.
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