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Immersion of Open Riemann Surfaces

R. C. GUNNING and RAGHAVAN NARASIMHAN

The object of this paper is to prove the following result.!

Theorem. Any (connected) open Riemann surface X admits a holomorphic
immersion into the complex plane; that is, there is a holomorphic mapping
F: X —C which is a local homeomorphism.

Before starting on the proof, we shall set out a few preliminaries. Let X be
an open Riemann surface. An open subset U of X is called Runge in X if any
holomorphic function on U can be approximated, uniformly on compact
subsets of U, by holomorphic functions on X. For any compact subset K of
X, set

={xeX||f)= sug{ fO)| for all f holomorphic onX}.

The set K is the union of K with the relatively compact connected components

of X — K, and K is again compact. An open subset U of X is Runge in X if and

only if K ¢ U for any compact subset K C U. (Theorem of BEHNKE-STEIN [11;

for a proof of this result in the above form, sce MALGRANGE [4], pp. 344—345.)
For later use, we make the following remark.

Lemma 1. Let K be a compact subset of X such that K =K, and {x,, ..., x,}
be a finite set of pointsin X — K. Then, given ¢ > 0, there is a holomorphic function
hon X such that h{x))=0,i=1, ..., r, and |h{x) — 1| <e for xe K.

Proof. For 1<i<r and >0 there is a holomorphic function 4; on X
such that [h(x)— 1] < é, xe K, and {h,(x,)} < 4. We have only to set

h(x) = H (h(x) — hy(x))
15igr
with a small enough 4.

Proposition 1. Let K be a compact subset of X with K = K. Then any contin-
uous complex-valued function on K which is holomorphic in the interior of K
can be approximated, uniformly on K, by holomorphic functions on X.

When X = C this result is due to S. N. MERGELIAN; the general case is due
to E. Bisvor [2].

L An inigesting special case of the theorem has been proved by H. OeLiexLAus (Unverzweigte
Konkretisierung von Riemannschen Flichen. Bayr. Akad. Wiss. 1966).
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Lemma 2. Let D, D' be relatively compact, connected open subsets of X with
smooth boundaries (that is, such that their closures are Riemann surfaces with
boundary) ; suppose that D C D', and that D and D’ are Runge in X. Then there
are simple closed piecewise differentiable curvesy,, ..., v, in D, such that the images
of these curves in the relative homology group H,(D', D) form a basis for that
group, and that K = K where K=Duy,u .. UV,

Proof. In this case, the exact homology sequence of the pair (D', D) has the
form

0—H,(D)—H,(D')->H(D',D)~0;

the singular cycles y; represent elements of H,(D’), and they are required to be
such that their images form a basis of H,(D’, D). Note that these homology
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groups are free abelian groups, so that the above exact sequence splits;
generators for Hy (D) together with the cycles y; are generators for the homology
group H,(D’). To find the desired curves, we use the familiar classification
theorem for compact orientable surfaces with boundary (see SEIFERT-THREL-
FALL [5]); any such surface is homeomorphic to a sphere with a finite number
of handles attached and a finite number of open discs deleted. In particular,
each connected component of the bordered Riemann surface D’ — D has this
form; a typical connected component W will thus be homeomorphic to a
sphere with h, handles attached and d, discs 4% deleted. For each handle select
a pair o, B{" of simple closed curves forming a canonical pair of cuts on the
handle, as in the figure ; for different handles the cuts will be taken to be disjoint.
Suppose that for the first ¢, < d, of the discs 4{” the boundaries 04, 1<j<c,,
are disjoint from the subset 6D C D’. Let ¢! be the boundary of a slightly larger
disc containing 4{”. For the remaining dlSCS AY, ¢, <k £ d,, select simple arcs

7’ such that 1:‘”’ joins 49 to 40 4, (¢, < k<d,), such that except for the end
pomts thearc r‘”’ lies in the interior of W, and such that the arcs "’ are disjoint
from one another and from the curves af*), . Then these curves «{*, ", 6",

1) represent generators for the relative homology group H,(D', D),and contain
a subset which form a basis (for each v for which ¢, = 1, we must drop one of the
o). The arcs 1§ can be extended through D to form simple closed curves. The
basis so constructed will be taken as the curves y,, ..., 7p- Note that these
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curves have the property that, with respect to any fixed triangulation, any cycle
y on the complex K =Duy, U ... Uy, is of the form y= Zn;y,+ Awhere n,e Z
and 4 is a cycle in D this is actually an equality of cycles, not just a homology
relation. This follows from the fact that if we contract D to a point, K becomes
a disjoint union of wedges of circles.

Now to prove that K = K, it suffices to show that D' — K has no relatively
compact connected components, since D’ is Runge in X. If there were such a
component U, its boundary ¢ U =y would be a cycle in K, hence would be of
the form y=Zn;y;+ 4 as above. Passing to the relative homology group
H,(D’, D) (denoted by putting a tilde over the cycles), it follows that 0= 2 n‘yl
since =30 =0; thus n;=0 and yC D. However this would mean that U is a
relatively compact connected component of X — D, contradicting the hypo-
thesis that D is Runge in X.

Lemma 3. Let {a, b] be a closed interval on the real line, f be a continuous
complex-valued function on [a, b}, and ¢ be any complex constant. Then there
exists a continuous complex-valued function g with compact support in the open
interval (a, b) such that

b b
N jef(x)w(x) dx=c, fg(X) PIACAE L RN

Proof. It is clear that there exists a step function u(x) with compact support
in {a, b) and satisfying conditions (1). (In fact, if ¢ =0 we can choose the step
function to be zero outside any subinterval, and if ¢ = 0 we can choose the func-
tion to be zero outside two subintervals.) Select a uniformly bounded sequence
{g,} of continuous functions with compact support in (g, b) converging to the
step function u, uniformly on compact subsets of the complement of a finite
subset of [a, b], and consider the complex analytic functions of a complex
variable s defined by

b b
(p(s) — jef(x}w‘su{x) dx, ,(5)= j‘ef(x)ﬂgv{x) dx.
a

a

The functions ¢,(s) converge to ¢(s) uniformly on compact subsets of the s-
plane. Since ¢{1}=c and ¢'(1)+0, it is evident that for a sufficiently large
value of v there will be a point s,€C, s, % 0, such that ¢,(sg) = ¢ and @} (5o} +0;
the function g(x)= seg,(x) then has the desired properties.

Lemma 4. Let D, D' be relatively compact, connected open subsets of X with
smooth boundaries ; suppose that DCD’ and that both are Runge in X. Let @
be a nowhere vanishing holomorphic 1-form on X such that { w =0 for any closed

ke
piecewise differentiable curve y in D. Then for any & > O there exists a holomorphic

function w on X such that |w(x)| < ¢ for every x € D, and that [ we* =0 for all

k4
closed piecewise differentiable curves y in D'.
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Proof. Let y,, ..., 7, be the curves whose existence is assured by Lemma 2;
and applying Lemma 2 to the pair (D, 0) lety,.,, ..., 7, be simple closed piece-
wise differentiable curves in D forming a basis for H,(D) and such that L =L
where L=y,,,U ... uy,. To prove the lemma, it is sufficient to find a function
w holomorphic on X and such that |w(x)|<e for all xe D and {we”=0 for
i=1,..,4. i

By Lemma 3 there are continuous functions u; on the set y; U ... Uy, such
that the supports of the u; are disjoint, u; is identically zero on y; for i+,
u; is zero on D for 1 i< p, and

fwe=0, fuwe+£0 for 1<iZp,
i Yi
(2 fuw+0 for p<i<gq.

Vi
For any s=(sy, ..., s,)€ C? put

(Pi(s) - j‘ wes|u1+-~~+squq X
Vi

This function is an entire function of the g complex variables (s,, ..., s5,); and for
the pointa={(1, ..., 1,0, ..., 0), with the first p coordinates having the value 1,
we have

@ela)=0 for i=1,...,q,

F
g9‘(a) 0 for i+j,ij=1,...q

3 5
6’(p, ,
6 @+0 for i=1,...,q.
. e 00, L
(For since uly;=0 whenever i<}, it is evident that 35 {a)=0 for i=j. If

i
((7;:,- (@)= ju we* +0 by (2); while if

p<i<q we have go,(a) jco 0 by assumpt;on on w, since y;CD, and
k43

1<i<p we have (p(a)—fwe""—O and

0
(p‘ —— (@)= § u;0 + 0 by (2).) Thus as a complex analytic mapping

i Vi

¢=((pb sees gpq) Tl Cqs

o(e)
o(s)

For i=1, ..., p extend the function u; to be identically zero on D; then u;
is contmuous on K and holomorphic in the interior of K. Since K =K, it
follows from Proposition 1 that there exist sequences of functions w{” holo-
morphic on X and converging uniformly to u; (as extended) on all of K; in
particular, the functions w{" converge uniformly to zeroon D.Fori=p+1,...,q

the image @(a)=0¢e (% and the Jacobian matrix {a) is nonsingular.
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the functions u; can by Proposition 1 be approximated uniformly on L by func-
tions v; holomorphic in all of X ; as an immediate consequence of Lemma 1
the functions v; can be chosen so that they all vanish on the finite point set
0D n(yy v ... uy,). Let v; be the functions defined on K by setting vi(x) = v;(x)
whenever x € D and vj(x) =0 whenever x € D — K ; these functions are contin-
vous on K and holomorphic on the interior of K, so by another application of
Proposition 1 they also can be approximated uniformly on K by functions w;
holomorphic on X. Thus there exist sequences of functions w{” holomorphic
on X and converging uniformly to the functions u; on y,u...uy, fori=p+1,
..., q as well. Select a fixed value p=(u,, ,, ..., #,) and consider the complex
analytic mapping y =(yy, ..., p,) : C?—C? where

(1) {8}
o S +ets + w +o sy W
Wi(5)= j‘wenm pUpTSp+1wpty qWy

Vi

op)
os)

if 1 has been chosen large enough, w(a) = 0 and the Jacobian matrix
nonsingular. Now introduce the functions

{a) is

{v) ) {p) s (e}
v +eet + R .
.{ps )(s)_ j’weﬂw; SpwWp Sp+i1Wp+1 Sqwg ;

Yi

these are entire functions of s which converge uniformly on compact subsets of
C€? to the functions y; as v — oo, Thus for any J§ > 0 and any value of v sufficiently
large, there is a point s =(s{, ..., s) with |s° —a| <& such that p{’(s®)=0
fori=1, ..., g. The function

w=sIwP + . +sgw§}>+s§+,w;“il+ -~-s2wfj"

then is holomorphic on X, satisfies [ we” =0 for all i, and satisfies |w(x)| <&

e 7
for ali x € D, provided that ¢ is chosen sufficiently small and v sufficiently large.
That completes the proof of the lemma.

With these preparations made, the proof of the theorem is quite easy. The
Riemann surface X can be exhausted by a sequence {D,} of relatively compact
connected subsets which are Runge in X, have smooth boundaries, and satisfy
D,C Dy, [1]. It is well-known that there exists a holomorphic differential
I-form w on X which has no zeros; for since H*(X, Z)=0 and X is a Stein
manifold, its analytic tangent line bundle is trivial, [3]. By applying the obvious
induction argument to Lemma 4, it is apparent that there exists a holomorphic
function w on X such that [we”=0 for all piecewise differentiable closed

curves y in X. Setting
F(x)= [we*,
X0

the function F is clearly holomorphic and single valued on the entire surface X,
and dF = we" =0, that concludes the proof.
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