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Immersion of Open Riemann Surfaces 

R.  C.  GUNNING a n d  RAGHAVAN NARASIMHAN 

The object of this paper is to prove the following result.' 

Theorem. Any (connected) open Riemann surface X admits a "holomorphic 
immersion into the complex plane; that is, there is a holomorphic mapping 
F : X ~ C which is a local homeomorphism. 

Before starting on the proof, we shall set out a few preliminaries. Let X be 
an open Riemann surface. An open subset U of X is called Runge in X if any 
holomorphic function on U can be approximated, uniformly on compact 
subsets of U, by holomorphic functions on X. For  any compact subset K of 
X, set 

/ (  = {x ~ S [ If(x)l < suplf(y)l for all f holomorphic o n S } .  
yeK 

The s e t / (  is the union of  K with the relatively compact connected components 
o f X  - K, a n d / (  is again compact. An open subset U of X is Runge in X if and 
only i f / (  C U for any compact subset K C U. (Theorem of BEHNKE-STEIN [1] ; 
for a proof  of this result in the above form, see MALGRANGE [4], pp. 344 345.) 

For  later use, we make the following remark. 

Lemma t .  Let K be a compact subset of  X such that K = I(, and {Xl, ..., xr} 
be a finite set of  points in X - K. Then, given e > O, there is a holomorphic function 
h on X such that h(xi)= 0, i = 1 . . . . .  r, and Ih(x) - 11 < e for x e K. 

Proof. For  1 < i < r and 6 > 0 there is a holomorphic function hi on X 
such that [hi(x) - I I < 6, x e K, and [hi(xi)l < & We have only to set 

h(x) = H (h i (x ) -  h/(x/)) 

with a small enough & 

Proposition t .  Let K be a compact subset of  X with K = ~ .  Then any contin- 
uous complex-valued function on K which is holomorphk in the interior o f  K 
can be approximated, uniformly on K, by holomorphk functions on X.  

When X = C this result is due to S. N. M~GELIAN; the general case is due 
to E. BISHOP [2]. 

i An interesting special case of the theorem has been proved by H. OELJEKLAUS (Unverzweigte 
Konkretisierung yon Riemannschen Fliichen. Bayr. Akad. Wiss. 1966). 
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Lemma 2. Let D, D' be relatively compact, connected open subsets of  X with 
smooth boundaries (that is, such that their closures are Riemann surfaces with 
boundary) ; suppose that D C D', and that D and D' are Runge in X.  Then there 
are simple closed piecewise differentiable curves y ~ . . . . .  y p in D, such that the images 
of  these curves in the relative homology group 1-11 (D', D) form a basis for that 
group, and that K = I( where K = Dwy l  u ... UTp. 

Proof. In this case, the exact homology sequence of the pair (D', D) has the 
form 

0 ~ n 1 (O) ~ H~ (D') ~ Hi (D', D) ~ 0 ; 

the singular cycles ~ represent elements of Ha (D'), and they are required to be 
such that their images form a basis of H~ (D', D). Note that these homology 

Fig. 1 

groups are free abelian groups, so that the above exact sequence splits; 
generators for//1 (D) together with the cycles 7~ are generators for the homology 
group HI(D'). To find the desired curves, we use the familiar classification 
theorem for compact orientable surfaces with boundary (see SEIrERT-THREL- 
tALL [5]) ; any such surface is homeomorphic to a sphere with a finite number 
of handles attached and a finite number of open discs deleted. In particular, 
each connected component of the bordered Riemann s u r f a c e / 5 ' - D  has this 
form; a typical connected component W ~') will thus be homeomorphic to a 
sphere with hv handles attached and dv discs A~ v~ deleted. For each handle select 
a pair ~I ~), fll ~ of simple closed curves forming a canonical pair of cuts on the 
handle, as in the figure; for different handles the cuts will be taken to be disjoint. 
Suppose that for the first c~ < d,. of the discs A) ~) the boundaries 3A) ~), 1 < j  ~ cv, 
are disjoint from the subset 0DC D'. Let ~/" be the boundary of a slightly larger 
disc containing A) ~). For the remaining discs Ark ~), c~ < k ~ d~, select simple arcs 
Ztk ~) such that rtkV)joins A~k ~) to "-'k+At~) 1, (C~ < k < dO, such that except for the end 
points the arc ZtkVJ lies in the interior of W t'), and such that the arcs Z~k ~) are disjoint 
from one another and from the curves ~t~ ~), fl~). Then these curves ~ ,  fl~v~, tr) ~), 
Ttk ~) represent generators for the relative homology group H1 (D', D), and contain 
a subset which form a basis (for each v for which c~ > 1, we must drop one of the 
crib)). The arcs Z~k v) can be extended through/~ to form simple closed curves. The 
basis so constructed will be taken as the curves y~ . . . . .  yp. Note that these 
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curves have the property that, with respect to any fixed triangulation, any cycle 
on the complex K = D u T ~ w  ... uTp is of the form 7 =,~n~y~+ 2where ~l~e Z 

and 2 is a cycle in D; this is actually an equality of cycles, not just a homology 
relation. This follows from the fact that if we contract D to a point, K becomes 
a disjoint union of wedges of circles. 

Now to prove that K = /{ ,  it suffices to show that D' - K has no relatively 
compact connected components, since D' is Runge in X. If there were such a 
component  U, its boundary ~ U = 7 would be a cycle in K, hence would be of 
the form 7 = S n ~ + 2  as above. Passing to the relative homology group 
H~(D', D) (denoted by putting a tilde over the cycles), it follows that 0 =  S n ~  
since ~ = c30 = 0; thus ni = 0 and 7 C D. However this would mean that U is a 
relatively compact connected component  of X - D ,  contradicting the hypo- 
thesis that D is Runge in X. 

Lemma 3. Let [a, b] be a closed interval on the real line, f be a continuous 
complex-valued function on [a, b], and c be any complex constant. Then there 
exists a continuous complex-valued function 9 with compact support in the open 
interval (a, b) such that 

b b 

(1) ~ ey{~)+ 0~) dx = c,  ~ g(x) e y{~)+g{~ dx + O. 
Cl a 

Proof. It is clear that there exists a step function u(x) with compact support 
in (a, b) and satisfying conditions (1). (In fact, if c + 0 we can choose the step 
function to be zero outside any subinterval, and if c = 0 we can choose the func- 
tion to be zero outside two subintervals.) Select a uniformly bounded sequence 
{g~} of continuous functions with compact support in (a, b) converging to the 
step function u, uniformly on compact subsets of the complement of a finite 
subset of [a, b], and consider the complex analytic functions of a complex 
variable s defined by 

b b 

~o(s) = ~ e y(~+s"{~) d x ,  q),(s) = ~ e I~x)+s°~*) dx .  
a a 

The functions q%(s) converge to q~(s) uniformly on compact subsets of the s- 
plane. Since q~(1)= c and ¢p'(1)+0, it is evident that for a sufficiently large 
value of v there will be a point So ~ C, So 4: 0, such that q~(so) = c and q<(So) + 0; 
the function 9(x)= Soy,(x) then has the desired properties. 

Lemma 4. Let D, D' be relatively compact, connected open subsets of  X with 
smooth boundaries; suppose that D C D' and that both are Runge in X.  Let co 
be a nowhere vanishin 9 holomorphic 1-form on X such that ~ 09 = 0 for any closed 

piecewise differentiable curve 7 in D. Then for any ~ > 0 there exists a holomorphic 
function w on X such that [w(x)l < e for every x E D, and that ~ toe w = 0 for all 

closed piecewise differentiable curves ~ in D'. 
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Proof. Let y~ . . . . .  ~,p be the curves whose existence is assured by Lemma 2; 
and applying Lemma 2 to the pair (D, 0) let Yp+ 1 . . . . .  7q be simple closed piece- 
wise differentiable curves in D forming a basis for Ha (D) and such that L = L 
where L = yp + ~ w ... w 7~. To prove the lemma, it is sufficient to find a function 
w holomorphic on X and such that lw(x)t<e for all x e D  and ~o)ew=O for 
i = 1, ..., q. ~ 

By Lemma 3 there are continuous functions u~ on the set 71 w .--Uyq such 
that the supports of the u~ are disjoint, u~ is identically zero on yj for i 4=j, 
u~ is zero on D for 1 < i < p, and 

f 
So)e" '=0,  Suio)e"'.O for l<=i<p,  

(2) u l e )+0  for p<i<=q. 

For  any s = (sl . . . .  , sq)e C q put 

~oi(s ) = [. o)e s'"' + ... +~q,, 
Y~ 

This function is an entire function of the q complex variables (sl . . . . .  sq); and for 
the point a = (1, ..., 1, 0 . . . . .  0), with the first p coordinates having the value 1, 
we have 

[ ~0~(a)=0 for i = l  q,  

l ~ ( a ) + 0  for i = l , . . . , q .  

(For since ui[yj = 0  whenever i+j ,  it is evident that (a) = 0 for i#:j. If 

1 < i < p  we have qh(a) = ~o)e"'= 0 and ~ ( a ) =  ~ui~oe"'+-O by (2); while if 

p<i<-q  we have ~o~(a)= S o ) = 0  by assumption on co, since y~CD, and 
Yt 

Os--T (a) = I u~o) • 0 by (2).) Thus as a complex analytic mapping 

q~ = (O1 . . . .  , %) : ~ q ~  ~ ,  

O(~0) (a) 
the image q~(a)= 0 e I12~, and the Jacobian matrix ~ is nonsingular. 

For  i = 1 . . . . .  p extend the function u i to be identically zero on D; then u~ 
is continuous on K and holomorphic in the interior of K. Since K =/~,  it 
follows from Proposit ion 1 that there exist sequences of functions M "~ holo- 
morphic on X and converging uniformly to u~ (as extended) on all of K;  in 
particular, the functions wl~) converge uniformly to zero on D. For  i = p + 1 . . . . .  q 
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the functions ug can by Proposition 1 be approximated uniformly on L by func- 
tions vi holomorphic in all of X ; as an immediate consequence of Lemma t 
the functions v~ can be chosen so that they all vanish on the finite point set 
O D n ( 7 1 w  . . .  u?p). Let v'~ be the functions defined on K by setting v'~(x)= vi(x)  

/ whenever x ~/~ and t ~(x) = 0 whenever x 6 D - K ; these functions are contin- 
uous on K and holomorphic on the interior of K, so by another application of 
Proposit ion 1 they also can be approximated uniformly on K by functions w~ 
holomorphic on X. Thus there exist sequences of functions w~ v) holomorphic 
on X and converging uniformly to the functions u~ on ~i ~..-WVq for i = p + 1, 
.... q as well. Select a fixed value/~ = (#, +1 . . . . .  /Zq) and consider the complex 
analytic mapping ~p = (~Pl . . . . .  tpq) : C q ~ C q where 

q~i(s) = S °9eSlUl +-" +spup+s . . . .  ~"~+ ~+... + , , ~ '  . 

~(~) 
if/z has been chosen large enough, re(a) = 0 and the Jacobian matrix ~ (a) is 
nonsingular. Now introduce the functions 

- - S p + l W p + | + " "  W~ v) (s) = ~ oge"  w'(' + ... +spwg ~' * '"' + sq ~ " '  

7i 

these are entire functions of s which converge uniformly on compact subsets of 
¢~ to the functions ~p~ as v ~ ~ .  Thus for any 6 > 0 and any value ofv sufficiently 
large, there is a point s o =  (s °, ..., s °) with ts ° -  ai < 6 such that ~pl~)(s°)=0 
for i = 1 . . . . .  q. The function 

w = s ° w ~  ') + -.. ~ ~o,,,(v).a_ ~ o ,,,(u) .~ow(u) 
Op , ~ p  ~ o p  + 1 T V p +  t -'}- " " " ~ q  " ' q  

then is holomorphic on X, satisfies ~ coe~= 0 for all i, and satisfies tw(x)t < 

for all x ~ D, provided that 6 is chosen sufficiently small and v sufficiently large. 
That  completes the proof of the lemma. 

With these preparations made, the proof  of the theorem is quite easy. The 
Riemann surface X can be exhausted by a sequence {Dk} of relatively compact 
connected subsets which are Runge in X, have smooth boundaries, and satisfy 
Dk C Dk+l, [1]. It is well-known that there exists a holomorphic differential 
1-form ~o on X which has no zeros; for since H 2 ( X ,  2~)= 0 and X is a Stein 
manifold, its analytic tangent line bundle is trivial, [3]. By applying the obvious 
induction argument to Lemma 4, it is apparent that there exists a holomorphic 
function w on X such that ~ coe~= 0 for all piecewise differentiable closed 

curves y in X. Setting 
x 

F ( x )  = ~ oge ~ , 
Xo 

the function F is clearly holomorphic and single valued on the entire surface X, 
and d F  =coe w 4=0; that concludes the proof. 
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