GUNNING, R.C., and R. NARASIMHAN Math. Annalen 174, 103-108 (1967)

Immersion of Open Riemann Surfaces

R. C. GUNNING and RAGHAVAN NARASIMHAN

The object of this paper is to prove the following result.¹

Theorem. Any (connected) open Riemann surface X admits a holomorphic immersion into the complex plane; that is, there is a holomorphic mapping $F: X \to \mathbb{C}$ which is a local homeomorphism.

Before starting on the proof, we shall set out a few preliminaries. Let X be an open Riemann surface. An open subset U of X is called Runge in X if any holomorphic function on U can be approximated, uniformly on compact subsets of U, by holomorphic functions on X. For any compact subset K of X, set

 $\hat{K} = \{x \in X \mid |f(x)| \leq \sup_{y \in K} |f(y)| \text{ for all } f \text{ holomorphic on} X\}.$

The set \hat{K} is the union of K with the relatively compact connected components of X - K, and \hat{K} is again compact. An open subset U of X is Runge in X if and only if $\hat{K} \subset U$ for any compact subset $K \subset U$. (Theorem of BEHNKE-STEIN [1]; for a proof of this result in the above form, see MALGRANGE [4], pp. 344-345.)

For later use, we make the following remark.

Lemma 1. Let K be a compact subset of X such that $K = \hat{K}$, and $\{x_1, ..., x_r\}$ be a finite set of points in X - K. Then, given $\varepsilon > 0$, there is a holomorphic function h on X such that $h(x_i) = 0$, i = 1, ..., r, and $|h(x) - 1| < \varepsilon$ for $x \in K$.

Proof. For $1 \le i \le r$ and $\delta > 0$ there is a holomorphic function h_i on X such that $|h_i(x) - 1| < \delta$, $x \in K$, and $|h_i(x_i)| < \delta$. We have only to set

$$h(x) = \prod_{1 \le i \le r} (h_i(x) - h_i(x_i))$$

with a small enough δ .

Proposition 1. Let K be a compact subset of X with $K = \hat{K}$. Then any continuous complex-valued function on K which is holomorphic in the interior of K can be approximated, uniformly on K, by holomorphic functions on X.

When $X = \mathbb{C}$ this result is due to S. N. MERGELIAN; the general case is due to E. BISHOP [2].

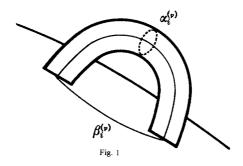
¹ An interesting special case of the theorem has been proved by H. OELJEKLAUS (Unverzweigte Konkretisierung von Riemannschen Flächen. Bayr. Akad. Wiss. 1966).

Lemma 2. Let D, D' be relatively compact, connected open subsets of X with smooth boundaries (that is, such that their closures are Riemann surfaces with boundary); suppose that $\overline{D} \subset D'$, and that D and D' are Runge in X. Then there are simple closed piecewise differentiable curves $\gamma_1, \ldots, \gamma_p$ in D, such that the images of these curves in the relative homology group $H_1(D', D)$ form a basis for that group, and that $K = \hat{K}$ where $K = \overline{D} \cup \gamma_1 \cup \ldots \cup \gamma_p$.

Proof. In this case, the exact homology sequence of the pair (D', D) has the form

$$0 \to H_1(D) \to H_1(D') \to H_1(D', D) \to 0;$$

the singular cycles γ_i represent elements of $H_1(D')$, and they are required to be such that their images form a basis of $H_1(D', D)$. Note that these homology



groups are free abelian groups, so that the above exact sequence splits; generators for $H_1(D)$ together with the cycles γ_i are generators for the homology group $H_1(D')$. To find the desired curves, we use the familiar classification theorem for compact orientable surfaces with boundary (see SEIFERT-THREL-FALL [5]); any such surface is homeomorphic to a sphere with a finite number of handles attached and a finite number of open discs deleted. In particular, each connected component of the bordered Riemann surface $\overline{D}' - D$ has this form; a typical connected component $W^{(v)}$ will thus be homeomorphic to a sphere with h_v handles attached and d_v discs $\Delta_i^{(v)}$ deleted. For each handle select a pair $\alpha_i^{(\nu)}$, $\beta_i^{(\nu)}$ of simple closed curves forming a canonical pair of cuts on the handle, as in the figure; for different handles the cuts will be taken to be disjoint. Suppose that for the first $c_v \leq d_v$ of the discs $\Delta_j^{(v)}$ the boundaries $\partial \Delta_j^{(v)}$, $1 \leq j \leq c_v$, are disjoint from the subset $\partial \overline{D} \subset D'$. Let $\sigma_j^{(v)}$ be the boundary of a slightly larger disc containing $\Delta_i^{(v)}$. For the remaining discs $\Delta_k^{(v)}$, $c_v < k \leq d_v$, select simple arcs $\tau_k^{(v)}$ such that $\tau_k^{(v)}$ joins $\Delta_k^{(v)}$ to $\Delta_{k+1}^{(v)}$, $(c_v < k < d_v)$, such that except for the end points the arc $\tau_k^{(v)}$ lies in the interior of $W^{(v)}$, and such that the arcs $\tau_k^{(v)}$ are disjoint from one another and from the curves $\alpha_i^{(\nu)}$, $\beta_i^{(\nu)}$. Then these curves $\alpha_i^{(\nu)}$, $\beta_i^{(\nu)}$, $\sigma_j^{(\nu)}$, $\tau_k^{(v)}$ represent generators for the relative homology group $H_1(D', D)$, and contain a subset which form a basis (for each v for which $c_v \ge 1$, we must drop one of the $\sigma_i^{(\nu)}$). The arcs $\tau_k^{(\nu)}$ can be extended through \overline{D} to form simple closed curves. The basis so constructed will be taken as the curves $\gamma_1, \ldots, \gamma_p$. Note that these

curves have the property that, with respect to any fixed triangulation, any cycle γ on the complex $K = \overline{D} \cup \gamma_1 \cup \ldots \cup \gamma_p$ is of the form $\gamma = \sum n_i \gamma_i + \lambda$ where $n_i \in \mathbb{Z}$ and λ is a cycle in \overline{D} ; this is actually an equality of cycles, not just a homology relation. This follows from the fact that if we contract \overline{D} to a point, K becomes a disjoint union of wedges of circles.

Now to prove that $K = \hat{K}$, it suffices to show that D' - K has no relatively compact connected components, since D' is Runge in X. If there were such a component U, its boundary $\partial U = \gamma$ would be a cycle in K, hence would be of the form $\gamma = \sum n_i \gamma_i + \lambda$ as above. Passing to the relative homology group $H_1(D', D)$ (denoted by putting a tilde over the cycles), it follows that $0 = \sum n_i \tilde{\gamma}_i$ since $\tilde{\gamma} = \partial \tilde{U} = 0$; thus $n_i = 0$ and $\gamma \in \overline{D}$. However this would mean that U is a relatively compact connected component of $X - \overline{D}$, contradicting the hypothesis that D is Runge in X.

Lemma 3. Let [a, b] be a closed interval on the real line, f be a continuous complex-valued function on [a, b], and c be any complex constant. Then there exists a continuous complex-valued function g with compact support in the open interval (a, b) such that

(1)
$$\int_{a}^{b} e^{f(x) + g(x)} dx = c, \quad \int_{a}^{b} g(x) e^{f(x) + g(x)} dx \neq 0.$$

Proof. It is clear that there exists a step function u(x) with compact support in (a, b) and satisfying conditions (1). (In fact, if $c \neq 0$ we can choose the step function to be zero outside any subinterval, and if c = 0 we can choose the function to be zero outside two subintervals.) Select a uniformly bounded sequence $\{g_v\}$ of continuous functions with compact support in (a, b) converging to the step function u, uniformly on compact subsets of the complement of a finite subset of [a, b], and consider the complex analytic functions of a complex variable s defined by

$$\varphi(s) = \int_{a}^{b} e^{f(x) + su(x)} dx, \qquad \varphi_{v}(s) = \int_{a}^{b} e^{f(x) + sg_{v}(x)} dx.$$

The functions $\varphi_v(s)$ converge to $\varphi(s)$ uniformly on compact subsets of the splane. Since $\varphi(1) = c$ and $\varphi'(1) \neq 0$, it is evident that for a sufficiently large value of v there will be a point $s_0 \in \mathbb{C}$, $s_0 \neq 0$, such that $\varphi_v(s_0) = c$ and $\varphi'_v(s_0) \neq 0$; the function $g(x) = s_0 g_v(x)$ then has the desired properties.

Lemma 4. Let D, D' be relatively compact, connected open subsets of X with smooth boundaries; suppose that $\overline{D} \subset D'$ and that both are Runge in X. Let ω be a nowhere vanishing holomorphic 1-form on X such that $\int \omega = 0$ for any closed

piecewise differentiable curve γ in D. Then for any $\varepsilon > 0$ there exists a holomorphic function w on X such that $|w(x)| < \varepsilon$ for every $x \in D$, and that $\int \omega e^w = 0$ for all

closed piecewise differentiable curves γ in D'.

Proof. Let $\gamma_1, ..., \gamma_p$ be the curves whose existence is assured by Lemma 2; and applying Lemma 2 to the pair (D, θ) let $\gamma_{p+1}, ..., \gamma_q$ be simple closed piecewise differentiable curves in D forming a basis for $H_1(D)$ and such that $L = \hat{L}$ where $L = \gamma_{p+1} \cup ... \cup \gamma_q$. To prove the lemma, it is sufficient to find a function w holomorphic on X and such that $|w(x)| < \varepsilon$ for all $x \in D$ and $\int \omega e^w = 0$ for i = 1, ..., q.

By Lemma 3 there are continuous functions u_i on the set $\gamma_1 \cup \ldots \cup \gamma_q$ such that the supports of the u_i are disjoint, u_i is identically zero on γ_j for $i \neq j$, u_i is zero on \overline{D} for $1 \leq i \leq p$, and

(2)
$$\begin{cases} \int \omega e^{u_i} = 0, \quad \int u_i \omega e^{u_i} \neq 0 \quad \text{for} \quad 1 \leq i \leq p, \\ \int y_i & y_i \\ \int u_i \omega \neq 0 \quad \text{for} \quad p < i \leq q. \end{cases}$$

For any $s = (s_1, ..., s_q) \in \mathbb{C}^q$ put

$$\varphi_i(s) = \int_{\gamma_i} \omega e^{s_1 u_1 + \dots + s_q u_q}$$

This function is an entire function of the q complex variables $(s_1, ..., s_q)$; and for the point a = (1, ..., 1, 0, ..., 0), with the first p coordinates having the value 1, we have

(3)
$$\begin{cases} \varphi_i(a) = 0 \quad \text{for} \quad i = 1, ..., q, \\ \frac{\partial \varphi_i}{\partial s_j}(a) = 0 \quad \text{for} \quad i \neq j, i, j = 1, ..., q, \\ \frac{\partial \varphi_i}{\partial s_i}(a) \neq 0 \quad \text{for} \quad i = 1, ..., q. \end{cases}$$

(For since $u_i|\gamma_j = 0$ whenever $i \neq j$, it is evident that $\frac{\partial \varphi_i}{\partial s_i}(a) = 0$ for $i \neq j$. If

 $1 \leq i \leq p \text{ we have } \varphi_i(a) = \int_{\gamma_i} \omega e^{u_i} = 0 \text{ and } \frac{\partial \varphi_i}{\partial s_i}(a) = \int_{\gamma_i} u_i \omega e^{u_i} \neq 0 \text{ by } (2); \text{ while if } p < i \leq q \text{ we have } \varphi_i(a) = \int_{\gamma_i} \omega = 0 \text{ by assumption on } \omega, \text{ since } \gamma_i \in D, \text{ and } \frac{\partial \varphi_i}{\partial s_i}(a) = \int_{\gamma_i} u_i \omega \neq 0 \text{ by } (2). \text{ Thus as a complex analytic mapping}$

$$\varphi = (\varphi_1, \ldots, \varphi_q) \colon \mathbb{C}^q \to \mathbb{C}^q$$

the image $\varphi(a) = 0 \in \mathbb{C}^q$, and the Jacobian matrix $\frac{\partial(\varphi)}{\partial(s)}(a)$ is nonsingular.

For i = 1, ..., p extend the function u_i to be identically zero on \overline{D} ; then u_i is continuous on K and holomorphic in the interior of K. Since $K = \hat{K}$, it follows from Proposition 1 that there exist sequences of functions $w_i^{(v)}$ holomorphic on X and converging uniformly to u_i (as extended) on all of K; in particular, the functions $w_i^{(v)}$ converge uniformly to zero on \overline{D} . For i = p + 1, ..., q

the functions u_i can by Proposition 1 be approximated uniformly on L by functions v_i holomorphic in all of X; as an immediate consequence of Lemma 1 the functions v_i can be chosen so that they all vanish on the finite point set $\partial D \cap (\gamma_1 \cup \ldots \cup \gamma_p)$. Let v'_i be the functions defined on K by setting $v'_i(x) = v_i(x)$ whenever $x \in \overline{D}$ and $v'_i(x) = 0$ whenever $x \in \overline{D} - K$; these functions are continuous on K and holomorphic on the interior of K, so by another application of Proposition 1 they also can be approximated uniformly on K by functions w_i holomorphic on X. Thus there exist sequences of functions $w_i^{(v)}$ holomorphic on X and converging uniformly to the functions u_i on $\gamma_1 \cup \ldots \cup \gamma_n$ for i = p + 1, ..., q as well. Select a fixed value $\mu = (\mu_{p+1}, ..., \mu_q)$ and consider the complex analytic mapping $\psi = (\psi_1, ..., \psi_q) : \mathbb{C}^q \to \mathbb{C}^q$ where

$$\psi_i(s) = \int_{\gamma_i} \omega e^{s_1 u_1 + \dots + s_p u_p + s_{p+1} w_{p+1}^{(\mu)} + \dots + s_q w_q^{(\mu)}}$$

if μ has been chosen large enough, $\psi(a) = 0$ and the Jacobian matrix $\frac{\partial(\psi)}{\partial(s)}(a)$ is nonsingular. Now introduce the functions

$$\psi_i^{(\nu)}(s) = \int_{\gamma_i} \omega e^{s_1 w_1^{(\nu)} + \dots + s_p w_p^{(\nu)} + s_{p+1} w_{p+1}^{(\mu)} + \dots + s_q w_q^{(\mu)}};$$

these are entire functions of s which converge uniformly on compact subsets of \mathbb{C}^q to the functions ψ_i as $v \to \infty$. Thus for any $\delta > 0$ and any value of v sufficiently large, there is a point $s^0 = (s_1^0, ..., s_q^0)$ with $|s^0 - a| < \delta$ such that $\psi_i^{(v)}(s^0) = 0$ for i = 1, ..., q. The function

$$w = s_1^0 w_1^{(\nu)} + \dots + s_p^0 w_p^{(\nu)} + s_{p+1}^0 w_{p+1}^{(\mu)} + \dots + s_q^0 w_q^{(\mu)}$$

then is holomorphic on X, satisfies $\int \omega e^w = 0$ for all *i*, and satisfies $|w(x)| < \varepsilon$ for all $x \in \overline{D}$, provided that δ is chosen sufficiently small and v sufficiently large. That completes the proof of the lemma.

With these preparations made, the proof of the theorem is quite easy. The Riemann surface X can be exhausted by a sequence $\{D_k\}$ of relatively compact connected subsets which are Runge in X, have smooth boundaries, and satisfy $\overline{D}_k \subset D_{k+1}$, [1]. It is well-known that there exists a holomorphic differential 1-form ω on X which has no zeros; for since $H^2(X, \mathbb{Z}) = 0$ and X is a Stein manifold, its analytic tangent line bundle is trivial, [3]. By applying the obvious induction argument to Lemma 4, it is apparent that there exists a holomorphic function w on X such that $\int \omega e^w = 0$ for all piecewise differentiable closed

curves γ in X. Setting

$$F(x) = \int_{x_0}^x \omega e^w,$$

the function F is clearly holomorphic and single valued on the entire surface X, and $dF = \omega e^{w} \neq 0$; that concludes the proof.

References

- 1. BEHNKE, H., u. K. STEIN: Entwicklung analytischer Funktionen auf Riemannschen Flächen. Math. Ann. 120, 430-461 (1947-49).
- 2. BISHOP, E.: Subalgebras of functions on a Riemann surface. Pacific J. Math. 8, 29-50 (1958).
- 3. GRAUERT, H.: Analytische Faserungen über holomorph-vollständigen Räumen. Math. Ann. 135, 263-273 (1958).
- 4. MALGRANGE, B.: Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution. Ann. Inst. Fourier 6, 271–354 (1955–56).
- 5. SEIFERT, H., u. W. THRELFALL: Lehrbuch der Topologie. New York: Chelsea 1947.

R. C. GUNNING Department of Mathematics Princeton University Prof. RAGHAVAN NARASIMHAN The Institute for Advanced Study Princeton, New Jersey

(Received February 13, 1967)