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1. Introduct ion  

In  the study of a differential operator P(x, D) 1) a fundamental  question 
is of course  whether the equation 

(1.1) P(x, D)u = ] 

can always be solved a t  least locally when ] has a high degree of local regularity. 
The first example where the answer is negative was given by  H. L n w v  [5]. 
For the operator 

P(x, D) = - i D l +  D 2 -  2(x1÷ ix~)D3 

he proved tha t  for some / E C ~ there is not in any open set a solution which 
has H61der continuous derivatives of the first order. (In fact, there does not 
even exist a distribution solution of (1.1) for every ] ~ C°°.) 

On the other hand, various sufficient conditions for the local existence of 
solutions of (1.1) are known. First of all, the existence of solutions has been 
proved for every equation with constant coefficients (MALORA~GE, EHREN- 
PREIS). I t  is also well known tha t  (1.1) can be solved locally when P is elliptic. 
Another class of operators for which this is true was introduced by H6R- 
MADDER [3], Chap. IV;  it  was defined by  the conditions 

A) The differential operator P(x, D) is of order m and, if p(x, ~) is the 
homogeneous par t  of P(x, ~) of order m, we have 

(1.2) ~ I~p(x, ~)/a$~[~# o, 0 ~ ~ ~ R~. 
1 

(This means tha t  the characteristic surface has no real singular point.) 
B) p(x, ~) has real coefficients. 
U n d e r  mild smoothness assumptions it was proved for an operator P in this 

class tha t  ff ~2e is the sphere with radius (~ and centre at a fixed point where 
(1.2) is valid, then we have with L ~ norms 

0.3) Z ~(~ -~)flD~li ~ -~ CoiiP(x, D)ull ~ , u ~ C~ ( ~ ) ,  ~ <= ~o. 
t~i<m 

From this inequality it  was concluded tha t  the equation Ptu = f, where P~ 
is the formal adjoint of P,  has a solution u E L s ( ~ )  for every / ~ L 2 ( ~ ) .  The 

1) For notations see [3], particularly p. 176. 
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main purpose of this paper is to make a more detailed investigation of the 
conditions under which (1.3) is valid and to prove stronger consequences of 
tha t  inequality. Before stating the results we introduce a definition. 

Definition 1.1. A differential operator P(x, D) defined in an open set 12 
is said to be of principal type in ~2 if (1.3) is valid, with 12~ defined as 
{x; x ~ 12, I x -  x0l < ~}, where x 0 is an arbi t rary fixed point in 12, when 

_<- ~0(x0). 
This definition agrees with Definition 2.1, p. 186, in HORIVl)A~DER [3] when 

the coefficients are constant. 

Section 2 will be devoted to proving conditions which are necessary for a 
differential operator to be of principal type.  I t  is easily proved tha t  (1.2) is 
necessary (Theorem 2.2). This is not the case for condition B, however. I t  was 
already pointed out in [3] tha t  with no essential change of proof it might  be 
replaced by the weaker condition, where ~(x, ~) = ~ ,  

B') ~(x, D)p(x, D) -- p(x, D) ~(x, D) is of o r d e r <  2m - 1 . 

In general this commutator  may  be of order 2m - 1 even if P is elliptic, in 
which case (1.1) is also known to hold (see e.g. [2] or [4]). B'  is therefore not 
a necessary condition either. However, using arguments developed from an 
analysis of Lewy's  example we shall prove in Theorem 2.1 that  if (1.3) is 
valid then 

B") C2m_l(x,~)=O if p ( x , $ ) = 0 ,  x E S 2 , ~ C R  ~, 

where C2m-1 is the homogeneous par t  of order 2m - 1 of the commuta tor  in B' .  
(C2,~_ I involves only first, order derivatives of the coefficients of p and is thus 
defined when these coefficients are in C 1 even if the commutator  itself does 
not have a sense.) ~Vhen P is of the first order and the coefficients are analytic 
we also prove a stronger result in section 3. In  fact, we prove that  the equation 
Pu = / does not have a solution u E ~ '  for every ] ~ ~ = C~ ° unless B"  is 
valid. When B"  is not fulfilled for all x in an open non void subset of 12 we 
also show tha t  for some / ~  C ~ (12) the equation Pu = /  cannot be solved 
anywhere in 12. This extends Lewy's  result mentioned above. 

In  section 4, Theorem 4.3, we prove sufficient conditions for a differential 
operator to be of principal type. We then have to use a condition which is 
stronger than  B"  but  weaker than  B'.  In  the first order case it is very close 
to B",  however. 

After a preparatory discussion in section 5 of some normed spaces of 
distributions, we show in section 6 tha t  the L 2 norms in (1.3) may  be replaced 
by  such norms if P is of principal type with coefficients in C ~. I n  section 7 
this leads to the result t ha t  every point in 12 has a neighbourhood 12~, depending 
on the integer/c ~ 0, such tha t  there exists a solution of (1.1) with all deri. 
vatives of order g /c ~- m - 1 in L ~ (12~) if the derivatives of f of order ~ ]c 
are in L2(12~). The method is an improvement  of tha t  used in [4] to s tudy 
distribution solutions of formally hypoelliptic equations. 
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2, Necessary conditions for an operator to be o~ principal type 

In  this section we shall first prove that  B"  is a necessary condition for (1.3) 
to hold. In  order to simplify the notations we always assume that  the point x 
which occurs in B"  is the origin. Thus we assume from now on t h a t / 2  is a 
neighbourhood of 0. For  the sake of brevity we also introduce the notation 

ll ll = ti-  

Lemma 2.1. Suppose that  there exists a function u ~ C ~ (D) such tha t  

(2.1) ~p(x, gradu) = o([x[~), x-+ 0 .  

Assume further tha t  u has the Taylor  expansion 

n l n n 

( 2 . 2 )  2 ( X )  = i S 1  Xt~t-~ "2~1 $1 ZfXrzgik "~- O(IX[3) 

where ~¢ are real and satisfy 
~t 

(2.3) Z 10P( 0, ~)/0~t2# 0 ,  
1 

the matr ix ~j k is symmetric and the matrix Re ~j k is negative definite. If  P has 
continuous coefficients we then have when v C C~ (/2) 

(2.4) supllvllm-dilP(x, D)vl l  = ~ 

Hence (1.3) does not hold for any constant C even for fixed 8 when xo= 0. 
Proo/. First note tha t  since Re a j ,  is a negative definite matrix, it follows 

from (2.2) tha t  
n n 

Reu(x)  = ~  xJx ~ Re~j~+ 0(lxla ) ~ - 2 a [ x l ~ +  O(Ix13), 
1 1 

where a < 0. Hence 

(2.5) Reu(x) < -alx[~ 
for sufficiently small Ix I. Replacing if necessary/2 by a smaller neighbourhood 
of 0, we may assume tha t  (2.5) is valid in the whole of /2 .  Then the function 

v t=  ~0e ~u , 

where ~ ~ C~ (O), t > 0, is in C~ (O) and (2.5) gives 

lv,l ~- Ivle-o'I~l'. 
Our aim is to show tha t  

l l v d i , - d ! [ P ( z , D ) v , [ l ~ o o  as  t ~ .  

This will prove (2,4). 
We can write 

~t 
P(x ,  D)vt= et" ~ ~. a~t~ 

0 
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where aj are functions of x. We only need to compute am and a~_ v Leibniz' 
formula gives 

= y ,  D~o P(~)(x, D)e TM P ( x , D )  (ge ~ )  ~ I~1! 

where 
P(~) (z, C) = a~e(~ ,  C)/0C~...  0C~, k -- N .  

Introduce ghe decomposition 

P(x,  D) = p(x,  D) + q(x, D) + r(x, D) 

with 20 and q homogeneous of order m and m - 1, respectively, and r of order 
< m - 1. Then the coefficients of e~'t " and e*~'t m-1 in 

(2.6) f°P( x, D) e~'+ DJtPP(J)(x,D) + 9q  (x, D) e ~ 

are also am and am-v (We use the notation j for the multi-index of length 1 
consisting only of the index ].) We therefore get 

(2.7) am= i -m fplo (x, gradu) , 

and 

{4 } (2.8) am-1 = i -m+l Ditop(~) (x, gradu) + io(q(x, gradu) + im-Xa) , 

where a is a continuous function depending on the coefficients of p and on u. 
The hypothesis (2.1) gives in view of (2.7) 

(2.9) a,~(x) = o(1~1~), x - -  0 .  

We now choose io so tha t  ~ (0) = 1 an4 

X DJf0(0) ~°(J) (0, ~) + fP(0) (q(0, ~) + a(0)) = 0 .  
1 

This is possible in view of (2.3). The continuity of a m_x then gives 

(2.10) am_l(x) = o(1) ,  x - ~ 0 .  

Take a positive number e and choose a neighbourhood U of 0 such that  

la~(x)l< elxlL [am-l(x)l< e ,  X E V .  

Using (2.5) we then obtain with a constant O 

IP(x, D)v, I ~_ tm-~(~tl=l,+ ~ + o/¢)e-,°t~l', ~ e u .  
I'IenoA) 

f iP(x, D)v, l 'dx < t 2 " - ' f  (ettxiz+ e + O/t) 'e- '*,I, i 'dx 
g 

= t z " - z -"]%zf  ( I z l ' +  1 + C,]te)~e-Uai't'dx. 
The integral converges to 

n ' =  f ( lx l '+ 1),e-~.t~f'ax 

when t ~ oo. Hence we have for largo t 

f [P(x, D)v, l 'dx < t ~ m - a - n / 2 2 B Z e ~ .  
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Since (2.5) also gives 

f ]P(x ,  D)v t [~dx  = O(t~me -2o')  
CU 

for some c > 0, it follows for sufficiently large t tha t  

(2.11) f I F ( x ,  D)v~]~dx <= 4B~t~ '* -2 -n /~e  2 . 
~2 

Next we estimate IIv~llm_l from below, which is much easier. Note tha t  it 
follows from (2.3) tha t  ~ ± 0 if m > 1. In  tha t  case we may  thus assume for 
example tha t  ~1~ 0. Consider 

D ~ - l v t =  ( q ~ ( D l u ) m - l t m - l  ÷ " " .)e ~ . 

(When m = 1 we should read 0°= 1 here.) Since ~(0) (D~u(0)) ~ - ~ =  ~ - 1 = ~  0 
we have 

Ivl [nlul ->>: 2c > o  

in a ~/eighbourhood of 0. Since R e u ( x ) =  O (]xI~) we have Reu(x)  => - A  Ixl 2 
for some A > 0 so we get for sufficiently large t when x is in this neighbourhood 

ID~-Xvt l  >= t , , - l c e - t A l ~ [  ~ " 

Hence it  follows for large t tha t  

(2.12) I]vd]2_l >= ]lD~-ivt[] 2 >= f t ~ m - 2 c 2 e - 2 t A [ x l ' d x  = B2t  2m-2-n/2  , 
tlxl'< ~ 

where B 1 is another constant =~ 0. 
Combining (2.11) and (2.12) we obtain 

lim ]IvtHm_~/fIp(x, D)vt] ] >= B ~ / 2 B e .  
t -.-> o o  

Since e is an arbi t rary positive number, it follows tha t  

lim Hv~]im_l/liP(x, D)vtll = ~ , 
t - - - )  o o  

which completes the proof. 
We shall now study the condition (2.1) further. 

Lemma 2.2. Assume tha t  the coefficients of p are in C ~ at  0 and tha t  (2.3) 
holds. Then (2.1) can be fulfilled by  a function u ~ C ~ ( ~ )  with the Taylor 
expansion (2.2) if and only if 

(2.13) p(0 ,  ~) = 0, 

(2.14) ~ aj~p(k)(0, ~) = -- ip~(O,  ~) , i = 1 . . . . .  n ,  
1 

where 

(2.15) p~(x ,  ~) = ~ p ( x ,  ~)/axJ . 

Proof .  I f  u E C ~ (~)  it is clear tha t  (2.1) is fulfilled if and only i f p ( x ,  g radu)  
and its derivatives of order ~ 2 vanish at  0. The equations (2.13) and (2.14) 
express the vanishing of p ( x ,  gradu) and its first derivatives at  0. Hence it  
only remains to prove tha t  the second derivatives of p (x, gradu) will vanish 
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for a suitable choice of the third derivatives of u, if (2.13) and (2.14) are 
valid. However, in view of (2.3) which shows the existence of non characteristic 
planes through 0 this follows trivially from the Cauchy-Kovalevsky theorem 
if we replace the coefficients of p by  their Taylor  expansions of order 2 at  0, 
and this does not change the condition on u. 

The existence of a matr ix  ~Jk satisfying the requirements of Lemmas 2.1 
and 2.2 is examined in the next lamina. 

Lemma 2.3. Given two vectors (a 1 . . . . .  a~) and (fi . . . . .  /n) with complex 
components and some aj. :# 0, there is a symmetric matr ix  ~jk with negative 
definite real par t  satisfying 

n 

(2.16) ~ ~k ja j=  ]~, k =  1 . . . . .  n ,  
1 

if and only if 

(2.17) R e ~  " / ~ <  O. 
1 

P r o @  a) (2.17) is necessary. In  fact, multiplying (2.16) by  5k and adding, 
we get by using the symmet ry  of %. k if aj = bj ÷ ic i 

n n ~ 

1 1 1 1 1 1 1 

Since R e ~ ,  is negative definite and the real vectors (b I . . . . .  bn) and (c 1 . . . . .  c~) 
are not both zero, we get (2.17). 

b) (2.17) is a sufficient condition. We have to separate two cases. 
bl) a is proportional to a real vector. Multiplying a and [ by the same 

complex number we may  assume tha t  a is real. Writing z( = fl + i ~,, [ = g + i h  
with real fl, ~, g, h, (2.16) becomes in matr ix  notation 

fla=g, ~,a=h. 
I t  is obvious tha t  there is a real symmetric  matr ix  y with y a  = h. Write 
g = gl + a (g, a)/2 (a, a). We then have (gl, a) = (g, a)/2 < O, hence the matr ix  
fl defined by  

f i x =  (g,a) (x, gl)_ 2(a,a) X - ~ - ~ - y l  

is immediately seen to be negative definite, and since it is obviously symmetric  
it has the required properties. 

b2) a is not proportional to a real vector. We shall prove tha t  

Re (/, a) 
O~ (a, a) I -~- i 

for some real ~ has the required properties. Here I is the identi ty matrix.  
The condition on y is 

(2.1s) i ra = h 
where 

~(l ,  a) 
h =  l (~, ~) a 
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has the property 

(2.19) Re (11, a) = 0 .  

To prove that  such a matrix ;C exists we note that  the set of vectors in C ~ 
which can be written i ;ca with some real symmetric ;C is a linear set (with 
respect to real scalars). The equation of a plane containing this set can be 
written 

Re(z, g) = 0 

with some g E C ~. For every ~ ( R n the matr ix defined by  y x  = ~(x, ~) is real 
and symmetric, and ;ca = 4(a, ~). Hence we must  have 

Rei(4,  g) (a, 4) = 0 

so tha t  (4, g)(a, 4) is always real. Since a is not proportional to any real 
vector it follows that  g is a real multiple of a. Hence the equation Re(z ,g )=0  
is a consequence of the equation Re (z, a) = 0. In  view of (2.19) we can thus 
find a real symmetric matrix ;C so that  (2.18) is valid. The proof is complete. 

We shall now combine Lemmas 2.1, 2.2 and 2.3. Set 

G,m_l(x, 4)= 2 R e ( ~  - ip j ( x ,  ~) ~(J) (x, ~)t 
(2.20) \ 1  / 

=~,  i(p(J)(x, 4) E ( x ,  ~) - p~(x, ~) ~(J)(x, ~)), ~ E R~. 
1 

Theorem 2.1. Let  the coefficients of P(x, D) be continuous and those of p 
be in C ~. Suppose tha t  

(2.21) Huli,~_l g CHP(x, D)uII , u C C~(~2). 

Then we have 

(2.22) C2m_l(x,~)=O if T ( x , ~ ) = O , x ~ L 2 , ~ E R  n. 

Proo]. We may assume that  x = 0. In  proving (2.22) we may also assume 
that  (2.3) holds, for (2.22) is trivially satisfied otherwise. Lemmas 2.1 and 2.2 
then show that  the equations (2.14) cannot be fulfilled by a symmetric matrix 
with negative definite real part, hence Cz,~_l(x, 4) >= 0 in view of Lemma 2.3. 
Replacing ~ by - ~  we get C2~_l(X,-~) > 0 and since C2~_ 1 is an odd 
function of ~ it  follows that  C~,~_l(x, 4) = 0. The proof is complete. 

Corollary. Given a homogeneous differential operator p(D) of order ra 
with constant coefficients, the inequality (1.3) holds for all homogeneous 
operators p(x,  D) of order m with t~(xo, D)= :p(D) and coefficients in C a, if 
and only if p(D) is elliptic. 

Proo]. That  ellipticity is sufficient follows for example from FB~m~ICHS [2] 
(or H6mv~Al~l)mt [4]). We can then even sum for la] ~ m in the left hand side 
of (1.3). To prove the necessity we note tha t  (1.2) must be valid in view of 
Theorem 2.3 in H6RMANDER [3] (see also Theorem 2.2 below). The condition 
in Theorem 2.1 can then only be void if p(~) does not have any real zero. 
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We shall now show tha t  C2m_ 1 is in fact  the principal par t  of the com- 
muta tor  ~ p -  p~ .  Thus we now assume tha t  the coefficients of p are in C ~ 
so tha t  this commutator  is defined. Write 

p(x, D) = ~ a~,(x)D~, '~(x, D) =- ~ g~(x)D~. 

Leibniz' formula gives 

~(x, D) p(x, D) = Z" 1)~a~ (x)/lPt ! "~) (* ,  1))D~. 
a ,  fl  

Terms of order 2m occur only when [8] = 0, their characteristic polynomial 
is ~(x, ~)p(x, ~). Terms of order 2m - 1 occur when [fll = 1; their charac- 
teristic polynomial is thus 

n n 

X X (D~aAx))~(~(x, ~)~= - iZpj(*,  ~)~(J)(x, ~). 
]~t=m j=l 1 

Repeating the argument  with p and ~ interchanged and subtracting the 
results, we find tha t  ~(x, D) p(x, D) - p(x, D) ~(x, D) is of order 2m - 1 and 
tha t  its principal par t  has the characteristic polynomial C2~_ 1 (x, ~). 

Even if the coefficients of p are only continuously differentiable we can 
show tha t  C,~_ 1 is the principal par t  of the commutator  in a weak sense, 
namely 
(2.23) (p(x, D)u, p (x, O)v) -- (l~(x, D)u, ~(x, D)v) -~ z~ w (c~(x)D~u, D~v) , 

when u, v ~C~ ° (~).  The indices in the sum satisfy i~] + = 2 m  - 1 ,  < m, 
Ifl[ ~ m; c ~  are continuous and we have 

(2.24) C2,,_ 1 (x, ~) = z~ %~(x) ~ .  

To prove this we s tar t  f rom the formula 

(T(x, D)u, la(x , n)v) =. X X (a~D~u, a~D~v) . 

We integrate by  parts,  first shifting one of the derivatives in D~ from v to u, 
then one of the derivatives in D~ from u to v and so on. In  doing so, we will 
of course also differentiative a coefficient sometimes. As soon as we get a te rm 
where a coefficient is differentiated, however, we do not perform any more 
integrations by  parts  in tha t  term. I t  is clear tha t  this procedure will give 

(p(x, D)u, p(x, D)v) =- X (a~D~u, a~Dc, v) A- X (c~,~D~u, Dt~v) , 
¢t , f l  

where one of the multi-indices g and fl in the last sum has length m and the 
other length m -  1. The first t e rm in the right hand side is obviously 
(~(x, D)u, p(x, D)v). The coefficients c ~  are linear combinations of products 
of a coefficient a r or 5~ and a first derivative of another. To prove (2.24) we 
first notice tha t  we have in fact already proved this formula when the coeffi- 
cients ar are in G ~. Since (2.24) is an identi ty involving the coefficients and 
their first derivatives it must  thus be valid in general. 
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Remark. The coefficients c~# are b y  no means intrinsically defined. The 
proof above m a y  also lead to different values depending on the order in which 
the integrations by  par ts  are performed. 

We finally verify the necessity of condition A. 
Theorem 2.2. Suppose t h a t  P(x,  D) has continuous coefficients and  t h a t  

(1.3) is valid. Then  

(2.25) ~ lap(xo, ~)/a~jl~:~ 0,  0~: ~ ~R~. 
1 

Proo/. We m a y  assume t h a t  x0-- 0. Let  U ~ C~ ° (~1) and put  

u~ (x) = ~ -~-~/ '~  U (x/~) 
into (1.3). We have u~ E C~ (Y2~) and, if I~I = m - 1, 

D~u 6 (x) = (~-"/~ (D~, U) (x/(~) . 

Hence a subst i tut ion of variables gives tha t  ]ID:,u~]] ~ IID~U]I when ~-~ 0. 
Fur the r  we have 

~P(x ,  D)uo= z~ a~(x) ~-t=i~-n/2(D~U) (x/~) 
o~ 

and after  a subst i tut ion of variables we obtain 

liaR(x, D)u~n -~ lip(O, D) v i i ,  ~ -~ o .  
Hence 

z., ~ liD~UH 2 = < CotlP(O,D)Uii ~, U EC~(~O~) 

and the proof of Theorem 2.3 in HSRMA~D]~R [3] thus shows tha t  (2.25) holds. 

3. The first order case 

W h e n  m = 1 we shall now establish an  improved version of Theorem 2.1. 
The na ture  of the  improvement  is t h a t  we disprove a p roper ty  similar to  (1.3) 
bu t  with a weaker norm in the left hand  side and a stronger in the r ight hand  
side. This will give us a generalization of the result of LEwY [5]. I n  ana logy 
with L e m m a  2.1 we first prove 

Lemma 3.1. Suppose t h a t  the  coefficients of the first order operator  P (x, D) 
are analyt ic  and  t h a t  there is a solution u of the  equat ion 

(3.1) :p(x. D ) u  = O,  x ~ .('2, 

which satisfies at  0 the same assumptions as those made in Lemma 2.1. Then 
we can find functions vt~ ~ ( ~ ) ,  depending on a real parameter  t > 0  so t h a t  

(3.2) P(x,D)vt-+O in  ~ ( f 2 )  as t -+oo 

bu t  for some / E ~ ( ~ )  

(3.3) ~ l f  / v ~ d x l  = o~ . 
1--¢* OO 

Hence vt does not  coilverge to  0 in ~ '  (f2) as t -+  oo ~). 

~) In this section we use the notation ~(f~) for the space C~ (~) with the pseudo- 
t~pology of S~AI~TZ and ~ '(Q) for the space of distributions in D, that is, the linear 
forms on ~(~)  which are continuous for the pseudotopotogy. We refer to SCHWARTZ [6] 
for the basic definitions and results. 
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Proo]. Writing 
n 

P(x, D) = ,~, aJD~+ q 
1 

we choose a function ~ ~ C~°(~2) such tha t  ~(0) = 1 and 

(3.4) P(x, D) =:~  aJDj~ ÷ q~q = 0 
1 

in a neighbourhood U of 0. (In the proof of Lemma 2.1 we only needed (3.4) 
when x = 0.) This is possible since the equation (3.4) can be solved in a neigh- 
bourhood of 0 in virtue of Cauchy-Kovalevsky's  theorem and (2.3); multi- 
plication by a function which is in C~ in that  neighbourhood and equals 1 in 
another ncighbourhood of 0 gives a function with the desired properties. 
(The assumption tha t  the coefficients are analytic and not only infinitely 
differentiable is only used here.) (2.5) gives with a constant c > 0 

(3.5) R e u ( x ) < - 2 c ,  x ~ C U .  

Now set 

(3.6) vt = Te ~ (~+c). 

Using (3.1) and Leibniz' formula we obtain 

P(x ,  D)v~= (P(x, D)cf)e~(u+c). 

This function vanishes in U and its support  is always contained in tha t  of ~. 
Since u ÷ c-<_ - c  in C U  it follows immediately tha t  P(x, D)vt and all its 
derivatives tend to 0 uniformly when t -~ ~ .  Hence (3.2) is valid. 

I t  is sufficient to prove that  there exists a function / E C °~ (f2) such tha t  
(3.3) is valid. In  fact, if g C C~ (~)  equals 1 in the support  of ~ we then only 
have to note tha t  Z/C C~ (~) and tha t  

f / v~dx  = f (Z/)v~dx 

so tha t  {3.3) holds with / replaced by  X/. We shall construct a function for 
which (3.3) holds and which is contained in the space F of all / ~ C ~ (~)  such 
tha t  
(3.7) sup ]DJI  < 

for every ~. The topology in F is given by  the semi-norms on the left hand 
side in (3.7). I t  is obvious tha t  F is a complete metrizable space, hence an 
~(espace tonnel6>> in the terminology of BOURBAK~ [1], pp. 1--2.  

Now suppose tha t  the assertion of the theorem were false so tha t  the 
integrals 

(3.8) f / ~ e ~ (u + c) d x 

are bounded as t -> ~ for all / ~ F.  According to Banach-Steinhaus'  theorem 
(see BOURBAK[ [1], pp. 64--65, Proposition 1 and Th~or~me 1) this implies 
that  the functionals (3.8) on F form an equicontinuous set in F', hence are 
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all _~ 1 for every ] in a neighbourhood V of 0 in F.  I n  other words, there 
exists an integer N and an e > 0 such tha t  

lf lve,(,,+o),/.~: i < 1 i f  sup lDd l  < ~, loci < .Y- 
,.Q 

(3.9) 

Hence 

(3.10) If l~e*(.+~)dxl ~ ~-~ sup tDj(~)I,  I E ~ ,  

in view of the homogenity of the inequality. 
Now take a function i~ E C~ (R") and put  

/~(x) = tn~'(tx). 
I t  is obvious tha t  

(3.11) e -1 suplDJ, I ~ Ct "+N, la[ _ N, t >_- 1 . 
D 

Further  a substitution gives for large t 

f l~cpe~("+c)gx - - - -  f Y ( x )  q~(x/t)et("(~/o+~)dx. 

When t -~ ~ we have ~ (x[t) -~ 1 and tu (x/t) -+ i <x, ~> uniformly in the support  
of Y. Hence 

(3.12) f [~cpe~(u+")dx-~ e~c(f F(x)ei(~,~)dx + o(1)).  

I f  we choose F so tha t  fF(x)d<x,~)dx=~ O, (3.12) and (3.11) give a contra- 
diction when combined with (3.10). Hence (3.3) is valid for some [ E Y and thus 
for some [ E ~ (~). The proof is complete. 

As in section 2 we denote the first order par t  of the commutator  of ~ and p 
by  C r 

Theorem 3.1. Suppose tha t  the coeffieien~ of P are analytic and tha t  the 
equation 

(3.13) P(x, D)u = 

has a solution u E ~'(Q) for every [ E ~(~2). Then 

(3.14) C ~ ( x , ~ ) = 0  if p(x ,~)=O,  xE~,~ER'* .  

Proo]. Assuming tha t  (3.14) is not valid we shall find a function ] E ~( f2 )  
such tha t  (3.13) has no solution in ~ '  (~2). I f  (3.14) is not  valid we may  assume 
tha t  i t  fails to hold when x = 0 E ~ ,  and since C 1 is an odd function of ~ we 
can then find ~ E R ~ such tha t  

l,(o, ~ )=  o ,  o~(o, ~)< o .  

I n  virtue of Lemma 2.3 this shows tha t  the equations (2.13) and (2.14) can be 
satisfied with a symmetric matr ix  ~ with negative definite real part .  Since 
C~(0, ~ ) <  0 the coefficients a t do not all vanish at  0. Hence the Cauchy- 
Kovalevsky theorem proves the existence of a solution of (3.1) satisfying the 
assumptions of Lemma 3.1 a t  least in a neighbourhood ~x C ~2 of 0. (See the 
proof of Lemma 2.2.) 
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Let  Pt  be the formal adjoint of P defined by 

f (Pu)v  dx  = f u(ptv)  dx, u, v E ~ ( ~ ) .  
We have 

n 

1 

so tha t  -- pt  has the principal part  p. Hence Lemma 3.1 shows tha t  for ~ > 0 
there are functions v~ in ~(~1) ,  such that  

Pt(x ,D)%-+O in ~ ( ~ 1 ) , ~ - + ~ ,  
but 

for some ] E ~(f21). We claim that  the equation P u  = l has no solution 
~t E ~ '  (Q). For suppose it had. Then 

f ]v, d x =  (Pu) (v~) =u(Ptv~)-+O , 1:-+oo , 

which is a contradiction. The proof is complete. 
Our next  aim is to show as L r w r  did in his example that  the equation 

(3.13) may  fail to have a solution anywhere. 
Theorem 3.2. Suppose that  the coefficients of P are analytic and that  

(3.14) is not valid for any open non void set wC ~ when x is restricted to oJ. 

Then there exist functions ] E B ( ~ )  such that  the equation (3.13) does not  
have a solution u E ~ '  (co) for any open non void set wC Y2. The set of such ] 
is of the second categorya). 

Proo]. a) I f  co is a fixed open non void subset of ~ we shall first prove 

that  the set M of functions ] E J~(~) such that  (3.13) has a solution in ~'(oJ) 
is of the first category. Let  oJ 1C o~ be open, non void and have compact closure 
contained in o~. Every  distribution u in to then satisfies for some integer N 
the estimate (ScHw~Tz [6], Chap. I I I ,  p. 83) 

(3.15) I,,(~)1 -~ N S suplD=~l, ~o ~(co~) .  
i~,t<~ 

The set Mz¢ of functions I in /~(~) such that  P(x,  D)u = l in eel for some 
u E ~ ' (oh)  satisfying (3.15) is closed, convex and symmetric. That  M N is 
convex and symmetric is obvious. To see that  M~ is closed we only have to 
note tha t  the set of distributions satisfying (3.15) is compact for the weak 
topology in ~'(eo~). In  fact, let /~E M~, that  is, ] j =  Pu~ in o~ for some 
u#E~'(eox) satisfying (3.15). We can find a weak limit u of u# and u also 

satisfies (3.15). If /¢-+ / i n / } ( ~ )  we get / = P u  in cox so that  f E M~v. 
M~, cannot have any interior point. For  Theorem 3.1 with ~ replaced by c9~ 

shows tha t  there is a function ~ E ~(~o~) such tha t  tg ¢ M~v when t =~ O. I f  ] 
were an interior point of M~v we would have ] + tg E M~v for small t. Since 

~) B (D) denotes the set of all infinitely differentiable I in ~ such that to every a and e 
there is a compact set KC ~ so that IDa, It < e in CK. This is a complete metrizable 
space with the topology defined by the semi-norms sup,D~l I. 

Math. Ann. 140 10 



136 LARS HSRMANDER: 

- - / E M t v  and M,v is convex this implies tha t  (1 + t g - / ) / 2  = tg/2 E M~v, 
which is a contradiction. Since M~. is closed and has no interior point, the set 
O M~, is by definition of the first category and since M ( O #l,v it  follows 

that  M is also of the first category. 
b) Let  o~ be a countable basis for open subsets of ~ ,  none of them void. 

For  example we may take all open spheres with rational radius and centre 

contained in ~ .  Denote by M(J) the set of functions / E/}(Y2) such tha t  (3.13) 
has a solution in ~ '  (o~j). From a) it  follows that  Me) is of the first category. 
Hence O M(J) is also of the first category. Take / ~ (J M(J). Then the equations 
(3.13) cannot be solved in any w~. If co is an arbitrary open non void subset 
of co, we have o~j ( eo for some ~. Thus the equation (3.13) cannot be solved in co. 
This completes the proof. 

Lewy's example corresponds to (n = 3) 

p(X, ~) : --i~1~- ~2-- 2( xl-~ iX2)~3 " 

We get Cl(x, ~) = -8~a .  Since p(x ,  ~) -~ 0 if ~3 = 1, ~ =  - 2 x  2, ~2= 2x~, the 
condition (3.14) is not valid for any x ~ R n. Hence the hypotheses of Theorem3.2 
are fulfilled with ~ = R n. We may notice that  Theorem 3.2 gives a stronger 
result than L ~ w r  [5] who only gave a function / ~ C ~ (R n) for which (3.14) 
does not have any solution with HSlder continuous first derivatives in any 
open set. 

4. Sufficient conditions for an operator to be of principal type 

We first prove an estimate which follows from the methods used in 
Chapter IV in [3]. However, in the proof we shall use a simphfied form of the 
arguments of [3] which has been given by TROves [7]. The simplification 
consists in a direct proof of the inequalities found in [3] by  systematic use of 
the energy integral method. 

Theorem 4.1. Let  the coefficients o fp (x ,  D) be in C I and assume that  (1.2) 
is fulfilled. Let  ~ be the sphere (x; tx - xol < ~}. Then there exist constants 
C o and ~0 > 0 such tha t  if J < ~o 

(4.1) X 5~(!~I-~)lID~ull~ <= Co(llp(x ' D)uIl~÷ lip(x, D)uII2), u ~ C~ ( ~ ) .  
la I < m 

Proof. We start  by  noting that  Leibniz' formula gives 

p(x ,  D) (i zku) = i x~p(x, D)u  + p(k) (x, D)u  . 

Hence, writing (/, g) = f / ~  dx,  

(p(~) (x, D)u, p(k)(x, D)u) = (p(x,  D) (ix~u), p(k)(x, D)u)  - 

- ( ix~p(x,  D)u,p(k)(x,  n )u ) ,  u ~ C~(O~).  

Let  x0= 0. Using Cauehy-Schwarz' inequality and the inequality Ix~l < ~ in 
~ ,  we obtain for u E C~ (96) 

(4.2) lip(~) (x, D) ult* < P~(p (x, D) (i x ~ u),p(k) (x, D) u) + ~ HP (x, D) u H lip(k) (x, D) ull. 
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In  order to study the first term on the right we have to shift the operators p 
and p(k). To do so we need the following lemma. 

Lemma 4.1. Let p and q be homogeneous differential operators of order m 
and m - 1 respectively, both with coefficients in C1(~2). Then we have when 
u, v ~ C~ (£2) 

(4.3) (p(x, n)v, q(x, n)u) = (~(x, n)v, p(x, D)u) ÷ ~ (c:,~D~,v, D~u), 
I~i = l~i = m-i 

where c~  are continuous functions. 
Proo/. Writing p(x, D) = ~ a~(x)D~ and q(x, D) = ~ b~(x)D~ we get 

]~1 =m k~l=m-1 

(p(x, D)v, q(x, D)u) = S (a~D~,v, b~D~u) . 

We integrate by parts here, first shifting one of the derivatives in D~ from left 
to right, then one of the derivatives in D~ from right to left and so on. In  doing 
so we will of course also differentiate a coefficient sometimes. However, the 
term which then appears contains derivatives of u and of v of order m -  1 
and we do not operate again on such a term. I t  is clear that  this procedure 
will give 

(p(x, D)v, q(x, n)u) = ~ (a:,n~v, b~D~u) -~- ~ (c~,~n~v, D~u) 
{~t =t~i =m-1 

The functions %a are linear combinations of products of coefficients in p and 
in ~ and their derivatives, hence continuous. Since the first sum on the right 
is obviously equal to (~(x, D)v, if(x, D)u), the lemma is proved. 

I t  should be noticed that the proof is only a less precise form of the arguments 
concerning C2m_ 1 given after the corollary to Theorem 2.1. 

Completion o/ the proo/ o/ Theorem 4.1. We can now study the first term 
in the right hand side of (4.2) using Lemma 4.1 with q = p(~). With the notation 

lul~ = S IlD~ull ~ 
i~l = k  

this gives with constants C 1 and C z 

(4.4) Re(p (x, D) (i x~u), p(~) (x, D)u) <= R~ (~(k) (x, D) (i x"~), ~(x, D)u) + 

"~- CllUIm--I[XkU[m--1 ~ C2([IP(x,D)uli + [U[m--1)((~]Ulm--l~-l/l~--~)' U ~ ~ (~) 
since ~(k) (x, D) (i xku) : i xk~(k) (x, D)u q- ~(kk) (X, D)u. (We suppose in (4.4) 
that  ~ is bounded from above, for example ~ < 1, in order to possess a bound 
for the coefficients of p and of the coefficients c~  in Lemma 4.1.) Pu t  (4.4) 
into (4.2) and add for all k. This gives with a constant C (from now on C will 
denote different constants at different occasions) 

(4.5) ~ lip( k)(x, D)ull ~ < 
1 

We now use the classical inequality (see [3], p. 246) 

10" 
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This gives when combined with (4.5) 
n 

(4.'7) Z lip ('~) (~, D)ult" 
1 

O~(llp(~, D)ull + liP(x, D)',.,II ÷ I'll,n-,) lul,,,-,, ',, ~ C'~ (..Q~,). 
To prove (4.1) it only remains to show that 

(4.8) I'~IL-:,. ~ o X  lip( '~ (,~, D)ull '~, u ~ ~ ( ~ , )  
1 

if ~ _--< ~.  For combined with (4.7) this gives 

lul,,,,- ., ~ C',~(llp(x, D)ull + II:~(x, D)utl + lul,,,-1) 

and together with (4.6) this proves (4.1) when ~ < min(~, 112C). 
The inequality (4.8) follows from the fact that (1.2) holds when x0= 0. 

In fact, for homogeneity reasons (1.2) implies that 

n 

I~1 ~(~-1) _ O Z  Ip(k)(0, ~)t n, ~ ER". 
1 

Multiplying by [/~ (~)1 ~ and integrating we get from Parseval's formula 

n 

lul~-~ <: o X  IIp(~)(0, D)ull ~, u ~ Co(Rn).  
1 

Hence 
n 

I~1~.,-~ _~ c Z  lip(~) (x, D)u ÷ (:p(k) (0, D) - p(k) (x, D))ul[ 2 ~ 
1 

< 2 c  Ilv (~) (~, D)ul l '+  Z" II @(~)(0, D) - -  p(k)(x, D))ull ~ . 
1 

Since the coefficients of p(k)(O,D)--p(k)(x,D) are O([x]), this gives with 
another C 

When C~2< 1/2 we get with the same C 

tu l ; - ,  ~_ 2 v Z  IIp(~)(~, D)ull', u ( o~ (~ , ) ,  
1 

and (4.8) is proved. This also completes the proof of Theorem 4.1. 
Theorem 4.1 shows that p will be of principal type as soon as it is possible 

to estimate ~u in terms of T u. Before proving such results we give a simple 
av~liary theorem. 

Theorem 4.2. Let  P ( x , D )  be of principal type and have continuous 
coefficients. Then any other operator with the same principal part and con- 
tinuous coefficients is also of principal type. 
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Proo/. If (1.3) is valid and r is of order < m and has continuous coefficients, 
we get for ~ < ~o 

X ~([~l-m)][D~ull ~ - C0]lP( x, D)ull ~ ~- 2Co([](P(x, D) + r(x, D))uH~+ 
I~l<m 
+ Hr(x, D)ul]~ ) ~_ 2C0l [ (P(x, D) + r(x, D))u]l a + G X JJD~ul[ 2, u < C~ ( ~ ) .  

I~2 < m 

When 6 is so small tha t  ~2C< 1/2 and 6 <  rain(l ,  ~o), we get 

,~ 8*(l~i-~)liD~utl 2 g 4Coli(P(x, D) + r(x, D))ull 2, u E C~(D~). 
}~,l < ,a 

Hence P + r is also of principal type. 
Theorem 4.3. Let  P(x, D) be an operator with continuous coefficients and 

the coefficients of the principal part  p (x, D) in C a. Assume tha t  (1.2) is valid 
and that  

(4.9) C~m_l(x, ~) = ~(x, ~) p(x,  ~) + ~(x, ~) p(x ,  ~) 

where q(x, ~) is a polynomial in ~ of order m - 1 with coefficients in CL Then P 
is of principal type a). We also have with a constant C when ~ < (~0 

(4.10) ~-~l[p(x, D)u]l < ll~(x, D)ull g Clip(x, 1))ull, u ~ C ~ ( ~ ) .  

Proo/. Theorem 4.2 shows that  it  is sufficient to prove the theorem wl~en 
P = p. Also note tha t  the inequality (4.10) implies (1.3) in view of Theorem 4.1. 

To prove (4.10) we use the identi ty 

(2.23) ~p(x, D)u]l ~- H~(x, D)ult~= X X (c~D~u, D~u), u E C~(~) 

where c~  are continuously differentiable and 

(2.24) ~ ~ c ~ ( x ) ~ =  C~m_~(x, ~). 

Using this identi ty and (4.9) one can prove that  

(4.11) IX (c~D~u,D~u) - (p(x,D)u, q(x,D)u) - (~(x,D)u,~(x,D)u)l ~_ 

where G is a constant. We postpone the proof for a moment in order to prove 
first tha t  (4.10) follows from (4.11). Using (4.11), (2.23) and the inequality 
between geometric and arithmetic means, we obtain 

}lip(x, D)u}['- }]p(x, D)ullal ~ G]ul~m_~ + ½- (lip(x, D)ult'÷ lt~(x, D)ult'÷ 

+ liq(x, D)u[l'+ lii(x, D)uli' ) , u ( C~. 

Since q is of order m - 1 this gives with another constant C for u ~ G~ 

(4.12) tl~(~, D)uli ~ -~ Clul~-~ + allP(x, D)~I}', 
(4.13) }i~(~, D)ull ~ g Vlul~-., + all~(~, D)~lt". 

~) Since (1.3) is valid for elliptic operators, with summation over all ~ with t~} <= m, 
it is easy to show that P is also of principal type if p is the product of an elliptic poly- 
nomiual with continuous coefficients and a polynomial with "sufficiently smooth" co- 
efficients satisfying the hypotheses of Theorem 4.3. The proof may be left to the reader. 
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Now (4.1) gives t h a t  

{ut~-i ~_ co~(IIp(., D)ut{~+ {I~(x, D)uiI~), u ~ Co(&). 

Combining this inequal i ty  with the inequalities (4.12) and (4.13) and taking 
so small t ha t  CCoO~< 1/2, we obtain (4.10) with C = 7. 

I t  remains to  prove the estimate (4.11). The proof is somewhat  complicated 
by  the fact  t ha t  we have only assumed tha t  the coefficients of q as well as c ~  
are in C 1. If  they  had  been in C ~ we could have integrated by  parts  in (4.11), 
shifting all derivatives to  the left hand  side. The fact  t ha t  

(4.14) ~, ~.," c ~ , ~ =  ~(x, ~) p(x, ~) ÷ q(x, ~) p(x, ~) = C2,~_1(x, ~) 
ct 

would then  show t h a t  the  terms of order 2 m -  1 cancel each other. Shifting 
m -- 1 derivatives back again we would get  an  expression for the quan t i ty  to  
est imate which involves only the derivatives of u of order < m. 

Our weaker smoothness assumptions make a slight modification necessary. 
By  successive integrations by  parts  we shall prove tha t  

(4.15) ZZ(%t~n~,u,n~u)= Z Z  (c*~fD~u,D~u)+ Z Z  (d~n:~u, nzu). 
l a l  = m ,  {ill = m - 1  Ict~ = lfl] = m--1 

Here c*~= 0 unless ~1 < a= < • • - < o~m < fll < " " " ~< f l~- , ,  and the coeffi- 
cients c~*~, d ~  are all continuous. Further ,  we have 

(4.16) 2~ ,U c*e(x)~:~= c2~_~(x, ~). 

To prove this we consider one of the terms (%~D~u, D~u). One of the multi- 
indices ~ and fl is of length m and the other  of length m -  1. We shift one 
differentiation from the side involving a differentiation of order m to the other  
side. The te rm which then appears when a coefficient is differentiated is 
immedia te ly  included in the last sum in (4.15). Wi th  the other  te rm we repeat  
the same procedure. After  a finite number  of steps we can of course arrive 
a t  a sum of the  same form as the  last sum in (4.15) added  to  (%~D~,.u, D~.u), 
where {a*l = m, {fl*i = m -- 1, ~* < :¢~ g - - -  < a~ < fl* < . . .  < fl;~-I and 
(~*, fl*) is a rearrangement  of (:¢, fl). This gives (4.15) and  (4.16), by  using 
(2.24). I n  view of the normalizat ion of the coefficients c*~ it is obvious tha t  
they are uniquely determined by C~,~_ 1 (x, ~). F r o m  this fact  and (4.14) it follows 
tha t  the same procedure mus t  give 

(4.17) (:p(x, D)u, q(x, D)u) + (~t(x, D)u, p(x, D)u) = z~, (c*eD=u, Dzu) + 

+ X L ~ (~D~u,D~u) 
l <  = {,~{ = m -  x 

with the  same coefficients c*~ as in (4.15) and  continuous %e" Subtrac t ing  
(4.17) f rom (4.15) we obtain  (4.11). The proof is complete. 

Remark. The est imates given in this chapter  are only local. I n  fact,  an  
example showing t h a t  global estimates are not  possible has been given b y  
T ~ v ~ . s  [7], p. 8. 
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5. Some spaces of distributions 

By ~yfs, _ ~  ~ s ~ c~, we shall denote the space of temperate  distributionsu 
such tha t  4 is a function satisfying 

(5.1) i)ull~ = f I~(~)I'-(1 + I~l~) . d ~ <  o~ . 

Clearly ~ f '  and ~ - ~  are dual spaces with respect to a bilinear form extending 
the form f uv dx. I f  s is a positive integer, ~ '  consists of all u ~ L ~ with 
D~u ~ L ~, lo~] ~ s, and the notation tlul[~ coincides with tha t  used in the 
preceding sections. In  particular, ~ - -  L ~. As before we shall write tlutl instead 
of ituII0 for the L ~ norm. Below we shall chiefly use another  norm, equivalent 
to HuI[~, namely 

(5.~)' 

We have 

(5.2) ~ )IDjul)i~÷ e-211u)li, = IIu)l~+ i,~. 
I 

This follows immediately by  computation. 
Next  we shall prove two lemmas concerning the regularization of elements 

in ~ - 8 ,  s > 0. Both are par t ly  contained in [4]. (Note tha t  ~ f -8  was denoted 
by ~ in [4].) Le t  ~ C C~ satisfy the condition 

(5.3) f ~ dx  ~= 0 .  

will be held fixed in the argument tha t  follows. Set 

~(x) = ~-"  cf ( x / e ) .  

Lemma 8.1. For every s > 0 there are positive constants C 1 and C~ such 
that  

(5.4) Viilull~s,,, -<_ s f II~ * ~ l l ' ~ " - '  d~ _< C, flull~ ~ . . . .  ~ ~ ~ - s ,  e0 > o .  
0 

I/C 1 and C 2 are bounded when s is bounded. 

Proo/. Parseval 's  formula gives 

~o 8o 

8 f tfu. ~f~t['e"-'de = f {~(~)I,d~ s f I~ (e~) i2e '* - ' de .  
0 0 

Therefore (5.4) is equivalent to the inequality 

$0 

(5.5) 6'1 ~ ([~[~+ e ~ ) , s f  ]~(e~)]~e~,-~ de ~ C~. 
0 

To prove this inequality we first note tha t  if M is the max imum of t~] we have 

% 

e ~ ' s  f l¢(e~)i~s2"-lde ~_ M2/2. 
0 
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Further,  a substitution in the integral gives 

t t l "  8f ]~(et)pe"-'de < I t l"  s f  l¢(~t) l '~"-~ 
0 O 

0 

where t ' =  t/ l~I is a unil~ vector. The integral when e goes from 0 to 1 is <: M~/2 
and the integral from 1 toc~ is also bounded because ~ ( ~ ' )  tends rapidly to 0 
when ]et'] = ~-~c~. This proves the last inequality in (5.5). 

To prove the first inequality in (5.5) we have to use the assumption (5.3), 
which, means that  ~(0)=~ 0. This implies tha t  there are positive constants 
a and c such that  [~(t)[ > c  when It[ < a. Writing ~ = min(~0, a/l~l) we get 

e 0 

0 0 

The inequality (5.5) now follows with C1= c ~ min(1, a~')/2. 
This lemma is essentially contained in Theorem 7.1 and Lemma 7.1 in [4]. 

We next  pass to an improvement of Theorem 7.2 there, which itself is an 
extension of Friedrichs' lemma [2]. I t  may  be remarked tha t  this improvement 
can be used to simplify the proofs in [4]. 

Lemma 5.2. Let  a ~ C~, 8 > 0. Then there exists a constant C a such tha t  
ea 

(5.6) f l ia(u * % )  - (au) * ~ , i t ' ~ " - ' d e  < ~311uII2-,-~,~o, u ~ ~ - ' - ' ,  ~o< 1 .  
O 

~rhen s is bounded, C a is also bounded. 
Proo]. The Fourier transform of e ' (a(u*~)-  (au)*cA) is the function 

Write 

(5.7) K(~, t ,  7) = ~ ' l ~ ( t  - ~ )11~(~  ~) - ~ ( s t ) l  ( ] ~ t ' + ' +  s ~ ' - ~ ) .  
Using Cauehy-Schwarz' inequality we get 

]F.(t)] ~ ~_ f K(e, t, ~1) d ~ f K (e, t, *1)la(,~)l'/(I,~l'+a+ e~o-')"d,~. 
We shall prove that  

(5.8) 

and tha t  

(5.9) 

Noting that  

f K(e, t, ~)d~ ~_ C~,e< eo, 

f ~'K(e, ~, ~_ C~. ~7) d~ de/e 

( ]~[$+I+  e~-S--1)lg ___~ ]~I2(s+l).~_ e62(s+1) ::> 2--s(]~]2.~ e~$)s+l  and 
using (5.8) we get 

Integrating with respect to dt de/e and using (5.9) we now obtain 

f at < c, 
which is precisely the inequality (5.6). 
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I t  thus only remains to prove (5.8) and (5.9). We then have to consider 
separately the cases when ~ and ~ are close and when they are far apart. 

H M is the maximum of Igrad ~[ we get 

(5.10) K(~, ~, ~]) ~ Me '+~ [d(~ - ~)[ I~ - ~71 ( 2'+~ I~ -- ~7]'+~+ e~'-~) 

if IVl g 2 [ ~ -  Vi. Next let [~[ > 21~-- V[- The line segment joining ~ and V 
then lies outside the sphere with radius 1~1/2. If we denote by ~(t) the maximum 
of Igrad ~1 outside the sphere with radius t]2, we thus get 

(5.11) g ( e ,  #, ~) < e'+Xla(~ -- ~)11~ - nl ~(e lnI)  (1~I'+~+ e ~ ' - ' ) .  

Since ~0 is rapidly decreasing at infinity, this is also true for ~b. 
Noting that  ~(~Ivl) and (elnl),+ ~ ¢(elvl) are bounded and that  e ~ e o g 1 

we get from (5.10) and (5.11) 

(5.12) K(e,  ~, ~1) ~ CId(~ - ~?)l I~ - ~71 (l~ - ~l'+~+ 1). 

Since the integral of the right hand side with respect to ~ is finite and in- 
dependent of e and ~, the inequality (5.8) follows. 

To prove (5.9) we make the estimate 
~o O0 

o o o 

where ~ ' =  ~/1~] is a unit  vector. Since ~5(e~') tends rapidly to 0 when 
[ e ~'l = e -~ ~ ,  this integral is a bounded function of ~'. Hence we obtain from 
(5.10) and (5.11), using the fact that  • is bounded 

so 

o 

and (5.9) now follows immediately. 

6. A priori estimates in ~ - s  

We shall now prove tha t  the L ~ norms in the definition of operators of 
principal type may be replaced by the norms ~uIl_ 8. 

Theorem 6.1. Let P(x,  D) be of principal type and have coefficients in C ~. 
Define ~ as in Definition 1.1. Then for every s > 0 there are positive constants 
Cs and ~, such that  

I~l<m 
provided that  ~ ~ ~,. The constants C, and ~71 are bounded when s is bounded. 

Proof. Take a function ~ satisfying (5.3) with support in the unit  sphere 
with centre at  0. Write 
(6.2) u, = u * ~ , .  

I f  e <  (~ and u E C~¢(~) we have u,E C~(~2~). When 2(~< (~o we may  thus 
apply (1.3) to u~ and get 

Z (25)~(i=l-'~)lID=u, tt 2 -~ coIlP(x, D)u,p. 
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Hence 

2: (2~)~(:~1-~) s f  Iln=u,I]~:~-~de =< Co s f  liP(x, n)u~ll~:'-~de. 
I~[~m o 0 

Since D~u~= (D~u)* ~v~ the  left hand  side can be es t imated  f rom below b y  
means  of L e m m a  5.1. This  gives 

8 
(6.3) S (2~)~<'~l-~)llD~ull2-,,~ =< CoslC~f liP( x, D)u~ll ue~s-lde . 

tal < m o 

With  [ = P(x ,  D)u  we have  

(6.4) P ( x ,  D ) u ~ =  / , +  
i~i < m 

F r o m  L e m m a  5.1 we ob ta in  

(6.5) sf I[f,[l~e2'-lde -< C21I/V-,,~ 
0 

and f rom L e m m a  5.2, assuming t h a t  ~ < 1, 
O 

(6.6) f IIa:c((D~,u)*~) - (a~,D~,u)*cf~II~e2s-lde g C3tlD~u]t~s_x, ~ . 
0 

We now introduce the expression (6.4) for P(x ,  D)u~ in the inequal i ty  (6.3). 
After  using Cauchy ' s  inequal i ty  in the r ight  hand  side we can app ly  (6.5) and  
(6.6). Wi th  a new cons tan t  C we get  

(6 .7)  X ~z(l~l-m) iIDauiI2-s,# ~ C OI/il2--s,a+ Z l t D ~ u I l 2 s - l , e )  • 
l~I < m lal ~ m  / 

I n  those t e rms  on the  r ight  hand  side of (6.7) where Ial < m we use the  in- 
equal i ty  

(6.8) llD~u]l_,_l,~ <= 6[ID~u]l_,,~ 

which follows f rom (5.2). On the other  hand,  if [~1 = m we can write D a = D j D  ~ 
where Ifll = m - 1. In  view of (5.2) again  we have  

We now get f rom (6.7) by  es t imat ing  the  t e rms  on the  r ight  hand  side b y  
means  of (6.8) or (6.9) 

la[ < m I~xt < ra 

(n is the  dimension.)  When  8 <  I and  C ~ 2 ( ~ +  n ) <  1/2, we get  

l a t < m  

which completes  the  proof  of Theorem 6.1. 

Remark. The  a rguments  of the  proof  could also be appl ied if ins tead of (1.3) 
we only knew t h a t  

I]uHm_i g C(~)][F(x, D)ull, u ~ 0~(£2~), 
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where C((~) -+ 0 as (~ -+ 0. We then get a similar estimate with the other norms. 
However, we do not know any example of an operator for which this estimate 
but not (1.3) holds. 

7. The existence of smooth solutions 

Let  P(x, D) satisfy the same assumptions as in Theorem 6.1. Denote by  
Pt(x, D) the formal adjoint of P(x, D), defined by 

f ( P t ( x , D ) ~ f ) u d x = f  ~ f P ( x , D ) u d x ,  u C C  ~, q ~ C ~ .  

Explicitly the formal adjoint is defined by 

Pt(x, n)cf = ~ (-D)~(a~cf). 

The principal par t  is ( -1)rap.  Hence Theorem 4.2 shows tha t  p t  also satisfies 
the assumptions in Theorem 6.1, so tha t  we may  replace P by Pt there. Let  
~ and C s be the constants then associated with pt. 

Theorem 7.1. Let / be a function such that  D J  ~ L2(Rv), la[ ~ k (k >= 0). 
If 5 g ~k+m-1 there then exists a solution in ~ (in the distribution sense) of 
the equation P(x, D)u =/ ,  such tha t  D~u E L~(ff2~) when lal ~ k + m -  1. 

Proo/. The equation P(x, D)u = / means by  definition tha t  

(7.1) f (Pt(x, n)cp)udx = f q~/ dx, cf ~ C~(~20). 

Thus consider the mapping 

(7.2) Pt(x, D)q) -~ f ~/  d x ,  

defined f~r ~ C C~ (~2~). The mapping is linear and 

(7.3) If V/dxl  <= lI/iik.~liq~li-k,~ " 

Now we have according to Theorem 6.1 with s = k ÷ m - 1 

(7.4) Z ~(i~t-'~)llP~q~l]l-~,~ <= C~}IP'(x, D)cfH2-,~,~ • 
I~l<m 

In view of (5.2) we can estimate ~-~t]~ll~n-i-s,~ by  means of the left hand 
side in (7.4) and obtain 

(7.5) llc])l(m_i_s,t g C' ~Hpt(x, n)q~]t_~, ~ . 

Since m - 1 - s = - / c  this gives combined with (7.3) 

If  q~/ dx[ ~ C'~ll/tl~,~tIP~(x, D)efH_~, ~ . 

In view of the Hahn-Banach theorem the mapping (7.2) may  hence be extended 
to a continuous linear form on ~f-8.  Thus there exists an element u ~ ~ "  such 
that  

t lult,,,, < 

and (7.1) holds. But  this means tha t  P(x, D)u = ] in ~6. The proof is complete. 

Every  function in L * ( ~ )  may  be extended to a function in L*(R ") by  
defining it to be 0 outside ~ .  (Since ~ has a smooth boundary there is also 
an extension thcor¢m fo~ functions with all derivatives of order ~ k in L ~, 
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b u t  i t  is then  less tr ivial .)  We thus  get the following improvemen t  of the 
results of [3]. 

Corollary. If  P is of pr incipal  type  with coefficients in  C ~ and  ~ g 6m-1, 
the equa t ion  P ( x , D ) u - - - /  with /CL~(f2~) has a solut ion u such tha t  
D~u ~ L~(~ )  when I~l g m - 1. 

Added in proof. Theorems 3.1 and 3.2 may be extended to operators of any order and 
coefficients in C ~. This will be done in an article to appear in this journal with the title 
"Differential equations without solutions". 
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