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1. Introduction

In the study of a differential operator P(x, D)!) a fundamental question
is of course whether the equation

(1.1) Pz, Dyu = f

can always be solved at least locally when f has a high degree of local regularity.
The first example where the answer is negative was given by H. Lewy [5].
For the operator

P(z, D)= —iDy+ Dy— 2(a*+ iz?) Dy

he proved that for some f ¢ C™ there is not in any open set a solution which
has Holder continuous derivatives of the first order. (In fact, there does not
even exist a distribution solution of (1.1) for every f € C*.)

On the other hand, various sufficient conditions for the local existence of
solutions of (1.1) are known. First of all, the existence of solutions has been
proved for every equation with constant coefficients (MALGRANGE, EHREN-
PREIS). It is also well known that (1.1) can be solved locally when P is elliptic.
Another class of operators for which this is true was introduced by Hor-
MANDER [3], Chap. IV; it was defined by the conditions

A) The differential operator P(z, D) is of order m and, if p(z, &) is the
homogeneous part of P(x, &) of order m, we have

(1.2) ; 9w, EYOE [P+ 0,04 £ ¢ Br .

(This means that the characteristic surface has no real singular point.)

B) p(«, &) has real coefficients.

Under mild smoothness assumptions it was proved for an operator P in this
class that if 0, is the sphere with radius § and centre at a fixed point where
(1.2) is valid, then we have with L? norms
3y XY &#e-m|D,ul® < C| Pz, D)ul®, ucCF(2),0= 0.

fal <m
From this inequality it was concluded that the equation Ptu = f, where P*
is the formal adjoint of P, has a solution u ¢ L2(£2;) for every f ¢ L?{£2,). The

1) For notations see [3], particularly p. 176.
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main purpose of this paper is to make a more detailed investigation of the
conditions under which (1.3) is valid and to prove stronger consequences of
that inequality. Before stating the results we introduce a definition.

Definition 1.1. A differential operator P(z, D) defined in an open set £2
is said to be of principal type in £ if (1.3) is valid, with £2, defined as
{x; 2 €Q, |w— x| < 8}, where x, is an arbitrary fixed point in £2, when
8 = o).

This definition agrees with Definition 2.1, p. 186, in HOrMANDER [3] when
the coefficients are constant.

Section 2 will be devoted to proving conditions which are necessary for a
differential operator to be of principal type. It is easily proved that (1.2) is
necessary (Theorem 2.2). This is not the case for condition B, however. It was
already pointed out in [3] that with no essential change of proof it might be
replaced by the weaker condition, where 5 (zx, &) = p(x, §),

B) p(x, Dyp(x, D) — p(z, D) 5(x, D) isof order< 2m — 1.

In general this commutator may be of order 2m — 1 even if P is elliptic, in
which case (1.1) is also known to hold (see e.g. [2] or [4]). B’ is therefore not
a necessary condition either. However, using arguments developed from an
analysis of Lewy’s example we shall prove in Theorem 2.1 that if (1.3) is
valid then

B”) Oam-l(x,§}=0 if 29(%5):&3?69,563",

where C,,, _, is the homogeneous part of order 2m — 1 of the commutator in B’
(Cym-, involves only first order derivatives of the coefficients of p and is thus
defined when these coefficients are in (! even if the commutator itself does
not have a sense.) When P is of the first order and the coefficients are analytic
we also prove a stronger result in section 3. In fact, we prove that the equation
Pu = f does not have a solution u ¢ 2’ for every f ¢ 2 = O unless B” is
valid. When B’ is not fulfilled for all z in an open non void subset of £ we
also show that for some f¢ 0~ (£2) the equation Pu = f cannot be solved
anywhere in £2. This extends Lewy’s result mentioned above.

In section 4, Theorem 4.3, we prove sufficient conditions for a differential
operator to be of principal type. We then have to use a condition which is
stronger than B” but weaker than B'. In the first order case it is very close
to B”, however.

After a preparatory discussion in section 5 of some normed spaces of
distributions, we show in section 6 that the L2 norms in (1.3) may be replaced
by such norms if P is of principal type with coefficients in 0. In section 7
this leads to the result that every point in £2 has a neighbourhood £2;, depending
on the integer k£ = 0, such that there exists a solution of (1.1) with all deri-
vatives of order < k+ m — 1 in L2(£2,) if the derivatives of f of order < k
are in 12(£,). The method is an improvement of that used in [4] to study
distribution solutions of formally hypoelliptic equations.
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2. Necessary conditions for an operator to be of prineipal type

In this section we shall first prove that B’ is a necessary condition for (1.3)
to hold. In order to simplify the notations we always assume that the point x
which occurs in B is the origin. Thus we assume from now on that £ is a
neighbourhood of 0. For the sake of brevity we also introduce the notation

lule= ( 2 1Dy ] )“2
Lemma 2.1. Suppose that there exists a function 4 ¢ € ({2) such that
2.1) p{x, gradu) = o(jz]?), 2= 0.
Assume further that % has the Taylor expansion

7 ®n n

(2.2) w(@ =i Y '+ 3 5 3 ot oy + O(|<f)
1 11

where £, are real and satisfy

23) 2” 900, E)OE, =0,

the matrix «,, is symmetric and the matrix Rea;, is negative definite. If P has
continuous coefficients we then have when » € Cf° (©2)

(24) Sup [v]m /| P (%, D)v] =0 .

Hence (1.8) does not hold for any constant C even for fixed é when z,= 0.
Proof. First note that since Rea;, is a negative definite matrix, it follows
from (2.2) that

n n
Reu(x) =23} a/a* Reay,+ O(|2]?) = —2alx|24 O(|«]?),
11
where ¢ < 0. Hence
(2.5) Reu(z) £ —a|z?

for sufficiently small |2|. Replacing if necessary £2 by a smaller neighbourhood
of 0, we may assume that (2.5) is valid in the whole of £2. Then the function

V= peiv,
where @ € O (£2), ¢ >0, is in O (£2) and (2.5) gives
o)) = |pleetlel.
Our aim is to show that

Idm-/I Pz, D)o >0 as f—o0.

This will prove (2.4).
We can write

m
P(z, D)v,== et* 3 a,t!
0
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where a; are functions of . We only need to compute a,, and a,,_,. Leibniz’
formula gives

P(x, D) (petv) = D“,"” P@ (, Dyet+

< ot
where
P(a) (x: C) = akP(xa C)/aCal' A aé‘dzk’ k = |“‘ *
Introduce the decomposition
Pz, D)= p(x, DY + q(z, D) + r(x, D)

with p and ¢ homogeneous of order m and m — 1, respectively, and r of order
< m — 1. Then the coefficients of e'#¢™ and et*#™—1in

k2
(2.6) Pp(2, D)etv+ (2 D,p® (2, D) + pg =, D>> s
1
are also a,, and a@,_,. (We use the notation j for the multi-index of length 1
consisting only of the index j.) We therefore get
(2.7) = 1i""@p(z, gradu),
and
n
(2.8) @p_q=i~m+l {Z D; pp0 (z, gradu) + @(g(z, gradu) + i"””la)} )
1
where a is a continuous function depending on the coefficients of p and on u.
The hypothesis (2.1) gives in view of (2.7)
(2.9) a,(zy=oflz|), z—0.
We now choose ¢ so that ¢(0) =1 and

%’f‘ D,¢(0) 90, &) + 9(0) (€(0, &) + a(0)) = 0.

This is possible in view of (2.3). The continuity of a,,, then gives
(2.10) Omy(®) =0(l), 0.
Take a positive number ¢ and choose a neighbourhood U of 0 such that
|am(2)] < el2|?, |am_i(2)|<e, xzcU.
Using (2.5) we then obtain with a constant O

|P(z, D)v,| < tm~1(et]|af2+ &+ Cft)e-tolel' | 2 cU.
Hence

[ |P(z, D)v,|Pdz < £2m-3 [ (et|x|2+ & + Oft)2e2tolal'dy

Y = Pm=2-n/2g2 [ (|43 4 ] 4 Cfte)e2olel'dz .
The integral converges to
Bi= [ (|zf2+ 1)2e-20lel’ dy
when ¢ - oo, Hence we have for large ¢
i]f |P(x, D)v,JPda < $2m—2-n/22 B3c2
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Since (2.5) also gives
[ |P(x, D)v,|*dx = O(2me—2c1)

cv

for some ¢ >0, it follows for sufficiently large ¢ that

(2.11) [ |P(x, D)v,|tdx < 4 B2am—2-n/2g2
2

Next we estimate |v,|,, -, from below, which is much easier. Note that it
follows from (2.3) that £== 0 if m > 1. In that case we may thus assume for
example that &= 0. Consider

D;n——lvt: (¢(D1u)m—1tm—1+ .. .)etu .
(When m = 1 we should read 0°= 1 here.) Since ¢ (0) (D% (0))™ 1= &' 1= 0
we have
gl [Dyufm = = 2¢ >0
in a neighbourhood of 0. Since Rewu(x) =0 (|2]?) we have Reu(z) = — A4|z|?
for some 4 > 0 80 we get for sufficiently large f when «x is in this neighbourhood
|D-1y,| = gm-lgetdlel’
Hence it follows for large ¢ that
(2.12) v ll%—y = | DItz [ pm-tcRe-2tdleldy = Bippm-2-ni2
tz?< 1
where B, is another constant == 0.
Combining (2.11) and (2.12) we obtain

lim |v,|,—/| P (%, D)v,| = By/2Bs.
t-»o00

Since ¢ is an arbitrary positive number, it follows that

tlim loelm—af| P (2, D)oy = o0,
which completes the proof.
We shall now study the condition (2.1) further.

Lemma 2.2. Assume that the coefficients of p are in C? at 0 and that (2.3)
holds. Then (2.1) can be fulfilled by a function u ¢ 0 (£2) with the Taylor
expansion (2.2) if and only if

(2.13) p(0,§)=0,

(2.14) X 0,8 = =i, 0,8, i=1....n,
where

(2.15) pilx, §) = 0p(x, §)j0a .

Proof. If u € 0~ (£2) it is clear that (2.1) is fulfilled if and only if p (=, grad«)
and its derivatives of order =< 2 vanish at 0. The equations (2.13) and (2.14)
express the vanishing of p(x, gradu) and its first derivatives at 0. Hence it
only remains to prove that the second derivatives of p(x, grad«) will vanish
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for a suitable choice of the third derivatives of », if (2.13) and (2.14) are
valid. However, in view of {2.3) which shows the existence of non characteristic
planes through 0 this follows trivially from the Cauchy-Kovalevsky theorem
if we replace the coefficients of p by their Taylor expansions of order 2 at 0,
and this does not change the condition on u.

The existence of a matrix «;, satisfying the requirements of Lemmas 2.1
and 2.2 is examined in the next lemma.

Lemma 2.3. Given two vectors (ay,...,a,) and (f,, ..., f,) with complex
components and some a;= 0, there is a symmetric matrix «;, with negative
definite real part satisfying

k2
{2.16) Da=1f,, k=1,...,n,
1
if and only if
n
(2.17) Re )} fr@,<0.
1

Proof. a) (2.17) is necessary. In fact, multiplying (2.16) by @, and adding,
we get by using the symmetry of «;, if ;= b, + ic;

n n n

{f, @) =%: 1@ =22 O @l == Y"Z ocmb]karZZ Uy CiC

Since Reey,, is negative definite and the real vectors (b,, ..., b,) and {¢y,..., ¢,)
are not both zero, we get (2.17).

b) (2.17) is a sufficient condition. We have to separate two cases.

b,) a is proportional to a real vector. Multiplying @ and f by the same
complex number we may assume that a is real. Writingoo = g+ iy, f =g + ¢k
with real 8, v, g, h, (2.16) becomes in matrix notation

fa=g, ya=h.
It is obvious that there is a real symmetric matrix y with ya = h. Write
g =g+ al(g, a)/2(a, a). We then have (g,, a) = (g, a)/2 < 0, hence the matrix
B defined by

9 (, g5)

=20 * F g B
is immediately seen to be negative definite, and since it is obviously symmetric
it has the required properties.
b,) @ is not proportional to a real vector. We shall prove that

o= Ref,a)1+

(a,a)

for some real y has the required properties. Here I is the identity matrix.
The condition on y is

(2.18) iya=f

where
Relf,a)
fl” i - (a a)
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has the property
(2.19) Re(f,a)=0.

To prove that such a matrix y exists we note that the set of vectors in C»
which can be written ¢ya with some real symmetric ¢ is a linear set (with
respect to real scalars). The equation of a plane containing this set can be
written

Re(z,9)=0

with some g € C7. For every £ € R” the matrix defined by yz = £(z, £) is real
and symmetric, and ya = £(g, £). Hence we must have

Rei(&: g) (a’ ‘S) =0

so that (&, 9) (e, &) is always real. Since a is not proportional to any real

vector it follows that g is a real multiple of a. Hence the equation Re(z,g)=0

is a consequence of the equation Re(z, @) = 0. In view of (2.19) we can thus

find a real symmetric matrix y so that (2.18) is valid. The proof is complete.
We shall now combine Lemmas 2.1, 2.2 and 2.3. Set

Oym-1(, §) = 2Re (2 ipy(e 879 (= 5))
(2.20) 1

=§” i(P9 (2, &) B (2, &) — p, (2, &) B (=, £)), £ ¢ Br.

Theorem 2.1. Let the coefficients of P(z, D) be continuous and those of p
be in 2. Suppose that

(2.21) Julm—y = C|P(x, Dyu| , we€CF(£2).
Then we have
(2'22) OZM"I("‘C’ §)=O if p(x’ §)=O,x€Q:£€R”-

Proof. We may assume that x = 0. In proving (2.22) we may also assume
that (2.3) holds, for (2.22) is trivially satisfied otherwise. Lemmas 2.1 and 2.2
then show that the equations (2.14) cannot be fulfilled by a symmetric matrix
with negative definite real part, hence Gy, _;(x, &) = 0 in view of Lemma 2.3,
Replacing & by —§ we get Cy,,_,{x, —&) = 0 and since C,,, ., is an odd
function of & it follows that C,,, ,(z, &) = 0. The proof is complete.

Corollary. Given a homogeneous differential operator p(D) of order m
with constant coefficients, the inequality (1.3) holds for all homogeneous
operators p(z, D) of order m with p(xz,, D) = p(D) and coefficients in C%, if
and only if p (D) is elliptic.

Proof. That ellipticity is sufficient follows for example from Frrepricns [2]
(or HorRMANDER [4]). We can then even sum for |«| £ m in the left hand side
of (1.3). To prove the necessity we note that (1.2) must be valid in view of
Theorem 2.3 in HORMANDER [3] (see also Theorem 2.2 below). The condition
in Theorem 2.1 can then only be void if p(£) does not have any real zero.



Differential Operators 131

We shall now show that C;,, _, is in fact the principal part of the com-
mutator p — pP. Thus we now assume that the coefficients of p are in O™
so that this commutator is defined. Write

p(z, D)= } a,(x)D,, p(x,D)= } a,(x)D,.

|ot] == m la] =m

Leibniz’ formula gives
p(x, D) p(x, D) = E-Dﬁa’ @)||! - PP (x, D) D, .

Terms of order 2m occur only when [B] = 0, their characteristic polynomial
is p(w, &) p(x, £). Terms of order 2m — 1 ocour when |8] = 1; their charac-
teristic polynomial is thus

n n
E Z (‘Dia’a(x)) ﬁ(j) (x7 E)Ea: M@ZP:(% f) i).(j) (.’l?, 5) .
Jof =m =1 1

Repeating the argument with p and 7 interchanged and subtracting the
results, we find that p(, D) p(x, D) — p(=x, D) p(«, D) is of order 2m — 1 and
that its principal part has the characteristic polynomial C,,,_4(z, £).

Even if the coefficients of p are only continuously differentiable we can
show that C,,,., is the principal part of the commutator in a weak sense,
namely

(2.23) (p(x, Dyu, p(x, Dyv) — (B(x, D)u, B(x, D)v) = ZZ(%;?(C‘?)D u, Dgv),

when u, v €CF (£2). The indices in the sum satisfy |af + |f] = 2m — 1, |of < m,
|B| = m; ¢,p are continuous and we have

(2.24) 02m -1 :17 E 2 Gaﬁ x)E Eﬂ
To prove this we start from the formula

(p(x, DYu, p(z, D)v) = Z%;’ (@, Dy u, agDgv) .

We integrate by parts, first shifting one of the derivatives in D, from v to u,
then one of the derivatives in D, from % to » and so on. In doing so, we will
of course also differentiative a coefficient sometimes. As soon as we get a term
where a coefficient is differentiated, however, we do not perform any more
integrations by parts in that term. It is clear that this procedure will give

(p(x, D)u, p(x, D)v) = Zp‘ (ay Dy, a3 D,v) + 2 (6,5 Dy, Do) ,

where one of the multi-indices & and f in the last sum has length m and the
other length m — 1. The first term in the right hand side is obviously
(P(x, D)u, B(x, D)v). The coefficients ¢,; are linear combinations of products
of a coefficient a, or @, and a first derivative of another. To prove (2.24) we
first notice that we have in fact already proved this formula when the coeffi-
cients a, are in C. Since (2.24) is an identity involving the coefficients and
their first derivatives it must thus be valid in general.
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Remark. The coefficients ¢,; are by no means intrinsically defined. The
proof above may also lead to different values depending on the order in which
the integrations by parts are performed.

We finally verify the necessity of condition 4.

Theorem 2.2. Suppose that P(x, D) has continuous coefficients and that
(1.3) is valid. Then

(2.25) 5 3p(wy, HAE+E0, O+ EcRr.
1

Proof. We may assume that x,= 0. Let U ¢ C7° (£2,) and put
Uy () = dm 12U (/6)
into (1.3). We have u,¢ Cy (£2;) and, if |a| = m — 1,
D, u,(x) = 6~"*(D,U) (/) .
Hence a substitution of variables gives that |D, us| — |D,U| when 6 0.
Further we have
8 P (2, D)us= ) a,(x) om~1=16-»2(D, U) (x/0)

and after a substitution of variables we obtain

[6 P(x, DYus| — |20, DYU|, 0.
Hence
2 1D U2 < Colp(0, D)UJ2, U cCg(£2y),

ja} =m~1

and the proof of Theorem 2.3 in HORMANDER [3] thus shows that (2.25) holds.

3. The first order case

When m = 1 we shall now establish an improved version of Theorem 2.1.
The nature of the improvement is that we disprove a property similar to (1.3)
but with a weaker norm in the left hand side and a stronger in the right hand
side. This will give us a generalization of the result of Lewy [5]. In analogy
with Lemma 2.1 we first prove

Lemma 3.1. Suppose that the coefficients of the first order operator P(z, D)
are analytic and that there is a solution u of the equation

(3.1) plx, D)u=0, wxcl,
which satisfies at 0 the same assumptions as those made in Lemma 2.1. Then
we can find functions v, ¢ 2(£2), depending on a real parameter { >0 so that

(3.2) Ple, DYv,~0 in Z(2) as t—>oo
but for some f € D{L2)
(3.3) lim |ffvda| =00 .

{00

Hence v, does not converge to 0 in 2'(2) as t »o0 %),

2} In this section we use the notation Z(2) for the space C§° (£2) with the pseudo-
topology of Scawartz and 2°(£2) for the space of distributions in £, that is, the linear
forms on 2(£2) which are continuous for the pseudotopology. We refer to Scawartz [6]
for the basic definitions and results.
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Proof. Writing
d

Pz, Dy =} a'D;+q
1

we choose a function ¢ ¢ C5° (£2) such that ¢(0) =1 and

n
{3.4) P, D)=} o'D,p+ pg=0
1

in a neighbourhood U of 0. (In the proof of Lemma 2.1 we only needed (3.4)
when x = 0.) This is possible since the equation (3.4) can be solved in a neigh-
bourhood of 0 in virtue of Cauchy-Kovalevsky's theorem and (2.3); multi-
plication by a function which is in C§° in that neighbourhood and equals 1 in
another neighbourhood of 0 gives a function with the desired properties.
(The assumption that the coefficients are analytic and not only infinitely
differentiable is only used here.) (2.5) gives with a constant ¢ >0

(3.5) Reu(r)< —2¢, zc(U.
Now set
(3.6) V== et (2t

Using (3.1) and Leibniz’ formula we obtain
Pz, Dyv,= (P(w, D)gjetet+o,

This function vanishes in U and its support is always contained in that of ¢.
Since w + ¢ = —c¢ in CU it follows immediately that P(z, D)v, and all its
derivatives tend to 0 uniformly when ¢ - oco. Hence (3.2) is valid.

It is sufficient to prove that there exists a function f ¢ C™(£2) such that
(3.3) is valid. In fact, if y € C7 (£2) equals 1 in the support of ¢ we then only
have to note that xf € OF° (£2) and that

[fvdz= [ (yflv.de

so that (3.3) holds with f replaced by yf. We shall construct a function for
which (3.3) holds and which is contained in the space ¥ of all f ¢ 0°(Q) such
that
(3.7) sup D, f] < o

o

for every a. The topology in F is given by the semi-norms on the left hand
side in (3.7). It is obvious that F' is a complete metrizable space, hence an
«espace tonnelé» in the terminology of Boursaxi [1], pp. 1—2.

Now suppose that the assertion of the theorem were false so that the
integrals
(3.8) [ fpetwtady
are bounded as t—oo for all f € F. According to Banach-Steinhaus’ theorem

(see BourBax1 [1], pp. 64—65, Proposition 1 and Théoréme 1) this implies
that the functionals (3.8) on F form an equicontinuous set in F’, hence are
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all < 1 for every f in a neighbourhood V of 0 in F, In other words, there
exists an integer N and an ¢ > 0 such that

(3.9) If foetetadal <1 if sup|D,fl<e, lof < N.
2
Hence
(3.10) [ fpettidal < &t sup [D f(x)], feF,
26, ja| SN

in view of the homogenity of the inequality.
Now take a function # ¢ CF° (R”) and put

folz) =7 F{tz) .
It is obvious that

3.11) elsup|D,f,| £ Ct+¥, e = N,t = 1.
2

Further a substitution gives for large ¢

[ fipet@tada = [ F(x) p(xft)et @D +ady .
When ¢ - o we have ¢ (z/t) - 1 and tu (2/f) —+ ¢ (x, &) uniformly in the support
of F. Hence
(3.12) [ fpetetada = eto([ F(z)eiladz + o(1)) .
If we choose F so that [ F(z)ef!®&dx+ 0, (3.12) and (3.11) give a contra-

diction when combined with (3.10). Hence (3.3) is valid for some f ¢ F' and thus
for some f € 2(£2). The proof is complete.

As in section 2 we denote the first order part of the commutator of p and p
by C,.

Theorem 3.1. Suppose that the coefficients of P are analytic and that the
equation

{3.13) Pz, Dyu=f
has a solution u € ' (Q2) for every f ¢ D(£2). Then
(3.14) Ci(z, 8)=0 if p(z,8)=0, €2, 5chR.

Proof. Assuming that (8.14) is not valid we shall find a function f ¢ @ (£2)
such that (3.13) has no solution in &’ (£2). If (3.14) is not valid we may assume
that it fails to hold when a = 0 ¢ 2, and since C, is an odd function of & we
can then find & ¢ R® such that

p(O’ §)= 0, 01(0, §)< 0.

In virtue of Lemma 2.3 this shows that the equations (2.13) and (2.14) can be
satisfied with a symmetric matrix o;, with negative definite real part. Since
C,(0, £) < 0 the coefficients ¢/ do not all vanish at 0. Hence the Cauchy-
Kovaleveky theorem proves the existence of a solution of (3.1) satisfying the
assumptions of Lemma 8.1 at least in a neighbourhood £2,C £2 of 0. (See the
proof of Lemma 2.2.)



Differential Operators 135

Let Pt be the formal adjoint of P defined by

S (Puyvda= [u(Ptv)dz, u,v € D(Q).
We have

B
Pt=—ZD3aj+q
1

so that — Pt has the principal part p. Hence Lemma 3.1 shows that for 7 >0
there are functions v, in Z(2,), such that

Pz, D)v,~>0 in D), 7>,
but
Bm |f fv,da| =0
for some f ¢ 2(£2,). We claim that the equation Pu = f has no solution
u € 9’ (£2). For suppose it had. Then

[ fv.dx = (Pu) (v;) = u(Ptv,) >0, T->00,

which is a contradiction. The proof is complete.

Our next aim is to show as LEwy did in his example that the equation
{3.13) may fail to have a solution anywhere.

Theorem 3.2. Suppose that the coefficients of P are analytic and that
(3.14) is not valid for any open non void set @ C 2 when z is restricted to w.

Then there exist functions f ¢ B {£2) such that the equation (3.13) does not
have a solution % ¢ 9'{w) for any open non void set w C £2. The set of such f
is of the second category?).

Proof. a) If w is a fixed open non void subset of 2 we shall first prove

that the set M of functions f € B(f2) such that (3.13) has a solution in 9’ (w)
is of the first category. Let w, C w be open, non void and have compact closure
contained in w. Every distribution % in o then satisfies for some integer N
the estimate (SoEwarTz [6], Chap. III, p. 83)

(3.15) lu(g) = Nl ézv sup|D, 9|, ¢ € D(w,) .

The set My of functions f in B {£2) such that P(z, D)u =} in w, for some
% € D' (w,) satisfying (3.15) is closed, convex and symmetric. That M, is
convex and symmetric is obvious. To see that My is closed we only have to
note that the set of distributions satisfying (3.15) is compact for the weak
topology in 2’ (w;). In fact, let f,¢ My, that is, f;= Pu; in w, for some
%;€ D' (ewy) satisfying (3.15). We can find a weak limit » of %; and u also
satisfies (3.15). If f,—~ fin B"(.Q) we got f = Puin @, so that f ¢ My,

My, cannot have any interior point. For Theorem 3.1 with £2 replaced by w,
shows that there is a function g € 2 (w,) such that tg ¢ My when £ 0. If f
were an interior point of My we would have j + tg € My for small ¢, Since

*) B(£2) denotes the set of all infinitely differentiable f in £ such that to every a and ¢
there is a compact set KC 2 so that |D,f| < ¢ in CK. This is a complete metrizable
space with the topology defined by the semi-norms sup D,f|.

Math. Ann, 140 10
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—feMy and My is convex this implies that (f + g — f)/2 = tg/2 ¢ My,
which is a contradiction. Since My is closed and has no interior point, the set
U My is by definition of the first category and since M C U My it follows
that M is also of the first category.

b} Let w; be a countable basis for open subsets of £2, none of them void.
For example we may take all open spheres with rational radius and centre
contained in £2. Denote by M the set of functions f ¢ B(.Q) such that (3.13)
has a solution in 2’ (w;). From a) it follows that M is of the first category.
Hence U M® is also of the first category. Take f ¢ U M. Then the equations
(3.13) cannot be solved in any w;. If w is an arbitrary open non void subset
of o, we have w; C w for some j. Thus the equation (3.13) cannot be solved in w.
This completes the proof.

Lewy's example corresponds to (n = 3)

P(x, &) = —i&+ &— 2(2' +ia?)&;.
We get C,(x, §) = —8&,. Since p(x, &) = 01if £,=1, &= —22% &= 2421, the
condition (3.14) is not valid for any x ¢ R". Hence the hypotheses of Theorem 3.2
are fulfilled with £ = R*. We may notice that Theorem 3.2 gives a stronger
result than LEwy [5] who only gave a function f ¢ C* (R*) for which (3.14)

does not have any solution with Holder continuous first derivatives in any
open set.

4. Saufficient conditions for an operator to be of principal type

We first prove an estimate which follows from the methods used in
Chapter IV in [3]. However, in the proof we shall use a simplified form of the
arguments of [3] which has been given by TrivEs [7]. The simplification
consists in a direct proof of the inequalities found in [3] by systematic use of
the energy integral method.

Theorem 4.1. Let the coefficients of p(z, D) be in C* and assume that (1.2)
is fulfilled. Let £2; be the sphere {«; | — 2,| < 6}. Then there exist constants
Cy and 8y >0 such that if § < §,

4.1 } é’ g*td=m D ul* < Co(lp(x, D)ul*+ |B (=, D)ul®), u € CF () -

Proof. We start by noting that Leibniz’ formula gives
p{x, D) f 2*u) = ix*p(z, D)u + p® (z, D)u .
Hence, writing (f,g) = [ fjd=,
(29 (2, D)u, p® (z, D)u) = (p(, D) (iz*u), p® (x, D)u) —
— (¢ p(z, D)u, p® (x, D)u), u € OF (£2;) .

Let xy= 0. Using Cauchy-Schwarz’ inequality and the inequality |2*| < J in
£2,, we obtain for u € OF (£2,)

(4.2) [p® (2, D)ul* < Re(p (x, D) (i a*u), p® (x, D)w) + 8| p (2, D) u[|p® (z, D)u].
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In order to study the first term on the right we have to shift the operators p
and p®. To do so we need the following lemma.

Lemma 4.1. Let p and ¢ be homogeneous differential operators of order m
and m — 1 respectively, both with coefficients in C1(£2). Then we have when
u, v € O5 ()

(p(z, D)v, q(=, D)u) = (g(z, D)v, p(x, D)u) + ) 1(cmﬁDﬂ‘v, Dyu),

o] = {8 =
where ¢, are continuous functions.

Proof. Writing p(x, D)= 3, a,(x)D, and ¢(z, D) = Z bﬁ(x D, we get

laf =m 1Bl =

(p(x, D)v, g(x, D)u) = 3 (a,D,v, bgDyu) .

We integrate by parts here, first shifting one of the derivatives in D_from left
to right, then one of the derivatives in Dj from right to left and so on. In doing
so we will of course also differentiate a coefficient sometimes. However, the
term which then appears contains derivatives of u and of v of order m — 1
and we do not operate again on such a term. It is clear that this procedure
will give

(p(x, D), q(®, D)u) = ) (a,Dgv, by D, u) +l [ ‘%' (loaﬂDav, Dyu)

| = |Bl = m—

The functions ¢, are linear combinations of products of coefficients in p and
in g and their derivatives, hence continuous. Since the first sum on the right
is obviously equal to (g(z, D)v, p(x, D)u), the lemma is proved.

It should be noticed that the proofis only a less precise form of the arguments
concerning C, . given after the corollary to Theorem 2.1.

Completion of the proof of Theorem 4.1. We can now study the first term
in the right hand side of (4.2) using Lemma 4.1 with ¢ = p®. With the notation

[ *—‘ht'Z:'klll)mull2
this gives with constants C; and C,
(4.4)  Re(p(x, D) (iz*u), p® (x, D)u) = Re(p® (x, D) (ix*u), p(x, D)u) +
+ Oyl |25l -1 = Co(|P (2, D)ul| + [lm—1) (B1ttlm—1+ [Ulm—2), # € OF (£25)

since p® (x, D) (¢ x*u) = ¢ 2*p® (x, D)u + p*" (x, D)u. (We suppose in (4.4)
that § is bounded from above, for example § < 1, in order to possess a bound
for the coefficients of p and of the coefficients ¢,; in Lemma 4.1.) Put (4.4)
into (4.2) and add for all . This gives with a constant C (from now on C will
denote different constants at different occasions)

45) 3 1p® (@ Dyl <
1
= C(lp(x, D)u| + [[p(x, D)ul + |ulpn-1) (8[lm—1+ [tlm—g), w € CF (£25) .
We now use the classical inequality (see [3], p. 246)

(4.6) July, < O8ulyry .
10*
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This gives when combined with (4.5)
@7 31p® (e Duft <
" < 08I, Dyul + 5, DYl + [l ) [tl—ss 4 € O3 (2y).
To prove (4.1) it only remains to show that
4.8) Whes = 0.3 2% (s, Duft, ueD (@)

if 8 < &. For combined with (4.7) this gives
Iulm—l —S—- 05([]1’(% D)u” + ”ﬁ(x’ D)u” + lulm—l)

and together with (4.6) this proves {4.1) when é < min(dj, 1/20).

The inequality (4.8) follows from the fact that (1.2) holds when ;= 0.
In fact, for homogeneity reasons (1.2) implies that

n
|§2em-D < € 3] |p® (0, §)?, &€ R,
1
Multiplying by |4 (£)|? and integrating we get from Parseval’s formula

[ulfy = C 217 lp® (0, D)u|?, u€CF(R).
Hence

lulty— < € 3 [p® (z, D)u + (p® (0, D) — p® (z, DY)u|? <
1

<2¢ (2 [6® (z, Dyu*+ 3 | (p® (0, D) — p (2, D))unz) -
1 1

Since the coefficients of p® (0, D) — p® (2, D) are O(|z|), this gives with
another ¢

n
fuffy < 0(2 p® (2, Dyu3+ 3 |u|$,,_1), weOF (@)
1
When C §*< 1/2 we get with the same C
[ulf, 1 < 20 3 |p® (2, D)ul?, u € CF (L),
1

and (4.8) is proved. This also completes the proof of Theorem 4.1.

Theorem 4.1 shows that p will be of principal type as soon as it is possible
to estimate pu in terms of pu. Before proving such results we give a simple
auxiliary theorem.

Theorem 4.2. Let P(x, D) be of principal type and have continuous
coefficients. Then any other operator with the same principal part and con-
tinuous coefficients is also of principal type.
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Proof. If (1.3) is valid and r is of order < m and has continuous coefficients,
we get for d < &,

2 g2tel=-m D ul2 < Cof P(x, D)ul® < 20, (|(P(x, D) + r(x, D))u|®+
laj<m

+lr(e D)el?) 5 26,1 (P, D) + (2, Diyuft + 0% 1D, w05 (2).

When & is so small that §2C < 1/2 and § < min(l, §;), we get

2 ld-mID u|2 < 4C,|(P(x, D) + r{z, D))u|?, ucCy(2,).
lal < m

Henece P 4 r is also of principal type.

Theorem 4.3. Let P(z, D) be an operator with continuous coefficients and
the coefficients of the principal part p{z, D) in C% Assume that (1.2) is valid
and that
4.9) Com-a(z, §) = qlz, &) p(=, &) + G(, &) p(=, §)
where g(x, £} is a polynomial in £ of order m — 1 with coefficients in C*. Then P
is of principal type?). We also have with a constant C when < §,

(4.10) Ct|p(x, D)u| < |p(x, Dyul < Clp(z, D)u|, O (E2).

Proof. Theorem 4.2 shows that it is sufficient to prove the theorcm when
P = p. Also note that the inequality (4.10) iraplies (1.3) in view of Theorem 4.1.
To prove (4.10) we use the identity

(2.23) |2 (z, D)u|*— |p(x, D)u}?= 2%’ (Cap Dy, Dyu), u € CF (L2y)

where ¢, are continuously differentiable and

(2.24) 2%‘ caﬁ(x) Ea£ﬂ= Oam-l(”, &) .

Using this identity and (4.9) one can prove that

(411) 1% (capDyu, Dyu) — (p(z, D)u, q(, D)u) — (3(z, D)y, Bz, D)u)| <
< Oy, ueOT(2),

where O is a constant. We postpone the proof for a moment in order to prove

first that (4.10) follows from (4.11). Using (4.11), (2.23) and the inequality
between geometric and arithmetic means, we obtain

Hp (2, Dyulp—|p(z, Dyul?| = Oluffi—y + § (Ip (2, D)ul*+ |B(=, D)ul*+
+ lg(=, Dyul*+ [g(=z, D)ul?), weCp .

Since ¢ is of order m — 1 this gives with another constant C for u € Oy

(4.12) Ip (@, D)ul* < Clufi-y + 315(= D)ul?,

(.13) 15(z, D)ul* < Clult—; + 3]p(z, Dyuft.

4 Since {1.3) is valid for elliptic operators, with summation over all « with || = m,
it is easy to show that P is also of principal type if p is the product of an elliptic poly-
nominal with continuous cocfficients and a polynomial with “sufficiently smooth™ co-
efficients satisfying the hypotheses of Theorem 4.3. The proof may be left to the reader.
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Now (4.1) gives that
-1 = Co®*(|p (2. D)ulP+ [P(e, D)ul?), u€CF(12).

Combining this inequality with the inequalities {4.12) and (4.13) and taking
d so small that C(,d%< 1/2, we obtain (4.10) with C = 7.

It remains to prove the estimate (4.11). The proof is somewhat complicated
by the fact that we have only assumed that the coefficients of ¢ as well as ¢4
are in (%, If they had been in ¢ we could have integrated by parts in (4.11),
shifting all derivatives to the left hand side. The fact that

(4.14) Z,Zﬁ}’ apbabp= q(@: E) (2, &) + q(x, &) P(w, §) = Cppuv (%, &)

would then show that the terms of order 2m — 1 cancel each other. Shifting
m — 1 derivatives back again we would get an expression for the quantity to
estimate which involves only the derivatives of u of order < m.

Our weaker smoothness assumptions make a slight modification necessary.
By successive integrations by parts we shall prove that

(4.15) ZZ(CaﬁDau’Dﬂu): 2 2 (c:ﬁDuu7DBu)+ 2 2 (daﬁDau”Dﬂu) .

la] = m, 18] =m—1 e} =8| = m—1

Here cfs=Ounless o, < o, < -+ = @, < f, < - -« = B,,_1, and the coeffi-
cients ¢} 5, d, 5 are all continuous. Further, we have

(416) Z Z C:B(x}fa‘fﬁx 02m—1(w3 ‘:t) .

To prove this we consider one of the terms (c,5D,u, Dyu). One of the multi-
indices o and f is of length m and the other of length m — 1. We shift one
differentiation from the side involving a differentiation of order m to the other
side. The term which then appears when a coefficient is differentiated is
immediately included in the last sum in (4.15). With the other term we repeat
the same procedure. After a finite number of steps we can of course arrive
at a sum of the same form as the last sum in (4.15) added to (c,3Dysu, Dgru),
where |a*| =m, |f*|=m—~l,af S af = - S X < BF < .- < B%_,and
{o*, B*) is a rearrangement of («, 8). This gives (4.15) and (4.16), by using
(2.24). In view of the normalization of the coefficients ¢, it is obvious that
they are uniquely determined by C,,, .., (x, ). From this fact and (4.14) it follows
that the same procedure must give

(417)  (p(z, D)u, q(2, D)w) + (§(, D)u, (e, D)u) = X (c5Dyu, Dyu) +

+ 2 Z (eaﬂDau’ ‘Dﬂu')
laf = |} = m—1
with the same coefficients ¢}, as in (4.15) and continuous e,;. Subtracting
(4.17) from (4.15) we obtain (4.11). The proof is complete.
Remark. The estimates given in this chapter are only local. In fact, an

example showing that global estimates are not possible has been given by
Trives [7], p. 8.
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5. Some spaces of distributions

By ##°¢, —oco < 3« 00, we shall denote the space of temperate distributionsu
such that 4 is a function satisfying

CRY lulf = [12(EPFA + €2y dé< oo

Clearly #* and #~* are dual spaces with respect to a bilinear form extending
the form [wuwvdx. If s is a positive integer, J#* consists of all ¢ L? with
D,u ¢ L? |a] < s, and the notation |u|, coincides with that used in the
preceding sections. In particular, 5#°= L2 As before we shall write [u| instead
of |uly for the L? norm. Below we shall chiefly use another norm, equivalent
to [jul|,, namely

(5.1 lalf o= [ 1B(E)P(ER+ &2 d& .
We have
(5.2) Z 1Dyul ot e2ul2, = fulZe i .

This follows immediately by computation.

Next we shall prove two lemmas concerning the regularization of elements
in #~% s > 0. Both are partly contained in [4]. (Note that 2#-* was denoted
by Z;in [4].) Let ¢ ¢ O satisfy the condition

(5.3) [edz+0.
@ will be held fixed in the argument that follows. Set

. (%) = e " p(xfe) .

Lemma 5.1. For every s >0 there are positive constants C, and C, such
that

(64)  Cylul?,., < s [ uxplte=tde < Cylul?,.,, weH-2e >0.
1]

1/C, and C, are bounded when s is bounded.
Proof. Parseval’s formula gives

[ lur e rde= [ a@Pass fleoperde.
Therefore (5.4) is equivalent to the inequality
(5.5) C; < (JE)2+ eaz)as(foltﬁ(eé)lze““l de < C,.
To prove this inequality we first note that if M is the maximum of |¢] we have

65208 [ |P(eb)Pete-1de < MY2 .
0
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Further, a substitution in the integral gives
&[22 8 [ | P (e)[2ere 1 de < ¢ sf1ped)eretde
i

fw | (&) |2e2e2de ,
¢

where &' = £/]£| is a unit vector. The integral when ¢ goes from 0 to 1 is < M?/2
and the integral from 1 tooo is also bounded because ¢{c#’) tends rapidly to 0
when |e&’| = £ » 0. This proves the last inequality in (5.5).

To prove the first inequality in (5.5) we have to use the assumption (5.3),
which. means that ¢(0)== 0. This implies that there are positive constants
a and ¢ such that [¢ ()| >¢ when |§| < a. Writing § = min (g, a/|&]) we get

8, 3
s [ |P(eb)|Pe?*1de = s c® [ &2~ 1de = 20292 .
0 0

The inequality (5.5) now follows with C;= ¢ min (1, a?s)/2.

This lemma is essentially contained in Theorem 7.1 and Lemma 7.1 in [4].
We next pass to an improvement of Theorem 7.2 there, which itself is an
extension of Friedrichs’ lemma {2]. It may be remarked that this improvement
can be used to simplify the proofs in [4].

Lemma 5.2. Let a € C7, s >0. Then there exists a constant C; such that

{5 6) f (L(’&t *(pa) - (au) *‘P [12823—-1’;8 = C ﬁ H—s 1.8 u € ‘%ﬂ‘”s-l’ 80< 1.

‘When s is bounded, C; is also bounded.
Proof. The Fourier transform of ef(a{u* @) — (au)* ¢,) is the function

= [ed(&—n)(Plen) — P&t dy.
Write

(6.7) K(e, & n) = e*|d(& — )| |Plen) — G| (nl+ + e5°77) .
Using Cauchy-Schwarz’ inequality we get

IF @)= [ K(e, & m)dn [ K& & n) [@n)P(nl++ eg*~1)2dy .
We shall prove that

(5.8) S K@ & ndyps Cpe<e,,

and that

(5.9) f [ E(e, & n)dEdele < .
0

Noting that (|n|*+1+ e5*-1)2 = |92C+D 4 g52C+D = 2-3(|y|2+ e52)*+! and
using (5.8) we get

[Fe(OF < 0.2 [ Ko, & ) e (m)P(Inl*+ s5%)*-"dy .
Integrating with respect to d & defe and using (5.9) we now obtain

[ [ I dt defe < 0,022 s,

which is precigely the inequality (5.6).
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It thus only remains to prove (5.8) and (5.9). We then have to consider
separately the cases when £ and # are close and when they are far apart.
If M is the maximum of |grad@| we get

(610) K& & ) = Me+|d(€ — )| |& — nl (2416 — ml*+14 52-)

if 5] £ 2]& ~ #|. Next let || > 2|& — n|. The line segment joining & and g
then lies outside the sphere with radius |#|/2. If we denote by @ (t) the maximum
of |grad §| outside the sphere with radius #/2, we thus get

B11)  K(e,& ) S e+ |d(E = n)] £ — 1] Dlell) (lr++ e5o-)

Since g is rapidly decreasing at infinity, this is also true for @.

Noting that @ (e|n]) and (¢|n])*+1 D (e|n]) are bounded and that ¢ < ¢, < 1
we get from (5.10) and (5.11)

(5.12) K(e, & m) = Cla( — )| [&~ 7l (1€ — 7+ +1).

Since the integral of the right hand side with respect to # is finite and in-
dependent of ¢ and &, the inequality (5.8) follows.
To prove (5.9) we make the estimate

fen Dlen) Inlrtlesde < foo@(s n) IylFtlstde = fm@(en')e’dé‘
0 0 0

where 7’'= 5f|y| is a unit vector. Since @ (g%’') tends rapidly to 0 when
|e %] = & ->co, this integral is a bounded function of #’. Hence we obtain from
(5.10) and (5.11), using the fact that @ is bounded

618)  [Kie & mdele s O Lot~ nl =7l (¢~ nli+D),

and (5.9) now follows immediately.

6. A priori estimates in #—*

We shall now prove that the L? norms in the definition of operators of
principal type may be replaced by the norms [u]_,.

Theorem 6.1. Let P(x, D) be of principal type and have coefficients in C>.
Define £2, as in Definition 1.1. Then for every 8 > 0 there are positive constants
O, and &, such that
B 5 S, 0 S OIPG Dtue, wE0F@,

o| < m
provided that § < &,. The constants C, and ;! are bounded when & is bounded.

Proof. Take a function ¢ satisfying (5.3) with support in the unit sphere
with centre at 0. Write
{(6.2) U,=u*g,.

If e< 6 and u € OF (£2,) we have u,€ OF (£2,5). When 25 < §, we may thus
apply (1.3) to %, and get

2 (28)20sl-m[D w2 < Cy| P(w, D)u,|*.
lel<m
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Hence
5 [
2 (20p2¢dl=m s [|D, w22 1de < Oy s [ | P(x, Dyu,|2e?s1de .
o} < 0 0

Since D, u,= (D, u)* ¢, the left hand side can be estimated from below by
means of Lemma 5.1. This gives

(6.3) 2 (@8 (ed-mD w2, s = Cys/C, f | P(x, Dyu2e?s—1de .
ja] <m
With f = P(z, D)u we have
(6.4) Pz, Dyu,= f,+ i é (@, ((Dyu) * @) — (@, D,u) * p,) .
o2 =B
From Lemma 5.1 we obtain

o
(6.5) s [fol2e2ede < Cy||f|2,,5
0
and from Lemma 5.2, assuming that é < 1,
s
(6.6) Of la,(Dyu) * @) — (ayDyu) * @, |22 tde = O3] DyulZ,—y,5 .

We now introduce the expression (6.4) for P(x, D)u, in the inequality (6.3).
After using Cauchy’s inequality in the right hand side we can apply (6.5) and
(6.6). With a new constant C we get

61 3 S IDu = O (12t X (D).
lal < m lal S m /

In those terms on the right hand side of (8.7) where |&| < m we use the in-

equality

(6.8) Dot - 51,6 = 8Dyl —s,5

which follows from (5.2). On the other hand, if (x| = m we can write D, =D, D,
where || = m — 1. In view of (5.2) again we have

(69) HDau”—s~1,6 = “'Dﬁu”—s,d .

We now get from (6.7) by estimating the terms on the right hand side by
means of (6.8) or (6.9)
ST, DA = O It k) B (Dl
oy < W
(n is the dimension.) When 6 < 1 and C8%(62+ n)< 1/2, we get
Z 62(0‘1_7}?’) chcuﬂgs,é = 20}”}&8,6 ’
jaf < m

which completes the proof of Theorem 6.1.

Remark. The argaments of the proof could also be applied if instead of (1.3)
we only knew that

l#lm—r = CO)| Pz, D)ul, w € CF(£2,)



Differential Operators 145

where C(d) - 0 as § — 0. We then get a similar estimate with the other norms.
However, we do not know any example of an operator for which this estimate
but not (1.3) holds.

7. The existence of smooth solutions

Let P(z, D) satisfy the same assumptions as in Theorem 6.1. Denote by
Pt{z, D) the formal adjoint of P{x, D), defined by

[Pz, D)ypyudr = [ ¢P(z, Dyudx, ucC0>, @cCy.
Explicitly the formal adjoint is defined by

Pt(x’ D)‘P = Z {_D)g(amqj) .

The principal part is (—1)"p. Hence Theorem 4.2 shows that P* also satisfies
the assumptions in Theorem 6.1, so that we may replace P by P! there. Let
8, and C, be the constants then associated with P?.

Theorem 7.1. Let f be a function such that D, f ¢ L*(R), |« < k (k = 0).
If 6 < 0,4 m— there then exists a solution in £2; (in the distribution sense) of
the equation P(z, D)u = f, such that D u € L?(£2;) when || < &k + m — 1.

Proof. The equation P(z, D)u = f means by definition that

(1.1) [ (P{(z, D)p)udz = [ pf de, ¢ € O3 (2,).

Thus consider the mapping

(7.2) Pz, Dyp—~ [ pfd=,

defined for ¢ ¢ OF (£2;). The mapping is linear and

(7.3) \ ofdal = flesl@l-xs-

Now we have according to Theorem 6.1 withs=%k +m — 1

(74) 2 &#=mD,gll, s = C| P, D)gl2,s.
| <

In view of (5.2) we can estimate 6-2|¢|2,_,_, , by means of the left hand
side in (7.4) and obtain

(7.5) 1Plm-1-5,0 = €8] P*(z, D) pls5 -

Since m — 1 — s = -k this gives combined with (7.3)

|/ ¢f dz| = C"6|flx, o] P*(z, D) g]—s,6 -

In view of the Hahn-Banach theorem the mapping (7.2) may hence be extended
to a continuous linear form on S —¢. Thus there exists an element % € 5 such
that

luls,s = C'0)flx.s

and (7.1) holds. But this means that P(x, D)u = f in £,. The proof is complete.

Every function in L?(£2,) may be extended to a function in L2(R*) by
defining it to be 0 outside ;. (Since £2; has a smooth boundary there is also
an extension theorem for functions with all derivatives of order < %k in L2,
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but it is then less trivial.) We thus get the following improvement of the
results of [3].

Corollary. If P is of principal type with coefficients in C* and é £ 6,,-,
the equation P(x, D)u = f with f¢ L?>(£2;) has a solution u such that
D u € L?(£2,) when |o| < m — 1.

Added in proof. Theorems 3.1 and 3.2 may be extended to operators of any order and
coefficients in C*®. This will be done in an article to appear in this journal with the title
“Differential equations without solutions”.
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