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A Note on Automorphism Groups of Algebraic Varieties* 
By 

C° P. l~AMANUJAM in Bombay (India) 

MATSVSAXA has proved [3] tha t  the maximal connected group of auto- 
morphisms of a projective variety can be endowed with the structure of an 
algebraic group. Our aim in this note is to extend this result to arbitrary 
complete varieties. More generally, we shall show that  a "connected" and 
"finite dimensional" group G of automorphisms (see below for precise defini- 
tions) of any algebraic variety X can be endowed with the structure of an 
algebraic group variety. The main line of argument is similar to the one used 
by CHEVALLv, Y [2] and SESItADRI [7] in the construction of the Picard variety, 
but somewhat simpler. We shall prove that  the linear map of the Lie algebra 
of this algebraic group into the space of vector fields on X which associates 
to any tangent vector at the identi ty element of G the corresponding "infin- 
itesimal motion" is an injection. I t  follows easily tha t  G satisfies the universal 
property for connected algebraic families of automorphisms of X containing 
the identity, tha t  is, tha t  any algebraic family of automorphisms of an algebraic 
variety X parametrised by a variety T is induced by a morphism of T into G. 
As an application, we shall prove that  the maximal connected group of auto- 
morphisms of a (locally isotrivial) principal fibre space over a complete variety 
has a structure of a group variety. We have been informed by the referee tha t  
this result has also been obtained by H. MATSUMVRA. 

All varieties will be assumed to be irreducible, and defined over an al- 
gebraically closed field K.  

We shall say that  a family {~vt}~ of automorphisms of a variety X, where 
the p~ametr is ing set T is also a variety,  is an algebraic/amily if the map 

T × X -~ X given by (t, x) ~ ~v~ (x) is a morphism. I t  is clear tha t  if ~ : 8 -+ T 
is a morphism, the family {~(~)}~ s is again algebraic, and tha t  if {~v,}~es is 
another algebraic family, {~v~ o ~v~}(,,~)cs× ~ is also an algebraic family. Let  
(J[, p) be the normatisation of X. For  every t E T, ~ lifts to a unique auto- 
morphism ~vt of J[ such tha t  p o @~ = ~ o p. We shall show tha t  {@~}~T is an 
algebraic family of automorphisms of J[. Let  (~, q) be the normalisation of T. 
Then (~  × J[, q x p) is the normalisation of T × X, and the morphism 

T × X £ X  lifts to a unique morphism @ : ~ ×  J [ - ~  such that  p o  
= ¢ o (q × p). I t  follows that  for any ~ E ~, the morphism of J~ onto itself 

* The author wishes to express his gratitude to Professors M. S. NAI~S~m~N and 
C. S. SESHADBI for many helpful suggestions and discussions. 
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given by 2 -~ ~(/, 2) coincides with ~g (~). Let  I~  be the graph of ~ i n  T x J[ x 
X, and F~ its image in T x X x  ~ by  q x I  2 x I 2 ,  I]: denoting the 

identi ty map of J[. / '¢ is then the graph of the map T x :~ ~ ~ given by 
(t, 2) -> 9t (x) and since q is proper, F~ is closed. Since the projection of /'~ 
onto the product T × J~ of the first two factors is an isomorphism and q x 
x I 2 : T x R - ~  T x ~ is proper, it  follows tha t  the projection of F¢ onto 
T x ~ is a morphism which is proper and bijective. 

Let  Pl and p~ be the projections o f / ' ~  onto the second and third factors. 
I t  is easily checked that  if T is a tangent vector at a point (t, 2, ~t(2)) to F¢ 
whose image by the differential map of the projection onto T is zero, and if dpi 
and dg t  are the differential maps of p~ and 9t, we have dp2(v ) = d~(dpl (T) ) .  
I t  follows that  the differential map of the projection of 1~ onto T x X is 
everywhere injective. I t  follows from [5, Appendix, Expos~ 5, p. 5--28] tha t  
/'¢ -~ T × X is an isomorphism everywhere, which shows that  ~ is a morphism 
and {gt}t~r is an algebraic family. 

A similar argument proves that  the family {g/1}t~r of inverses of an 
algebraic family is again algebraic. Since the set of points of a parametrising 
variety for which the corresponding elements of an algebraic family become 
the identity automorphism is a closed set, it follows that  if {gt}t~ T and {Y~}sc,s 
are two algebraic families, the set of (s, t) ~ S x T for which 9t = YJs is closed. 

We shall say that  a group G of automorphisms of a variety X is a connected 
group o/automorphisms if any automorphism belonging to G is a member of 
an algebraic family which also contains the identi ty automorphism of X. We 
shall say that  G is finite dimensional if there exists an integer N such that  if 
{9~}ter is any algebraic family of automorphisms contained in G (i.e. 9t ( G 
for every t ( T )  and such that  9t ~ 9t' if t ~ t' (an in~ective /amily), we have 
dim T _-< h r. The smallest integer N having this property is then called the 
dimension of G. 

We need a final definition. Let  (gt}t~T be an algebraic family of auto- 
morphisms of X and 9 : T x X ~ X the defining morphism. Let  v be a tangent 
vector to T at a point t 0, and for any x, let v~ be the tangent vector to T x X 
at  (t 0, x) which is the image of v by  the differential mapping of the morphism 
0~ : T ~ T × X given by 0x (t) =- (t, x). We can then define a vector field d 9 (¢) 
on X whose value dg(¢)x at the point x is given by dg(v)~ = dg(v¢~l~). 

The vector field d 9 (¢) is immediately verified to be regular (i.e., maps regular 
functions on open subsets of X into regular functions). We shall say tha t  the 
family {gt}te~ is infinitesimally iniective at a point t o ( T if d 9 is an injection 
of the tangent space at  t o into the vector space of regular vector fields on X. 

We now state our result. 
Theorem. Let O be a connected finite dimensional group o/automorphisms 

o / a n  algebraic variety X.  Then there exists a unique structure o / a n  algebraic 
variety on (7 which makes o] it an algebraic group (o/dimension -- dimension o/G)  
such that the/ollowing condition holds: 

a. The automorphisms o / X  belonging to G, when considered as a ]amily o/ 
automorphisms o / X  parametrised by the identity map o /G  onto G, is an algebraic 
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]amily which is infinitesimally injective on G. In  other words, i / •  : G × X -~ X 
is defined by Z(q~, x) = q~(x), Z is a morphism o] algebraic varieties, and i/7; =~ 0 
is a tangent vector at any point o] G, d q~ (3) ~ O. 

Further, G has the /ollowing universal property: 
b. I/{qZt}t~T is any algebraic/amily of automorphisms o / X  such that q~t ~ G 

/or every t ~ T, there is a unique morphism ~ : T -~ G such that ~f(t) = eft. 
We will first show tha t  (a) implies (b), and this in turn trivially implies the 

uniqueness assertion of the theorem. By an earlier remark,  the subset F of 
T × G consisting of those (t, 9) for which ~t = q~ is a closed subset of T × G. 
Since this is precisely the graph of 4, we have only to verify tha t  the projection 
is an isomorphism. We shall prove tha t  the differential map  of the projectiorL 
of F onto T is injective at every point o f / ' .  Let  P1 and P2 be the projections 
of F onto T and G respectively. Let  {Y~v}r~r be the algebraic family on X 
defined by  ~fl~ = cfp,(v) = P2(~'). I f  T is any tangent  vector at  a point 7o to F, 
we have evidently dyJ (3) -- d 9(dpl(3)) := d)~(dp2 (3)). I t  follows by  (a) tha t  
if dpl(T) = 0, then dp2(T ) = 0 and hence z = 0. 

By Lemmas  1 and 2 below and Zariski's main theorem, we can find Yl . . . . .  Ym 
~ X  such tha t  the morphism ~: G - ~ X  ~ defined by  ~t(g)= (gYl . . . . .  gY,~) 
is a radicial covering of the non-singular locally closed subvar ie ty  W = 2(G) 
of X ~ by  G. Since # : T-+  W given by  ju (t) = (~, (Yl) . . . . .  ~t (ym))is a morphism, 
its g raph / '~  C T × W is closed irreducible. Since I~, × 2 : T × G -+ T × W is a 
radicial covering and ( I t  × ~)- 1 (Fj,) = F, F is irreducible and F - +  T is proper. 
We m a y  now apply the result of [5, Appendix to Expos6 5, p. 5--28]  to 

conclude tha t  F ~  T is an isomorphism, and ~ = p~. o p~-i is the required 
morphism. 

Hence we have only to construct a structure of var iety on G satisfying (a). 
Lemma 1. Let { q~t}te~' be an algebraic/amily o/automorphisms o /a  variety X 

parametrised by a (not necessarily irreducible) algebraic space T. Then there 
exists a finite number o/ points x I . . . .  , x n ~ X such that i/  qJ~(x~)= ~t,(x~) 
(i = 1 . . . . .  n; t, t' ~ T), then ~t = ~t'. 

Proo]. For  any  x ~ X, let S~ be the closed subset of T × T consisting of all 
(t, t') such tha t  ~t (x) -~ q~t' (x) and S the subset of (t, t') such tha t  ~, = ~t'- 

Then we have S = ~ x  f~ S~, and since T × T is a noetherian space, S =,rISx~,. = 

where x~ . . . . .  x~ are a finite number  of points of X. This is the assertion of 
the lemma. 

Lemma 2. Let G be a connected group o] aatomorphisms of a variety X ,  and x 
any point of X .  Then the orbit Gx = { q~ (x) [ q~ ~ G} is a locally clo~ed non-singular 
8ubvariety o / X .  Moreover i / G  is finite dimensional, d i m G x  ~ dimG. 

Proo]. By a well known theorem of Chevalley, if { ~ } t ~  is any  algebraic 
family of automorphisms of X, the subset ~ ,  (x) = {~t (x) I t ~ T} is an irreducible 
eonstruetible subset of X of dimension at most  equal to the dimension of X. 
I t  follows tha t  we can choose a family {~}~e ~ such tha t  ~ ~ G for all t ~ T and 
dim ~ ,  (x) is a maximal.  By  replacing this family by  { ~  o ~ } ~ e  ~, if necessary, 
we may  assume tha t  ~ ,  is the identi ty of X for some t o ~ T. The closure ~T(x) 
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of efT(X) is a closed h'reducible subvariety of X and efT(X) contains an open 
subset U of efT(x). We assert tha t  Gx< efT(x ). I f  not, there would exist a 

E G such tha t  V(x)¢  efT(x). Since G is connected, there exists a family 
{~}~¢s such tha t  for two points s 0, s I E S, we have ~vs, = I x ,  V~, = YJ. The 
algebraic family of automorphisms {eft o V,}(t,s)~T × S is contained in G, and 
contains both the families {eft}t~T and {~v~}~¢ s. Hence it follows tha t  efT(x) c 
C . eft o ~0s(x) (since ~l(X) ¢ efT(x)), dimef T o ~s(x) = dimefT o ~s(X) > 
> dim eft (x) = dim eft (x), which contradicts our choice of the family {eft}- 

Thus, GxC efT(x), and since Gx = U ef(U) and each ef(U) is open in 
¢ 6 G  

efT (x), Gx is open in eft (x) = Gx. Hence Gx is locally closed in X,  and since G 
acts transit ively on the var iety Gx, it is non-singular. 

Suppose now tha t  G is of finite dimension N, and d imGx > N. I t  follows 
from the first par t  of the proof tha t  there is aa  algebraic family {eft}t¢z con- 
tained in G such tha t  dimefT(x ) = d i m G x  > N.  Since the morphism T-+ Gx 
given by t -> eft (x) is dominant,  it is easy to see tha t  there is a subvariety T 1 
of T such tha t  d i m T  1 = d i m G x  and the morphism T 1 ~ Gx given by t 1 -+ 
--> eft, (x) is again domir~ant. The function field R(T1) of T 1 is therefore algebraic 
over the function field R(Gx)  of Gx. Hence, by  replacing T~ by an open subset, 
we may  further assume tha t  the fibers of the morphism t I -+ eft, (x) are finite, 
and in particular tha t  for any  t 1 ~ T1, there are only a finite number  of t 2 E T1 
such tha t  eft, = eft,. I f  we can construct by  a suitable "descent" art injective 
family of automorphisms of the same dimension, we would have the required 
contradiction. 

By Lemma 1, there exist Yl . . . . .  Yn C X such tha t  eftl(Yi) = eft,(Yi) 
( i =  1 , . . . , n )  implies tha t  eft,= eft,. Let  y = ( y l  . . . . .  Yn)~Xn,  and let 
{ef~}t,c T~ be the algebraic family of automorphisms of X n defined by  ef~ (x 1 ..... xn) 
= (eft,(Xl) . . . . .  eft,(xn)). Since ef~,,(y) is constructible we m a y  assume tha t  
eft, (y) is actually a locally closed normal subvariety of X", by  replacing T 1 

n by an open subset. Since the fibers of tl ~ eft,(Y) are finite, we may  assume 
(by replacing T 1 by  its normalisation in a normal algebraic extension of 
R(q~,  (y)) containing R(T~)) tha t  R (T1) is normal over R (eft,, (y)). Let  T~ be the 
normalisation of eft,, (y) in the purely inseparable closure of R (eft, (y)) in R (T1). 

By  replacing by  an open subset, we m a y  assume tha t  the morphism T 1 ~ T~ 
is a Galois covering, so tha t  T,  is the quotient of T~ by  a finite g r o u p / / .  
I f  tl, t~ E T1 have the same image in T~, then eft(y) = eft(y) and hence eft~ 
= eft,, and conversely, if eft, = eft,, ef~,(Y)= ef~,(Y) and hence 2 ( t l ) =  2(t2) 
since T~ is a purely inseparable covering of an open subset of eft, (y). Thus, the 
defining morphism ef : T1 × X ~ X commutes with the action o f / / o n  T 1 × X, 
and hence "passes down" to a morphism ef ' :T~  × X ~ X such tha t  
ef' o (2 x I x )  = ef. Then ef' defines an injective algebraic family of dimension 
= dimension of T1 > N,  which is a contradiction. 

Lemma 2 is proved. 
We now proceed to the proof of the theorem. Let  {eft}tET be an injective 

family contained in G and containing the identi ty such tha t  dim T = dim (7 
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and T is normal.  We assert t ha t  any  element y~ of G can be wri t ten as ~tl o ~ 1 
with tl, Q C T. I n  fact,  by  an  application of L e m m a  1 to  the  union of the two 
families {eft}tOT and {~p o ~t}tET, we deduce t h a t  there exist a finite number  of 
points x I . . . . .  x~ such t h a t  ~,(x,) = ~t.(xi) implies t h a t  ~, = ~ ,  and also such 
tha t  q~, (xi) = y' o q~r (xi) implies t h a t  ~0 t = yJ o ~t'. Let  x = (x 1 . . . . .  xn) E X n, 
and make G act  on X n componentwise.  Then  G x  is an irreducible 
locally closed subvar ie ty  of X n whose dimension is the dimension N of G, by  
Lemma 2 and because the morphism t -+ ~ ( x )  of T into Gx is injective. Also 
~ (x) and yJ o ~ (x) contain open subsets of Gx, since both  are of dimension N.  
Hence these two subsets of Gx have a non-void intersection, so t h a t  ~ , (x)  
= y~ o ~ (x) for some t 1, t~ 6 T, which implies (by our  choice of x) t h a t  W~ 
= %v o ~0t~ , ~ = ~t, o ~t? 1 . Thus  the  algebraic family { ~  o ~0t71}(t,r) ~ T × T 
contains all the elements of G. Hence by  L e m m a  1, there exist a finite number  
of points Yl, • • -, Ym ~ X such t h a t  ~ (Yi) = ~' (Yi) (i = 1 . . . . .  m), of, q~' E G, 
implies t h a t  ~0 = ~' .  

Let  y be the  point  (Yl . . . . .  Y,,) C X ~, and Gy the orbit  of y for the  act ion 
of G componentwise on X% I t  follows f rom L e m m a  2 t h a t  Gy is an irreducible 
locally closed non-singular subvar ie ty  of X '~ of dimension h r. Since the mor-  
phism T---> Gy  given by  t -+  ~ ( y )  is dominan t  and injective, R ( T )  is purely  
inseparable over R (Gy). I f  the  characterist ic is zero, it follows from Zariski 's  
main  theorem t h a t  T is isomorphic to  an open subset of Gy, and we pu t  
Z = Gy. I f  the characteristic is p > 0, we can find an  integer n => 0 such t h a t  
R ( T )  C R ( G y W " .  I n  this case, let Z be the normalisat ion of Gy in R(Gy)~'-'. 
B y  replacing T by  its normalisat ion in R ( G y W "  we m a y  assume tha t  T is a a  
open subset of Z. Let  ~ : Z ~ Gy  denote  the  projection of Z onto  Gy (and the  
ident i ty  map  if characterist ic is zero). Since Z is the  normalisat ion of Gy in 
R (Gy)* -~, and since G acts (as an  abstract  group) as a group of au tomorphisms 
of Gy, it can be made to  act  as a group of au tomorphisms of Z in such a w a y  
as to  commute  with the project ion ~. Since ~ is bijective, it follows f rom our  
choice of y t h a t  for any  z C Z, there is a unique element ~o, E G such t h a t  
~ (y) = ~ (z), and it follows tha t  for any  ~ E G, we have + ~  = ~ o ~o,. Also, 
the map  of Z onto G given by  z -> ~ is a bijection. Since the family of auto-  
morphisms {¢,}:e z is algebraic when restr icted to the open subset T, and since 
acts t ransi t ively (and simply) as a group of au tomorphisms of Z, it follows t h a t  
{~o~}~ z is an  algebraic family. 

We have thus  constructed an algebraic family {~}z~z parametr ised by  a 
non-singular var ie ty  Z, such t h a t  (a) z -+ ~z is a bijection of Z onto  G, and (b) G 
(as an  abs t rac t  group) acts on Z in such a wa y  t h a t  for V E G, z E Z, we have  
~%~ = ~, o ~0. I f  the  family {~,}zez is infinitesimally injective (this always holds 
when the characterist ic of K is zero, as is well known) on the  whole of Z, we 
t ranspor t  the algebraic s t ructure  of Z onto  G by  the above bijection, and we are 
through.  Suppose t h a t  this is no t  so, so t h a t  the  characterist ic p of K is > 0 .  
At any  point  z E Z, let T~ be the  t angen t  space of Z, and let ~ be the kernel 
of the linear map  d ~0 of T,  into the  space of vector  fields on X. Because of (b), 
the dimension of T~ is the  same for all z E Z. Since locally on Z 
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T~ is defined by the vanishing of a finite number of regular differential forms, 
it  follows that  the family of vector spaces {T'z}zez defines a sub-bundle T' of the 
tangent bundle of Z. I t  is easy to verify that  if X and Y are vector fields on an 
open set of Z such that  their values at  any point z of this open set belong to Tz, 
the same is true of [X, Y] and X v. Thus, T'  is an integrable sub-bundle of the 
tangent bmldle of Z, in the sense of CARTIER (see Expos6 6 of [5]). Hence there 
exists a non-singular var ie tyZ'  and a radicial covering p : Z -~ Z' of height one 
such that  the kernel of dp at  any z C Z is precisely Tz. Further,  there exists 
a morphism qJ:Z '× X ~ X such that  q ' o  (p × Ix)=~v (Theorem 2 and 
Proposition 7, expos6 6, [5]). Thus, the family {~'}~'¢z' parametrised by Z' 
and defined by ~(z) = ~z for z ~ Z is again algebraic. Also the action of G on Z 
"goes down" to an action of G on Z' since it leaves the sub-bundle T' invariant. 
Finally we have a morphism of Z' onto Gy defined by z' --> of' z, (y), which implies 
tha t  R(Z)DR(Z')DR(Gy), [R(Z) :R(Z ' ) ]>I .  If the family on Z' is not 
infinitesimally injective, we may  repeat the above method of descent, to get 
a Z"  with R(Z)DR(Z')DR(Z")DR(Gy),  [R(Z'):R(Z")] > 1. Since 
[R(Z) : R {Gy)] < oo, we must arrive at a bijective and infinitesimally injective 
algebraic family in a finite number of steps. Transporting the algebraic structure 
of the parametrising variety of this family to G, we arrive at a structure of an 

algebraic variety on G, such tha t  G × X ~ X defined by  Z(~, x) = ~(x) is a 
morphism and the family {Z~}~Ea (Z~= ~) is infinitesimally injective. 

Now, in the proof of the fact tha t  part  (a) of the theorem implies (b), 
we never used the fact that  the group operations on G are algebraic. Thus 
we may apply (b) to the algebraic family {Z~ o ;~:1}(~, ~')~a × a to deduce that  
the map G × G -+ G given by (q, q') -> ~ o ~ ' -1  is a morphism. 

The theorem is completely proved. 

We now apply the theorem to the group of all automorphisms of a semi- 
complete variety which can be connected to the identi ty automorphism by an 
algebraic family parametrised by  an irreducible variety. (From the preliminary 
remarks made at the beginning of this note, it  follows tha t  such automorphisms 
form a group under composition.) We shall say that  a variety X is semi- 
complete if for any torsion free coherent algebraic sheaf .~" on X, the vector 
space H°(X, 3-J) (over K) of sections is finite dimensional. By the theorem, 
we have only to show that  there exists an integer N such that  if {~vt}t¢r is any 
injeetive algebraic family of automorphisms of X, dim T < N. The normaliza- 
tion (2~, p) of X is again semi-complete; for if ~ is coherent and torsion free 
on X, its direct image p ,  ( ~ )  on X is again coherent and torsion free, and 
Ho(X, ~') ~ H°(X, p,(.¢:)). Also the family {q~t}te~' lifts to a family {~t}t¢T 
of automorphisms of ~ ,  which is again injective. Let  Y be the closed set of 
singular points of X. Then any automorphism of X leaves 2~ - Y stable. Any 
coherent torsion free sheaf ~-~ on 2 ~ -  Y admits of an extension ~- to 2~, 
which is again torsion free, and since X is normal and codim Y ->= 2, it follows 
tha t  the map H°(X, ,~) _~ H°(J[ - Y, .~-~) is an isomorphism. 

Thus, we are reduced to the case of a non-singular semi-complete variety X. 
In  this case, it  is well known that  the group of coherent sheaves of principal 
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ideals on X (the Car~ier divisors) is canonically isomorphic to the free group 
generated by the subvarieties of codimension one in X. Let /1  . . . . .  ]~ be non- 
constant rational functions on X generating the function field R (X) over K, 

n 

and let D = ~ Dj be any positive divisor on X with De prime, such tha t  
j = l  

D + div(/i) > 0, and D + div(]~ - 1) ~ 0. If  {~vt)t~ ~ is any algebraic family 
of automorphisms of X such tha t  for some t o E T, ~t, = Ident i ty  and for any 
t E T, the inverse image ~v* (D) of D equals D, I assert tha t  qt = Identi ty.  
In fact, since T is irreducible, it  follows that  we must have qt (D~) = D t for 
any j, 1 < j < n. If  Vj is the discrete valuation on R (X) defined by  D¢, it 
follows that  V~(/o q~t) = V¢(/). Hence, we must have div(/i) = div(fi o Tt), 
div((/i - 1) o qt) = div(/i - 1) for 1 -< i ~ p. Since X is semi-complete, the 

functions ~ h  o ~, and (/'--/i --1)10 q~t,,. ,being everywhere regular, must be con- 

stants. Thus we obtain 

f~ o q~, = a , l ,  , 

( / i -  1) o ~ t = b i ( f ~ -  1 ) = f i e  q t -  l = a l / ~ -  1,  

which shows that  ai = bt = 1 a n d / t  o qt = / i .  Thus, qvt induces the identity 
automorphism on R (X), and hence must be the identity. 

Now if {q~t)t~T is any irreducible algebraic family of automorphisms of X 
with q~t, = Identity,  {~* (D)}t~T is an algebraic family of divisors on X with 
q~t* (D) = D. If Pic (X) is the (connected) Picard variety of X, we thus get a 
morphism ~0: T ~ P i c ( X )  defined by ~ ( t ) =  C I ( T * ( D ) -  D) ([5], Expos6 8, 
corollary to Theorem 3). Let  T 1 be an in'educible component of ~p-l(~p(t0) ) 
containing t 0. We then have dim T < dim T 1 + dim Pic(X), by the dimension 
theorem ([1], Chapter I I I ,  Theorem 2). But  now, for every t E T1, ~*(D) - D 
is linearly equivalent to zero, and thus we have an injective morphism ~: T~ -+ 
_+ pr, where p r  is the projective space which parametrises the complete 
linear system contain~g D ([5], corollary to Prop. 7 and Theorem 2, Expos~ 5). 
Hence, we deduce tha t  dim T g dimlD 1 + dim Pic(X). 

We have thus proved 
Corollary 1. Let X be a semi.complete variety. Then the group G o/al l  auto- 

morphisms of X which can be connected to the identity automorphisra by an 
irreducible family can be given the structure of a group variety such that the map 
G x X ~ X given by (qp, x) -+ q~ (x) is a morphism. The induced linear map of 
the Lie algebra ~ of G into the (finite dimensional) vector space of regular vector 
fields on X is an injection. G has the universal mapping property ]or all irreducible 
algebraic families of automorphisms containing the identity. 

Remark. By substituting G for T in the argument preceding the corollary, 
we see tha t  G is an extension of a subgroup of Pie (X) by  a linear group. In  
particular, when Pic (X) is trivial, G is a subgroup of the projective group of the 
projective space which defines the linear system [D]. Further,  when X is 
itself projective, we may clearly assume (by adding to D a high multiple of an 
ample divisor) tha t  D is a hyperplane section in a projective imbedding of X. 
I t  follows that  G is the restriction to X of a group of projective transformations 
of the ambient projective space (for this projective imbedding). 
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Now, let P be a locally isotrivial principal fiber space over a complete 
var iety X with structure group G. ([6], Expos4 1, § 2.2.) We will show tha t  
the group H of automorphisms of P which commute with the action of G on P 
and which can be connected to the identi ty automorphism of P is finite 
dimensional. Let  q: P - + X  be the projection. I f  {qJt}t~m is any injective 
algebraic family of automorphisms of P with qt0 = Ident i ty  for some t o C T, 
it is easy to check tha t  it induces an algebraic family of automorphisms {~t}tE T 
of X such tha t  q o ~0 t = ~t o q. By  Corollary 1 and the dimension theorem, it is 
sufficient to bound the dimension of any  algebraic family {qot}t~T such tha t  
qt, = Ident i ty  and q (qt (x)) = q (x), tha t  is, a family which fixes the base space. 

Let  q be any  automorphism of P which is identi ty on X, so tha t  for any  
p ~ P,  there is a unique ~ (p) E G such tha t  ~0 (p) = p ~  (p). Then ~ is a morphism 
of P into G satisfying v2(pg ) = g - l ~ ( p ) g .  Let Ad(P)  denote the bundle 
associated to P with fiber G for the action of G on the left of G by inner auto- 
morphisms and ,/: P × G-+ Ad(P)  the canonical map  ([6], Expos4 1, § 3.3). 
There is then a unique regular section a :  X - +  Ad(P)  such tha t  ~/(p, v2(p) ) 
= a (q(p)). Suppose now tha t  H is a closed normal subgroup of G, and let P '  
be the principal fiber space with structure group G/H deduced from G ([6], 
Expos4 1, § 3.3). I t  is clear tha t  ~ induces an automorphism of P ' ,  which is 
the identi ty if and only if the morphism V : P -+ G defined above maps P 
into H,  or equivalently, if the section a of the bundle Ad (P) has values in the 
sub-bundle with fiber H.  

Assume first tha t  the structure group G is linear, so tha t  we may  assume 
it to be a subgroup of a full linear group Gl(n). Let G act on the vector space 
M (n) of all (n, n) matrices on the left by inner automorphisms, and let V be the 
associated vector bundle. Then Ad(P)  is a sub-bundle of V. I f  {~t}tfiT is an 
injeetive family of automorphisms of P, we therefore get for each t 6 T a 
section at : X ~ V of V, and it  is easy to see tha t  a : T x X -~ V defined by  
a(t, x ) =  at(x) is a morphism. Since X is complete, the vector space ~ of 
sections of V is finite dimensional, and if ~¢ is provided with the structure 
of an affine space, t E T ~ at ~ .~  is dear ly  a morphism which is injective. 
Hence dim T < dim K.~,  and we are through in this case. 

Next  suppose G is any connected algebraic group, and C the centre G. Then 
G/C is a linear group ([4], § 4, Lemma 3). Since we know the finite dimension- 
ality of the group of automorphisms of the principal bundle with group G/C 
deduced from P,  it  is sufficient to prove the finite dimensionality of the group 
of automorphisms of P which induce the identi ty on the base and on the 
associated bnndie with GIG as fiber. I f  {qJt}tET iS any injeetive family of auto- 
morphisms of this group with ~0to = Identi ty,  we get a morphism a : T × X -~ C 
such tha t  if at : X ~ C is defined by  at (x) = a (t, x), at :# at, if t # t', since the 
bundle associated to P with fiber C and the (trivial) action of G on C by  inner 
automorphisms is trivial. Also we have at, (X) = e in C. Let  C' be the maximal  
linear subgroup of C, so tha t  C/C', is an abelian variety, and i : C ~ C/C' the 
canonical homomorphism. Since j o a(t  o × X ) =  e ia C/C', it follows from 
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well known theorems on abelian varieties t h a t  j o a depends only  on T, t h a t  is, 
there is a morphism ~ : T -~ C/C' such tha t  j o a(t, x) = $(t). Hence if T 1 is any  
irreducible component  of ~-l(e)  containing to, d i m T  ~ d i m T  1 + dimC/C'. 
But  for any  t ~ T1, at (X) ( C', and  since X is complete and  C '  is linear, at (X) 
is a single point  at ~ C', and the morptfism T 1 -> C'  given b y  t ~ at is injective. 
Hence, dim T =< dim C' + d im C/C'. 

Finally,  suppose G is no t  connected,  and let G o be the connected component  
of G containing e. Then P m a y  be considered as a principal bundle with 
s t ructure  group G o over the  Galois covering Y - - P  × aG/Go of X. A n y  
connected family of au tomorphisms of P over X induces the  ident i ty  on Y, 
and hence m a y  be considered as a family of automorphisms of P over Y. 
Since Y is again complete we are reduced to  the previous case. 

Thus, we have proved 
Corollary 2. Let P be a locally isotrivial principal fiber space with base a 

complete variety X and structure group G. Let Aut  o (P) be the group o/al l  auto- 
morphisms o / P  which can be connected to the identity by an irreducible algebraic 
]amily, and Aut  ° (P) the subgroup o /Au t  o (P) consisting o/those automorphisms 
which leave the base fixed. Then Aut  o (P) can be made into an algebraic group 
variety in such a way that the map g : A u t  ° (P) × P-+ P defined by Z(~, P) 
= cf (p) is a morphism. Aut  ° (P) is a closed subgroup o / A u t  o (P). The linear map 
d Z maps the tangent space at e to Aut° (P)  (resp. A u t ° ( P ) )  injectively into the 
vector space o/G-invariant vector fields on P (resp. G-invariant vector fields on P 
which are tangential to the fiber at any point o / P ) .  

References 

[1] CHEVALLEY, C. : Fondements de la g~ometrie alg~brique. Paris 1958. 
[2] - -  Sur la th6orie de la vari~t~ de Pieard. Am. J. Math. 82, 435--490 (1960). 
[3] MATSUS~,T.:  Polarized varieties, fields of moduli and generalized Kummer 

varieties of polarized abelian varieties. Am. J. Math. 80, 45--82 (1958). 
[4] SA~VEL, P. : Travaux de Rosenlicht sur les groupes alg6briques. S~minaire Bourbaki, 

1956--57. 
[5] S~rainaire C. CHEV~V, LEY, 1958 : Vari~t6s de Picard. 
[6] S~minaire C. CHEVALLEY, 1958--59 : Anneaux de Chow et applications. 
[7] S~S~ADRI, C. S.: Varlet6 de Picard d'une vari~t~ complete. Ann. Math. Pura et appl. 

(IV) 62, 117--142 (1962). 

(Received July 31, 1963) 

Math. Ann. 156 3 


