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Introduction

The problem of finding a Plancherel formula in the case of a large class of
groups, in particular of semi-simple Lie groups, can be formulated as follows.
One has to construct a family ¥ of irreducible unitary representations in such
a fashion, that by taking the traces of the integrals of a fixed sufficiently
regular (e.g. C* with a compact support) function with respect to members of '1)
(the traces being assumed to exist) and by forming the integral of these traces
by aid of a suitable measure on the space parametrizing the members of F', one
should obtain the value assumed by our function at the unity. Often one can
set up a basis in a canonical fashion for any irreducible representation in the
resp. representation space, and the matrix elements with respect to this basis,
eigenfunctions of the differential operators invariant under left and right
translations, turn out to be expressible in terms of certain special functions.
In these cases the Plancherel theorem is essentially equivalent to a set of
completeness relations involving these functions, and thus the former is often
capable of giving simple interpretation of seemingly unrelated facts of the
classical analysis. Methodologically, one can sometimes obtain the Plancherel
formula through such completeness relations and conversely, though the transi-
tion may be not quite easy.

Often the trace of the integral, formed with respect to a fixed member of F,
considered as a linear functional, is a distribution generated by a function,
which is locally integrable with respect to the invariant measure. In analogy
with the case of the compact groups, one calls this function the character of the
representation, and the Plancherel formula agsumes the meaning of a com-
pleteness relation of these characters.

For any complex semi-simple group the Plancherel formula has already
been found some time ago (cf. [5]). The real case, because of the existence of
nonconjugate Cartan subalgebras is more difficult, and as far as now only

* This work was partially supported by N. 8. F. grant no. G-18999.
1) If {T'(a)} is the given representation, this means the operator [ f(a) T'(a)du(a),
G

where d u(a) is the element of a fixed left invariant measure on the group Q.
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partial results are available. The case of the group SL(R, 2) (group of all 2 x 2
real matrices with a determinant 1), which is particularly interesting from
the point of view of the special functions, was taken up first by Baramanw {{17)
through the discussion of the matrix coefficients, determined by him as eigen-
functions of the Laplacian. A detailed proof, with much emphasis on the group
theoretic meaning, has recently been given by Taranassr ([10]). An invariant
approach was outlined by HARISH-CHANDRA in [3].

The purpose of the present paper is to give a detailed discussion of the
Plancherel formula for the universal covering group G of SL(R, 2). One of the
new features of this case comes from the fact, that no proper covering group of
SL{R, 2) possesses a faithful linear representation. @ is also universal covering
group of the tree-dimensional Lorentz group, and among the Lorentz groups of
dimension = 3 it is only in this case, that the center is infinite. We intend to give
two different proofs, and though one of them is going to be an extension of
Harish Chandra’s method, our emphasis will always be on the connection with
classical analysis. The Plancherel formula of any other covering group of
SL(R, 2) can be obtained by an easy modification of the reasonings employed
in any of these proofs.

The formula to be derived is as follows. The family F of irreducible represen-

tations (cf. above) consists of three subfamilies C{ (O <7r<lg> %), D}
and Dy~ (3 > ?1,:) The notation has been chosen in conformity with those of

BaromMANN; we obtain representations of SL(R, 2) by putting v = 0, —;— in the
3

B ? y -

f(a) (a € G) is indefinitely differentiable and has a compact support. We denote

the trace of its integral with respect to a representation of type C$? by T% (f)

1 . .
first case, l = 5 1 . . in the second and third case resp. Assume now, that

(a = l/q — 71— > 0). We consider also the trace of its integral with respect to a

direct sum of two representations of type D;" and D;” resp.; we denote this by
T:(f). The Plancherel formula, normalizing the Haar measure on @ appro-
priately, is given by
SIS oo
fey= [ [ o[Re tanhn(o + i)] T () dr do + f(l——%) 7. dl .
0 0 H
It is instructive to compare this with the Plancherel formula for SL(R, 2)
] oo 1 o
fy= f o(tanhze) TO(f) do + f o (cothmo) §,2)(f) do + Y kgl T, ().
0 0 k=1 B
Similarly, as in the case of SL(R, 2), F does not contain representations
from all equivalence classes of irreducible unitary representations of G. Among
others, the representations of the ‘“exceptional domain” CP(0< T <1,

T(l - r) < g% 71—) are missing (for details cf. Part I).

*
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The paper consists of three Parts. The first Part gives the classification and
realization of the irreducible representations of G. Though, as mentioned
before, not all representations are needed for the Plancherel formula, to put
things in the proper perspective, a description of all representations is included.
What concerns the classification we follow closely BARGMANN’s discussion of the
same problem for SL(R, 2). — Part 11 gives the first proof based on a detailed
discussion of the matrix elements. The idea of the proof, specialized to SL(R,2),
was previously outlined in [6]. Instead of the Laplacian of &, we start with the
realizations of Part I to obtain detailed deseription of the matrix elements,
which are expressible in terms of hypergeometric functions. During the course
of the discussion we get for them analogues of the integral representations of
Laplace and Dirichlet-Mehler for Legendre polynomials. The main result then
follows from a special completeness relation involving these functions (cf. (2.19)).
The second proof, contained in the last Part, is modeled after HarisH-CHAN-
DRA’s proof for SL(R, 2) ({3]). Among the essential modifications needed we
mention, in particular, the computation of the characters of the representations

Di (l > %), since the method of [3]makes an essential use of the existence of a

faithful linear representation. Our computations are based on the integral
formulas for the matrix coefficients obtained in Part 1I.

Many computations connected with ¢ can be reduced to the consideration
of the analogous problems with S.L(R, 2). Since this group has already been
discussed in detail, in particular by BaremaN [1] and Takamassr [10], we are
going to make use of certain parts, to be specified later, of these papers. On
the other hand, we thought to help the reader by giving short proofs, specialized
to G, of certain facts, available in a much more general context (cf. for instance

the proof, in Part I, for the existence of the trace, several integral relations in
Part III. ete.).

Part L. The irreducible representations of G
A. Classification of the representations

1. Preliminaries. In what follows we summarise certain facts concerning
unitary representations and properties of the group G. Since most of these are
either standard or easily verifiable, we shall indicate but a few proofs.

Let @ be a Lie group, and a + T'(a) (@ € G) a continuous unitary represen-
tation of @ acting on a separable unitary space 9. Let € be the Lie algebra
of G; for I ¢ £ we denote by H, the self-adjoint operator uniquely determined
by the condition T{expli) = exp(— i H,t); finally, let D; be its domain of
definition. Then one has the following situation {[7} Theorem 3.1): There
exists a dense submanifold BC$ such that a. BC D, for any I € £, and the
minimal closed extension of the restriction H; of H, to Bis H,. b. We have
H,BC Band T(a)B < B (e €G) c. the map I - — i H; {l € £) gives a represen-
tation of & by linear transformations of B into itself.

From now on we assume, that G is the universal covering group of SL(R, 2),
for which we put G,. We identify the Lie algebra € of ¢ with that of G,. Hence
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L can be identified with the collection of all 2 X 2 real matrices with trace 0.
The elements

w=1 ()
(L. ! z%(é _.2)
1

=3 ((1) (1})

form a basis in £ and satisfy the following relations

(1.2 Uc» 31} = lz’ Ul: 321 = lo» [Zm lo} = ll .

We denote the canonical homomorphism from & onto G; by @. The adjoint
representation of & will then be given by Ad(a)(x) = @ (a)x[DP(a)] {a £ G,
2 €8). If x = x50y, + oy + ,1,, Ad(a) leaves the quadratic form a3 — % — a}
invariant, and the map a - Ad(a) gives a homomorphism from G onto the
connected component of the identity in the three dimensional Lorentz group;
in what follows it will be denoted by G.

Assume now, that T'(a) is an irreducible unitary representation of @. We
write H; for Hy, (j = 0, 1, 2) and form the operator ¢’ = H} + Hf — Hf. It is
densely defined, since it is certainly defined on B, and symmetric. Using the
fact, that the operators of the adjoint representation commute with the
matrix I — I§ — I, one easily shows (cf. the reasoning in [1] 5e, p. 601}, that the
minimal closed extension @ of @' is of the form g, where ¢ is a real number and
I the identity operator. Even without the assumption of irreducibility @ turns
out to be self-adjoint (cf. Theorem in [8]); it is called the Casimir operator
belonging to our representations.

It is known, that the group manifold of &y is homeomorphic to the product
of the Euclidean plane with the one-dimensional torus, hence its Poincaré group,
the center of @, is infinite cyclic (cf. [1] § 4). We put o, = exp(lyp) € G (— o0 <
< @ < ), and y = 0,,; the center of @ is generated by y. The subgroup
{0}, denoted by O in the following, is a closed subgroup of @ isomorphic to R*.

We put Uy, = T'(0,) = exp(— Hy ). Since Uy, = T'(y) commutes with any
T(a) (a € @), it is necessarily of the form e~#**#7], From this we conclude, that
et*¢ U, is a unitary representation, periodic with 27z, of R!, hence it is com-
pletely reducible. Hence H, possesses a complete system of eigenelements.

Since a unitary representation is uniquely determined by the operators
H;{§ =0, 1, 2), we can start the classification of the irreducible representations
by characterizing irreducible triples, satisfying commutation relations corre-
sponding to those of (1.2). We shall do this by describing their action on eigen-
elements of H,. The possibility of this procedure is garanteed by the following
two statementa:

a. Putting D; for the domain of H; (= 10,1, 2) we have D, D, N D,,
b. Denoting by D the linear manifold consisting of all finite linear combinations
of eigenelements of H,, H; (j =0, 1, 2) is the closure of its restriction to D.
To prove a. observe, that for any f € D, we can find a sequence {f,; f, € B},
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such that f, - f and H,f, - H,f. But for any k € B we have gh + Hgh
= H%h + H}h; replacing k by f, — f,, and forming the scalar product of both
sides with the same element, we see, that the sequences {H,f,} (j = 1, 2) con-
verge too, implying f € D, N D,. Concerning b. we observe, that it is certainly
true for H, Next repeating the previous reasonings with D in place of B,
we see, that the domains of the closures of the restrictions of H; (j = 1, 2) to D
contain Dy. But B D, and hence by property a. of B these closures coincide
with H; (j = 1, 2) resp.

Next we form the operators H, = H, + iH,, H_= H, — ¢H,. Assuming
Hyf = 1f, and observing, that the image of O in the adjoint group is the group
of rotations leaving the x, axis fixed, a repetition of the reasonings in [1] 5,
p. 601, (replace F' by H, and G by H_ resp.) leads to the following relations

HoH,f= (A + DH,f, HyH_|— (- DH_{.

Note, that this in particular implies, that H;D ¢ D (j = 0,1, 2; for the
definition of D ef. b. in the previous paragraph). By virtue of the second
relation in (1.2) we have also [H,, H,lf = (HyHy,— H,H,)f = —1iH,f, or
[(H,, H_]f = —2H,f for every f € B, hence for any element for which the left
hand side is defined ; hence, in particular for any f in D.

Summing up all, if Hyf = Af we have the following relations

H.H, f= (A + LH,f
HoH_f= (A— VH_|
(H,H_— H_H,)f=—2H,f=—-24f

(H.H_+ H_H,)f=2(ql + H})f = 2(¢1 + 2)f

(1.3)

(for the last equation observe, that ¢I = Q = H? + H} — H} = 1 (H H_+

2
+H_H,)— Hion D) .

2. Deseription of the infinitesimal operators. The following discussion is
very analogous to that of [1], in particular 5g (p. 605), for which the reader
is referred for further details of some computations.

Forming the sum and difference of the last two relations in (1,3), we obtain

H_H.f=[g+ A+ 1)]f
H.H_f=1[q+ A(A—D)f.

Replacing now f by Hi71fand HZf (j = 1, 2, . . .) resp. in these equations, and
taking into account the first two relations in (1.3) we get
(14) H_H'\ = o;HI7f

' H, Hi f= g;H"f,

where oy =g+ (A+j—1)(A+j)and =g+ (A= (A—7+ 1)
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The above relations imply

(LB)  [HiF |2 = (HiFf, HIF ) = (H_HY f, Hiy f) = o | HY, fI?
and

(L6)  [HIFf|p = (HLFY, HIYVf) = (H HIVf, HE f) = B0 | HLf]? .
From which, in particular, we conclude, that o;, §; = 0.

Now we turn to the description of all possible irreducible triples
H; (j= 0,1, 2); we achieve this by doing the same for H,, H,, H_. During the
course of the discussion it will turn out, that the difference between two eigen-
values of H, is a integer, a result, which, incidentally, follows from the discussion
of the spectral properties of H, given above in 1.

I. Suppose first, that no member of the sequences {H’ f} and {H’ f}
(j=0,1,2,...) vanishes (H,f = Af). In this case, by virtue of the first two
relations in (1.3), a number 0 < 7 < 1 must occur among the corresponding
eigenvalues of H,. Hence we shall immediately assume that Hyf = 7f and, in
addition, ||f] = 1. Because of (1.5) and (1.6) the constants «;, f; must be
positive, which happens if and only if ¢ > 7(1 — 7). Putting

s 1 ) 1
Ag = H(“J‘)2 ; by= ; 1(ﬂi)2
and ’

Hif

H
ft:,fafr—ks: a, ft—s: !

b

we have ||f.|l =1, Hofp=mf, (m=7 +¢1t=0,1,2,...). Furthermore,
using (1.4) an easy computation shows, that

s=12,..)

-

1
H. f — 7
(1.7 +fm (q +m(m + 1)2 fp,

1
H—fm = (q + m(m — 1))?fm~l .

Assume now, that |e,| = 1; putting g, = e, fpn, ©On = 25'1— we finally obtain
m—1

H09m= MGy,
1
(LS) H+gm = wm<q + m(m -+ 1))2 Im+1
1 1
H gp=—1——(@+mm—1)2gn_,.

Observe, that using the notations of 1., we have T'(y) = e~22¢*]; in order to
have a representation of G, = SL(R, 2), we must evidently have e~ 227 = 41,

. . 1
implying t=0, or 5
II. a. Assume next, that for some positive integer j we have HI f = 0.
Replacing f by HiZ1f we get H_f=0 and H,f = lf with an appropriately
chosen I. Hence §,f = H, H_f=0,0r ;= (q+ I(I—1))=0,and ¢ =1I(1-1).
If ot; = 0, we have H_f = 0 in addition to H_f = 0. But then H;f =0 (j = 1,2)
which implies that f is invariant under 7'(a); or the latter is the trivial
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representation. Excluding this case we bhave o == 21> 0, or [ >0, and also
;=72 +j—1)>0(=1,2,...). Putting as before

Y
Qg = H(“ﬁ)z’

j=1
and
Hy,
jl:f: fl+s=’7f (3= 1,2, .. 2
assuming ||ff = 1, we get }f,] == 1 and relations identical with (1.7). Replacing
T DY Gm = Enmfm lem| =1, m =1L 1+ 1,...)), defining w,, as before, we arrive

at a situation similar to (1.8).

b. The case of a nontrivial representation, where for some j Hi_ f=0 is
very very similar, and we restrict ourselves to list the final formulas. Here H,
is going to have a greatest eigenvalue, which is necessarily negative. Assuming
it in the form —1, I > 0, we get ¢ = I(1 — I), and we can construct a sequence
of eigenvectors g,, (m=—1, —1+ 1,...,) satisfying H,g,, = mg,, and once
more relations analogous to those of (1.8).

Observe, that in case a. (b. resp.) we have T'(y) = e~ 271l (¢*#ilresp.). Hence
in order to obtain a representation of G, we must have 27 integer.

Note, that in each of the preceding cases the sequence {g,,} forms a complete
orthonormal systera in the representation space £, and the range of m is just
the spectrum of the operator H, The former statement is an immediate
consequence of the fact, that this sequence goes into itself under the action of
the operators H,, H, and H_, and hence under the action of H; (j =0, 1, 2).
This implies, that the closed subspace §’ of §) generated by the vectors {g,,} is
invariant under any operator 7'(a) (a € G) of our representation; hence in view
of the irreducibility of the latter, §' = 9. This finishes the characterization
of the infinitesimal operators of the irreducible unitary representations of @,
these being assumed to exist. That this is indeed so will be proved in the next
section. »

For later reference, we summarize the result of the previous discussion
introducing at the same time some notations. We have the following classes of
irreducible representations (we omit the trivial representation).

1L CP:Q=gqI (g> ’i‘, 0s7< 1). The spectrum of H, consists of the
numbers {vr £4,7=0,1,2,...}.

I1. The series D;" and D;: @=1(1 — 1)1 (I > 0) and the spectrum of H,
consists of {{ + j}and {~1—j}(j=0,1,2,...) resp.
(1.9)

IL EQ: Q=ql (0 =t<l, t(l-7)<g=7) Spectram of H,

={r+4,7=0,1,2,...).
‘We shall see later, that for the Plancherel formula we need classes I and II

only (and even from the latter only those with I > —;—) .These are going to make
up the family F of the Introduction.
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B. Realization of the irreducible representations

First we introduce several subgroups of ¢, which will be useful in the
following.

a. Consider the subgroup 8, G; of all triangular matrices having 0 in the
lower left corner, and positive elements in the diagonal; a typical element
of 8, has the form

G %)
o A

Consider now the complete inverse image S of §; in G. It is known (and easily
verified directly), that § is the direct product of the center Z of G with the
component of the identity.

The canonical map from the latter onto §; is an isomorphism; in what
follows it, too, will be denoted by §,. Furthermore O (cf. A.1) is the complete
inverse image of the subgroup of rotations in G,; every a € G can be written in
the form so (s €8, 0 €0), and so0 = 8’0" implies s" = sz, 0’ = 02~1(2 ¢ Z). The
map 1 : 8y X O— G defined by (s, 0) = s0 is a diffeomorphism between the
corresponding manifolds.

b. We denote the Cartan subgroup of G, consisting of all diagonals € S,
by H,. We use the same letter to denote the corresponding subgroup < 8, C &,
and H for its complete inverse image in G.

c. Finally, we write N for the subgroup C 8, C @ corresponding to elements
of S, having 1 in the diagonal.

We denote the left and right regular representation on @ by L, and R,
resp. We form the subgroups g;{f) = exp(;#) (j = 0, 1, 2; for [; cf. (1.1)) of G,
and for f € C* we put (H;f) (@) =1 7‘% flag; (t))L:O ,and asin A.1 we introduce
the operators H = H, + tH, H_=H, — iH,and = %(H+H_ +H_H.)—
— HE.

To obtain realizations of the irreducible unitary representations, listed
in A.2 as a priori possible ones, we shall specify linear subspaces of ™, invariant
under R,. Then introducing an invariant metric we form the completion, and
show, that the actions of Hy, H_, H_ and members of a suitably chosen com-
plete orthonormal system € C* are given by (1.8). In this fashion it turns out
in a natural fashion, that our representations are (proper or improper) sub-
representations of representations induced by certain characters of the maximal
solvable subgroup S.

Now consider the linear family F C C* defined by the conditions a. L, f=
=f(n€N) b.Qf =qf, c. R, f= e 2if (y = g(2n) €Z, cf. A1); heregand 7
are real constants to be specified later. In view of properties of @ considered
above we can use 4> 0, — oo < p, @ < + oo as global coordinates on G, and
accordingly write f € C*® as an indefinitely differentiable function f(4, u, ¢).

One easily verifies, that a. implies ~§~£~ =0, and c. f(d, u, ¢ + 27)=
= e~ ¥7f (], u, ). In order to consider b and for later use we observe, that



104 L. PURANSZKY :

the expression of Hy, H,, H_ and @ in terms of 4, u, ¢ is as follows

2
H0—~'I/'§'¢—
io P4 0 0
Ho = —co (G grt gt
(1.10) s s
. Z
TS .

At o2 34 0o
o-—[gamtrart )

We did not write out terms containing derivation according to . To obtain

(1.10) it evidently suffices to verify these relations on G (that is for functions

periodic with 47 in @ on @), where it can be done by straightforward com-

putations (c¢f, the similar computations in [10] Lemma 3, p. 62). Writing out
1 .

Qf=qf (q:f: Z) for f satisfying a. and c. we get f(4, @) == A%+f, (@) + A%-f_(¢),

whereg, = —1F Vl 4q,f, (p+ 2m)== e~27*f  (¢). Let now i¢f be any of
these two summands; we rewrite it in an invariant form as follows. First we
define a function f(o) on O through f(o,)= f(¢) (we recall that o, = g,(¢));
we have f(oy) = e~2i77f(0). Next we define (non-unitary) characters of S by
putting y . (sp?) = Axe 2777 (j=0, +£1, £2,...; s€S,); we have again
. (sy)=e277y (s). Hence the function f(g) (¢ € G) corresponding to
A2+ f(g) is of the form y . (s)f(0), where s € 8, 0 € O is any pair satisfying so =g,
and F is a direct sum of the subspaces F = {3, (s) f(0)}. Any of these sub-
spaces is invariant under R,; for f(g) == x(s) f(0o) (we assume to have fixed a
sign, not indicated in what follows) implies (R,f) (9) = x(s) f;(0), where
fi(0)= x(s(0a)) f(o@), and s(oa) €8, 0@ €O any pair giving s(oa)od = oa;
evidently f,(oy)= f,(0). e~ 2#*. Any function f € F . is uniquely determined
by its restriction to O, which can be any C* function satisfying condition c.
above. We can define a representation R, of & on them by requiring

(Raf) (@)= %(3) (Buf) (0) (g = s0) .

Now we proceed to give the explicit description of the irreducible representa-
tions, by defining an inner product and specifying the constants q and 7 of the
above considerations, according to (1.9). In what follows we shall use g, - o_
leads to unitarily equivalent representations, as it can be verified easily; we
shall later need this fact for the family C$ (cf. (1.9) and I below).

We define the operators Hy, H, and H for R,; denoting them by H,, H, .
and H_ resp., we have the foliowmg relations (f € F,)

(L11)  (Hof) (g) = x(s) (Hof) (0), (H 1) (9) = 2(8) (H 1) (0) (g = s0) .

I Case of C. Wefix 0<7<]1, q>%and put o = ]/q—ji— >0; we
have g = —1 + 2ig. Next we consider the functions g, =e "¢ (m =7 L7,
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j=0,1,2,...). Using relations (1.10} and (1.11) we obtain
}_jogm = MGn

. 1 .
(112) Hygo=—i[m+5—i0| g

= . 1 .
H_gm:—z[m—~~2~+w] Im—1-

Next we form the Hilbert space L2(0) of all functions on O, satisfying

27
floy) = e=27i%f(0), Of [flopfdg < + oo,
with an inner product

2n
h0) == [ 1) 7o, -
0

The sequence {g,,} forms a complete orthonormal system in L2(0), Observing,

2 2
== (m + %} + 0% = m(m + 1) + g, putting

Wy = 7 =" s

Y g+ mm+ 1)

we can rewrite relations (1.12) in the form

ﬁogm = MGp .
(113) —+gm = wm(q + m(m + l))_z_ Im+1
— 1 1
H—gm = (Q‘{“ m(m'— 1))2 Im—1> Iwml =1

D
m=1+4§,7=012,...).
A comparison of (1.13) with (1.8) shows, that extending the representation R,,
starting with a dense submanifeld of sufficiently regular elements, by continuity
to L2(0) we obtain an irreducible unitary representation of type C{.
II. a. Case of Di*. We put v=1>0, ¢=1(1~ 1), giving g = — 2. We
consider the system of functions g¢,, = y,,e~"%, where

Il 4 m) %

Ym = [ Fm—141) 1’(21)]
m=1+4,7=0,1,2,...), and form a Hilbert space H;" by requiring, that
{g.n} should form a complete orthonormal system. The collection of all %
functions, representable as a series in terms of the system {e~™¢}, can be
identified with a dense submanifold of H;'. A straightforward computation,
similar to that of I above, using (1.10) and (1.11) shows, that putting w,, =1,
the system {g,,} satisfies relations identical with those of (1.8), and H_g, = 0.
Hence, as above, R « 8gain extends to an irreducible unitary representation,
now of type D;" (cf. (1.9)).

IL. b. Case of D;". Now we put 7= —1, (I > 0), ¢ = I(1 — I); we have again
0 = — 2. Proceeding as above, we obtain our representation forming a Hilbert
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space H; by aid of the system g,, = y,,e~¢™?, where

1
_ rg+mpy 1%
Ym = [F({m[———?,—i— 1) r<2z>]

fm=—-1—14,7=0,1,2,...). Inorderto obtain relations (1.8}, we have to put
Wy, = —1.
IIL. Case of E. (As stated at the end of A.2, this family will not be

needed for the Plancherel formula). We fix 0 v <1, 711 — 1) <g = ji—,

which gives p = —1 4 20, where ¢ = 1/7}_ g > 0. Now the representation,

proceeding as in II. a above, can be obtained by constructing a Hilbert space
H by aid of the system g, = y,,e~ ™%, whero
1
F(r —l—é——ka) F(1n+—21——0) 2

e
{2 N ey (P S
fm=1t+4,7=0,1,2,...). We use again w,,= 1.
C. In what follows, we prove for the following statement, which will be
essential when setting up the Plancherel formulas.
Suppose f(a) (a ¢ @) is C* and has a compact support, and let T (a) be an
irreducible representation. Then the operator T, = [ f(a) T'(a) d u{a) is of trace
g

class. (du(a) is the element of the Haar measure on ).

This is known to be valid for any semi-simple group; but in the special case
of G we are concerned with the proof is very simple. Tr(7,) as linear func-
tional in f is a distribution generated by a locally integrable function, called the
character of our representation. We shall obtain its exact form, for the repre-
sentations of the Plancherel formula, in 11T A.

We recall, that an operator 4 acting on a Hilbert space 9 is of the trace
class, if it can be represented as the product of two Hilbert-Schmidt operators.

Then, if {¢;} is a complete orthonormal system in §, the series >’ (de;, ¢;)
i=1

is absolutely convergent, and its sum, denoted by Tr(4), is the same for any
basis.
Now we observe, that

(1.14) [H@dp(@) = [ f(s0)du(s)du(o)
(23 8ex 0

where (using our usual parametrization of O) du(o) =deg, and du,(s) is the
appropriately normalized left invariant Haar measure on G. Indeed, by virtue
of the discussion of B we certainly have d u(a) = f(s, 0) d 4, (s) d u(0), where
f(s, 0) is continuous on 8, X O; using the fact, that d u(a) is invariant under
both left and right translations, the result follows.

If f is C™ and of a compact support on @, then f(s0) is C® on Sy x O
vanishing outside a set € X I, where C and I are compact subsets of S, and O
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resp. Using (1.14) we get
Tf:SfT(S) (_f f(soq’) T(ogv) d@) dﬂl(s);

since T'(o0,) = }, ¢™® P, where m runs over the spectrum of H, (cf. B), the
(m)
integral according to ¢ can be written as 3 F,, (s) P,, with
(€]

F(s)= fwf(so‘p)e"‘m‘?’dqo s

the series converging strongly. Observe, incidentally, that for a fixed integer

r>0 and m==0 we have |[F,(s) = ::; , with B¢ = K sup -g%(soq,)
pel
K depending on the support of f only. Hence T,= 3 F, P,, where F,
m

= [F,(s) T(s) du,(s); we have for any fixed integer r >0 |[F,|| < B

_ 8 jmjr
B® = 4, (C)BW",
Putting finally

?

A =21+ |m)F,P,

m

1
I . -
B= 2 1w Pn
the series on the right hand sides converge strongly, and represent operators of
class Hilbert-Schmidt (observe that dim P, == 1). Moreover T, = A B, proving
our statement.

If the functions {f,} are C*, have the same support in G, and if for each
integer 7 > 0, their r'" derivatives in ¢ tend to 0 uniformly, by virtue of the
above estimates for | F, | we can conclude, that Tr (7, ) — 0.

Part II. The Plancherel formula and special funetions
A. Matriz coefficients

For our first proof of the Plancherel formula of ¢ we need explicit description
of certain of the matrix coefficients of the irreducible representstions taking
part in the formula. While deriving these we shall obtain a group theoretic
interpretation of integral representations of some special functions.

1. Inwhat follows we put g, = exp (lu) C ('and as before o, = exp(l;¢) (G
{cf. (11}, — oo < u, @ < + o). For sake of brevity we use the same notation for
the subgroups eorresponding to I, and I, in Gy and G, (cf. I.A.1), the context
giving the correct interpretation. Also, we put U = {g,} and O = {o,}, CG.

One immediately verifies, that the restriction of the adjoint representation
of @ to U induces an isomorphism with its image in G, which is a closed sub-
group. On the other hand, it is known ([10] Lemma 2, p. 60}, that every element
a in G, can be written as 0, ¢,0,, (v = 0, 0 £ ¢, @, < 27), and if a € O this
representation is unique. Frora this one shows at once, that any a € G can be
written in the form o,g,0,, (—o < ¢; <o, u =0, 0 < @, <27x) and for
a € O this representation is again unique. More exactly, putting R, for the
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open positive half line, the map from R'x R, x T* onto G — O, carrying
(@1, u, @g) into o, g,0,, is a diffeomorphism between these two manifolds.
The variables ¢;, u, @, Will sometimes be referred to as Eulerian coordinates.

Assume now, that f(a) is continuous and of a compact support on Q. Let
dv(a) be the element of a fixed Haar measure on G, and Z the center of G. Then,
as it is known, if d u(a) is the element of an appropriately normalized Haar
measure on ¢, we have the following relation

[ @) du@) = [ (2 f(az)) dv(a).
aQ Gy \2€Z

Sinee for dv{e), when expressed in Eulerian eocordinates, we can choose

(2 e shudg;dudg, ([10] Lemma 2, Corollaire p. 60), the above relation

shows, that the same expression, with an appropriate modification of the range
of @,, defines a Haar measure an @ too (for all this cf. also T11.D.3).

2. Next we proceed to find certain expressions in Eulerian coordinates for
the matrix elements, standing in the diagonal, when referred to the canonical
basis {g,,} determined in L.B., of the representations C{ and Dit (cf. (1.9)).
For this, it clearly suffices to consider their restrictions to U.

I. Case of C. Let T(a) be an irreducible representation of this type
realized in L2 (cf 1.B.); in what follows we put A% (w) = (T(9)Gm> Gu) (m

=7t+4,7=012,...; 0 1<l,o’=‘/g--—4~>0). Let us write o,g,
= 804y, With s €8,. Identifying again 8, ¢ with its image in &,, we write
A(0,4,) for the element, standing in the lower right corner, of the corresponding
matrix. Then if f(o) € L2 putting o, = 0,7, we have (7'(g,)f) (0,)=
= [M(0,9)] 21 (o).

For our purposes it suffices to consider 0 = ¢ < 2x. Since the restriction
of the canonical homomorphism of ¢ onto G, to o,g, is injective, to determine
A and g as functions of ¢ and u we can compute in Gy. For reasons of continuity
we are going to bave 0 < y < 4.

Consider now the element

of Gy. I a = so, (s € 8,), a straightforward computation ([10] Lemma 1, p. 58)
shows, that A% = 32 4 2, Aei%" 0+ z'y Putting @ = g,0,, this gives A2
= chu + singp shu and Ae' 2 chw«e 2+zsh i%.

Supposing f(o,) = e~ "?=g,, we obtam

e iatm w L., w —iZ —im
(T(94) ) (0p) = (chu + sing shu) 2 ch-—2—e 2 4 ash?e 2
the sense, in which the powers have to be taken, being evident. Hence, putting

1= chu,

2n 1 . _
hf;:’(n)=(1;‘u)mgli—f(chu+sin<pshu)m2‘+n+w (1+itanh;—e—“ﬂ) 2md<p.
0
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The substitution ¢ — ¢ + % gives

k(o‘) (n) =
2.1

+ i —_9
(l—gﬂ)mif("hu+cos¢5hu) 2 2Re(1+itanh~g—e‘i¢) md(p.
0

We introduce a new variable v in (2.1) by putting e’ = chu + cos ¢ shu.
v

E) —
Assume first » > 0, then we get %% = - 87 , with Z = ]/2(chu —cho) (—u =
= v =< u)and

O

We evidently have A (u) = h{9(—u), and have %2 (0) = 1. Observe, that
(2.2) is invariant under the substitution m — — m.

In order to express A (u) through special functions, we consider the the
generator function G, (u,?) of the Jacobi polynomials {P02™ ()} (cf. [9]
(4.4) p. 69), defined by

22m
Gnlut) = garer e (#=chw

where B = Vl — 2 ut + t%. We consider &, (4, t) as a univalent analytic function
on the complex plane cut along [e~*, e*] (u > 0), by defining B = — (W:’T)) X
X (]/t — e~ %). Here Vz_ is the branch, positive for z > 0, and on the plane cut
along [— oo, 0]. Taking for logz the branch which is real for z > 0 and univalent
in the same domain, for any complex z == 0 and a, 2® will stand for exp(a logz).

Bearing this in mind, one sees at once, that the factor of ( ! ; £ )mm {2.2) can

be written as

(2.3)

i dt 1 .
S me(M,t)F;, z:—-~—2—+w‘——m
C

where C is the segment {e~¥, e*] run over twice clockwise. Observe, incidentally,
that (2.3), as function of z for a fixed « > 0, is integral.

With our definition of R, 1 + ¢ + R maps the cut plane onto a bounded
domain, the closure of which does not contain 0. Hence for Rez > —1, by
deforming the path of integration, (2.3) can be shown to be the same as

(2.4) f Gt 1) e

where (' is a curve, oriented counterclockwise, surrounding the interval
[—co, 0] sufficiently closely. Hence, following the standard notation for
Jacobi polynomials, we denote the function, defined by (2.3) for any 2, with
PLo:2ml () Hence finally

1 m
2.5) 1 () = (-—}i) PO2™ ) (u=chu).

--2—+w—m
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The factors of (1 —; £ )m in (2.1) and (2.2) give the analogues of the integral

representations of Laplace and Dirichlet-Mehler resp. of the Legendre poly-

nomials for the factor of (1 g £ )m in (2.5).

Though not needed in the sequel, we remark, that starting with (2.4),
a standard computation gives the following expression in terms of hyper-
geometric functions

26) e = ()" (Fe2m+ 2+ 1,125,

with z = — —:1,7 + ¢t — m. (For this cf. below 3, too.)
11. Case of Dj* (l > %) Here the procedure is very similar. Putting
h%)(u): (T(gu)gm’ I s m = :ii(l+7) (?:0’ L2..),

where we have + or — according to whether 7' (a) is of type D; or D;~, we obtain
successively (v > 0)

1 1 - 2
(2.7) AD(u) = (————;—'li)mﬁ f (chu + cos gshu)™'2Re (1 + tanh % e‘“P) "d @
0
and

K

(1L
(2.8) 2D (u) = (1 ;”)M'ZZ: /i(izi)i [2Re (20h—;—+ Z.Z)—Zm] .

We have again b9 (u) = 2 (— u), kL,(0) = 1, and, as (2.8) shows, 2D, (u) =
= h{¥ (u). Hence in what follows we may assume m > 0.
To obtain representation in terms of special functions, we observe first,

that the factor of ( ! '; d )mm (2.8) can be written as

22m “fi+m—1

220 ) RO Ti—Rp= W
¢

where € is as in (2.3). But since

(1 + ﬂ)‘”‘ - (1 4t 4 R)zm . G["’"“‘}(ﬂ, t)
R +i—Rpm = 9zm Jpiim == fzm

this is the same as

T4 puy—2m 1 _ dit
( 2 ) ET f G =21, 8) o
4

Taking into account, that m — [l is an integer = 0, one immediately sees, that ¢
can be replaced by a closed curve ¢’ surrounding the point 0 sufficiently
closely and oriented counter-clockwise. Hence finally (jm| — ! = integer = 0)

1 == |m] -
29) W) = (=52) " PR T (u = cho).
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Here the factor of ( Tt ) 1s a Jacobi polynomial. One can obtain

expressions in terms of hypergeometric functions by computing the maftrix
coefficients as eigenfunctions of the Laplacian of @, in Euler coordinates
formally identical with that of G, (cf. [1] § 10, p. 624). Since not needed in the
sequel, we omit the details.

B. The main Lemma

In order to arrive at the Plancherel formula first we prove a completeness
relation involving the matrix coefficients, determined in 4.

Lemma. Assume, that f(u) is C* on [0, + o] and vanishes oulside o compact
set. For a fixzed m > 0 put

flo, m) = ff ) B (u) shu du (0>0)
(2.10) and
fi(l) = ff u)shu du

(j==0,1,2,...). Then we have

f(0) = fwa Re[tanhs (o + im)] f(o, m) do +
(2.11) °
+X (m—j-g)fim—i).

: 1
05j<m—i

(For0<m < 1 the second summand has to be replaced by 0.)
P

We shall give the proof in several steps.
1. Keeping » > 0 fixed, and assuming first m — 1 < Rez < m, we denote by

I(I') the integral of % G, (L, u)t™—*-1 along the real line form — o to + oo,

taking the upper (lower resp.) halves of the cats along [— oo, 0] and [e~%, &#],
introduced in A.2. These integrals certainly exist, since the integrand is
O(rm—Rez=1) for |t| = r, r large. For the same reason, since the integrand is
regular in the upper (lower) half-plane, we have I = I' = 0. We put I; (I};
7=1,2, 3, 4) for the parts of I(I') corresponding to [— o, 0], [0, e7¥], [e~%, ¢¥]
and [e*, + co] resp., and consider the expressions I; + I separately.

a. Taking into account the definition of the function PI:2%] given above,
we have

e3wile— m)+1
I +II“'W7»)M} szm]( ).

We observe, that this expression possesses an analytic continuation, the only
singularities of which are the points z =m 4 j,§=0,1,2, ..
b. We have

M
L2 f 1 dt
2027 90 ) R4t F Ry pomet
0

Math. Ann, 156 8
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oo

gm e(z +3)7

Iz+1é=—"~'—‘ _Vzhv 2m
(2eng+v)

dv.
Tt

o

This is regular in the half-plane Rez < m.
c. We put — iR, ({R,) for the restriction of R to the upper {lower resp.) half
of the cut along [e%, ¢#] (B, = 0). Then

e“
, 2w 1 ; dt
I+ Ig= ‘—a—/”ﬁ:Im((l +i— @R+)"2m) FF-ml
e-‘u

This part, as function of z is integral, and for later use we observe, that for
2= — -%— + %0 it is purely imaginary. Indeed, the substitution f =e” (—u <
< v < u) gives

u
. m e
Lt =227 [ (2eh g+ i) | <5 do

Z
0
(Z = }/2(chu — chv) ).

d. Here I, = I; and

7o 2$mf 1 at
st A= | ROt & Rpn pow
¥

this being analytic for Rez > m — 1.

Summing up, writing F(z, u) = — (I, + I) we have the following relation
+ oo
2zm e(z + %) v pERilE—m) -+ 1
e m do=— etAtla—m_ ] _Pgﬁ?nm}(ﬂ) +

v(zengy+v)
2.12 v ,
@12) +Few—~ s+ 1) (u=chu).

Since in this relation, derived under the assumption m — 1 < Rez < m, the
left hand side, and the first and third summands of the right-hand side are
regular analytic, except for simple poles, for Rez < m, F{z, u) possesses an
analytic continuation; it is going to be computed explicitely below in 2.c.

2. Assume now, that f(u)= 0 for u > M >0, and put g(u) = ( 1 "; r )mf(u)
(9(u) € C*); we have g(0) = f(0). Now we show, that multiplying both sides of
(2.12) first by g (u)shu and integrating from 0 to M, then putting z = — »%— + ta,

multiplying by ¢, integrating from — 8 to 8 (§ > 0) according to ¢, and taking
finally the real part of the lines for § — + oo, we obtain (2.11). In what follows
we prove this by computing, proceeding from the left to the right, the contribu-
tion of the different terms of (2.12).
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a. Taking the real part of the expression, obtained by multiplying with
g(u)shu, integrating and putting z = — %‘w + 10, we get on the left hand side

{2.13) %f singv H (v) dv
0

where we put

v
g (u)sh udu
H{y) = 2%m - T
7(zeh g+ 7)
]
To justify the interchange of the order of integration according to » and v resp.,

1
we observe, that for large v, H(v) = O (e“(m - E)”); for small » > 0 however

v
shudy
H(v)<x m-xv2((§h?}—~l)
0

with » not depending on v, proving H (v) € I1(0, 4+ o), and this is true even
if we replace g by lg|.

Next we show the same for H'(v). To do this, it evidently suffices to con-
sider v < M. We have forv >4 > 0

with H (u, v) € C*. Hence

H (v) = (ch%—)_zm[ fi(w—i— fg(u)H(u, v) shu du]
0 0

showing, that it suffices to discuss

v
G (v) = /g(vu)—shu du.
0
Partial integration gives
v
G(v) =J2(chv — 1) f(0) + [ ¢’ (@) V du.
0

Writing V =} v® — w2 (1 + f(%,v)) (f(u,v) €C®)and puttingu=tv (0<t=<1),
the second summand becomes

vzflg’(tv)tyl — 81+ f(tv,v)) dt,
¢

which, along with what preceeds, clearly proves H’' (v} € L*{0, + o0). Observe,
in particular, that our considerations show, that for small v > 0
(2.14) {H (v) — HO) < xv

where % does not depend on v.
g*
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Through partial integration and multiplication by o, (2.13) gives
1 r ,
;fcoso‘v H{v)ydvw.
0

Hence finally, taking into account (2.14) the contribution of the left hand side
in (2.12) will be

(=]

N S

. 1 , T 2 sin S v .
Sill_f‘(_lw; f (f cosgv H' (v) dv) darwsgrﬂw ”(;[ H' (v) dv = f(0).

0

b. Forzr—"--~+ 10 (o == 0) we have

eZﬂi(!—m+ 1
T "enie—m = tanh 7o + im) .

Hence, by virtue of (2.5) and % (u) = A (u) (cf. 2.2), ths first term on the
right hand side in (2.12) yields

S}?}rlm2 faRe [tanhz(o + im)] f (o, m) do

We shall prove the absolute convergence in C.4, below.

c. First we assume m = -% .

1
Putting now R for (1 — 2tu + 3)2
m— 1 < Re(z) (ef. 1.d. above)

>0 (¢ >e% or t<e ¥, we have for

2am 1 dt
(2.15) F(Z, u) = ";;‘ R(I T S—R)“‘ Fomii ot
gﬂ
We have
2t _ —2m (1 +t + R
R(1 --t—Rpm— ( ) mpepm B

= 2 G = () T 0 (1) -

From now on assume that 0 < » < M. In order to obtain an analytic continua-
tion of (2.15) left of the line Re(z) = m — 1, observe first, that for any integer
N=0wehaveinthedomain0 <z <e* 0 <u< M:

N {0,—
G plu,x)= 3 P; (,u) "c“ + N+ E (u, x)
j=0

where E (u, ) is C* and satisfies
O .
VI 2px + 28 ’

C is a constant not depending on % and . We put N = [m - —;—] = 0; using

(2.16) |E (u, z)] =
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the previous identity and (2.9), we get

g wlz—m+ i+l

1 (lyp\ym[ X
F(z,ﬂ)-“—;g( 2#) [Z}*gf j')(?f&)—zt:g:?-—_;:f+
J == 0

i (15) [ 8 4) e
/

whence, multiplying both sides with g(u) shu and integrating according to u,
we obtain

oe]

F() = [ F(z, u) g(u) shudu = Fy(2) + Fa(2)
g

where

1 (X 1 r . )
Fl(z) = (7£T‘£tm——}—7ﬁf k%ﬁ—-?)(u) e‘““‘""*‘””}(u) shu du)
po /

and

Fale) = =5 [f,(u (fE(y—) .l M)shudu () = f ) ()"

Up to now we bave assumed m — 1 < Rez. On the other hand, R,(z) is
clearly regular, up to a finite number of simple poles, on the whole complex
plane. What concerns F,(z) we show, that it is regular in a half plane Rez > 7,

n<— »;— . To do this, observe, that by virtue of our choice of N we have

Rez—m + N + 2 > ¢ > 0, provided Rez>—%— ¢; here ¢ depends on m

only. Assuming 2z so chosen, interchanging the order of the two integration in
the above expression of Fy(2), we obtain:

Fz(z)——w«fe @-m+N+2v [ () do

0
where

{2.17) H(v) = fE(/z, e~?) fy(u)shudu .
0

In order to justify this, we write H; (v) for the function obtained by replacing
the integrand in the expression of H (v) by its absolute value. It clearly suffices
to show the convergence of

[e*?H (v)dv
9

which, however, is evident since, by virtue of (2.16), H,(v) is bounded. This

implies the analyticity of F,(z) for Rez > — % — ¢ too, as claimed above. —
Summing up all, F(2) = F,(2) + F,(z) is analytic, except for a finite number

of poles, on the same half-plane.
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Now we form
s

2.18) [or (—%Jr io)do = [ (z + —;—)F(z) dz
Ir

1
2
fixed, we write I'g, I"_g and Ig for the straight segments [— -;— +128,T+1i S]
and [T — ¢8, T + 28] resp. Using Cauchy’s theorem we see, that (2.18) equals

where I is the segment 2= — -+ i6 (—-S=<0=8). Keeping T'>m — 1

the sum of the integrals of {z + 1 F(z) along these segments (taken with the
gr 5 g g

appropriate orientation) and 2 ¢ times the sum of the residues of poles inside
the rectangle defined by them. By virtue of our previous discussion, however,
this is twice the second summand on the right hand side of (2.11) (cf. the
expression of F, (z) above). Next we show, that the contribution of the integrals
along I', g to the real part of (2.18) for S — 4 co is 0. For this it suffices to
prove, that putting

fig= f (z -+ -;—)F(z) dz

Tis
we have s 111_1+1 If + /=0, which, however, can be deduced from sup 2| |F;(z)[—0
- oo z ris

for 8§ — + oo (j = 1, 2). For j = 1 this is a simple consequence of the Riemann-

Lebesgue Lemma. To apply the same in the case j = 2, we observe first, that

by virtue of (2.16), a reasoning used in a. above shows, that in (2.17) lin%) H{v)=0.
v—>

Hence partial integration gives

[e.0]

1 1 e~ (z-m+N+2)v H’('U) dv

BB =i —mr v e
0

and it suffices to prove, that the integral tends to 0, which is certainly true, if
H’(v) is bounded. For large v this is evident from the definition of E(u, x)
(it is bounded along with its derivative f 0 <z < 0 <e ). For0 <v < M,
however, it easily follows through a discussion analogous to that of a.

Finally, we show, that the contribution of Ig for § — + oo is — f(0). Since
the necessary reasonings are almost identical with those of a, we confine
ourselves to & few indications. First of all, assuming 2 =T + ig (T > m — 1)
we have

1
F(z)= ;t—ife"‘”H(v) dv
0

where now

H(v) = e’(T‘FE)v. 92m d f(u) shudu i
v(2eng—v)
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Observe, that for large v, H (v) = O(e™~1-1) v} Hence

Re/(z +é—)F(z)dz=

S oo

Iy
1 P r
T+ 1
p cosov H{vydvdo + - ] singv H{v) dv |da .
-5 0 )

-8

If §— + oo, the first expression gives zero, since lim0 H (v) = 0. Concerning
V> +

the second, one shows as in a, that its limes is §(0). To get the final result, one
has to reverse the orientation of I.

1 . .
If 0 <m = 5, we are going to have no residues.

d. By virtue of a remark made in l.c. above, for z = — % + tg the last

summand in (2.12) is purely imaginary, hence its contribution is 0.

Finally, putting — f(0) on the left hand side and dividing by 2 we obtain
2.11.

C. Now we are ready to prove the Plancherel formula as announced in the
Introduction. We fix a real ¢ function f(¢) having a compact support on G,.
By 1.C. we know, that if 7'(e) is an irreducible unitary representation of @, the
operator Ty = [ T'(a) f(a) d u(a) is of trace class. Its trace will be denoted by

¢

TP(f) and T',(f), if T'(a) is of type C (0 sv<lg> %, o= Vq_ %> 0) or
a direct sum of a representation of type D;” with a representation of type

Dy (l > »;—) resp. Then, we recall, the formula to be proved is as follows

o« 1 oo

219) @)= [ [oRetanha (o + in) TP (P dodr + [ (1- 3) Tl

00 %

(e is the unit element of the group G).
1. First we observe, that it suffices to prove (2.19) for functions € C¢°
satisfying f(oa)== f(ao) (a € G, 0 € 0); in what follows we denote this family

2n
by F(0). In order to see this we put (Pf) (a) = »;;ff(owao_,p) do, feCy

0
implies the same for Pf, and f(e) = (Pf)(¢). Furthermore, if T (a) is any
irreducible representation, we have Tr(7p,) = Tr(7,). To prove this, we write
fola) = flop00_g); then Ty, = T(o_g) T,T(0,), implying Tr(T,,) = Tr(7,).
From this, using the continuity of the dependence of Tr(7,) on f, it follows at
onee, that

2n 27
1 1
Tr(T)) = 5= [ Te(Ty) dp =55 Tr ([ T, d(p) = Tr(Tp) .
0 0
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Summing up all, both sides of (2.19) remain invariant if we replace f by Pf,
which proves our assertion.

Suppose, that f ¢ F(0); using the fact, that the restriction of the adjoint
representation of & to U = {g,} is an isomorphism with its image (cf. A.1),
one easily shows, that the function f(u, ¢) = f(g,0,)is C;° in (%, ¢), and we have
.i(oqplgua(p,) = f(’ll,, D1 + ‘Pz)

2. Let T'(a) be a unitary representation and k a vector such that (o,}%
= ¢ ™¢k, We are going to compute (T,k k)= [(T(a)k, k) fla)dula) in

¢

Eulerian coordinates, using -(-é%-)-; shu d @, du d g, for the element d u(a) of
the Haar measure {cf. A.1). We have, putting h{u) = (T'{(g,)k, &):

o oo 2
1 .
(Tsk, k) = Bay fff h(u)e™tm@+ ) fu, @) + @;) shudg; dude,
— 0 0
whence, if
1 ~ X

Fu,m=5- [ fu, gleimodg

we obtain -

(Tk, k) = fooh(u)F(u, m) shu du .
0

3. For f,9€Cy, (f X g)(a) will denote the convolution of these two

functions, defined by [ f(ab~') g(b) du(b). Observe, that f, g € F(O) implies
g

X g €F(0). We write f~(a) = f(a~1); again f € F(O) implies the same for

1~ (a).

In what follows we prove (2.19) assuming f of the form g~ x g (g €F(0));
it is known and easily verified, that the matrix coefficients of such a function
are positive. The general case will be deduced from this special one.

Observe first, that, with the notations of 2 above, for any fixed m, F(u, m)
vanishes outside a fixed interval, independent of m, in u. We put (cf. (2.10))

flo, m) = fF(u, m) k2 (u) shu du ,
0

(2.20) e = fw F(u, 1+ j) b ;(u) shu du
and ’
160 = [ F(u, — @ + ) b2 () shu du
’ (1>0,j=0,1,2,...,—0c <m < + o).

By virtue of the computations of 2, these are just integrals of products
of f(a) with matrix coefficients of irreducible representations of type

0 (r =m—[m], ¢ = % + a’), D;* and Dy resp. (We recall, that A% (u) =
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= hD,, (u), cf. (2.8).) In particular, we have

TP (f) = Zf(m‘f +19)

:I——OO

(2.21) and
To(f) = 2<f§+’<l)+f‘ i

For any real m, we replace in (2.11) m by |m/|, and f(u) by F(u, m). Taking into
account (2.20), this gives

FO, m) = fooo' Re[tanhz({o + im)] f{o, m)do +

(2.22) ’ TOn

X m| —j—5 ) £ (fm] — 7).
osi<|m!—%(l | z) 7

In the last expression we have to take + or —, according to whether m > 0
or m < 0. Since

[0 =10,0= ] FO,m)dm
using {2.21) we obtain from (2.22)

fw (fmor Re[tanhn (o + im)] f(o, m) do‘) dm

— o0 \0

1

S [Fa Re[tanhn (o + ir)]( 2? flo,t + j))do] dr

0 j st 00

I

= f o Re[tanhn (o + it)] TP (f) da dr
and

(.2 (!ml~f—~§)i§"’(imi~y‘>)dm+

¢=7 <im§

0
)
+f(0sy<m~§( 'j"‘%‘);‘}ﬂ(m«*i))dm

-/ ((-4) (Z a0+ o)

k]

- fw(z- -;»)T,(f) dl.
3

Observe, that, by virtue of our assumption on f, {cf. the remark at the begin
of 3. above) each integrand is positive, therefore all operations {interchange of
order of summation and integration etc.) used when deriving these relations,
are permissible,
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Hence, summing up all, integrating both sides of (2.22) according to m
between — oo and -+ oo we obtain (2.19).

4. Now we prove (2.19} for any f ¢ C°. By virtue of the linearity of both
sides of (2.19)in f, and the identity f X g~ = % +aaxf+a~+—ax
X {f — g)~1it is certainly valid for any function of theform f X g~ (f, g ¢ F(0)).
Replace now g by an approximate identity {g,}, such that g, ¢ F(0), g5 = g,.
Then the sequence {f,} = {f X g,} tends uniformly, along with all of its deriv-
atives, to f, and there exists a fixed compact set of G containing the carrier of
each f,. Then by 1.C. we know, that if {7 (a)} is any irreducible representation,
we havenli_r)r;'l‘r(T,n) == Tr (T';). Hence it suffices to show, that when replacing

f by {f,} in (2.19), the limit transition under the integral signs, on the right
hand side, is permissible. We shall deal with these two terms separately.

a. We observe, that, as the reasonings of 3 show, the first summand on the
right hand side of (2.19) can be written as

(2.23) [ [ oReltanhn(o + im)] f(o, m) dm do

g ~—oo
(¢f. 2.20). Now we prove the following statement. We define G(4, u, )= f(s0)
(s€8,, 0€0; cf. 1.B.) and put

o0

Hep=5 [ G’(e_%,#s P du

—_

then
(2.24) flo,m)=c [ [H(, @)eiCttmadide

where ¢ depends on the normalization of the Haar measure only.

Before giving the simple proof, observe, that H (¢, ¢) is obviously € and
has a compact support. Denoting by H, (¢, ¢) the functions corresponding to
the members of the sequence {f,} considered above, their support is contained
in a fixed compact set of the (f, ) space, and they converge uniformly, along
with their derivatives, to H(f, ). From this elementary considerations show
the permissibility of the limit transition in (2.23).

Observe, too, that {2.24) proves the absolute convergence of the integral in

B.2.b. above. To prove (2.24) assume, that {7 (a)} is of type C‘é') (r =m— [m],
q= 7} + o’z) , and g= e~ *meC L2 Then, using the notations of A.2., we have
(Tyg) (0) —*—fo(a) [A(0a)]-1*27%g(0a) d u(a)

= [ f(o~a) [A(a)]-1+27¢g(00~Ta) d u(a)
@
= [ f(o~ts0')A-1+293g(0") d u,(s) d pu (o)

Sex0
(using d, (a) = dpu;(s) dula), cf. 1.C). It is easy to see, that dAdu is the
element of the left invariant measure on S, (cf. also III. A.1.§); hence putting
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du{o) = 5, we have dp(a) = ——dl du de. Using the function G(4, u, ¢)
mtroduced above, we have

flo,m) = (Ts9,9)=¢ [ Of [ J G, p, 9) du] Attecigmimvdide,
:
whence, putting A = ¢ 2, we obtain (2.24).

b. InIIL. A.2.b. we shall show the existence of a locally integrable function
Ci(a) on G such that T,(f) = [ f(a) Ci{a) du(a) (l > —;) . From its exact form
¢

(cf. 3.16 and 3.17) we conclude, that |T,(f)| < |I| M (f), where the constant M (f)
depends on the carrier and upper bound of the function f € C;° only. On the
other hand, one shows through standard reasonings that denoting the left
invariant infinitesimal transformation associated with I; by L; (j=0,1, 2;
of. (1.1) and [2] ch. IV, § 11.), and putting @ = L — L% — L2, for any irreducible
representation {7T'(a)} and f € C;°> we have Tg, = ¢7T';, where ¢ is the constant
belonging to {T'(a)} (cf. (1.9)). Assuming this, we fix an integer k > 2; for any
I > 0 we have T, (Q*f) = [I(1 — D)1*T,(f). Hence if I > 1, say, we get
T < oy M Q)

But for the sequence {f,} the constants |M (@*f,)| are uniformly bounded,
and this clearly suffices to justify the limit transition under the integral in
the second term of (2.19).

It remains to prove the relation Ty, = q7, quoted above. We put, as in
LA, T(explit)y=exp(—iH;t) (j=0,1,2), and observe, that it clearly
suffices to show that, if 4 is any vector in the representation space, we have
iH;Tsh = Tph, since Hf+ HE— Hi=ql. But, putting g;(t) = expl;t
again,

lim ﬂi(ﬁt&:igv,h = lim ff(a)_T(gf_(‘t))_—_I T (a)h d u(a)

t—>0

. hm f(g,(—t)a)——-f(a)) T(a)hd,u( )

t—>o

= — f (Lsf) (@) T(a)h d u(a) strongly .
G
Hence T';h is in the domain of H; and ¢ H; Tch = Ty ;h (j = 0, 1, 2) as claimed.

Part II1. The Plancherel formula as completeness relation of characters

The main idea of our second proof consists in expressing certain averages
over the conjugacy classes of a fixed f € C;° through the traces of its integrals
with respect to irreducible representations, making up the Plancherel formula,
and then reconstructing the value assumed by our function at the unity
through a certain differentiation process. The first part will be discussed below
in A; in B we give a detailed description of the background of the method, and
in C we deal with the second part; here we follow the ideas outlined in [4].
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A. The main objective of this section is to express the traces in terms of
averages over conjugacy classes; in B. it will be shown, how to invert these
relations. During the course of the discussion we shall, incidentally, show,
that for a fixed irreducible representation the trace, as distribution, is generated
by a locally integrable function, which, in analogy with the eompact groups,
is called the character of the representation. By virtue of this fact, the main
formula can be written in a form, closely resembling the Peter-Weyl formula,
when expressed in terms of characters of irreducible representations. — We
shall deal with the case of C{*) and Dj* separately in 1 and 2 resp. below.
For some of the technigues to be employed cf. in particular [3] Ch. V and VI

1.a. First we enumerate several subgroups, some of which had aiready been
considered before (cf. in particular I. B.a), and fix invariant measures on them.
As before, we denote the canonical homomorphism from @ onto &, (=S L(R,2))
by N. In many cases the restriction of N to the subgroup to be defined turns
out to be an isomorphism with its image in G, and we use the parameters of
the latter.

«. We denote by N+ (N-) the connected subgroup of @ lying over the sub-

group of matrices of the form (é ";) [(i {1)) resp.}. The restriction of @

induces and isomorphism, and we put d u(n) = dx.
B. On 0 ={0,; —© < ¢ < + o} we use du(o) = %%
v. We know, that the complete inverse image H under @ of the subgroup

of diagonal matrices (3..1 2) (A > 0) is the direct product of the center Z of @

with the component of the identity H,C H, the latter being isomorphic under @
with the diagonals. Putting again y = 0y, €Z, every element of H can be
written uniquely as y/h (j=0, +£1, £2,...;h € Hy); sometimes we ab-
breviate this by writing #;, We define du(h) an H by requiring du (k) = %
on H,.

We recall, that on any Lie group G a left invariant measure can be defined
by fixing a left invariant differential form of maximal rank. Assuming, that ¢
is a linear group, the elements of the matrix d;a = a~* da(a € G) form a system
of linear differential forms, containing dim@ linearly independent elements.
Hence to obtain a left invariant form of maximal rank, it suffices to form the
exterior product of members of an appropriately chosen subsystem. Similarly,
one constructs right invariant forms by considering the elements of the matrix
da=da-at

d. We note the complete inverse image of the group {(3‘1 ’;), A >0}

again by S. We recall, that it is the direct product of the center Z with the
component of the identity S,, the latter being isomorphic with its image under
@. Similarly as in H we sometimes write s; in place of s97(s € 8y). To define
a left invariant measure d yu,(s) it suffices to do it on 8y. Here 4 and u can be
used as global coordinates, and, with the notations introduced above, (d,8)y5 A
A (d,8)sy = dA A d y is & left invariant form of maximal dimension. Hence we
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can put d u,(s) = dAd . The group 8, however, is not unimodular. We have,

indeed, (d,8)z5 A (d,8)g; = % (dANdp); hence dpu,(s)= %%lﬁ« defines a

right-invariant measure on 8. Putting §(s) = 2%, we have d yu,(s) = p(s) d u, (s);
extending ¢ by requiring d(s) = 8(sz) (s € 8, z £ Z), the same relation remains
valid on S too. In particular, if f ¢ L(S)?)

(3.1) Sff(s so ) du(s) = e(so)sff(S) dpy(s) .

&e. In what follows we define the invariant measure du(e) on & through the
differential form, which is the image under 6@ of the form (d,a)y; A (d,2)g5 A
A (d,a), 5 on Gy; du(a) is bi-invariant.

b. We denote by G, the open submanifold of G defined as the complete
inverse image of elements, having different positive eigenvalues, of the adjoint
group (. Each element of G, can be represented in the form g-1hg(g € G, 1 € H).
Furthermore, the group of automorphisms of A induced by inner automor-
phisms of G, leaving H fixed (Weyl group), is of order 2; denoting by % the
action of its nontrivial element on % € H, we have k; = (h=1); (cf. y. above).
Hence @, can also be described as union of all conjugacy classes containing
elements of H — Z; two elements of A fall into the same class only if they are
congruent under the Weyl group. — An open subset H»C H is called a funda-
mental domain if HpNnHp=(0), and HpN"Hp=H — Z (Hp is the image
of Hy under the Weyl group).

Now we turn to the discussion of the first of our main integral relations.
Denoting by D(a) (e € G,) the absolute value of the difference of the square
roots of the eigenvalues =1 of Ad(a), we have for f € L(G) and an arbitrary Hp

(3.2) Grff(a) dp(a) =H£D(h) Iydu(a) .
Here
I, = z i ff(o*lhno)d,u(o)d,u(n)
le@1® J.

where 0, is the image of O in the adjoint group, and u(0,) = 1 (d plo) = %,

0 £ ¢ < 2x in our usual parametrization). Observe, that I, € L(H).

Before proving (3.2) we wish to show, that
{3.3) Iy=1,.
While proving (3.2) it will turn out, that, for a fixed b ¢ H — Z, the set {o~'hno;
n € N+, 0 € O} gives the conjugacy class containing k. This together with (3.3)
shows, that I, can be interpreted as an average of f over a conjugacy class,
and (3.2) gives a decomposition of the invariant integral into a continuous sum
of these averages.

To prove (3.3), for a € G, we denote by &, the element ¢ Hp, for which
@ = gh,g~1(g € §). Assume now, that g(k) is a bounded continuous function

2) In general, we denote the family of all continuous functions with compact support
on the group @ by L(G).
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on H; replacing f(a) by f(a) g(k,) in (3.2) we easily obtain

G{ f(@) g (ko) dp(a) = H{, D(k) g(h) I du(h) .
Since Hp, too, is a fundamental domain we also have

J 1@ 9 du(@ = [ DG M du®) .
Adding we get
(34) g{ @) (g(ko) + g(ha)) du(a) = Hf D) g(h) I, dp(h) .

The left hand side of (3.4) remains invariant, if we replace g(k) by g(%);
since, furthermore, D(%)= D (k) and d u (k) = d u(a) we finally obtain

HfD(h)g(ﬁ)Ind,u(k) :E{D(h)g(h)fﬁdﬂ(h)-

Because of the arbitrariness of g (k) this implies (3.3).

We carry out the proof of (3.2) in several steps.

o. For z € Z we denote the subset of G,, consisting of elements conjugate
with elements of z H, by G&?. We have G = 2G® (e = unit of @), and the sets
G are open submanifolds of @ with disjoint closures. Hence it plainly suffices
to prove, that for any z € Z we have a relation obtained from (3.2) by replacing
G, by G, and Hy by HR = Hyp zH,; then (3.2) follows by summation. But
even here it suffices to consider z = e only; the general case then follows by
applying it to f(za) and 2~ H®, and observing, that D(zk)= D (k).

It is easy to see, however, that the restriction of @ to G is a diffeo-
morphism with its image, which is the collection of all matrices with positive
eigenvalues ==1. Hence in view of « — ¢ above, it suffices to consider the
corresponding problem on G;.

B. In what follows we simply write G, for @ (G%) and Hp for @ (HY). First
we prove the following relation

1
(3.4) gf Ha)dp(a) = fo_ [e(s)] 2 D(s) f(n~tsn) dpuy(s) dpu(m)

where Sp is the open submanifold of §%)C 6, made up of matrices with the
property, that the element of H, composed of the diagonal elements, lies in Hg.
We observe, that for a ¢ G, D(a) is just the absolute value of the difference
of its eigenvalues. To prove (3.4) observe, that each a € G, can be represented
in the form g-lhg with a uniquely determined h € Hyp (g € G,), and a,,+0
implies g, & 0. Assuming this'case, we can write g in the form sn{s ¢ 8,n ¢ N-)
to obtain for a € G, a representation of the form n~ts;n (s, € 8p); one easily
sees, that it is unique. Summing up, we conclude, that themap F: 8z X N-~G,
defined by F (s, ») = n~'sn covers G, up to a set of measure 0 with respect to
d pu(a). This implies a relation du(a) = f(s, ») d p;(s) d pu(n) with some con-
tinuous function f (we denote the inverse image of d u(a) on 8p X N- again by
d p(a)). Since d u(a), in particular, is invariant under inner automorphisms

3) Here, of course, § stands for ®(8); it is the group of all triangular matrices in G,
having 0 in the lower left corner.
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of G implemented by elements of N-, f does not depend on #. To determine its
exach form, we have to compute the determinant of the linear transformation
connecting the differentials, contributing to the differential form of maximum
rank defining the resp. invariant integral, in the matrices d,a, d;s and d;n.
Since f does not depend on =, it suffices to do this for n = e. Taking the dif-
ferentials of both sides of na = sn, we havedn e+ n-da=ds -n-+ s-dn.
Multiplying on the left by the corresponding sides of the relation a—'n—1
= n~1s~1, putting n = e, and rearranging, we obtain

dia=d;s+ dn— sidns.

1 0 Ao
"“(x 1)’ “(0 z)

Assuming, as before

we have
(dya)yy=Ady— pdd+ -
di
(dr@)gg =~ + *

(d,)g = (1 ~ —ﬁ) dx

where the terms not written out are multiples of the differential dx. This gives
1 1

(Ga)as N (dia)eg A @iy = (1= 55) @z A dAA A, or [O)=|1-

1
= [0(s)] 2 D(s), proving (3.4).

y. Next we replace N~ by O, in (3.4) as follows. We write O for @(0) (D(0)
= group of orthogonal matrices in G,) and o, for @ (0,). One easily verifies that
each right coset of G} according to 8 contains two elements of O (which differ
by the factor y = 0,,), and with the exception of the coset consisting of all
matrices having zero in the right lower corner, a single element of N~. More
exactly, denoting the open subset of O obtained by removing the points o,
by O, for each o ¢ O there exists a uniquely determined s(o) € S such that
s(0)o = n € N—; if o varies over 0, n covers N~ twice. The connection between

the parameters of n and o is given by @ = tg - 2. Let us extend the function

o(8) {cf. 4 in a. above) to G, by putting g(a) = g% (a € G,); observe, that
g{sa) = p(s) g(a). Hence ﬁnaﬂy, if f ¢ L{N-), the function f,{(0)= f(s(0)0)
satisfies f, (y0) = f,(0), hence it can be considered a function on 0y, and we have

[tmanm =5 [ ho)qoy=a [Hio) due).
N- - O

Applying this to (3.4), using (3.1) and g(s(0)) g(0)= 1, we get

f f@du@= [ [f 0(5) D(s) f (0 [s(0)] 2 [s(0)]0) d s S>] oo

Oo
Lf 0(5) D(s) f (0~ s0) dm(S)] dpo).
(Observe, that trivially D?s’.ss' ~1)= D(s)).
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Using finally the easily verified relation
Jo@)du(s)=_ [ g(h,n)dp(k)du(n)
8 HxN*

we obtain a formula of the required form on G,, and this finishes the proof of
(3.2).

¢. Now we proceed to obtain the expression of the trace in terms of the
function I,, and the explicit form of the character. This will be done by showing,
that if 7'(a) is of type C{), the operator T, (f € C{°) is an integral operator in the
representation space L%(0).

«. First we rewrite the realization of 7'(a), given in I.B, in a form more
convenient for our present purposes. We denote the character group of the
abelian group H by H. Using the notation of a.y above, any X ¢ A can be
written in the form X (h;) = e-27%/7429¢ (0 < 7 < 1, ¢ arbitrary real number}.

1

We put y(k) = [o(h)] 2 X(h); this can be extended uniquely to a (non-
unitary) character of 8, by putting y(hn) = x(h) (» € N*). For g(0), ¢’ (o) €
€ L2(0) we have g(oy)= X (y)g(o) and g'(oy)= X (y) ¢'(0), showing, that
g(0) ¢ (0) is a function on O,; hence the inner product in L2(0) can be written
8 (g 9') = J 9(0) g'(0) dpa(0). Finally

(3.5) (T(a)g) (0) = x(s(0a))g(0@)

with a y defined through an appropriately chosen X ¢ H. — Here the members
of the family {C{’} appear as parametrized with elements of A, different from
the unity. We put X' (k) = X (k); the map X - X’ is an automorphism of A
dual to the automorphism % — % of H, and by virtue of the discussion of 1.B.
we conclude, that two characters of i give rise to equivalent representations,
if and only if they are congruent under this automorphism. Sometimes, in what

follows, we write T for the representation determined by X ¢ H.
p. Assume now, that f € Cy. Using (3.5) we have

(T49) (0 ff ) 2(8(0a)) g(0@) d pu(a)
= Gf}‘(o*a) x(s (a))g(oFE) dula).

As one verifies easily, with our present choice of the normalization of the
measures involved, we have for any ¥ (a) € L(G) the relation

(3.6) JF@dp@ == f[fF 50) d/,tl(s)]d,u(o).
Applying this to the previous expression, we get
(T,9) (0) = Of K (0, 0) g(0') d ()

where
K,(0,0") = nsf %(8) flo~1s0") d p;(8) .

Observe, that K, (o0, yo') = X (y) K,(0, 0'), and K,(yo0, 0') = X (y) K;(0. 0'). —



The Plancherel Formula 127

Te(T,) = /K,(o 0) du (o) /f ) f(o-150) d 1y (5)

0y

- / X () / fo~ hmo) dp(n) dus(0)| dus(h)
" [Q(h)P

by virtue of the expression of y by X glven above in «. Hence finally, recalling
the definition of I, (cf. (3.2)) and writing 7'®) in place of T, we get

(3.7) Tr(T0) = f 2B, dp (k)

Hence

which is an expression of the requlred type for the trace. It represents the left
hand side, considered as function of y, as Fourier transform of the function
I, ¢ L{H} (and even ¢CF in our case); hence, by the Fourier inversion formula

(3.8) Ii= [ 30 T.(TP dp(y)
H

with an appropriately normalized Haar measure d 4 (X) on 4.
y. To obtain an expression for the character of 7X), we observe, that (3.4)
implies

(3.9) f flay LB IR g ) - f g Indp(h)

for any bounded contmuous g (), say.
Putting g(h) = X (A), and using (3.7), we get

Tr(T§%) zgf Ox(a) f(@) dp(a),

(3.10) where
X (ho) + X' (ha)
e T
0 otherwise .

This is the expression for the character as function of ¢ € G. Here 2, ¢ H
is any element, conjugate to a, and Cx(a) is obviously independent of its
particular choice.

Finally, we wish to point out, that for a fixed X and f, the trace depends
on the normalization of d y («), the character, however, does not. As it will turn
out later, our present choice of dy(a) differs from that of Ch. II; which will
have to be taken into account when setting up the final formulas.

2. Now we turn to the discussion of the series Df. Here, too, we start
with an integral formula.

a. We denote the complete inverse image of elements in G, having non
positive eigenvalues by G, One easily shows, that every element of G, is
conjugate to a uniquely determined element of 0. Assume, f € L({#); our next
objective will be to prove the following relation

(3.11) [t@du@=2 [smfI,dp
Gy -5

Math. Ann, 1566 9
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where
I, “—‘Sf fsogs™) d py(s) .

Similarly, as in the case of G,, during the course of the proof it will turn
out, that (3.11) can be interpreted as decomposition of the invariant integral
into a continuous sum of averages of f over conjugacy classes, containing
elements of 0 — Z.

a. We denote the open subset of ¢ consisting of elements conjugate with
some 0, 27(j — 1) < @ < 2mj;§=1,2,...,) by G, and put G\ = [GP]2.
Evidently, any two of these sets are congruent to each other mod. a translation
by some element of Z, and their union is ¢. Furthermore, the restriction of @
to G, say, is a diffeomorphism with its image. Therefore, since the factor
of I, in (3.11) is periodic with 27, a reasoning similar to that employed in
1.b.ex above shows, that it suffices to prove, that if f ¢ L(G,), we have

2n
(3.12) [i@dp@ =2 (sin-gi)2 I,d¢
G ]

where G, stands for GV formed along with I, with respect to G,.

B. To prove (3.12) first we observe, that any a € G, can be represented
in the form gog-!, where o ¢ O is uniquely determined by a. Furthermore,
we can write g = s0'(s €8,, 0’ €0), which gives a = s0s~!, and one easily
checks, that in the relation s, too, is uniquely determined by a. Next we use
reasonings, analogous to those of 1.b.§ above. Denoting the open subset
{0,;0 < ¢ < 27} of O by O, the map (0, 8) - sos~1is a diffeomorphism between
Ox 8, and @, and hence we can write du(a)= f(o,s)d¢du,(s). Since,
however, G, is taken into itself by any inner automorphism, and this leaves
d p{a) invariant, we conclude, that f does not depend on s. In order to determine
its explicit form, we take the differentials of both sides of as = so, which gives
da-s+a-ds=ds-o+ sds. In addition, we have s~la~! = o~ls~1; multi-
plying by this on the left, putting s = ¢, 0 = 0, and rearranging, we obtain
d,a = o_,dso, + d;o — ds. We recall, that

1 /0 —dy
d‘oz'i(dtp 0 )

—di dp
ds:(o d}.).

and

To compute o_, ds o, — ds we proceed as follows. One easily sees, that if

x (“'1 Ly xo)
Xy Xy

the linear transformation Ad(o,)x = o,xo_, (cf. 1.A.1.) is a rotation in the
(g, 2y, 7,) space, leaving the w, axis invariant, by an angle ¢ in the positive

direction in the (x;, z,) plane. Hence putting z, = —d A, 2y = — 2, = ~d2—” , we get
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o_,ds0,— ds = [Ad{o_,) — I'lx =y, where
- (.% Y2 — Zlo)
y Yo+ % —%h
(1 — cosg)
——s——dp
Hence finally (d;@)g; N {d1@)ge A (d10)y5 = 2(3111 ) dAiAhduAdg),
proving (3.12), and along with it (3.11) too.
Assume now, that g(o) is a bounded continuous function on O, and for
a € G, denote the element of O conjugate with it, by o,. Then (3.11) implies

with 4, =0, ¥, = [1 — cos¢] di+sm99 5 Yp=singdi—

(3.13) ff g(o,) dp(a)=2 f(sm-«—) I,g(o,)do.

b. Assume, that {7 (a)} is the direct sum of two unitary representations of
type Dt and Dj resp. (l > -512-) In order to obtain an expression of Tr(7T)

(f € C;) in terms of the averages I, and I, we first compute the character, and
then through an application of (3.9) and (3.13) derive the required formula.
This change, when compared with the method of 1, is made necessary by the
fact, that the realizations of Df constructed in 1.B. where obtained by con-
sidering subrepresentations of representations induced by certain characters
of 8. The reasonings of 1.c. are applicable only when 27 is an integer; in this
case the induced representation turns out to be a direct sum of D;t, D;”"and a
finite dimensional representation of S L (R, 2). Hence the character of 7' is the
difference of the character of the whole representation, computed as in 1.c. y,
and the character of the finite dimensional representation, which is eagy to
obtain directly. — On the other hand, the present method, too, could be used
to obtain the characters of {C}.

. In the following computations we are going to use Eulerian coordinates
(cf. TL.A.1); but, making use of the remark made at the end of 1 above, we
choose as element of the invariant measure shu dg, du dg,. We write the
function f € C7° again as f(¢y, %, @y}, and recall, that the matrix coefficients
standing in the diagonal, when using the canonical basis of 1.B, are given by
EY (n)e—H#:+ o) where (cf. (2.8))

u
1 / 2
D (n) = — Re dv

m z (2 chg + iz)

1
(u >0,Z = (2(chu—cho))2 ;m= £(+9),7=0,1,2,..., 09, (u)= h%)(u)).
Hence, putting for a fixed 0 <2 < 1

H(x; w, @) = 2( D am cosmqphﬁ,{’(u))
mezl
9*
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we have by Abel’s theorem

2n o
(3.14) Tr(T,) = oofof [ Hx;u, ¢) floy, % @) shude, dude,.
Putting
2en’ \?
g
=V e
2Ch—2—+@Z

we have [¢] = 1, and
H{z;u, p)= 22'Re H’,

- e€¥¢(2 ch:;i)zt f{;(‘%}@ [ u . . ]dv

1 —zeet? 1—aéd?

where

the interpretation of ¢! and & being obvious.
Defining R and ¢ (tz complex) as in I1. A.2, and setting F(t) = (1 + ¢ + R),
a simple computation, analogous to those carried out in IL. A.2 shows, that

21
e”¢(2 ch X )

(3.15) H=—5 9§ R (b ¢

2
(b == (2 ch %) et 'P), where C is the interval [e~%, e*] run over twice clockwise.

B. Our next objective will be the evaluation of (3.15) for a fixed # > 0 and
@, if  — 1. Since, as we now, F (f) maps the complex plane, cut along [e*, e¥],
onto a bounded domain, the closure of which lies in the open right half plane,
the integrand of (3.15) is O(|}|-%) for large |{|. Next we show, that
G(t) = (F(1))2— xbt possesses exactly one simple root (), hence it will
suffice to consider the limit of the residue for ¢(x) if ¢ - 1. This will give the
character C,(a) of T for a = g,0,. — Observe, incidentally, that any character
C (a) necessarily satisfies C(abd) = C(ba) (a, b € &).

To obtain the roots, we consider the analytic continuation of G (f); it is a
univalued function on the two sheeted Riemann surface of the continuation of R.

We denote the sheet corresponding to the branch of the latter used above
by P, the other by P_, and put F' , (f) and &, (¢) for the corresponding branches
of the continuous F (t} and G (f) resp. Consider now the domain D of P_ bounded
by the umit circle and the interval [e~%, 1]. We have [F_(t})|2 > x|b #|? on the
boundary; since, on the other hand, (¥_(£))* bas a double zero for =0, an
application of Rouche’s theorem shows, that G_(f) has exactly one nontrivial

zero place inside D. Observing, finally, that @ (f)=¢ G.. ( ) we can conclude,

that G(f) has exactly one zero ¢(z), on P, and incidentaily, {t(z)| > 1. If
z -+ 1, for reasons of continuity ¢{x) > ¢{1), and we have a corresponding
convergence of the residues of the integrand in (3.15), provided &' (¢(1)) &= 0.
By virtue of the previous discussion G'(¢(1)) = 0 can oceur only if ¢(1) = +1.
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t(1) = —1 imples b = — 2ch & 2or et? = —1; and G’ (—1) == 0. Hence what
p 2

2
remains is £(1) = 1, in which case (ch % cos %) = 1. It is easy %o find the group

theoretical interpretation of this condition by observing, that det(D(g,0,) —
—yly=y* — 2ch3;~eosg—y + 1, and the roots of Ad{g,0,) are 1 and the

2
squares of the roots of this equation. Hence we conclude, that (ch —;ﬁ cos %) =1,

if and only if all roots of Ad(g,0,) are 1, or if g, 0, lies on the common boundary
of G, and @, (cf. 1.b and 2.a); we call these elements of ¢ singular. Obviously
these form a set of measure 0 with respect to the Haar measure. — Summing
up, in order to obtain the character C,(a) of T, which is a direct sum of two
representations of type Dj" and Dj resp., it suffices to compute twice the real
part of the residue for #(1) of the integrand in (3.15)%), assuming

(cos% ch %—)2 == 1. What concerns the possibility of the interchange of the limit

transition and integration in (3.17), we observe, that it is enough to justify it
locally. In the neighborhood of a nonsingular element it is clear from the
previous discussion; otherwise it is easy to obtain a dominating function
{ef. the subsequent computations).

y. Now we proceed to determine £(1) and the corresponding residue as
indicated above; we distinguish two cases.

Y1 (ch%oos %)2 > 1, {or g,0, €G,). It is clear from the expression for
H(x; u, ¢) that C,(g,0,) = C,(g,0_,) hence it suffices to consider ¢ > 0. We put

¢ =p— [q)z—;n] 27; observe, that —x < ¢’ <z. In order that [F(e,)]?

©\2 .
=(2ch§) ei?’¢?, v > 0, we must have v < 4, and

v

ch o
2 41 Zz e“”% (Z =(2(chu— chv))%)
u uw

ch *—2—- 2 ch ——2“

where we have + or — according to whether ¢’ > 0 or ¢’ < 0. Hence eh—%

= eh%cos%:: lch%eos %J > 1, which determines »> 0 and £(1) = ¢7; it

lies on the upper (lower) part of the cut along [e~®, ¢*]if ¢' > 0 (¢' < O resp.).
v

At the same time, one sees at once, thate2 is the root > 1 of ®{(g,0,), hence

e*? are the roots of Ad(g,0,). — To obtain the residue, we observe, that ac-
2(—1)

cording to our present interpretation of powers, [F (t(1))J2¢ -1 = (2 ch %—)

X et —~1) vet (=1 ¢' Furthermore,since Re [F', (f)] > 0,we have F(t(1)) = 1 + £(1)+

v o, ¢ v
- w g b . . d _ u\% o T v
+R(t(1))_~2ch-§e2e 2 ,WlnchglvesRﬁG(t)Ls«l)— 2(2chu§-) e'?’e? gh 5

2
4) Of course ¢*9 (2 ch -1;'—) included.
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g+
2n

Hence, putting [ ] == j we get finally

2 cos(27lj) -2
COR{Z (A
Ol (guoqv) = > ! B

To obtain a group theoretic formulation of the right hand side, observe,
that using the notations of 1.b.x, we have g,0, € G for small ¢, hence
9u0, €GP, 2 = yi CZ (j defined as above) for any ¢ > 0. Similarly, if ¢ < 0,
JuOp € G;Z)a 2= '}/_j: 73 I:_Igi]_z_j}:it_
Ad(a) by 4,, we can write

]. Denoting one of the eigenvalues 31 of

1
~\l— 5|80 (2a~1)
_ 2co8(2mjD) A, ( 2)

(3.16) 0, (a) 0]

(@ €GP, z= ).

Vo (ch%cos %)2< 1 (or g,0, €G,). We define g, (0 < ¢, < =) through

-1
cos% = (eh %) ; hence, for 0 < @ < 25 our condition is satisfied if ¢, <

< @ < 27z — @, Next we observe, that for any such ¢ there exists a uniquely
2

determined «, (0 < o < 27), such that [F (e—%%)]% = (2ch —g) et @~ Indeed,

this condition is equivalent to

24
CO8 — . P 1
2 .z - =
+ 7 —e'2> (Z’ = (2chu — coso:)z)
% 3
ch—2-— 20h§~

or cos % =ch 1;— cos —g', which determines . Keeping u > 0 fixed, let us vary ¢

from @, to 272 — @,; we denote the corresponding o by o{¢p). Then a(g) will
vary from 0 to 2z, and moreover we have 1. —x < ¢ — (@) < 7, since
Re[F,]>0, 2 -g,0, is conjugate with 0,(,;. The last statement can be proved
e.g. by checking the analogous situation for @(g,0,) in G;. We extend now the
definition of x(g) first for any ¢ >0 ((cos%ch —-223)2 < 1) by setting a(¢)
=al{pVifp=2aj4+ ¢ (j=0,1,2,...,0 < ¢’ <2x) and then for a negative
@ by a(p) = a(— @). It is clear, that we always have f(1) = exp(—io(p)),
along with properties 1 and 2 described above. Turning now to the computation

1)
of the residue, we have by 1.: [F (((1))]P¢-V= (2ch %)2 ! etl-ge—i(-Da

(o= ot(g)), and F (¢(1)) = 1 + ¢(1) + R(t(1)) = 2ch%ei'§e_‘i_;-. Hence, simi-

-4

AL
larly, asin 9, a,bovethisimpliesli’% G(t)l =2 (20}1 %)2; 2g 7 VSR

This finally gives
sin (z —_%) .
-4

sin —
2

t=1(1)

(3.17) Cila) = — {a ¢ G, and conjugate to o,) .
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(3.16) and (3.17) determine C,(a) completely, with the exception of the set of
all singular elements; this, however, as already observed, is of a measure zero.
e. Asin I, we put T, (f) == Tr(T,); assuming, that 7 is a direct sum of two
representations of type D;" and Dj resp. (f € CF). In what follows, we express
it in terms of I, and I,
The discussion of b. shows, that

. =fo(¢) Ci(a) dpu(a) r—gff(a) Ci(a) du(a) +fo(a) Ci(@)du(a);

we shall deal with the last two summands separately.
a. By virtue of (3.9), we have for any bounded continuous function g (k)
on H, satisfying g (k)= g(h):

ff 2 du fg W, dph) .

Using the notatlons of l.a.y, we put g(h;) = (cos2mlj)A-@I-Dssd-1,
since h; = (h~1);, we have g(h)= g(k). Hence, using (3.16), we may write

(2

[1@Cia)dp@)= X (cos2alj) [ A-@1-De06-DT, du(h).
G, H,

j=— oo

In the subsequent considerations it will be more convenient to use certain
parameters on H,. To do this, we put

t
%
ht:<e 0 z) {(—oo <t < +x)

0 e?
and f;(t)= Iy, (j =0, £1, £2,...). We observe, that since I;, € C;° on H, we
have f;(t) €0 and f;{t}= 0 but for a finite set of indices. Furthermore,
I, = Iy (cf. (3.3)) gives f;(t) = f;(—1). Hence we can write finally

(3.18) JI@C@dp@= X eosea) | csl g ae
§ == 00 0
(Observe that du(h) = a1 ~—-%t~) .

B. Using (3.11) and (3 .17) we obtain
(3.19) [ i@ @) dpt@) = —2 f sin(1~ ) ¢ 6(g) dop
[24

where G(g)=sin & 7 I, = sin— L ff (80,871 d py(s).

Observe, that I, vanishes outsnie a finite interval, but it becomes infinite
for o = 275 (j = 0, +1, +2,...), since the measure of S is infinite. The prop-
erties of G(¢), as function of @, will be discussed later in C.

B. To describe the main idea of the second proof of the Plancherel formula,
it will be useful to make a comparison with the case of the group SL(C, 2).
Denoting the group of all diagonal matrices by H, here, too, one can associate
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an irreducible representation with each element of the character group H of H,
characters, equivalent under the Weyl symmetry & — A~ (h € H), giving rise to
equivalent representations. Furthermore, defining N+ (with complex coeffi-
cients) as in A.1.a.a and replacing O by the maximal compact group of all 2x 2
unimodular unitary matrices, we can introduce f, as in (3.2), and with it one
has the analogue of (3.7). To obtain the Plancherel formula, one shows the

existence of a differential operator L on H, such that for any f ¢ C°, L1, .

= ¢f(e) (c is a constant =0, not depending on f); finally, applying L on both
gides of (3.8) for h =-¢, and defining a measure on A by dv(X)

= LX(h) }h=ed p{(X) one obtains a formula of the required type (cf. e.g. [3]

Anhang III). The indicated procedure can be extended to any complex
semi-simple Lie group.

On the other hand, it is clear that in our case any attempt, based on (3.7),
to imitate the previous procedure is doomed to failure. Indeed, unlike the
complex case, here the complement of the collection @, of conjugacy classes
containing elements of H contains an open set G,. Also, the support of the
characters Cy (cf. (3.10)) is contained in the complement of @,. Since, however,
for the Plancherel formula we evidently have to take into account the whole
carrier of f, and since it is only the characters of the series Djf which do not
vanish on G, these, too, must be taken into consideration when setting up our
formula. In order to gain a better picture of the method to be followed, we
transform the relations of A.2.c. as follows. First, we get through partial
integration from (3.18)

(z__)f/, dt~f,(0)+ff 02

and

(-3 f f@) @) dp@) = 3 cos@ajl) f,(0) -+

’————OO

1

+ 008(27593)]}‘3@}8 “2a.

}::-——-00

Next, assuming for a moment, that G (p) possesses the required properties,
we have

2nj
1 . 1 o oy —
—(1-3) [ sin(1-3) 96 dp= (=1 cos@atj & -
2n(j~1)
2nj
—(—1Y-1cos(2al(j — 1))GfF) — f cos (l— -;;) PG (p)de
2n(j—1)

where we put Gf%) = I;I%io G(g).
@->27
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This gives (cf. (3.19))
(- 3) [ 1@ C@ip@ =2 [ & @os(i-3)p-dp-
a, oo

2 ( 2 (= 1) cos 2al) (67 — G§") .
§ = — 00
Hence finally

o0

-~ 1
(-g) i = 3 cosizait) | ne 2
J=—c0
(3.20) _ ;

-0

where

R= Y cos(2nlj) [f;(0) — 2(— 1Y [G/V) — G1].
§ w00
Below in C, we show, that G(¢) possesses the following properties
P.1. G(g)is C= in the neighborhood of any point, which is not multiple of 2.

GF) = I%m‘_a:o G(p) exists, and we have f;(0) = 2(— 1} [P — ¢
@~>27]:
®)

P.2. For each fixed §, and @ sufficiently small

&' @] + @) + 5 (— 1Y { ()] < A|g| [log ]

where A does not depend on ¢. (p=0).

Taking all this for granted, we immediately have R = 0 in (3.20). Moreover,
by virtue of P.2. the Fourier transform of G'(¢p) is summable®); hence elimi-
nating the functions {f; (f)} from (3.20) by aid of (3.8) and integrating both sides

according to ! from %- to + co, we obtain the final formula. We shall carry out

the necessary computations in D. — We observe, that the identity in 1.P.
possesses & simple group theoretic meaning (ef. C3.a).

C. Now we turn to prove the statements (P). First we remark, that it
suffices to consider the case j = 0 only. Indeed, denoting by {f, ()} and G (¢)
the functions corresponding to f(37a) (j + 0, fixed), we have f,(0) = f;(0) and
(~1)G(p)= G(¢ + 2jn). — Moreover, since in I,, for a fixed ¢ = 0, only
values of f € 0°, assumed on elements {so,s~1; s €Sy} occur, and since the
restriction of @ to a sufficiently small neighborhood of the closure of the set
{80,871; 8 €8y, |p| <8, 0 < < a} is a diffeomorphism with its image, it is
again enough to discuss the analogous problems for @,. This we shall do in
several steps.

8) This can be proved through an easy adaptation of the reasonings leading to the
classical theorem of 8. BERNSTEIN an Fourier series; cf. e. g. A. ZvamMuxDp, Trigonometrical
series (New York 1952) 6.3, p. 135.
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1. In what follows we put the function I, = f f(sop,s™ ) dpy(s) (p >0)in a

more convenient form. We recall (cf. A.2.a. ﬁ), that for 0 < ¢ < 27 so,s71
= o, implies ¢ = ¢" and s = e. Since o, = exp(ply) (I.A.1.), we can wnte
s%s—1 = exp(p Ad(s)ly). Putting Ad(s) Zo = g, where

w}_.(xl xg——xo)
.’X,‘——az Zy+ &) I ’

H,={x; a§ — 2% — 2} = @, 2, > 0} and representing x as a point in R3, one
easﬂy checks, that the map F: S, — R® defined by F(s) = Ad(s)ly== is a
diffeomorphism between S, and H,. From this we conclude, that assuming,
as usual

s=(5 %) @0

in the domain D of R® bounded by H, and H,,, through the relation expz
= s0,5~1 we have a one-to-one differentiable correspondence between (x;,2;,%,)
and the parameters (4, , ¢). — The map x> expz is a diffeomorphism
between D and its image D, in G, and incidentally, we have ¢ = g/;g_‘me
We put 0= @ chu, &, = pshucosy, 2, = pshusing 0 < p <2, 0= p <
< 2z, v = 0) and using the previous observations, we express d y,(s) = did u
(cf. A.1.a.d) in terms of # and y as follows. If the carrier of the function
f € L(@,) lies in D,, we can write

[ H@)dula) = [ [lexpz) x(x) da
@ D

(dz = dz, dz, dx,), where () is some smooth function in z,, #,, z,. Since the
Haar measure on G, is bi-invariant, and det (Adg) = 1 (g € ¢,), we conclude, that
x{[Adg]z) = a(x), implying, that «(x) depends on ¢ only; in what follows we
write o{p). Observe, incidentally, that by virtue of d;a = dx for a = ¢, we

have «{o) = -i- We have furthermore do — ¢?shudgdudy, hence on D:
dufa) = a{g)¢p*shudepdudy. On the other hand (3.11) gives dufa)
= 2(sm (P)zf (u, ) d du dy, where f is the Jacobian of (4, u) accordmg to

(u, p). Comparing the two expressions for du(a), we finally get fE?shu.
We now put g(z) = f(expx); it is defined and C* on B3 if f € C;° on G,.
Defining

1 .
321) F(ynys)=3 f ( (o + ?/2): (41 — Ya) co8p, 5 (1 — ¥a) smf.v) dy
F (4, yp) is again C*, and by virtue of the previous discussion we can write

(3.22) I,=2 [ Fpe*, pe¥) (¢ — e=¥) du (9> 0).
0
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2. Our main tool when proving statements (P) will be the following lemma
(cf. [4] Lemma):
Suppose H (x,, x,) is @ C* function with a compact support. Put
g(p)= [ H(pe*, pe ) (e —e¥)du (0<p<l).
a

Then we have

(3.23) lim ¢ g(p) = [ His,0)ds
¢—0 0

and

(3.24) (@ g(@)) + 2H(0,0)| < A pllogg|

for sufficiently small @; A is independent of ¢.
Hence, in particular lin% (p g(@)) =—2H(0,0). To prove all this, we put
@
=@ [ H(pe*, pe~*) et du, and g,(p)=—¢ [ H(pe*, pe~*)e~*du, such
0 0

that @g(@) = g1(p) + g2(@). Making the substitution @e* =s in the first
expression, we geb
= M

b = [ 1) ds = [ (o) as

@ @

with a sufficiently large M, independent of ¢, since the support of H is compact.
Similarly, the substitution ge-% = s gives

= (% asan (%o

where 0 << ¢ <1 does not depend on @. But these expressions immediately
imply lim0 Gy (@) = f H(s,0)ds and llm gs(p) = 0, proving (3.23).
p—>

On the other hand
i

, ds
gile)=—H(p, ¢ +2<PfH( ) P
oH
with H,(x;, x,) = N (2, ). Hence for 0 < ¢ < 2 , say,

@)+ HO,0)| = - (g ) - HO,0)| +

Hz(S,*?;) ds

where 4,, 4, and 4, do not depend on g¢.

M
ds
1+ Azf_s_< Aslog |
?
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Furthermore
' 1
g:(¢) = —H(p, ¢) + 2e9 - H (-;,wz) -

~2¢ fH(f' o)
(Hl (%, Tg) = -Z—f—f— (23, xz)). This gives
[ Galo) + HO,0)| = | @ (g ) — HO,00)| +
H(—i—,etpz) +Bf¢%s—<

< B, + B,|log | < Bj|log | .

+ 2¢

These two estimates together prove (3.24).

Finally, we observe, that in the lemma it evidently suffices to assume H
to be of a compact support, when restricted to 0 < =2, < 6, 7;, z, = 0, with
some fixed § > 0.

3. Now we are ready to prove (P).

a. First we remark, that since g(xo, %y, Zg) is of a compact support, when
80 is F (yy, ys) (cf. 3.21), when considered for 0 < y,y, = (5 Y. Yz = 0. Hence
we can apply the lemma above to ¥ in place of H.

a. Using (3.22) and (3.23) we get

(+) . — in @
Gy lim G ()= ‘51310 sin oI,

90
= h 1 1 ] — U U __ p—% —
m%m 20[14’((;;6 , pe ) (e — e *) du 0‘/F(s, 0)ds.

oo 2n

By virtue of (3.21) the last integral is ~;— f f g( cosy), smy)) dy-ds.
00

To find its group theoretic meaning, we put n,= (0 1) €Nt (A l.a.a);

then if
__1_(51 23— %
=32 2t 2, —2 )
with z, = —;—, 2 =0, zg=— —2—, we have z=n , . Hence (cf. the similar

2

reasoningin A.2.a.8) Ad (o _1) z=1z, Withxo—-z-;—,xl= %cos«p, xg= %simp.

2
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o 2n

Returning to the function f(a), this gives G§* =% f f floyn_,0_,) dypds
o 0

0 2=
1
:If ff(o,,nso_w)dy:ds.
— o0 0 _
Replacing f(a) by f(a~') and denoting the corresponding function by G (g)
we have G(g) = — G(— ). Hence

o 2n

— . 1
G5 ):q)lin—lo G(p)=— G = — 74_./ ff(ownso_,p) dyds.
0 0
oo 2m
Summing up, we have 2(G{" — G§7) = = f f f(o,n.0_,) dy ds. But by
—'WQ

{3.2) this is I, = f,(0).

Evidently G§™) and G§™) are averages of f taken on the common boundary of
G and G, GSV resp. (cf. A.1.b. and A.2.a.a). The above discussion shows,
that they can be obtained through an appropriate limit transition from the
averages over conjugacy classes determined by elements of 0.

The C* character of G(lp) follows immediately from (3 21) and (3.22).

b. We have F(0,0) = e g(O T ](e Writing sm 2 + @39 (@), and
applying (3.24), we get for 0 < ¢ < é—, say,

7 1 ? z

6 (9) + 510 < |5 (L) + 5 10)] + ((#02(9) (PLY| < 4 pllogg]
where the appropriately chosen A4 does not depend on ¢.

Substituting again f(a=?) in place of f(a), and observing G (p) = G'(— ¢),
we get a similar estimate for — —;— < @<0.

By virtue of the remarks made at the beginning of C, a and b. together
prove (Pyforanyj=0, £1, +2,...,and f €02 on G.

D. Now we are ready to derive our final formula.

1. We know, (ef. B), that by virtue of the results of C. we have R =0 in
{3.20); hence

(l~— —;—) 7.4 Z cos (27j1) f fi ®)e l %)tdtm

j=—o0

(3.25)
—2 f G’(q))cos(l——-—2—) pdo=2,+ %,

Next we eliminate the functions {f;(t)} from X, by aid of the traces cor-
responding to the family {C{} in the following fashion. By virtue of (3.8)
g Y ilg g Y

(3.26) Te(T§) = [ X0y duh)

where X (h;) = ¢~274i7}29¢ wijth an appropriately chosenreal ¢, and 0 < v < 1
(cf. A.1.c.« and B). The left hand side of (3.26), incidentally, up to a constant
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factor, is TE(f) (cf. I1.C and the remark at the end of A.l.c). Using the
notations of A.2.¢, (3.26) gives readily

Te(T) =5 X e [ evtfo)d.
== 7

‘We denote the right hand side by F (g, 7) for a while. Observe, that F{g, 7)=
= F(—o0,7) (gince f;({)= f;(—1), Flo,7)=F(o, 7 + 1), and f;{f) & 0 but for
a finite number of §’s. An easy computation gives

joj,f e‘”dt~-fF(o' T)etniT gt

and, using the Plancherel formula for the real line (l > %)

(o]

oo 1 1 .
A0 =)y [ w1 F(g,v)— g do |dr.
[Ty

g 0
Substituting this in the expression of 2| (3.25), we get

(3.27) PR f [F(0,1) -+ F (o, ~ )] —
a? -+ {1

2. Next we prove the following simple lemma.:
Suppose that the continuwous function g (u), defined on the real line satisfies o.
gw)==g(—u), f. glu -+ 1)= g(u). Then we have for any fixed real o

=]

1
(.28) [ ?ﬁ“&;g(u-k %—) du=7 [ g(r) [Re tanha(o + in)] dr.
0 0

For the proof we observe, that

ntanhnZzZ——-—w—zzT=Z ! i~ + ! T
=oat (i+g) i=0|ati(i+y) i—ifi+g)
gives
_xRe{tanhsz(o+w}}Z;[ (:+ vy n o o 1)2].
i= T+9 o r——-y_~2—
On the other hand
oo 1

Jwawalurg)an= [olur3) (£ i) @

:/g(u)(i\: 2+(u+7_~..m1m)2)du.
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Taking into account, that by virtue of properties o and g
1

1
fg(u) P " du=/g<u) Py e du

0

1
2
and

3 1
2

/g(u) a2+(u—:j—~;-)2du:/g(u) gz—f—(u—:j-{—%)Zdu
1

0

we obtain finally

o

fﬁg(u +~;—) duznfg(r) [Re tanhz (o + 7)) dT
0 0

1
— % [ 9@ [Re tanh(o + iv)] dv.
0

3. Before proceeding, we wish to compare the normalization of the Haar
measures as introduced in IT.A.1. and III.A.l.g; in what follows we denote
them by d u(a) and dv(a) resp. Again, it suffices to check the relation between
the corresponding measures on ;. The subsequent computations will be very
similar e.g. to those of A.2.a.

In any case we have dv(a) = f(p, u, ¢')dpdudg’ where (¢, u, ¢') are
Eulerian coordinates (II.A.1) (for reasons of convenience, we now write ¢, ¢’
in place of ¢, @, resp.). Using the invariance of dv(a) under left and right
translations by elements of 0, we conclude, that f does not depend on ¢ and ¢'.
Taking the differentials of both sides of @ = 0g,0’ (0, 0’ €0, g, ¢ V), multiplying
on the left by a—1 = o' ~1g_, 07! and putting 0 = 0’ = ¢ we get

dia=g_,dog, + dig, +do.

Here
u uw
g B (Ch'—z-' Sh“é—)
w u u
Sh—2— Ch—z‘
and
_1/0 du 10 —dg
dl9u=7(du 0 ) ’ d”“'é’(d¢ 0 )’
and similarly for do’.
This gives

2(d;a)y; = chude + du + do’
2(d,a)ys = —shudg
2(dia)p = —chudg +du— dg’
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whence
sh %

(d1a)21 A (d10)95 A (dya)1p = (dohduhde)
4
or |f| E%—, and dy(a) :%d@du d¢'. Since, on the other hand du(a)

= —(2%7;}2— shu d ¢ du d ¢’ we finally conclude that d u(a) = ¢ - dv(a) with ¢ =52,
4. (3.25) and (3.27) give

Lol

oo l .
—2 [¢ @ cos(i~5)pdop== [P+ Flo,~h—"—gdo+
o 4 (l —_ ~)
2
1

(3.29) + (z - -—2—) T,(j) .

By virtue of P.1 and P.2 in B above, and since G(¢) vanishes outside a finite
interval, the Fourier transform of @'(¢) is summable. Hence, since the first
summand on the right hand side, too, is summable in { over [%, + oo] , 80 is the

second. Integrating both sides over this interval, the left hand side gives
72f(0) (cf. P.2). Observing again, that in the definition of F (o, 1) (cf. D.1),
f:(@®) € O and f;= 0 but for a finite number of §°s, in the first summand on the
right hand side we can interchange the order of the two integrations. Keeping ¢
fixed, and applying the lemma of D.2 with g(u)= % (F (o, u) + F (o, — u),
integration according to I gives

1
50 fF(o‘, 7) [Re tanhz{o + i7)] dt
0

whence, taking into account F(o, 7)== F(—0, 1), and integrating according
to o we get

F flO’F(G, 1) [Re ta.nhn(o' +1i7)]drdo.

But by virtue of D. 3 F {0, 7) and — T,(f) in (3.29) coincide with 7% (f)
and T',(f) resp., as these were defined in IL.C. — Summing up, integrating
{3.29) over [% s+ oo] , and dividing both sides with #?, we finally get

[ § o]
fe) = [ [ o[Re tanhz(o + in] T (f) dadr+f(l~%) T, dl.
0 0 1

b
But this is the same as (2.19), finishing our second proof for the Plancherel
theorem.
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