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Introduction 

The problem of finding a Plancherel formula in the case of a large class of 
groups, in particular of semi-simple Lie groups, can be formulated as follows. 
One has to construct a family F of irreducible unitary representations in such 
a fashion, tha t  by taking the traces of the integrals of a fixed sufficiently 
regular (e.g. C ~ with a compact  support) function with respect to members of F 1) 
(the traces being assumed to exist) and by  forming the integral of these traces 
by aid of a suitable measure on the space parametrizing the members of F, one 
should obtain the value assumed by our function at the unity. Often one can 
set  up a basis in a canonical fashion for any irreducible representation in the 
resp. representation space, and the matr ix  elements with respect to this basis, 
eigenfunctions of the differential operators invariant under left and right 
translations, turn out to be expressible in terms of certain special functions. 
In  these cases the Planeherel theorem is essentially equivalent to a set of 
completeness relations involving these functions, and thus the former is often 
capable of giving simple interpretaMon of seemingly unrelated facts of the 
classical analysis. Methodologically, one can sometimes obtain the Plancherel 
formula through such completeness relations and conversely, though the transi- 
tion may  be not quite easy. 

Often the trace of the integral, formed with respect to a fixed member  of F,  
considered as a linear functional, is a distribution generated by a function, 
which is locally integrable with respect to the invariant measure. In  analogy 
with the case of the compact groups, one calls this function the character of the 
representation, and the Planeherel formula assumes the meaning of a com- 
pleteness relation of these characters. 

For any complex semi-simple group the Plancherel formula has already 
been found some time ago (el. [5]). The real case, because of the existence of 
nonconjugate Cartan subalgebras is more difficult, and as far as now only 

* This work was partially supported by N. S. F. grant no. G-18999. 
1) If {T(a)} is the given representation, this means the operator f](a) T(a) d#(a), 

G 
where dp(a) is the element of a fixed left invariant measure on the group @. 
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partial results are available. The case of the group SL(R, 2) (group of all 2 X 2 
real matrices with a determinant 1), which is particularly interesting from 
the point of view of the special functions, was taken up first by BARG~IANN ([1]) 
through the discussion of the matrix coefficients, determined by  him as eigen- 
functions of the Laplacian. A detailed proof, with much emphasis on the group 
theoretic meaning, has recently been given by TAKAHASm ([10]). An invariant 
approach was outlined by HAmsH-CHANDRA in [3]. 

The purpose of the present paper is to give a detailed discussion of the 
Planchercl formula for the universal covering group G of SL(R, 2). One of the 
new features of this case comes from the fact, that  no proper covering group of 
SL (R, 2) possesses a faithful linear representation. G is also universal covering 
group of the tree-dimensional Lorentz group, and among the Lorentz groups of 
dimension ~ 3 it is only in this case, tha t  the center is infinite. We intend to give 
two different proofs, and though one of them is going to be an extension of 
Harish Chandra's method, our emphasis will always be on the connection with 
classical analysis. The Ptancherel formula of any other covering group of 
SL(R, 2) can be obtained by an easy modification of the reasonings employed 
in any of these proofs. 

The formula to be derived is as follows. The family F of irreducible represen- 

tations (el. above)consists  of three subfamilies C (~) (0 <=T < 1, q > 1 ) ,  D+ 

and D i- (l > ~ ) .  The notation has been chosen in conformity with those of 
# 

¢ 

1 
BARe,ANN ; we obtain representations of SL  (R, 2) by putting ~ = 0, -~ in the 

3 
first case, 1 =: 1 , 1 ,  ~- . . . .  in the second and third case resp. Assume now, that  

] (a) (a 6 G) is indefinitely differentiable and has a compact support. We denote 
the trace of its integral with respect to a representation of type C9)~ ~jh,, T(,) (]) 

( V )  ~ = -i- > 0 . We consider also the trace of its integral with respect to a 

direct sum of two representations of type D + and D/- resp. ; we denote this by 
T~(]). The Plancherel formula, normalizing the Haar  measure on G appro- 
priately, is given by 

co 1 co  

l(e)= f f ,,ERe ta.h=(. + .)] + f (1-½)T,(t)al 
0 0 ½ 

It  is instructive to compare this with the Plancherel formula for SL(R, 2) 

#(l) = (~(tanhTra) T~)(/) da + a(coth~ra) T (l) da  + 2,' ~ Tk (]) • 
0 0 k=l ~- 

Similarly, as in the case of SL(R, 2), F does not contain representations 
from all equivalence classes of irreducible unitary representations of G. Among 
others, the representations of the "exceptional domain" C(T)(O ~ z< I, 
/ 

z(l- T)<q ~ 4)are missing (for details of. Part I). 
% 

7* 
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The paper consists of three Parts. The first Par t  gives the classification and 
realization of the irreducible representations of G. Though, as mentioned 
before, not all representations are needed for the Plancherel formula, to put  
things in the proper perspective, a description of all representations is included. 
What  concerns the classification we follow closely BA~GMA~N'S discussion of the 
same problem for SL(R,  2). --  Part  I I  gives the first proof based on a detailed 
discussion of the matrix elements. The idea of the proof, specialized to S L  (R, 2), 
was previously outlined in [6]. Instead of the Laplacian of G, we start  with the 
realizations of Par t  I to obtain detailed description of the matrix elements, 
which are expressible in terms of hypergeometric functions. During the course 
of the discussion we get for them analogues of the integral representations of 
Laplace and Dirichlet-Mehler for Legendre polynomials. The main result then 
follows from a special completeness relation involving these functions (cf. (2.19)). 
The second proof, contained in the last Part ,  is modeled after HARIs~-CHAN- 
I)R.CS proof for SL(R,  2) ([3]). Among the essential modifications needed we 
mention, in particular, the computation of the characters of the representations 

D~ ( / >  1 ) ,  since the method of [3] makes an essential use of the existence of a 

faithful linear representation. Our computations are based on the integral 
formulas for the matrix coefficients obtained in Par t  II .  

Many computations connected with G can be reduced to the consideration 
of the analogous problems with SL(R,  2). Since this group has already been 
discussed in detail, in particular by BAm~MA~ [1] and TAKAHASttI [10], we are 
going to make use of certain parts, to be specified later, of these papers. On 
the other hand, we thought to help the reader by giving short proofs, specialized 
to G, of certain facts, available in a much more general context (cf. for instance 
the proof, in Par t  I, for the existence of the trace, several integral relations in 
Par t  III .  etc.). 

Part I. The irreducible representations of G 

A. Classification O] the representations 

1. Preliminaries. In  what follows we summarise certain facts concerning 
unitary representations and properties of the group G. Since most of these are 
either standard or easily verifiable, we shall indicate but  a few proofs. 

Let  G be a Lie group, and a -~ T(a) (a E G) a continuous unitary represen- 
tation of G acting on a separable unitary space 9- Let  ~ be the Lie algebra 
of G; for l E ~ we denote by H~ the self-adjoint operator uniquely determined 
by  the condition T(expl t )= exp(-iH~t);  finally, let Dz be its domain of 
definition. Then one has the following situation ([7] Theorem 3.1): There 
exists a dense submanifold BC ~ such that  a. BC D~ for any l E ~, and the 
minimal closed extension of the restriction H~ of H~ to B is H v b. We have 
H~B g B and T(a)B ~_ B (a E G) c. the map l -~ - i H ~  (1E P-) gives a represen- 
tation of ~ by  linear transformations of B into itself. 

From now on we assume, that  G is the universal covering group of SL(R,  2), 
for which we put  G v We identify the Lie algebra ~ of G with that  of G v Hence 
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t~ can be identified with  the collection 
The e lements  

1 

1 

1 

of all 2 × 2 real matrices with trace 0. 

form a basis in ~ and satisfy the following relations 

(1.2)  [/0, /1] ----- ~2, [~1, 12] = - - / 0 ,  [/2, ~0] = l l"  

We denote the canonical homomorphism from G onto G 1 by ~.  The ad]oint 
representation of G will then be given by Ad(a)(x) = qS(a)x[qS(a)]-l(a C G, 
x ~ ~.). I f  x = xol o + x l l  1 + x2l 2, Ad(a) leaves the quadratic form x~ - x~ - x~ 
invariant, and the map a-~  Ad (a) gives a homomorphism from G onto the 
connected component of the identity in the three dimensional Lorentz group; 
in what follows it will be denoted by G. 

Assume now, that  T (a) is an irreducible unitary representation of G. We 
write Hj  for Hlj (?" = 0, 1, 2) and form the operator Q' = H~ + H~ - H0 ~. I t  is 
densely defined, since it is certainly defined on B, and symmetric. Using the 
fact, tha t  the operators of the adjoint representation commute with the 
matrix l02 - l~ - l0 ~, one easily shows (cf. the reasoning in [1] 5e, p. 601), tha t  the 
minimal closed extension Q of Q' is of the form qI ,  where q is a real number and 
I the identity operator. Even without the assumption of irreducibility Q turns 
out to be self-adjoint (eL Theorem in [8]); it is called the Casimir operator 
belonging to our representations. 

I t  is known, tha t  the group manifold of G o is homeomorphie to the product 
of the Euclidean plane with the one-dimensional torus, hence its Poincar~ group, 
the center of G, is infinite cyclic (cf. [1] § 4). We put o~ = exp(10~ ) E G ( -  cc < 
< ~ < oc), and ~, = o2~; the center of G is generated by ~. The subgroup 
{%}, denoted by 0 in the following, is a closed subgroup of G isomorphic to R 1. 

~Ve put  U¢ = T (o~) = exp (-- H 0 ~). Since U ~  = T (},) commutes with any 
T(a)  (a E G), it is necessarily of the form e - ~ I .  From this we conclude, tha t  
ei~¢Uv is a unitary representation, periodic with 2~, of R 1, hence it is com- 
pletely reducible. Hence H o possesses a complete system of eigenelements. 

Since a uni tary representation is uniquely determined by the operators 
Hj (] = 0, 1, 2), we can start  the classification of the irreducible representations 
by characterizing irreducible triples, satisfying commutation relations corre- 
sponding to those of (1.2). We shall do this by describing their action on eigen- 
elements of H o. The possibility of this procedure is garanteed by the following 
two statements: 

a. Putt ing De for the domain of Hj  (j---0, 1, 2) we have D oC 1)1 r~ D~, 
b. Denoting by D the linear manifold consisting of all finite linear combinations 
of eigenelements of H o, H~ (] = 0, 1, 2) is the closure of its restriction to D. 
To prove a. observe, tha t  for any ] E Do we can find a sequence {].; ] ,  E B}, 
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such tha t  In ~ ] and H0] n-+  H0]. But  for any h C B we have qh + H2o h 
-- H~h + H~h; replacing h by  ].  - ]m and forming the scalar product of both 
sides with the same element, we see, tha t  the sequences {Hi]~) (?" = 1, 2) con- 
verge too, implying ] E D1 ~ D2. Concerning b. we observe, tha t  it is certainly 
true for H e. Next  repeating the previous reasonings with D in place of B, 
we see, tha t  the domains of the closures of the restrictions of H i (j = 1, 2) to D 
contain D 0. But  B C Do, and hence by  property a. of B these closures coincide 
with H i (j = 1, 2) resp. 

Next  we form the operators H+ = H 1 + iH~, H = H 1 - iH~. Assuming 
Ho] = 2], and observing, tha t  the image of 0 in the adjoint group is the group 
of rotations leaving the x o axis fixed, a repetition of the reasonings in [1] 5f, 
p. 601, (replace F by H+ and G by H_ resp.) leads to the following relations 

HoH+] = (,~ + 1)H+], HoH ] = (,~-- 1)H ].  

Note, tha t  this in particular implies, tha t  H i D  = D (j = 0, 1, 2; for the 
defmition of D cf. b. in the previous paragraph). By  virtue of the second 
relation in (1.2) we have also [HI, H2]]= (HIH ~ -  H ~ H 1 ) ] = - i H o ] ,  or 
[H+, H_] ]  = - 2H0] for every ] E B, hence for any element for which the left 
hand side is defined; hence, in particular for any ] in D. 

Summing up all, ff Ho] = 2] we have the following relations 

HoH+] = (2 + 1)H+] 

HoH_ [ = ( 4 -  1)H_[ 
(1.3) 

(H+H_ -- H _ H + ) / =  - 2H0] = --2)t] 

(H+H_ + H_H+)] = 2(qI  + H~)] = 2(qI  ÷ ~ ) ]  

(for the last equation observe, t h a t  = Q = + = ½ IH+H_ + 

+ H_H+) -- H2o on D) . 
k 

2. Description of the infinitesimal operators. The following discussion is 
very analogous to tha t  of [1], in particular 5g (p. 605), for which the reader 
is referred for further details of some computations. 

Forming the sum and difference of the last two relations in (1,3), we obtain 

H_H+] = [q + 2(2 + 1)]] 

H+H_] = [q + 4 (4 - -  1)] ] .  

Replacing now ~ by Hi+1] and Ht_ -1] (j = 1, 2 . . . .  ) resp. in these equations, and 
taking into account the first two relations in (1.3) we get 

H-Hi+ ] = o~,Hi+ -1 ] 
(1.4) 

H+Hi_ ] = ~ iH~- l ] ,  

w h e r e ~ = q +  ( 4 + ~ -  1 ) ( ~ . + j ) a n d ~ t = q +  (~t - j ) (~t -~ '+  1). 
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The above relations imply  

(1.5) ] I U J + l / ] } 2  = ( H i + i / ,  H i + i / ) =  (H_H~+I, Hi+l)= ~S+lllH%lll2 

and 

(1.6) I1HJ+llli ~= (Hi- +1, H~+l l )=  (H+HJ-+I[, H L I ) =  flj+ll{HJ_ll[ 2. 
From which, in particular,  we conclude, t ha t  ~j, /3~. > 0. 

Now we tu rn  to  the description of all possible irreducible triples 
Hj (] = 0, 1, 2) ; we achieve this by  doing the same for H o, H+, H_. During the  
course of the discussion it will tu rn  out,  t h a t  the difference between two eigen- 
values of H o is a integer, a result, which, incidentally, follows f rom the discussion 
of the spectral properties of H 0 given above in 1. 

I .  Suppose first, t ha t  no member  of the  sequences {Hi+l} and {Hi_l} 
(] = 0, 1, 2 . . . .  ) vanishes (H0f = 2f). I n  this case, by  vir tue of the first two 
relations in (1.3), a number  0 g ~ < 1 mus t  occur among  the corresponding 
eigenvalues of H 0. Hence we shall immedia te ly  assume tha t  Hol  = v / a n d ,  in 
addition, }[]II= 1. Because of (1.5) and (1.6) the constants  ~ ,  flj mus t  be 
positive, which happens if and only if q > T(1 -- v). Pu t t ing  

s 1 s 1 

a~ = / I ( ~ . )  ~ , b~ = / / ( f l j ) 2  
j = l  1 = 1  

and 
Htf l,: = l ,  l ,+~  H*+t l , - s  - -  (s = 1, 2, .) 

- -  a s  ' b s  " " 

Illmli = 1, Holm = mira (m = v ± t, t = 0, 1, 2 . . . .  ). Fur thermore,  w e  h a v e  

using (1.4) an easy computa t ion  shows, t ha t  

1 

H+l~ = (q + m(m + 1))~1~+1 
( 1 . 7 )  1 

H f,. = (q + re(m--  l))2-1m_a. 

Assume now, tha t  leml 

(1.8) 

~m = 1; put t ing  g m =  e~/~, w ~ -  
~m --1 

H og~ = mgm 
1 

H+g,, = ¢o,~(q + m(m + 1))2 g m + l  

- - -  we finally obtain 

1 1 
H _ g m  - 0 , , _ ,  (q  + m ( m  - 1))2 gin-1. 

Observe, t h a t  using the notat ions of 1., we have T(~)  = e-*~***I; in order to  
have a representat ion of O 1 = S L ( R ,  2), we mus t  evidently have e -*~*" = ± 1, 

1 implying T = O, or -~-. 

I I .  a. Assume next,  t ha t  for some positive integer ] we have H/_ l  = 0. 
Replacing I by  H¢__-ll we get H_ l = 0 and H0J = 11 with an  appropria te ly  
chosen I. Hence fill = H+H-]  = 0, or fll = (q + l(1 - 1)) = 0, and q = / ( 1 - -  l). 
I f  ~1 = 0, we have H + ]  = 0 in addit ion to  H_  l = 0. Bu t  then Hjl  = 0 (~ = 1,2) 
which implies t h a t  { is invariant  under  T(a ) ;  or the  lat ter  is the trivial 
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representation. Excluding this case we have ~ = 21 > 0, or l > 0, and also 
~l = ~(2l + ~ -- 1) > 0 {j = 1, 2 . . . .  ). Putt ing as before 

s 1 

a s --= / / ( a~ )  ~ '  
j = l  

and 

1 , = 1 ,  1,+~= U:t  ( s =  1,2 . . . .  ) al 

assuming I[[]I = 1, we get It]~]1 ~ 1 and relations identical with (1.7). Replacing 
]~ by g,n = e,n[,,, ]em[ = 1, (m  = l, l + 1 . . . . .  ), defining ~ as before, we arrive 
at  a situation similar to (1.8). 

b. The case of a nontrivial representation, where for some ?" Hi+ [ = 0 is 
very very similar, and we restrict ourselves to list the final formulas. Here H 0 
is going to have a greatest eigenvalue, which is necessarily negative. Assuming 
it  in the form - l, 1 > 0, we get q = / ( 1  - l), and we can construct a sequence 
of eigenvectors g~ (m = -  l, --1 + 1 , . . . , )  satisfying Hog,~ = m g  m and once 
more relations analogous to those of (1.8). 

Observe, tha t  in case a. (b. resp.) we have T (y) = e- ~" i z (e 2. , ~ resp.). Hence 
in order to obtain a representation of G 1 we must  have 21 integer. 

Note, tha t  in each of the preceding cases the sequence {g~} forms a complete 
orthonormal system in the representation space ~,  and the range of m is just 
the spectrum of the operator H 0. The former statement is an immediate 
consequence of the fact, tha t  this sequence goes into itself under the action of 
the operators H0, H+ and H_, and hence under the action of Hj  (~ = 0, 1, 2). 
This implies, tha t  the closed subspace 0 '  of 0 generated by  the vectors {g~} is 
invariant  under any operator T (a) (a ~ G) of our representation; hence in view 
of the irreducibility of the latter,  ~ '  = 0- This finishes the characterization 
of the infinitesimal operators of the irreducible unitary representations of G, 
these being assumed to exist. Tha t  this is indeed so will be proved in the next  
section. 

For  later reference, we summarize the result of the previous discussion 
introducing a t  the same t ime some notations. We have the follo~ing classes of 
irreducible representations (we omit  the trivial representation). 

I .  C(q ~) : Q = q I  q > -~,  0 =< l" < 1 . The spectrum of H o consists of the 

numbers {v + ~, j = 0 ,  1, 2 . . . .  }. 
I I .  The series D + and D~-: Q =  l ( 1 -  1) I  (l > 0) and the spectrum of H o 

consists of {1 + ]} and {-- l - ~} (~ = 0,  1, 2 . . . .  ) resp. 

(1.9) 

E(O: Q = q I  ( 0 ~ v < l ,  ~ ( 1 - v ) < q ~ l )  Spectrum of H 0 I I I .  

={~  ± j , j = o ,  L 2  . . . .  ). 
We shall see later, tha t  for the Planeherel formula we need classes I and I I  

(and even from the lat ter  only those w i t h / >  -~-). These are going to make only 

up the family F of the Introduction. 
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B.  Real i za t ion  o / t h e  irreducible representations 

First we introduce several subgroups of G, which will be useful in the 
following. 

a. Consider the subgroup S o C G1 of all triangular matrices having 0 in the 
lower left corner, and positive elements in the diagonal; a typical element 
of S O has the form 

(? 
Consider now the complete inverse image S of S o in G. I t  is known (and easily 
verified directly), tha t  S is the direct product of the center Z of G with the 
component of the identity. 

The canonical map from the latter onto S o is an isomorphism; in what 
follows it, too, will be denoted by S 0, Furthermore 0 (el. A.1) is the complete 
inverse image of the subgroup of rotations in G1; every a C G can be written in 
the form so  (s C S,  o GO), and so = s' o' implies s' = sz ,  o' = o z - l ( z  ~ Z) .  The 
map ~0 : S O × O -+ G defined by ~p(s, o) =: so  is a diffeomorphism between the 
corresponding manifolds. 

b. We denote the Caftan subgroup of G1 consisting of all diagonals C So 
by H 0. We use the same letter to denote the corresponding subgroup C So C G, 
and H for its complete inverse image in G. 

c. Finally, we write N for the subgroup C So C G corresponding to elements 
of S O having 1 in the diagonal. 

We denote the left and right regular representation on G by L~ and R~ 
resp. We form the subgroups g~(t) := exp(ljt) (j = 0, l, 2; for lj cf. (1.1)) of G, 

• g / ( a g j ( t ) ) , =  ° and for f ( C ~ we put  ( H i / )  (a) = ~ -d-i , and as in A.1 we introduce 
1 

the operators H+ -~ H I ÷ i H~, H _  = H 1 --  i H~ and Q = ~ ( H  + H _  + H _  H +) - 

- H ~ .  

To obtain realizations of the irreducible unitary representations, listed 
in A.2 as a priori possible ones, we shall specify linear subspaces of C ~°, invariant 
under Ra. Then introducing an invariant metric we form the completion, and 
show, that  the actions of H o, H+, H_ and members of a suitably chosen com- 
plete orthonormal system E C ~ are given by (1.8). In  this fashion it  turns out  
in a natural fashion, tha t  our representations are (proper or improper) sub- 
representations of representations induced by  certain characters of the maximal 
solvable subgroup S. 

Now consider the linear family F C C ~° defined by the conditions a. L , [ - ~  
~- [ (n  E N )  b. Q / =  q[, c. R r [ - ~  e - 2 ' ~ ' ~  (~  -~ g(2~) EZ, cf. A.1); here g and 
are real constants to be specified later. In  view of properties of G considered 
above we can use 2 > 0, -- co </~, ~ < + co as global coordinates on G, and 
accordingly write ] E C~ as an indefinitely differentiable function ](~t,/~, ~). 

a/  
One easily verifies, tha t  a. implies-a-~-~ O, and e. /(~, /~, ~o-k 2z~)~ 

e-~' i~/(2, /~,  ~o). In order to consider b and for later use we observe, that 
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the expression of H 0, H+, H and Q in terms of 2,/z, ~0 is as follows 

a 
H 0 = i "g~- 

(~2! 2_+ H+=--e - i rP \  2 ~2 ~ Oq) " " ") 
(1.1o) ( ~2 ~ ~ + . . . )  

H _ = e ~  • 2 02 + OqJ 

[ ~  a ~ 32 O ] 
Q = - [ 4 - ~ +  4 ~2 + ' ' "  " 

We did not write out terms containing derivation according to/~. To obtain 
(1.10) it evidently suffices to verify these relations on G 1 (that is for functions 
periodic with 4~r in ~0 on G), where it can be done by straightforward com- 
putations (cf. the similar computations in [10] Lemma 3, p. 62). Writing out 

Q l = q ]  ( q #  1 ) f o r / s a t i s f y i n g  a. andc.  wege t / (2 ,  ~ ) ~  2'+/+(~) + 2~.-/_(,~), 

where ~ = -- 1 T [/1 -- 4q ,  ]± (~0 + 2vr) ~ e-2ni~]± ((p).  Let now 2q] be any of 
these two summands; we rewrite it  in an invariant form as follows. First we 
define a function ](o) on 0 through ](%)~-](q~) (we recall that  o~ = g0(~)); 
we have ](o 7) = e-2i '"](°)  • Next we define (non-unitary) characters of S by 
putting Z~(sT¢) = 2q±e -2air1 ( ]=  0, ±1 ,  ± 2  . . . .  ; s ES0); we have again 

e - 9 ~ .  (s) Hence the function f(g) (g C G) corresponding to Z±(s~)  = ~± • 
2 ~  ](~) is of the form Z± (s)/(o), where s ~ S, o E O is any pair satisfying so = g, 
and F is a direct sum of the subspaces F ~  = {Z± (s)/(o)}. Any of these sub- 
spaces is invariant under Ra; for ] ( g ) ~  Z(s)](o) (we assume to have fixed a 
sign, not indicated in what follows) implies (R J ) ( g ) =  Z(S)]l(o), where 
h(o)--)~(s(oa))  ](oS), and s(oa) ~S ,  off EO any pair giving s(oa)of f= oa; 
evidently ]1(o7)--]1(o). e - ~ %  Any function ] EF~  is uniquely determined 
by its restriction to O, which can be any C ~° function satisfying condition c. 
above. We can define a representation Ra of G on them by requiring 

(R j ) ( g ) ~  Z(s) ( .~ j )  (o) (g = so) .  

Now we proceed to give the explicit description of the irreducible representa- 
tions, by  defining an inner product and specifying the constants q and z of the 
above considerations, according to (1.9). In what follows we shall use ~+ • ~_ 
leads to unitarily equivalent representations, as it can be verified easily; we 
shall later need this fact for the family C~ ~) (cf. (1.9) and I below). 

We define the operators H o, H+ and H_ for R~; denoting them by H 0, H0 + 
and H_ resp., we have the following relations (] ~ F+) 

(1.11) (H0/) (g) = Z(s) (J~0/) (o), (H±/)(g)  = Z(S) (H±])  (o) (g = so) .  

I. 6'o~eo16'~% We f i x 0 N ~ < l , q > - ~ - a n d p u t e - -  q - - i - > 0 ;  we 

have ~ = - 1  + 2ia.  Next, we consider the functions ~m~ e - ~  (m = ~ ~ ~, 
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j = 0, 1, 2 . . . .  ). Using relations (1.10) and (1.11) we obtain 

Hog m = mg~ 

-- i [ 1 iff] (1.t2) H+gm = --[m + ~-- gm+i 

[ 1 i~] . H_gm = - - i  t m -  ~ +  g~-I  
Next we form the Hilbert space L~(O) of all functions on O, satisfying 

2n  

1(o 7) : e - ~ l ( ° ) ,  f [/(o~)J~ d~ < + ~ ,  
0 

with an inner product 
2~ 

1 r 
(t, g) = ~ J  i(%) g(%)d~. 

0 

The sequence {g,~} forms a complete orthonormal system in/_~(0). Observing, 

tha t  ( r e + l ) = ~ i a 2 = ( m +  1 ) 2 + a  ~ = m ( m +  1 ) + q ,  putting 

(q + m(m + I))~" 

we can rewrite relations (1.12) in the form 

Hogm = mgm 
1 

(1.13) H+gm = o),~(q + m ( m  + 1)) 2 g~+l 

H-gin = 1 1 
gore-1 ( q +  Tfb(Tf& - -  1 ) ) 2 ! / m _ 1 ,  IO.)ml = 1 

(m:=T ± j , ] =  0, 1,2 . . . .  ) .  

A comparison of (1.13) with (1.8) shows, tha t  extending the representation Ra, 
starting with a dense submanifold of sufficiently regular elements, by continuity 
to L~ (0) we obtain an irreducible unitary representation of type C ('). 

II .  a. Case o / D  +. We put v = l > 0 ,  q = / ( 1 - l ) ,  giving Q = - 2 l .  We 
consider the system of functions g,, = ~m e-i~e,  where 

1 

~'~ - / ' ( m - -  l + 1 ) / ' ( 2 / )  

(m = l + ], j --= 0, 1, 2 . . . .  ), and form a Hilbert space H + by requiring, that  
{g~} should form a complete orthonormal system. The collection of all C °O 
functions, representable as a series in terms of the system {e-~e},  can be 
identified with a dense submanifold of H +. A straightforward computation, 
similar to tha t  of I above, using (1.10) and (1.11) shows, tha t  put t ing e o , ~  i, 
the system {g~} satisfies relations identical with those of (1.8), and H_g~ = O. 
Hence, as above, Ra again extends to an irreducible unitary representation, 
now of type D + (cf. (1.9)). 

II .  b. Case o/D[- .  Now we put  T = - 1 ,  (1 > 0), q = / ( 1  - / ) ;  we have again 
-- - 21. Proceeding as above, we obtain our representation forming a Hflbert 
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space H E by aid of the system gm= 7m e-imp, where 
1 

[ r(¢ + 1 
7m = [ - r ( t m r -  1 + 1) r(20-] 

(m = - l - j, j = 0, 1, 2 , . . . ) .  I n  order to obtain relations (1.8), we have to put  
¢o m = - i .  

I I I .  Case o/ E (~). (As stated at  the end of A.2, this family will not be 
1 

needed for the Plancherel formula). We fix 0 < ~ < 1, ~(1 - T) < q < ~-, 

which gives e = - 1 + 2a, where a -- ] / 1 _  q > 0. Now the representation, 

/ - -  

[ 

proceeding as in I I .  a above, can be obtained by constructing a Hilbert space 
H~  ) by aid of the system g,~ = ~me -im¢, where 

1 

1 1 __  a )  2- 
! 

1 1 a )  

(m = "~ + ~, ~ = 0, 1, 2 . . . .  ). We use again o)m~ i. 
C. I n  what  follows, we prove for the following statement,  which will be 

essential when setting up the Planeherel formulas. 
Suppose [ (a) (a E G) is C ~ and has a compact support, and let T (a) be an 

irreducible representation. Then the operator T I = f l (a) T (a) d ~ (a) is ol trace 
g 

class. (dt~(a) is the element of the Haar  measure on G). 
This is known to be valid for any semi-simple group ; but in the special case 

of G we are concerned with the proof is very simple. Tr (TI) as linear func- 
tional in I is a distribution generated by a locally integrable function, called the 
character of our representation. We shall obtain its exact form, for the repre- 
sentations of the Plancherel formula, in I I I .A.  

We recall, tha t  an operator A acting on a Hflbert  space ~) is of the trace 
class, if it can be represented as the product of two Hilbert-Schmidt operators. 

Then, ff {e~} is a complete orthonormal system in ~,  the series k (A e~, e~) 
i = l  

is absolutely convergent, and its sum, denoted by  Tr(A), is the same for any  
basis. 

Now we observe, tha t  

(1.14) f /(a) d#(a)  = f /(so) dgt(s)  dg(o)  
(~ 8 , x O  

where (using our usual parametrization of O) dla(o ) = dcp, and dgt(s)  is the 
appropriately normalized left invariant  Haar  measure on G. Indeed, by virtue 
of the discussion of B we certainly have d/x(a) = ](s, o) d#t(s)  dlz(o), where 
/(s, o) is continuous on So × O; using the fact, t ha t  d Ft (a) is invariant  under 
both left and right translations, the result follows. 

I f  / is C ~ and of a compact support on G, then ](so) is G ~ on S o × 0 
vanishing outside a set C × I ,  where C and I are compact subsets of So and 0 
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resp. Using (1.14) we get 

Tf  = f T ( s )  [(8%) T(%) dq) din(s ) ;  

since T(%) = . ~  ei~P,~,  where m runs over the spectrum of H 0 (ef. B), the 
(m) 

integral according to q~ can be written as ~_,~' F~  (s) Pm with 
(m) 

o~ 

Fro(s) = f / (s%)e-~m~dq~,  

the series conver~ng strongly. Observe, incidentally, tha t  for a fixed integer 

B(') ~ ( s t ) ,  r > 0  and m : ~ 0  we have [F~n(S)I g ~ ,  with B( ~ ) = K s u p  ~ f 

K depending on the support  of ] only. Hence T I = ~ EruPt, where F,a 

we have for any fixed integer r > 0 IIF~II ~ imp;- , = fF,~(s)  T(s) d/~(s); 
So 

~(r) = i~ ~ (C) B(r). 
Putt ing finally 

A = 2_ ~ (1 + ]mJ)FmPm 
m 

1 
B = Z  ~ + l m  I P~ 

the series on the right hand sides converge strongly, and represent operators of 
class Hilbert-Schmidt (observe tha t  dim P~ = 1). Moreover T I = A B, proving 
our statement.  

I f  the functions {/,} are C ¢~, have the same support  in G, and if for each 
integer r > 0, their r th  derivatives in ~ tend to 0 uniformly, by  virtue of the 
above estimates for IIF~ll we can conclude, tha t  Tr(T/ , )  -~ 0. 

Part  II .  The Planeherel formula and special functions 

A. Matrix coe/ficient8 
For  our first proof of the Plancherel formula of G we need explicit description 

of certain of the matr ix  coefficients of the irreducible representations taking 
par t  in the formula. While deriving these we shall obtain a group theoretic 
interpretation of integral representations of some special functions. 

1. In  what  follows we put  g, = exp (l~u) C G and as before % = exp (1 o ~) C G 
(cf. (11), - co < u, ~v < + co). For  sake of brevi ty  we use the same notation for 
the subgroups corresponding to l 0 and l~ in G o and G I (ef. I.A.1), the context  
giving the correct interpretation. Also, we put  U = {g~} and O = {%}, C G. 

One immediately verifies, tha t  the restriction of the adjoint representation 
of G to U induces an isomorphism with its image in G 0, which is a closed sub- 
group. On the other hand, it is known ([10] Lemma 2, p. 60), tha t  every element 
a in G o can be written as o~,g~o~, (u ~ 0, 0 g T1, ~0~ < 2=), and if a ~ 0 this 
representation is unique. From this one shows at  once, tha t  any a E G can be 
written in the form o~,g,o~, (-- ~ < qJx < c~, u ~_ 0, 0 g ~v~ < 2~) and for 
a ~ O this representation is again unique. More exactly, putt ing R+ for the 
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open positive half line, the map  from R I ×  R+ × T 1 onto G -  O, carrying 
(~1, u, ~2) into o~,g~o~, is a diffeomorphism between these two manifolds. 
The variables ~1, u, ~2 will sometimes be referred to as Eulerian coordinates. 

Assume now, tha t  /(a) is continuous and of a compact support  on G. Let 
d r  (a) be the element of a fixed Haar  measure on G o and Z the center of G. Then, 
as it  is known, if d/~(a) is the element of an appropriately normalized Haar  
measure on G, we have the following relation 

f /(a) d.(a)= f ( z' /(az))d,(a). 
G Go \ z E Z  

Since for d~(a), when expressed in Eulerian coordinates, we can choose 
1 

s h u d y ~ i d u d g  ~ ([10] Lemma 2, Coro]taire p. 60), the above relation (2~) ~ 
shows, tha t  the same expression, with an appropriate modification of the range 
of ql, defines a Haa r  measure an G too (for all this cf. also III .D.3).  

2. Next  we proceed to find certain expressions in Eulerian coordinates for 
the matrix elements, standing in the diagonal, when referred to the canonical 
basis {gin} determined in I.B., of the representations C(q ~) and D~ (cf. (1.9)). 
For this, it clearly suffices to consider their restrictions to U. 

I. Case o/ C(q ~). Let T(a) be an irreducible representation of this type 
realized in L~ (cf. I.B.); in what  follows we put  h~)(u)= (T(g,)gm, g~) (m 

1 
= ~ ± ~ ,  ? ' = 0 , 1 , 2  . . . .  ; 0 G ~ < I , ~ : =  q ~ - > 0 ) .  Let  us write o~g u 

= s%g--~, with s C So. Identifying again S0C G with its image in G1, we write 
2 (o¢g~,) for the element, standing in the lower right corner, of the corresponding 
matrix. Then if ](o)CL~ putt ing % =  %g-~, we have (T(g~,)])(%)~ 
==. []t(oq, g,,)]-l+~"~l(ov, ). 

For our purposes it suffices to consider 0 : ~0 < 2 :z. Since the restriction 
of the canonical homomorphism of G onto G 1 to %g,, is injective, to determine 

and ~ as functions of q0 and u we can compute in Gp For reasons of continuity 
we are going to have 0 __G ~ < 4~z. 

Consider now the element 

of 01. I f  a = so~ (8 E So), a straightforward computation ([10] Lemma 1, p. 58) 

shows, tha t  ,~ = y~ + d 2, 2e -~ d + i y. Put t ing a = gaol, this gives ~2 
. ~  .ep . ~  

= chu + s i n ~ s h u  and Xe ~ X =  c h 2 e S ~ +  i s h 2  e - * ~ .  

Supposing/(%) ~- e - ~  g~, we obtain 

( "~ . ~ ) - ~  - - - + i a + m  , ~ - ~ -  
(T(g~,)])(%)~_ (chu + s in~shu)  2 ch__U e ~  + ~ s h o e  u 

\ 2 

the sense, in which the powers have to be taken, being evident. Hence, putt ing 
/~ = ehu, 

2 g  1 

h~)(n) = [ l + [ ~ l f ( c h u + s i n ~ f s h u ) - ¥ + n + ~ o ( 1  + .~ tanh ~ e_ ~ ) u  - ~ d ~ 0  . 
2 ] 2 ~ d  

0 
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:rg 
The substitution ~p -~ ~ + ~ gives 

h~)(n) = 

(2"a)(1 + ~  F 1 ~ 1 ~ ~-2~  
= ~ 1  -~-f (chu+cos~shu) 2 +m+~"2Re(l+itanh-£e-'~) d~. 

0 

We introduce a new variable v in (2.1) by putting e~== chu + cos~shu .  

dq~ e 2 - -  
A s s u m e  first u > 0, then we get dv -~ --  Z - '  withZ  = V 2 ( c h u -  chv) ( - u  -< 

-< v <- u) and 
u 

(2.2) r [ v \ 2 ] = J Z 2Re 2ch~2- + i Z  d v .  
0 

We evidently have h(~)(u)~- h~)( - u),  and have h~)(0) = 1. Observe, tha t  
(2.2) is invariant under the substitution m -> - m. 

In order to express h~ ) (u) through special functions, we consider the the 
generator function Gin(#, t) of the Jacobi polynomials {p[0,2m] (#)} (cf. [9] 
(4.4) p. 69), defined by 

22m 

G ~ ( # , t ) =  R ( I + t + R ) ' ~  ( # = c h u )  

where R = ~1 -- 2 k~t + t ~. We consider G~ (/~, t) as a univalent analytic function 
on the complex plane cut along [e -",  e u] (u > 0), by defining R = -- (Vt ~ e~)) x 
× ( tVt--  e-u) .  Here ~/z is the branch, positive for z > 0, and on the plane cut 
along [-- co, 0]. Taking for logz the branch which is real for z > 0 and univalent 
in the same domain, for any complex z @ 0 and a, z a will stand for exp(a logz). 

Bearing this in mind, one sees at  once, tha t  the factor of ( ~ - ~ ) m  in (2.2) can 

be written as 
1 i "  d t  1 

(2.3) 2~i  J G m ( l ~ ' t ) ~  ' z = - -  y +  i e y - - m  
C 

where C is the segment [e-u, eU] run over twice clockwise. Observe, incidentally, 
that  (2.3), as function of z for a fixed u > 0, is integral. 

With our definition of R, 1 + t + R maps the cut plane onto a bounded 
domain, the closure of which does not contain 0. Hence for Rez > -  1, by 
deforming the path of integration, (2.3) can be shown to be the same as 

f (2.4) G~(/~, t) t,+~ 
C' 

where C' is a curve, oriented counterclockwise, surrounding the interval 
[--co, 0] sufficiently closely. Hence, following the standard notation for 
Jacobi polynomials, we denote the function, defined by (2.3) for any z, with 
p~o. ~m](ju)" Hence finally 

(2.~) h~)(~) = I - T - ]  "-_1+~_~(~)  (~=  eh~) .  
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_t  [ 1 + ~ \ m  . 
The factors el [ ~ )  m (2.1) and (2.2) give the analogues of the integral 

representations of Laplace and Dirichlet-Mehler resp. of the Legendre poly- 

nomials for the factor of ( ~ - ) m  in (2.5). 

Though not needed in the sequel, we remark, tha t  starting with (2.4), 
a standard computation gives the following expression in terms of hyper- 
geometric functions 

(2.6) h~)(u) = (1 + ~ ) m  (F (z, 2m + z  + 1,1; ~ - - ~ ) ,  

1 
with z = - ~ + ia  -- m. (For this cf. below 3, too.) 

o] D# (l > 1 ) .  Here the procedure is very similar. Putting II.  Case 

h~)(u)  = ( T ( ~ O g m ,  gin), ~ = ± (t + i) (J = O, 1, 2 . . . .  ) ,  

where we have + or - according to whether T (a) is of type D + or Di-, we obtain 
successively (u > 0) 

~t  

( 1 + , i r a  1 f ( e h ~ + c o s ~ s h u y - ~ 2 R e ( l + "  " ~ , -2m (2.7) h~)(u)= \ - - ~  -] rann ~- e- ~ ~) d 
t ]  \ 

0 

and 

t ' l+,~m.2.., f e -('--:-)" [2Re ( 2 c h a + i Z )  -2m]dv. (2.8) h 2 / z ~ d  z ~-  
- - U  

We have again h~g)(u)-=- h~,)( - u), h~(0) = 1, and, as (2.8) shows, h(~m(U) 
h~ ) (u). Hence in what follows we may assume m > 0. 
To obtain representation in terms of special functions, we observe first, 

tha t  the factor of (l--2--~-)"in (2.8)can be written a s  

2,. f t+m-1 2zti /t(1 + t--R) ~" dt 
C 

where C is as in (2.3). But since 

(1 + /~)~  (1 + t + R) 2~ Gto.-~(g, t) 
~ ( 1  + t -  ~)~'~ - -  2 ~ R t  ~'~ - -  t ~'~ 

this is the same as 

-2m 1 OtO,-2~l(/,t, t) t~_~+ ~ 
2~ti 

G' 

Taking into account, that  m - 1 is an integer ~ 0, one immediately sees, that  C 
can be replaced by a closed curve C' surrounding the point 0 sufficiently 
closely and oriented counter-clockwise. Hence finally ( iml-  1 = integer ~ 0) 

(. ,  ( , ) - , o ,  
~lml-I ~.j (~t = chu).  
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Here the factor of ( l ~ g ) - t m l  is a Jaeobi polynomial. One can obtain 

expressions in terms of hy]3ergeometric functions by  computing the matr ix 
coefficients as eigenfunetions of the Laplacian of G, in Euler coordinates 
formally identical with that  of G o (of. [1] § 10, p. 624). Since not needed in the 
sequel, we omit the details. 

B.  The main  Lemma 

In order to arrive at the Plancherel formula first we prove a completeness 
relation involving the matrix coefficients, determined in A. 

Lemma.  Assume,  tha t / (u )  is C ~ on [0, + co] and vanishes outside a compact 
set. For a fixed m > 0 put  

o o  

l(a, ra) = f / ( u )  h~)(u) shu du  (a > O) 
o 

(2.10) and 
o o  

]~(l) / !(u) (0 = h Z +j(u) shu du  
0 

(j = O, 1, 2 . . . .  ). Then we have 
c ~  

/(0) = f a Re [tanhJt(a + i ra)] / (a ,  m) da + 
o (2.11) 

1 

1 
(For 0 < m ~ ~ the second summand has to be replaced by 0.) 

We shall give the proof in several steps. 
1. Keeping u > 0 fixed, and assuming first m - 1 < Rez < m, we denote by 

I ( I ' )  the integral of ~z /G,~( t ,  #) t T M  along the real line form - co to + ~ ,  

taking the upper (lower resp.) halves of the cuts along [ -  ~ ,  0] and [e -u, e~], 
introduced in A.2. These integrals certainly exist, since the integrand is 
O(r m-Rez-1)  for Itl = r, r large. For the same reason, since the integrand is 
regular in the upper (lower) half-plane, we have I = I ' =  O. We put  I s (I~; 
j = 1, 2, 3, 4) for the parts of 1(1') corresponding to [ -  co, 0], [0, e-U], [e -" ,  e ~] 
and [e ~, + co] resp., and consider the expressions I t + I~ separately. 

a. Taking into account the definition of the function p[0,2~] given above, 
we have 

e ~n"~-~) + 1 p[O,2ra]t,,~ 
11 + I ~  = e , ~ , . . _ . , ~ _  1 - - z - m  , t ~ ,  • 

We observe, that  this expression possesses an analytic continuation, the only 
singularities of which are the points z = m :L ], ~ = O, 1, 2 . . . . .  

b. We have 

, 2 " . _ f  1 at 
I 2 = 1 2 = ~ i  J R ( 1 - ~ t ~ - R )  s "  t " - ' + x  " 

0 
Math. Ann. 156 8 
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Put t ing t = e -~, and V =  ~/~chv - chu) (u < v < + oo), we get 
c o  

U 

This is regular in the half-plane Rez < m. 
c. We put  -- iR+ (iR+) for the restriction of R to the upper (lower resp.) half 

of the cut along [e-", O] (R+ => 0). Then 
eu 

13 + 13 = - - ~  Ira((1 + t -- iR+) -~'n) dt 

This part ,  as function of z is integral, and for later use we observe, tha t  for 
1 

z = -- -ff + ia  i t  is purely imaginary. Indeed, the substitution t = e * ( -  u < 

< v < u) gives 
w 

= I m  2 e h 2 +  ~Z - - - z - - d v  
0 

(Z = V ~ e h u  - -  chv)) .  
d. Here 14 = I~ and 

oo 

, 2 ~ f 1 d t  
14 + 14 = - - ~ . ~ ,  R(1 + t + R) TM t . . . .  +~ 

e u  

this being analytic for Re z > m - 1. 
Summing up, writing F (z, #) = - (I  4 + I~) we have the following relation 

+co 

(2.12) u 
+ F ( z , g ) -  ( I  s + l ~ )  ( / ~ = c h u ) .  

Since in this relation, derived under the assumption m - 1 < Rez < m, the 
left hand side, and the first and third summands of the right-hand side are 
regular analytic, exeep~ for simple poles, for Rez < m, F(z ,  #) possesses an 
analytic continuation; it  is going to be computed explieitely below in 2.e. 

2. Assume now, t h a t / ( u ) ~ O f o r u  > M > 0, and put  g(u )=  ( - ~ - ~ ) ' n / ( u )  

(g(u) E C~°); we have g(0) = ](0). Now we show, tha t  multiplying both sides of 
1 

(2.12) first by  g(u)shu  and integrating from 0 to M, then putt ing z = - y + i a, 

multiplying by  a, integrating from -- S to S (S > 0) according to q, and taking 
finally the real par t  of the lines for S -~ + 0% we obtain (2.11). In  what  follows 
we prove this by  computing, proceeding from the left to the right, the contribu- 
tion of the different terms of (2.12). 
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a. Taking the real par~ of the expression, obtained by multiplying with 
1 

g(u)shu, integrating and putting z = -- -~ + ia, we get on the left hand side 
oo 

(2.13) ~ f sinav H (v) dv 
0 

where we put 

udu 
(u) sh V~ ~m . H ( v ) =  2 TM V(: o h 2  + 

] 
0 

To justify the interchange of the order of integration according to u and v resp., 
] t 

we observe, that  for large v, H (v )=  0 ( e - ( "  + ~)v);for small v > 0 however 

f = ; ~ 2 ~  v -  1) 
s h u ~  

H(v) < ~ V-2(chv__chu) 
0 

with ~ not depending on v, proving H(v) ELI( O, + ~) ,  and this is true even 
if we replace g by lgl. 

Next we show the same for 11' (v). To do this, it evidently suffices to con- 
sider v < M. We have for v > u > 0 

with 11(u, v) E C ~. Hence 
~ V 

0 0 

showing, that  it suffices to discuss 

0 

Partial integration gives 

G(v) = V ) - ( ~  -2. 1) [(0) + f g' (u) V d u .  
0 

Writing V = V va - - z~-  (1 + [ (u, v)) (~ (u, v) E c ®) and putting u = tv (0 < t < 1), 
the second summand becomes 

1 

v" f 9'(tv)t V-i-~(1 + l(tv, v ) )d t ,  
o 

which, along with what preeeeds, clearly proves H' (v) E 1,1(0, + oo). Observe, 
in particular, that  our considerations show, that  for small v > 0 

(2.14) IH'(v) -- l(0)[ < ~v 

where u does not depend on v. 
8* 
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Through partial  integrat ion and multiplication b y  a, (2.13) gives 

oo 

1 
f cosav  H ' ( v )  d v .  

7~ 

o 

Hence finally, taking into account  (2.14) the contr ibut ion of the left hand  side 
in (2.12) will be 

l im 1 f cosav  H '  (v) d da  = lim 2 s i n  S v S ~ + ~  :* S o + ~ - ~  v- H ' ( v )  d v =  /(O). 
- -3  0 

1 
b. For  z = - -2- + i a  (a ~= 0) we have 

e ~ n t ( * - ~  + 1 
1 - -  e ~ " z - ' )  -- t anh  ~ ( a  + i m )  . 

Hence, by  vir tue of (2.5) and  h(~)(u)=-- h(-*)(u)  (cf. 2.2), ths  first term on the  
r ight hand  side in (2.12) yields 

s 

lim 2 f a Re [ t a n h ~ ( a  + im)]  [(a, m) d a .  
8--~ + o~ 0 

We shall prove the absolute convergence in C.4, below. 
1 

c. First  we assume m ~ ~ - .  
1 

Put t ing  now R for (1 - 2tl~ + t2) ~ > 0 (t > e u, or t < e-U), we have for 
m - -  1 < Re(z) (cf. I . d .  above) 

2 *m f 1 dt 
(2.15) F ( z ,  u)  = --~T J B(1 + t - - R )  ~'~ "t ~-~'+~ " 

e u  

We have 

2 ''~ [ l + t ~ - 2 m ( l + t + R )  '~  
R(1 + t ~  R) ~ - -  2~=t*"R 

F r o m  now on assume t h a t  0 < u < M.  I n  order to  obtain an analyt ic  continua- 
t ion  of (2.15) left of the  line Re (z) = m - 1, observe first, t h a t  for any  integer 
N > 0 w e  h a v e  in the  domain 0 < x < e -u, 0 < u < M :  

lg 

a_m(~, x) = 2; P~ 
j = o  

where E (~u, x) is C °° and satisfies 

(2.16) IE(a, x)J < 

[O,--2ml  
(,.) xJ + x~+~E(~, x) 

C 
VI - - 2 ~ x  + x~ 

o a ooos,an, dopoo g oo and • We put N - - I r a -  
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the previous identity and (2.9), we get 

- -  h~ (u) z _ m + j + l  + F(z,~t) = ~i )~ <'~-J) 

oo 

+ E [~,T t ~ -~+8"  
eu 

whence, multiplying both sides with g(u) shu and integrating according to u, 
we obtain 

oo 

_F(z) = f F(z, ~) g(u) shu du  = lZl(z ) + F~(z) 
0 

where 
oo 

F l ( z ) =  ~--T ¢ z - - m + i + l  h -i)(u)e-u(z-r~+¢+l)/(u)shudu 
0 

and 

= ( / ( + )  ) ++) 1 f dt shudu(h(u ) --l(u) -r~. F~(z) = -~T l~(u) E ,u, t . . . .  ~'+~ 
0 

Up to now we have assumed m -  I < Rez. On the other hand, Rx(z ) is 
clearly regular, up to a finite number  of simple poles, on the whole complex 
plane. What  concerns F~(z) we show, tha t  it is regular in a half plane Rez > ~, 

1 
<- -=2 - .  To do this, observe, tha t  by  virtue of our choice of iV we have 

1 
Re z - m + iV + 2 > e > 0, provided Re z > - - ~ -  e; here e depends on m 

only. Assuming z so chosen, interchanging the order of the two integration in 
the above expression of F~ (z), we obtain: 

oo 

~'~(z) = --~il f e-(=-~+~+~)~H(v) dv 
0 

where 

(2.17) H(v) = f E(l~, e -~) h(u) shu  d u .  
0 

In  order to justify this, we write H 1 (v) for the function obtained by  replacing 
the integrand in the expression of H (v) by  its absolute value. I t  clearly suffices 
to show the convergence of 

oo 

f e-'"Hl(v ) dv 
0 

which, however, is evident since, by  virtue of (2.16), Hl(v ) is bounded. This 
1 

implies the analytici ty of F~(z) for Rez > ~ e too, as claimed above. - -  

Summing up all, F(z) = .Fl(z ) + F~(z) is analytic, except for a finite number  
of poles, on the same half-plane. 
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Now we form 

s 

(- + f --S /" 

1 
where / '  is the segment z = - ~ - +  ia ( - S  <= ~ < S). Keeping T > m - 1 

fixed, we w r i t e / ' s ,  F _ s  and Is  for the straight segments - - - ~ +  iS, T ± i S  

and [T  - iS,  T + iS] resp. Using Cauehy's theorem we see, tha t  (2.18) equals 

the sum of the integrals of (z + ~-)F(z) along these segments (taken with the 

appropriate orientation) and 2 ~ i  times the sum of the residues of poles inside 
the rectangle defined by them. By virtue of our previous discussion, however, 
this is twice the second summand on the right hand side of (2.11) (ef. the 
expression of F 1 (z) above). Next  we show, tha t  the contribution of the integrals 
along/~4- s to the real par t  of (2.18) for S -+ + o0 is 0. For this it suffices to 
prove, tha t  putt ing 

/'4-8 

we have lira l/± s[ = O,which, however, can be deduced from sup [z[ ]Fj. (z)[--> 0 
8--~+ 00 zE i,4- 8 

for S -+ + oo (j = 1, 2). For  j = 1 this is a simple consequence of the Riemann- 
Lebesgue Lemma.  To apply the same in the case ~ = 2, we observe first, tha t  
by  virtue of (2.16), a reasoning used in a. above shows, tha t  in (2.17)lim0H (v) = 0. 

Hence partial  integration gives 
c o  

1 1 f ~ z ( z )  = ~ i  z - - r e + N + 2  e-(Z-~+2c+2)*H'(v)dv 
o 

and it suffices to prove, tha t  the integral tends to 0, which is certainly true, if 
H '  (v) is bounded. For large v this is evident from the definition of E(/~, x) 
(it is bounded along with its derivative if 0 < x < C < e - M ) .  For  0 < V ~ M ,  

however, it easily follows through a discussion analogous to tha t  of a. 
Finally, we show, tha t  the contribution of I s  for S -~ + co is - j (0). Since 

the necessary reasonings are almost identical with those of a, we confine 
ourselves to a few indications. First  of all, assuming z = T + ia (T > m -- 1) 
we have 

CO 

F(z) l f e - ' ~ H ( v )  dv 
= ~ i J  

0 
where now 

o 
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Observe, tha t  for large v, H(v) = O ( e ( m - l - T )  v). Hence 

T + -  2 - 
-- -- e o s a v H ( v ) d v d a +  a s inav H(v) dv dot. 

- -8  0 - -8  \ 0  

If  S-~ + o% the first expression gives zero, since lira H(v) = O. Concerning 
V--~-P 0 

the second, one shows as in a, tha t  its limes is [(0). To get the final result, one 
has to reverse the orientation of I s. 

1 
I f  0 < m ~ -~, we are going to have no residues. 

1 
d. By  virtue of a remark made in 1.c. above, for z = -- ~ + i a  the last 

summand in (2.12) is purely imaginary, hence its contribution is 0. 
Finally, putt ing - - / (0)  on the left hand side and dividing by  2 we obtain 

2.1I. 
C. Now we are ready to prove the Plancherel formula as announced in the 

Introduction. We fix a real C °O function /(a) having a compact  support  on G 1. 
By I.C. we know, tha t  if T (a) is an irreducible uni tary representation of G, the 
operator T!  = f T(a)/(a) d/~ (a) is of trace class. I t s  trace will be denoted by  

q 

T )  ) ([) and Tt ([), if T (a) is of type C )  ) 0 < "r < 1, q > ~- ,  ~ = -~ > 0 or 

a direct sum of a representation of type D + with a representation of type  

D~- " (l > 1 ) r e s p .  Then, we recall, the formula to be proved is as renews 

c~ 1 co 

(21o) f f '*) f (,-½)T,(t)a, 
o o  ½ 

(e is the unit element of the group G). 
1. ~irst  we observe, tha t  it suffices to prove (2.19) for functions E C~ ° 

s a t i s fy ing / (oa ) -~ / ( ao )  (a E G, o E 0);  in what follows we denote this family 
2 ~  

1 
f I(o~ao_~) dcf; 1 E U¢° by F(O). In  order to see this we put  (P[) (a) = ~ 

0 

implies the same for P], and ](e)= (P])(e). Furthermore,  if T ( a ) i s  any 
irreducible representation, we have T r ( T e t  ) = Tr  (TI). To prove this, we write 
[¢(a) = [(%oo_~); then TI, = T(o_,)  T IT (%) ,  implying T r (T t ,  ) = Tr(Tf) .  
From this, using the continuity of the dependence of Tr  (Ts) on ], i t  follows a t  
once, tha t  

f . Tr (T~) = ~ Tr (TI~) d ~o = 2~ T u d --  Tr (Tp~) 
0 
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Summing up all, both sides of (2.19) remain invariant if we replace I by P/ ,  
which proves our assertion. 

Suppose, that  1 EF(O); using the fact, that  the restriction of the adjoint 
representation of G to U = {g,) is an isomorphism with its image (cf. A.1), 
one easily shows, that  the function 1 (u, qJ) ~ ] (guo+) is C~ in (u, q0), and we have 
l ( O q ~ , g = O ~ , )  ~ 1 (  u ,  ~91 + ~02). 

2. Let T(a) be a unitary representation and k a vector such that  (%)k 
= e - ~ k .  We are going to compute (Tlk, k)= f (T(a)k ,k) l (a)dl~(a ) in 

G 
I 

Eulerian coordinates, using ~ shu d~v 1 du dcfa for the element dl~(a ) of 

the Haar measure (cf. A.1). We have, putting h(u) = (T(g,)k, k): 

co oo~xt 
1 

(T,k, k ) -  f f f h(u)e-'m(¢l+~')/(ulq~l ÷ q  )shudq)ldUd = 
- - c o o  0 

whence, if 
co 

1 
f 1( u' cf)e-im~d~f F(u, m) = 

- - 0 0  

we obtain 

(2.20) 

and 

co 

(Trk, k) = f h(u) F(u, m) shu du . 
0 

3. For 1, g E C~, (1 × g)(a) will denote the convolution of these two 
functions, defined by f /(ab -1) 9(b) d#(b). Observe, that  1, g E F(O) implies 

¢ 

1 × g EP(O). We wr i te /~(a)  ~ 1(a-1); again I E F(O) implies the same for 

l-(a). 
In what follows we prove (2.19) assuming 1 of the form g~ × g (g EF(O)); 

it  is known and easily verified, that  the matrix coefficients of such a function 
are positive. The general case will be deduced from this special one. 

Observe first, that,  with the notations of 2 above, for any fixed m, F(u, m) 
vanishes outside a fixed interval, independent of m, in u. We put (cf. (2.10)) 

oo 

l(q, m) = f P(u, m) h~)(u) shu du , 
0 

co 

t}+)(e) = flY(u, 1 + ]) ht~)+ flu) shu du 
0 

co 

t~+(e)  = f r ( ~ ,  - (l + j)) hiz)+j(~) s h ~  d ~  
0 

( l >  0 , ] =  0, 1 , 2 , . . . , - - ~  < m <  +o~). 

By virtue of the computations of 2, these are just integrals of products 
of l(a) with matrix coefficients of irreducible representations of type 

( ) C(g ") T = m -- [m], q = ~- + o ~ , D~ + and D F resp. (We recall, tha t  h~ )(u) ----- 



The Plancherel  Fo rmula  119 

h(~,~(u), cf. (2.8).) 

(2.21) and 

In particular, we have 

f ( ' )  (l) = ~ l(q, ~ + J) 

Tall) = ~ (l~+)(1) + fj-)(l)) • 
j=o 

For any real m, we replace in (2.11) m by lml, and l(u) by F(u ,  m). Taking into 
account (2.20), this gives 

o O  

F(O, m) = f a R e [ t a n h , ( a  + im)] l(a, m) da + 
o 

(2.22) 

z (t l-J- 
o~-i<tml-½ 

In the last expression we have to take + or - ,  according to whether m > 0 
or m < 0. Since 

l ( e )  = I(O, o) = fF(O, m) dm 
- - o 0  

using (2.21) we obtain from (2.22) 

i[o  (o 7: )]  = aRe[ tanh~(a+i~)]  (a ,*+j )  da d ,  
o 1 

1 oa 

= f f a Re [tanhzr(a + iv)] T(J)(I) da dv 
o o 

and 
o 

f (o=<, ~ (lml-'-l-)l~-'(l~l-')) am + 
- ~ < l i n t -  ½ 

o o  

= f (,- ½)(,<(I~+'(,)+ 15-'(0))a, 
½ 

o o  

= f(,-})T,maz. 
½ 

Observe, that ,  by virtue of our assumption on l, (cf. the remark at the begin 
of 3. above) each integrand is positive, therefore all opera, ions (interchange of 
order of summation and integration etc.) used when deriving these relations, 
are pemissible. 
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Hence, summing up all, integrating both sides of (2.22) according to m 
between - c¢ and + ~ we obtain (2.19). 

4. Now we prove (2.19) for any / E C~. By virtue of the linearity of both 

sides of (2.19) in], and the identity I × g~ = 2 [(] + g) X ( / +  g)~ + (/--  g) x 

× (/--  g)-] it is certainly valid for any function of the form ] x g~ (/, g E F (0)). 
Replace now g by an approximate identity {g~}, such that  9, C F(O), g~ ~-- g~. 
Then the sequence {/~} = { /×  g~} tends uniformly, along with all of its deriv- 
atives, t o / ,  and there exists a fixed compact set of G containing the carrier of 
each f~. Then by I.C. we know, that  if {T (a)} is any irreducible representation, 
we have hm Tr(TI, ) = Tr (Tf). Hence it suffices to show, that  when replacing 

n - ~ o o  

/ by {/~} in (2.19), the limit transition under the integral signs, on the right 
hand side, is permissible. We shall deal with these two terms separately. 

a. We observe, that,  as the reasonings of 3 show, the first summand on the 
right hand side of (2.19) can be written as 

(2.23) ~ f a Re [tanh~r (a + ira)]/(a, m) dm da 
0 - - c o  

(cf. 2.20). Now we prove the following statement. We define G(2, #, q~) ~ / ( s o )  
(s E So, o E O; cf. I.B.) and put 

oo lf(  H (t, q~) = -2- O e - ~  , ~t, qD) d /~ 
- - o o  

then 

(2.24) 
c o  

/(a,m) = c f H(t, q~)e-~("t+m~)dtdq~ 
- - o o  c o  

where e depends on the normalization el the Haar measure only. 
Before giving the simple proof, observe, that  H (t, ~0) is obviously C ~° and 

has a compact support. Denoting by H .  (t, ~0) the functions corresponding to 
the members of the sequence {].} considered above, their support is contained 
in a fixed compact set of the (t, ~) space, and they converge uniformly, along 
with their derivatives, to H (t, ~). From this elementary considerations show 
the permissibility of the limit transition in (2.23). 

Observe, too, that  (2.24) proves the absolute convergence of the integral in 

prove (2.24) assume, that  {T(a)} is of type C(q ~) (~ = m -  [m], 
& 

B.2.b. a b o v e .  To 

) q= ~ + ~ , and g----- e-~'n*~ L~. Then, using the notations of A.2., we have 

(Tlg) (o) = f / ( a )  [,~(oa)]-1+~Otg(off) d#(a) 
Ct 

=- f [ (o - ia )  [2(a)]-l+2~tg(oo-la) d#(a) 
q 

= f / ( o - l s o ' ) ~ - l + 2 o t g ( o  ') d#~(8) d # ( o )  
S, xO 

(using dm(a ) = dttg(s)dlz(a), cf. I.C). I t  is easy to see, that  d,~d# is the 
element of the left invariant measure on S O (el. also III .  A. 1. ~); hence putting 
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d~ 
= -;~-d]~d# dq.  Using the function G(~,/~, ~) dg(o) = ~ - ,  we have dl~(a ) 

introduced above, we have 

Y [Z ] /(a, m) = (T1g, 9) = c G(X, #, q~) d #  ~-l+~"ie-tm~ dX dq~ , 
- - o o 0  

t 

whence, putting ~ = e - y ,  we obtain (2.24). 
b. In  III .  A. 2. b. we shall show the existence of a locally integrable function 

Ct(a) on G such that  T t ( , ) =  f ] (a )Ct (a )d~ t (a ) ( l>  1 ) .  From its exact form 
\ 

(cf. 3.16 and 3.17) we conclude, that  I Tt(])I < Ill M(/) ,  where the constant M(f)  
depends on the carrier and upper bound of the function / E C~ only. On the 
other hand, one shows through standard reasonings that  denoting the left 
invariant infinitesimal transfol~nation associated with lj by Lj (] = 0, 1, 2; 
ef. (1.1) and [2 ] ch. IV, § II.), and putting Q 2 2 = L 0 - L 1 - L 2, for any irreducible 
representation {T (a)} and ] E C~ we have TQ I = q T f, where q is the constant 
belonging to {T(a)} (cf. (1.9)). Assuming this, we fix an integer k > 2; for any 
1 > 0 we have Tt(Q~]) = [/(1 - / ) ]~T~( / ) .  Hence if l > 1, say, we get 

ITt([)l < [l(l ~l] 1)]~ M (Qkl) • 

But for the sequence {/,} the constants IM(Qk/,)I are uniformly bounded, 
and this clearly suffices to justify the limit transition under the integral in 
the second term of (2.19). 

I t  remains to prove the relation TQf = q T  1 quoted above. We put, as in 
X.A., T(expl¢t) = exp(-- iH¢t)  (] = 0, 1, 2), and observe, tha t  it clearly 
suffices to show that,  if h is any vector in the representation space, we have 
i H j T l h  = TLjlh, since H~ + H~--  H02 = qI.  But, putting 9j(t) = expl~t 
again, 

lira T(gdt ) ) - - I  TI h = l~o f /(a) T(g,(t))--z  T(a)h  d/x(a) 
t---~ O t t 

G 

f lira (i(gd--t)a) - -  l(a)) T(a) h d#(a)  
J t--+ o t q 

= - f (Lj]) (a) T(a)h dg(a)  strongly.  
q 

Hence Tlh  is in the domain of Hj  and iHj  T1h = Tzjlh (i = 0, 1, 2) as claimed. 

Part III. The Planeherel Iormula as completeness relation of characters 

The main idea of our second proof consists in expressing certain averages 
over the conjugaey classes of a fixed / E C~ through the traces of its integrals 
with respect to irreducible representations, making up the Planeherel formula, 
and then reconstructing the value assumed by our function at  the unity 
through a certain differentiation process. The first part  will be discussed below 
in A; in B we give a detailed description of the background of the method, and 
in 0 we deal with the second part ;  here we follow the ideas outlined in [4]. 
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A. The main objective of this section is to express the traces in terms of 
averages over conjugacy classes; in B. it will be shown, how to invert these 
relations. During the course of the discussion we shall, incidentally, show, 
that  for a fixed irreducible representation the trace, as distribution, is generated 
by a locally integrable function, which, in analogy with the compact groups, 
is called the character of the representation. By virtue of this fact, the main 
formula can be written in a form, closely resembling the Peter-~Veyl formula, 
when expressed in terms of characters of irreducible representations. --  We 
shall deal with the case of C~ ~) and D~ separately in 1 and 2 rcsp. below. 
For some of the techniques to be employed cf. in particular [3] Ch. V and VI. 

1. a. First we enumerate several subgroups, some of which had already been 
considered before (cf. in particular I. B. a), and fix invariant measures on them. 
As before, we denote the canonical homomorphism from G onto G 1 (= S L  (R, 2)) 
by N. In many cases the restriction of N to the subgroup to be defined turns 
out to be an isomorphism with its image in G 1, and we use the parameters of 
the latter. 

a. We denote by 2V+ (N-) the connected subgroup of G lying over the sub- 

group of matrices of the form (10 1)[(Ix 10) resp.]. The restriction of ~b 

induces and isomorphism, and we put  d/~ (n) = dx.  
d~ 

ft. On 0 = {%;  - co < ~ < + ~ }  we use c l ~ ( o )  - 2 ~ "  

7- We know, that  the complete inverse image H under ~ of the subgroup 

of diagonal matrices (,~ > 0) is the direct product of the center Z of G 

with the component of the identity H o ( H, the latter being isomorphic under ~ 
with the diagonals. Putt ing again 7 = o2,~ E Z, every element of H can be 
written uniquely as 7Jh (~ = 0, ± 1, :t= 2 . . . .  ; h ~//0) ; sometimes we ab- 

d~ 
breviate this by writing i~. We define d,u(h) an H by requiring d#(h) - ~ 

on  //o" 
We recall, that  on any Lie group G a left invariant measure can be defined 

by fixing a left invariant differential form of maximal rank. Assuming, that  G 
is a linear group, the elements of the matr ix d~a = a -1 da(a  ~ G) form a system 
of linear differential forms, containing dimG linearly independent elements. 
Hence to obtain a left invariant form of maximal rank, it suffices to form the 
exterior product of members of an appropriately chosen subsystem. Similarly, 
one constructs right invariant forms by considering the elements of the matrix 
dra = da  . a -1. 

~. We note the complete inverse image of the group/(0  -~'~" ~);" ~>01" 
Y 

again by S. We recall, tha t  it is the direct product of the center Z with the 
component of the identi ty S o , the latter being isomorphic with its image under 
~.  Similarly as in H we sometimes write sj in place of STJ(S C So). To define 
a left invariant measure d/at(s) it suffices to do it on S 0. Here 2 and/a  can be 
used as global coordinates, and, with the notations introduced above, (dr s)~ z A 
A (dts)sl = d2  A d/a is a left invariant form of maximal dimension. Hence we 
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can put  d/zz(s) = d2 d/z. The group S, however, is not unimodular. We have, 
1 d2d#  

indeed, (drs)2 ~ A (drs)21 = ~-~ (d2 A d/z); hence d/zr(s ) - ,~ defines a 

right-invariant measure on S o. Putt ing ~ (s) ~ 2 2, we have d/zt (s) = @ (s) d/zr (s) ; 
extending ~ by requiring ~ ( s ) ~  ~(sz) (s ~ S, z ~Z),  the same relation remains 
valid on S too. In  particular, if ] ~ L(S)  2) 

(3.1) f / ( s  % t )  d/zt(s) = @(So) f / ( s )  d/z~(s) . 
S S 

e. In  what follows we define the invariant  measure d/z (a) on G through the 
differential form, which is the image under 8 ¢  of the form (dta)z I A (dta)~ 2 A 
A (dta)l ~ on G1; d/z(a) is bi-invariant. 

b. We denote by  Gr the open submanifold of G defined as the complete 
inverse image of elements, having different positive eigenvalues, of the adjoint 
group G. Each element of Gr can be represented in the form g-lhg(g ~ G, h ~ H). 
Furthermore,  the group of automorphisms of H induced by  inner automor- 
phisms of G, leaving H fixed (Weyl group), is of order 2; denoting by ~ the 
action of its nontrivial element on h E H, we have ~ = (h-1)~ (cf. 7. above). 
Hence G~ can also be described as union of all conjugacy classes containing 
elements of H -- Z;  two elements of h fall into the same class only if they are 
congruent under the Weyl group. - -  An open subset H F C H is called a funda- 
mental  domain if HF f~ HF = (0), and H~  c~ HF = H -- Z (HF is the image 
of H~, under the Weyl group). 

Now we turn to the discussion of the first of our main integral relations. 
Denoting by D (a) (a C Gr) the absolute value of the difference of the square 
roots of the eigenvalues # 1 of Ad (a), we have for / E L (G) and an arbi trary HF 

(3.2) f / ( a )  dl~(a ) = f D(h) I n d/z(a) . 
Gr H~ 

Here 

Ih - 1 / (o - lhno)  d/z(o) d/z(n) 

[q (h)] ~ 
O o x ~  + 

where 0 o is the image of 0 in the adjoint group, and/z(0o) = 1 d/z(o) - 2 ~ '  

0 _-< q~ < 2 ~ in our usual parametrization). Observe, tha t  I h C L (H). 
Before proving (3.2) we wish to show, tha t  

(3.3) I~ ~ I ~ .  

While proving (3.2) it will turn  out, that ,  for a fixed h E H - Z, the set {o- lhno;  
n E N+, o E O} gives the conjugacy class containing h. This together with (3.3) 
shows, tha t  In can be interpreted as an average of ] over a conjugaey class, 
and (3.2) gives a decomposition of the invariant  integral into a continuous sum 
of these averages. 

To prove (3.3), for a E Gr we denote by  ha the element E He,  for which 
a = ghag -x (g E G). Assume now, tha t  g(h) is a bounded continuous function 

3) In general, we denote the family of all continuous functions with compact support 
on the group G by L(G). 
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on H;  replacing /(a) by /(a) g (ha) in (3.2) we easily obtain 

f / (a)  g(ha) d~(a) = f D(h) g(h)I4 d~u(h). 
Gr H~ 

Since H~, too, is a fundamental domain we also have 

f f(a) g(ha) dl~(a) --- f D(h) ff(h)Ia dl*(h). 
Gr H~ 

Adding we get 

(3.4) f l (a) (g (ha) + g (~a)) d/~ (a) = f D (h) g (h) I4 d/~ (h). 
Gr H 

The left hand side of (3.4) remains invariant, if we replace 9 (h) by g(~); 
since, furthermore, D (~)~  D (h) and d/~ (~) = d/~ (a) we finally obtain 

f D (h) g (h) 14 d/~ (h) = f n (h) 9 (h) I~ d/~ (h). 
H H 

Because of the arbitrariness of g (h) this implies (3.3). 
We carry out the proof of (3.2) in several steps. 
a. For z E Z we denote the subset of G~, consisting of elements conjugate 

with elements of zHo, by G (z). We have G (z) = zG (~) (e = unit of O), and the sets 
G (z) are open submanifolds of G with disjoint closures. Hence it plainly suffices 
to prove, tha t  for any z E Z we have a relation obtained from (3.2) by replacing 
G r by G (z), and H F by H~ ) -- H F ~ zHo; then (3.2) follows by summation. But 
even here it  suffices to consider z = e only; the general case then follows by 
applying it to ] (za) and z-lH~), and observing, tha t  D (z h) ~ D (h). 

I t  is easy to see, however, that  the restriction of • to G (~) is a diffeo- 
morphism with its image, which is the collection of all matrices with positive 
eigenvalues 4= 1. Hence in view of ~ -  ~ above, it  suffices to consider the 
corresponding problem on G 1. 

ft. In  what follows we simply write G, for ~b(G(r ~)) and Hv for #(H~$)). First 
we prove the following relation 

1 

(3.4) f ](a)dl~(a) = f [e(s)] 2 D(s) / (n- lsn)d/~z(s)dp(n)  
G, s F x ~ -  

where Sp is the open submanffold of $3)C G I, made up of matrices with the 
property, tha t  the element of H, composed of the diagonal elements, lies in H F. 
We observe, tha t  for a 6 G1, D (a) is just the absolute value of the difference 
of its eigenvaines. To prove (3.4) observe, that  each a E (;r can be represented 
in the form g-lhg with a uniquely determined h E H~ (g C (Tx), and a12 4= 0 
implies ga2 4 = 0. Assumiug this'ease, we can write g in the form sn(s 6 S, n 6 N-)  
to obtain for a E G~ a representation of the form n-Xsln (s 1 E S~); one easily 
sees, that  it  is unique. Summing up, we conclude, that  the map F : S F × N--~ O~ 
defined by F(s, n) = n-~sn covers G~ up to a set of measure 0 with respect to 
dlu(a ). This implies a relation d/z(a)= ~(s, n)d l~(s  ) dF(n ) with some con- 
tinuous function / (we denote the inverse image of d/~ (a) on S~ × N -  again by 
alia(a)). Since d ta(a), in particular, is invariant under inner automorphisms 

~) Here, of course, 8 stands for • (8); it is the group of all triangular matrices in (7~ 
having 0 in the lower left comer. 



The Plancherel Formula 125 

of G 1 implemented by elements of N- ,  [ does not depend on n. To determine its 
exact form, we have to compute the determinant of the linear transformation 
connecting the differentials, contributing to the differential form of maximum 
rank defining the resp. invariant integral, in the matrices d~a,  d~s and d l n .  

Since [ does not depend on n, it  suffices to do this for n = e. Taking the dif- 
ferentials of both sides of n a  = s n ,  we have d n  • a + n .  d a  = d s  . n + s . d n .  

Multipl)dng on the left by the corresponding sides of the relation a - i n  - 1  

= n - i s  -1 ,  putting n = e, and rearranging, we obtain 

d t a  = d~s + d n -  s - l d n s  . 

Assuming, as before 

we have 
(d~a)l ~ = ,~ d la  - I a d) .  + . • • 

d~  
(d~a)2 2 = - - ~ -  + . . .  

( d , a ) , l  = ( 1 - 1 ) d x  

where the terms not written out are multiples of the differential d x .  This gives 
[ ] \  1 

(d,a)21A (d~a)~/k (d,a)19. ~ - / 1 -  ~¥) (dx A dZ A d/u), or /(s)--z 1 -  ~¢ 
1 

[9(s)] 2 D(s), proving (3.4). 
y. Next we replace 2V- by 0 o in (3.4) as follows. We write 0 for ¢ ( 0 )  (~(0)  

= group of orthogonal matrices in Gx) and % for @(%). One easily verifies tha t  
each right coset of G 1 according to S contains two elements of O (which differ 
by the factor y = o2~), and with the exception of the eoset consisting of all 
matrices having zero in the right lower corner, a single element of N- .  More 
exactly, denoting the open subset of 0 obtained by removing the points o ~ 
by ~, for each o ~ ~ there exists a uniquely determined s(o) ~ S such tha t  
s (o)o = n E N - ;  ff o varies over 0, n covers N -  twice. The connection between 

parameters of n and o is given by x = t g  ~ - .  Let  us the extend the function 

e (s) (cf. ~ in a. above) to G I by putting 9 (a) -- a~ (a E (71) ; observe, tha t  
e(sa) = e(8) e(a). Hence finally, i f  J C L ( N - ) ,  the function h ( o ) ~  ] ( s ( o ) o )  

satisfies h ( y o )  ~ h(o), hence it can be considered a function on 00, and we have 

1 d~ f /(n) al~(n)=~ f t,(o)d.(o). 
~ -  - -~  Oo 

Applying this to (3.4), using (3.1) and 9(s(o)) ~(o)----- 1, we get 

f l(a) dl~(a)= f [ /q(s)D(s)/(°-"[s(°)]-~s[s(°)]°)dl~z(s)] d#(°)e(o) 
Gr Oo 

- f 
Oo 

(Observe, that  trivially D (s' s s' -1) ~ D (s)). 
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Using finally the easily verified relation 

fg(s) dttz(s ) = f g(h, n) d#(h) dlu(n ) 
S H × N  + 

we obtain a formula of the required form on Ga, and this finishes the proof of 
(3.2). 

e. Now we proceed to obtain the expression of the trace in terms of the 
function Ih, and the explicit form of the character. This will be done by showing, 
that  if T (a) is of type C(q "), the operator T I (] E C~) is an integral operator in the 
representation space L~(O). 

a. First we rewrite the realization of T(a), given in I .B,  in a form more 
convenient for our present purposes. We denote the character group of the 
abelian group H by /~ .  Using the notation of a. ? above, any X C/~ can be 
written in the form X(h¢) = e-~'~¢'2~"i (o g v < 1, ~ arbitrary real number). 

1 

We put x ( h ) =  [~(h)]-2X(h); this can be extended uniquely to a (non- 
unitary) character of S, by putting z(hn) = Z(h) (n ~ N+). For 9(o), g'(o) 
C L~(O) we have g(o?)-- X ( r  ) g(o) and g'(o~)~ X(?) g'(o), showing, that  
g (o) 9' (o) is a function on O0; hence the inner product in L~ (o) can be written 

as (g, 9') = fg(o) g'(o) dla(o ). Finally 
O0 

(3.5) (T(a)g) (o)=-- Z(s(oa))g(oS) 
with a Z defined through an appropriately chosen X E/t .  - -  Here the members 
of the family {C (~)} appear as parametrized with elements of/~,  different from 
the unity. We put X'(h) = X(h);  the map X ~ X' is an automorphism o f /~  
dual to the automorphism h -+ h of H, and by virtue of the discussion of I .B.  
we conclude, tha t  two characters of H give rise to equivalent representations, 
if and only if they are congruent under this automorphism. Sometimes, in what 
follows, we write T(x) for the representation determined by X E iq. 

t3. Assume now, that  ] E C~. Using (3.5) we have 

(TIg) (o) = f l(a) Z(s(oa)) g(oS) dl~(a ) 
(7 

= f/(o-aa) g(s (a))g(oo-Xa) dl~(a ) . 
q 

As one verifies easily, with our present choice of the normalization of the 
measures involved, we have for any F(a)  E L(G) the relation 

(3.6) af F(a) dla(a) = zt Oo f [ J  F(s°) dlaz(s)] d/~(°) " 

Applying this to the previous expression, we get 

(TIg) (o) = f Kl(o, o') g(o') dla(o' ) 
Oo 

where 
KAo,  o') = :~ f Z(*) l (° -~s° ' )  dt~(s)  . 

Observe, that Kt(o ,  ~,o') = X (~,) KAo,  o'), and K/ (7o ,  o') = X (7 ) KI(o.  o'). - -  
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Hence 

Tr( Tt) = f K1(°' °) d#(°) = Z~o//  Z(s) /(°-ls°) d 

= . / i  (h) [ :~ 1 d la (n) I¢-- \[q(h)]~O°xff~ i/(°-lhn°) dtt(°)) d#(h) 

by virtue of the expression of Z by X given above in ~. Hence finally, recalling 
the definition of I a (cf. (3.2)) and writing T(x) in place of T, we get 

(3.7) Tr(TlX) ) = f g(h)Iadtt(h) 
H 

which is an expression of the required type for the trace. I t  represents the left 
hand side, considered as function of Z, as Fourier transform of the function 
Ia E L(H) (and even EC~ in our case) ; hence, by the Fourier inversion formula 

(3.8) In = f ~(h)T~(TIX)d#(g) 

with an appropriately normalized Haar measure d # (X) on/~.  
y. To obtain an expression for the character of T(X), we observe, that  (3.4) 

implies 

(3.9)  g(ho)D(ho) + = j g(h)I dt,(h) 
G, H 

for any bounded continuous g(h), say. 
Putting g (h) ~ X (h), and using (3.7), we get 

Tr(T~ x)) -- f Cx(a) [(a) dtt(a ) , 
G 

(3.10) where 
[x(h  +x,(ho) 

Cx(a ) ~ _ {  D(h~) if aEGr 
t0 otherwise. 

This is the expression for the character as function of a C G. Here ha E H 
is any element, conjugate to a, and Cx(a) is obviously independent of its 
particular choice. 

Finally, we wish to point out, that  for a fixed X a n d / ,  the trace depends 
on the normalization of d#  (a), the character, however, does not. As it will turn 
out later, our present choice of d # (a) differs from that  of Ch. I I ;  which will 
have to be taken into account when setting up the final formulas. 

2. Now we turn to the discussion of the series D~. Here, too, we start  
with an integral formula. 

a. We denote the complete inverse image of elements in G O having non 
positive eigenvalues by G~. One easily shows, that  every element of G~ is 
conjugate to a uniquely determined element of 0. Assume, ] E L(G); our next 
objective will be to prove the following relation 

oo 

(3.11) f If(a)dl~(a)= 2 f sin~-~ - I~df  

) la th .  Ann. 156 9 
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w h e r e  

I v = f f (8%s  -I)  d~,(8)  . 
s, 

Similarly,  as in the  case of Gr, during the  course of the  proof  i t  will t u rn  
out ,  t h a t  (3.11) can be in te rpre ted  as decomposi t ion of the  invar ian t  integral  
in to  a cont inuous sum of averages  of ] over  conjugaey classes, containing 
elements  of 0 -  Z. 

a .  We denote  the  open subset  of G consisting of elements  conjugate  wi th  
some % (2~( j  -- 1) < ~0 < 2 ~ j ;  J = 1, 2 . . . . .  ) by  G~ ~), and pu t  G~ (-j) = [G~J)]-I. 
Evident ly ,  any  two of these sets are congruent  to each other  mod.  a t rans la t ion  
b y  some element  of Z, and their  union is G~. Fur thermore ,  the  restr ict ion of 
to  G~ 1), say, is a diffeomorphism with  its image.  Therefore,  since the  factor  
of I v in (3.11) is periodic wi th  2~,  a reasoning similar to t h a t  employed  in 
1 .b .~  above  shows, t h a t  i t  suffices to prove,  t h a t  if  ] E L(G1), we have  

2~ 

(3.12) I ev 
Gc 0 

where Gc s tands  for O~ 1) fo rmed  along with I+, wi th  respect  to O 1. 
ft. To prove  (3.12) first we observe,  t h a t  any  a C Gc can be represented 

in the  form gog -1, where o E O is uniquely  de te rmined  by  a. Fur thermore ,  
we can write g = 8o'(s  E So, O'E 0) ,  which gives a = s o s  -1, and one easily 
checks, t h a t  in the  relat ion 8, too, is uniquely  de termined b y  a. N e x t  we use 
reasonings, analogous to  those of 1.b. fl above.  Denot ing the  open subset  
{%; 0 < ~0 < 2g} of O by  O, the  m a p  (o, 8) -~ s o s  -1 is a d i f feomorphism between 
0 × S O and  Gc and  hence we can write d # ( a ) =  [(o, s ) d c f d # ~ ( s ) .  Since, 
however,  G e is t aken  into  itself b y  a n y  inner au tomorphism,  and  this leaves 
d~u(a) invar iant ,  we conclude, t h a t  ] does not  depend on 8. I n  order  to  de termine  
i ts  explicit  form, we t ake  the  differentials of bo th  sides of a s  = so, which gives 
d a  . s + a . d s  = d s  . o + s ds.  I n  addit ion,  we have  s - l a  -~ = o-~s-1;  mult i -  
p lying b y  this on the  left, pu t t ing  s = e, o = % and  rearranging,  we obta in  
d~a = o_~, dso~ + d~o --  ds .  We recall, t h a t  

i to 
d ~ ° = - f f  \d~o 0 ] 

and  

T o  compute  o_~ d8 oq, - d8 we proceed as follows. One easily sees, t h a t  if 

(x, x, - -  xo~ 
X ~ X~ Jr" X o - -  X l ]  

the  l inear t r ans fo rmat ion  A d ( % ) x  = % x o _ +  (cf. I .A.1 . )  is a ro ta t ion  in the  
(x o, x 1, xn) space, leaving the  x 0 axis invar iant ,  b y  an  angle ~0 in the  posit ive 

d~ 
direct ion in the  (xl, xz) plane.  Hence  pu t t ing  x 1 = - d2, x~ = - x 0 = 2 ' we get  
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o_~ds % - -  ds = [Ad(o_~) -- I ]x  = y, where 

(Yl Y,--Yo t 
Y = Y2 + Yo - -  Y l /  

_ ~  (1 - -  cos ~) 
with Yo = 0, Yl = [1 - cos~] d~ + sin~ , y~ = sin~ d~ -- 2 d/~. 

Hence finally (d~a)~ 1 A (d~a)~ A (d~a)l ~ = 2 (sin ~ ~2 ~-] (42 A d ~ A d~), 
proving (3.12), and along with it  (3.11) too. 

Assume now, that  g (o) is a bounded continuous function on O, and for 
a C G¢, denote the element of 0 conjugate with it, by o~. Then (3.11) implies 

o o  

• q~ 2 (3.13) f t(a)e(oo, f I.a(o ,av. 
(~¢ - -  o o  

b. Assume, that  {T(a)) is the direct sum of two unitary representations of 

D + and D~-resp. (l~---2). In order to obtain an expression of type Tr(TI)  

(/C C$) in terms of the averages I n and I~ we first compute the character, and 
then through an application of (3.9) and (3.13) derive the required formula. 
This change, when compared with the method of 1, is made necessary by the 
fact, tha t  the realizations of Dfi constructed in I .B.  where obtained by con- 
sidering subrepresentations of representations induced by certain characters 
of S. The reasonings of 1.c. are applicable only when 2l is an integer; in this 
case the induced representation turns out to be a direct sum of D +, D/- and a 
finite dimensional representation of S L ( R ,  2). Hence the character of T is the 
difference of the character of the whole representation, computed as in 1. c. y, 
and the character of the finite dimensional representation, which is easy to 
obtain directly. - -  On the other hand, the present method, too, could be used 
to obtain the characters of {C(qO}. 

ce. In  the following computations we are going to use Eulerian coordinates 
(cf. I I .A.  1); but, making use of the remark made at the end of 1 above, we 
choose as element of the invariant measure shu d ~  dudq~.  We write the 
function [ E Ce again as ](~1, u, ~ ) ,  and recall, tha t  the matr ix coefficients 
standing in the diagonal, when using the canonical basis of I. B, are given by  
h~l,)(n)e-i(~+ ~), where (cf. (2.8)) 

h~) (n) = ~ Z Re v " dv (2 eh-~ + ~z) 
- - ? $  

( ) u > o ,  z = ( 2  ( c h u  - e h , , ) ) ~ -  ; m = ± (~ + J/ ,  J = O, 1,  2 . . . .  , h ~ m ( u l  - -  h ~ ) ( u l  • 
Hence, putting for a fixed 0 < x < 1 

\m~l l 
9* 
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(3.14) Tr(TI)  = 

Putt ing 

we have by Abel's theorem 
2 z t  o o  o o  

lira f f f H (x; u, q~) ](qJ:, u, cp2) shu dcpl du dcp2 . 
t-'*l--°O 0 --~ 

we have tel = 1, and 

where 

f 
\ 

H(x;  u, ~) = 2 x t R e H  ' , 

U 

e~t~ 2chU~ 2t / 

2r~ Z [1--x~e'q~ + l - - x g d ~ ]  dv 
- - U  

the interpretation of ~t and gt being obvious. 
Defining R and t ~ (tz complex) as in H.A.2,  and setting F(t) = (1 + t + R), 

a simple computation, analogous to those carried out in II .A. 2 shows, tha t  

e"¢ (2 chU~ 2l 

(3.15) H'-- \ ~/ f 
1 

2zci R[F(t)] 2a-~) ((F(t)) ~ - -  xbt) dt  
o 

/ 

ft. Our next  objective will be the evaluation of (3.15) for a fixed u > 0 and 
~, if x-+ 1. Since, as we now, F(t) maps the complex plane, cut along [e ~, eU], 
onto a bounded domain, the closure of which lies in the open right half plane, 
the integrand of (3.15) is O([t] -g) for large It I. Next we show, tha t  
G(t) = (F(t)) 2 -  x b t  possesses exactly one simple root t(x), hence it will 
suffice to consider the limit of the residue for t (x) if t-+ 1. This will give the 
character Ct(a) of T for a = gu%. --  Observe, incidentally, that  any character 
C(a) necessarily satisfies C(ab) = C(ba) (a, b E G). 

To obtain the roots, we consider the analytic continuation of G(t); it is a 
univalued function on the two sheeted Riemann surface of the continuation of R. 

We denote the sheet corresponding to the branch of the latter used above 
by P+, the other by P_, and put  F ±  (t) and G± (t) for the corresponding branches 
of the continuous F (t) and (7 (~) resp. Consider now the domain D of P_ bounded 
by  the unit circle and the interval [e -u, 1]. We have tF_(t)l ~ > xlb tl~ on the 
boundary;  since, on the other hand, (F_(t)) ~ has a double zero for t = 0, an 
application of Rouche's theorem shows, tha t  G_(t) has exactly one nontrivial 

zero place inside D. Observing, finally, tha t  G+(t)=--t G _ ( t  ), we can conclude, 

tha t  G(t) has exactly one zero t(x), on P+, and incidentally, It(x)t > 1. I f  
x-~  1, for reasons of continuity t ( x ) ~ t ( 1 ) ,  and we have a corresponding 
convergence of the residues of the int~grand in (3.15), provided G'(t(1)) 4= 0. 
By  virtue of the previous discussion G'(t(1)) = 0 can occur only if t(1) = ± 1. 
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( t(1) = - - 1  implies b = - 2 c h ~ -  or e t ~ =  - 1 ;  and  G ' ( -  1) # 0 .  Hence  wha t  

r ema ins i s  t ( 1 ) =  1, in whichcase  ( c h - 2 - c o s ~ )  = 1. I t  is e a s y t o  find the  group 

theoret ical  in te rpre ta t ion  of this condit ion b y  observing,  t h a t  det  ( ~  (gu%) -- 
u 

- -  y I ) - -  y2 _ 2 c h - 2 - c o s ~ - y  + 1, and  the  roots  of Ad(guo~) are 1 and  the  
u ~o 2 

squares of the  roots of this equat ion.  H e n c e w e  conclude, t h a t  ( e h - ~ c o s ~ )  = 1, 

if and only if all roots  of Ad(gu% ) are 1, or if g~o~ lies on the  common  bounda ry  
of G, and  G c (of. 1. b and  2. a); we call these elements  of G singular. Obvious ly  
these form a set of measure  0 wi th  respect  to  the  H a a r  measure.  - -  Summing  
up, in order to  obta in  the  charac te r  C t (a) of T, which is a direct  sum of two 
representa t ions  of t ype  D + and D/-  resp., i t  suffices to compute  twice the  real 
pa r t  of the  residue for t(1) of the  in tegrand in (3.15)4), assuming 

\ 2 
ooooorns o* 

/ 

t ransi t ion and in tegra t ion  in (3.17), we observe,  t h a t  i t  is enough to  just i fy  it  
locally. I n  the  neighborhood of a nonsingular  e lement  it  is clear f rom the  
previous  discussion; otherwise it. is easy  to  obta in  a domina t ing  funct ion 
(cf. the  subsequent  computat ions) .  

~/. Now we proceed to  determine t(1) and  the  corresponding residue as 
indicated above ;  we distinguish two cases. 

~'r eh--ff cos -  2- > 1, (or g~o~o E Gr). I t  is clear f rom the  expression for  

H (x; u, ~) t h a t  Ct (gu%) ~ C~ (g,,o_~0) hence it~ suffices to consider ~0 > 0. We  pu t  

oU orvo, I n  order t h a t  [F(%)] '  

= 2oh e ~ ' e  ~, v > 0, we mus t  have  v < u, and 

U 
ch~-  2oh 2 

v 
where we have  + or -- according to  whe ther  ~0' > 0 or ~ '  < 0. Hence  e h - ~  

u ~" ch~2 _~ = c h ~ - e o s ~ - =  cos > 1, which determines  v > 0 and  t ( 1 ) =  e~; i t  

lies on the  uppe r  (lower) p a r t  of the  cut  along [e -~,  e ~] if ~0' > 0 (~ '  < 0 resp.). 

At  the  same t ime,  one sees a t  once, t h a t e  ~ is the  root  > 1 of ~5(g~%), hence 
e ~ '  are the  roots  of Ad(g~%). - -  To  ob ta in  the  residue, we observe,  t h a t  ac- 

cording to  our  present  in te rpre ta t ion  of powers,  [F( t  (1))]~ (~-~' = "(2ch 2 ) 2 q - ~ )  × "  

× e(~ - 1) v e~ (~ - 1) ~,. Fur the rmore ,  since Re  [F+ (t) ] > O, we have  F(t  (1)) = 1 + t (1) + 
V " - ~  2 V 

+ R ( t ( 1 ) ~ = 2 c h  U e ~ 2 - -  ; w h i c h g i v e s R - ~ G ( t )  ~ = u ~ ' - ~  sh-~.v 

[ \ ~ ,  2 

\ z /  
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Hence, putting [ - ~  ] = j we get fmally 

2 cos(2•/j)e ~ 2! 

e2 e 2 

To obtain a group theoretic formulation of the right hand side, observe, 
that  using the notations of 1.b.~, we have g~,% C G(r e) for small 9, hence 
9uo, E G~ z), z = 7J ~ Z (j defined as above) for any 9 > O. Similarly, if 9 < O, 

• r _l+ g~,o¢(G (z), z = 7  -e, ] =  [ 2z j.  Denoting one of the eigenvalues # 1  of 

Ad (a) by 2a, we can write 

2cos(2~rj/) ~, ~ ' 
(3.16) Ct(a) = D(a) (a E G~ z), z = 7J) . 

7." (ch 2 cos ~_)2< 1 (or g,,o~, E G~). W e  define 90, (o < 90 < ~) through 

cos - i f -=  ch ; hence, for 0 < 9 < 2~ our condition is satisfied if 90 < 

< 9 < 2~ -- 9o- Next  we observe, tha t  for any such 9 there exists a uniquely 

determined ~, (o < ~ < 2~), such that~ [F+(e-i~)] 2 = 2oh ~2- ei(~°-~). Indeed, 

this condition is equivalent to 

- -  + i e ~ , Z '  = (2chu - cos~) ~- 
ch 2 2oh 2- 

or cos ~ = ch -2- cos -~ ,  which determines ~. Keeping u > 0 fixed, let us vary 9 

from 90 to 2 ~ -  90; we denote the corresponding ~ by  ~(9). Then ~(9) will 
vary  from 0 to 2~, and moreover we have 1. - ~  < 9 - ~(9) < ~, since 
Re IF+] > 0, 2 • g~% is conjugate with o ~ ) .  The last statement can be proved 
e.g. by  checking the analogous situation for q)(g,%) in G r We extend now the 

~(9) first for any 9 > 0  "" " ((cos 2Y-ch2)2< 1)" by setting ~(9) definition of 

= ~(9')  if 9 = 2~ j  + 9 '  (i = 0, 1, 2 . . . . .  o < 9'  < 2~) and then for a negative 
9 by e ( 9 ) =  e ( - 9 ) -  I t  is clear, tha t  we always have t ( 1 ) =  e x p ( - i ~ ( 9 ) ) ,  
along with properties 1 and 2 described above. Turning now to the computation 

of the residue, we have by 1~: [F+(t(1))] ' ( t-x)= "(2ch 2 )2( ' -~ )e"  t "  "~e '( '  ~)= 
. 9 . * ¢  

(~ = *¢(9)), and F+(t(1)) = 1 + t ( 1 )+  R(t(1)) = 2ch ue*-~e  -*~ .  Hence, simi- 
2 

~ ( t ) t = t ( 1 )  = / u \ 2  i - -  --i~-. larly, a s i n T ,  ahove th i s impl i e sR~-  t 2(2ch-~-) e 2 e  ~ i s i n 2 "  

This finally gives 

(3.17) C~(a) = ~ (a ~ O~ and conjugate to o~). 
sin 
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(3.16) and (3.17) determine C~(a) completely, with the exception of the set of 
all singular elements; this, however, as already observed, is of a measure zero. 

e. As in II ,  we put, Ts(/) = Tr(Ts);  assuming, tha t  T is a direct sum of two 
representations of type D + and D/- resp. (f C C~). In  what follows, we express 
it  in terms of 14 and I~. 

The discussion of b. shows, tha t  

T~(t) = f / ( a )  C~(a) d~(a) -= f ](a) Ct(a) d/~(a) + f ](a) Ct(a) dlx(a ) ; 
G q~ G~ 

we shall deal with the last two summands separately. 
~. By virtue of (3.9), we have for any bounded continuous function g (h) 

on H, satisfying g(h)--= g(h): 

- ~ - ~ -  a /u t a ) = 
G~ H 

Using the notations of 1.a.~, we put  g(hj)= (cos2~l~)~-(~t-1)so(-~-l); 
since h i =  (h-X)j, we have g(h)~g(~) .  Hence, using (3.16), we may write 

f 1 (a) C, (a) d # (a) = 2" (cos 2 zt li) f ~- (2t- i) s g (~-- 1) Ia j d # (h). 
a~ j = --  ¢0 H0 

In the subsequent considerations it will be more convenient to use certain 
parameters on H 0. To do this, we put  

ht= e2 0 t ( - o o < t < + o ~ )  

and fj(t) ~ I(ht) ~ (] = 0, ~ 1, ~ 2 , . . . ) .  We observe, tha t  since Ih ~ C~ on H, we 
have [j(t)E C~ and J~(t)~ 0 but  for a finite set of indices. Furthermore, 
Ih ~= h (ef. (3.3)) gives [j (0 ~ ]~ ( -  t). Hence we can write finally 

oo I l 1 

(3.18) f ](a) C~(a) d#(a) = ~ cos(2=/i) f e- i -2) t /~( t )  dt 

Observe, dl~(h ) = - - ~  = tha t  

ft. Using (3.11) and (3.1'/) we obtain 

(3.19) f / ( a )  C , ( a ) d g ( a ) = - - 2  fsm(,-½) 

S~ 

Observe, tha t  I~ vanishes outside a finite interval, but  it becomes infinite 
for ~0 = 2~?" (?" = 0, ± 1, ± 2 , . . . ) ,  since the measure of S o is infinite. The prop- 
erties of G(~), as function of q0, will be discussed later in C. 

B. To describe the main idea of the second proof of the Plancherel formula, 
it will be useful to make a comparison with the ease of the group SL(C,  2). 
Denoting the group of all diagonal matrices by H, here, too, one can associate 
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an irreducible representation with each element of the character group/~ of H, 
characters, equivalent under the Weyl symmetry h ~ h -1 (h E H), giving rise to 
equivalent representations. Furthermore, defining N+ (with complex coeffi- 
cients) as in A. 1. a. a and replacing O by the maximal compact group of all 2 × 2 
unimodular unitary matrices, we can introduce Ia as in (3.2), and with it one 
has the analogue of (3.7). To obtain the Plancheret formula, one shows the 

existence of a differential operator L on H, such that  for any / C C~, L i b  h = e 

= c l ( e  ) (c is a constant :~0, not depending on 1); finally, applying L on both 
sides of (3.8) for h = e, and defining a measure on / t  by d~ , (X)  

= L X ( h ) a = e d ~ u ( X )  one obtains a formula of the required type (cf. e.g. [3] 

Anhang III).  The indicated procedure can be extended to any complex 
semi-simple Lie group. 

On the other hand, it  is clear tha t  in our case any attempt,  based on (3.7), 
to imitate the previous procedure is doomed to failure. Indeed, unlike the 
complex ease, here the complement of the collection G~ of conjugaey classes 
containing elements of H contains an open set G c. Also, the support of the 
characters C x (cf. (3.10)) is contained in the complement of G~. Since, however, 
for the Plancherel formula we evidently have to take into account, the whole 
carrier of ], and since it  is only the characters of the series D~ which do not 
vanish on Go, these, too, must be taken into consideration when setting up our 
formula. In order to gain a better picture of the method to be followed, we 
transform the relations of A.2.c. as follows. First, we get through partial 
integration from (3.18) 

1 1 I +co 

( - =) fl~(t)~ ('-=) *a* = t~(0)+ f l'~(*)e-('-+)'a* 
(Tr 0 

and 

a,. j=-¢o 

oo _ l _ ~  ~ 

+ 2 cos(2njt)f 1,(')~ ( 2 )  ee 
i = - - ° °  0 

Next, assuming for a moment, tha t  G(~) possesses the required properties, 
we have 

2~(t-1) 
2=i 

1))a~_~- f cos(t- ½), (~)~v - ( -  1)J-~ e o s ( 2 ~ l ( j  - (+) a '  
2:,(i-1) 

w h e r e  we put  O~_ ~) = lim O(~). 
~-*2~j± 0 
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This gives (cf. (3.19)) 

(l- )f/(a)Cda)dff(a)=-2 f ½) 

-- 2 2 (-- 1) j cos(2zl]) (G} + ) -  N -)  . 

Hence finally 
oo 

T,(h--- cos(2  l) f 
i = - ° °  0 

(3.20) 

- 2  f cos (/-~-)q~ a'(q9 d q~ + 
--¢:,o 

where 

R = Z c o s ( 2 ~ i )  [ /¢(0)-  2(-1)~[a~ +) - a~-)]] .  
j = - - c ~  

Below in C, we show, that  G(~) possesses the following properties 
P. 1. G(q~) is C ¢~ in the neighborhood o/any point, which is not multiple o] 2~. 

G~:) = lim G(q)) exists, and we have ]¢(0) = 2(-- 1) ~ [G~ + ) -  G~-)]. 

(e) 
P. 2. For each fixed ~, and q~ sutficiently small 

ta'(2~/+ ~) + -~(-  1)J t(r~)[ < AI~I [legal 

where A does not depend on q~. (q) ~ 0). 
Taking all this for granted, we immediately have R = 0 in (3.20). Moreover, 

by virtue of P.2. the Fourier transform of G'(T) is summableS); hence elimi- 
nating the functions {~] (t)} fl'om (3.20) by aid of (3.8) and integrating both sides 

1 
according to I from -2- to + co, we obtain the final formula. We shaft carry out 

the necessary computations in D. -- We observe, tha t  the identity in 1.P. 
possesses a simple group theoretic meaning (el. C3.a). 

C. Now we turn to prove the statements (P). First we remark, tha t  it  
suffices to consider the case ] = 0 only. Indeed, denoting by {i,(t)} and G(~) 
the functions corresponding to / (~Ja)  (] # 0, fixed), we have io(0) ----- ij(0) and 
( - 1 ) J G ( ~ ) ~  G(~ + 2jg). --  Moreover, since in I , ,  for a fixed q~ # 0, only 
values of / E C ~ ,  assumed on elements {s%s-1; s E $0} occur, and since the 
restriction of ~ to a sufficiently small neighborhood of the closure of the set 
{s%s-~; s E So, IT] < ~, 0 < 8 < ~} is a diffeomorphism with its image, it is 
again enough to discuss the analogous problems for G r This we shall do in 
several steps. 

~) This can be proved through an easy adaptation of the reasonings leading to the 
classical theorem of S. BE~NSTEIN an Fourier series; el. e. g. A. ZYO~aU~D, Trigonometrical 
series (New York 1952) 6.3, p. 135. 



136 L. PI~KXIqSZK¥ : 

1. I n  wha t  follows we put  the funct ion I~ = f f ( s%s -~) dlx,(s ) (9 > O) in a 
S~ 

more convenient  form. We  recall (cf. A.2 .a .  fl), t h a t  for 0 < 9 < 27~ s%s -~ 
= o~, implies 9 = 9 '  and  s = e. Since % = exp(9/0) (I .A.1.) ,  we can write 
s%s-X= exp(  9 Ad(s)/0). P u t t i n g  Ad(s)/0 = x, where 

1( 1 t 
x =  2 \ x 2 + x o  --x~ / '  

H ,  = {x; xo 2 - x~ - x,~ = 9, Xo > 0} and representing x as a point  in R 8, one 
easily checks, t ha t  the  m a p  F :  So-+  R 3 defined by  F ( s ) =  Ad(s)/0 = x is a 
diffeomorphism between S O and H v F r o m  this we conclude, t h a t  assuming, 
as usual 

(F > o) 

in the  domain  D of R a bounded by  H 0 and H ~ ,  th rough  the relation expx  
= s %s -1 we have a one-to.one differentiable correspondence between (x o, Xl, x2) 
and  the  parameters  (4,/*, 9)- - -  The m a p  x -+  expx  is a diffeomorphism 
between D and  its image D 1 in Go, and  incidentally, we have 9 = ~ /~-Z  x~x,22.  
We put  x o = 9 ehu,  x 1 = 9 shu  cos~v, x~ = 9 shu  sin~v (0 < 9 < 2~,  0 < ~ < 
< 2~t, u > 0) and  using the previous observations,  we express d~t(s) = d2 d~ 
(cf. A. 1.a. ~) in terms of u and  ~v as follows. I f  the carrier of the funct ion 
] E L(G1) lies in D1, we can write 

f t(a) tilt(a) = f / ( e x p x )  ~(x) dx 
G D 

(dx = dx o dx 1 dx~), where ~(x) is some smooth  funct ion in xo, xl, xv  Since the  
H a a r  measure on G 1 is bi-invariant,  and det  (Adg) ----- 1 (g E G1), we conclude, t ha t  
a([Adg]x)---- a(x), implying, t h a t  ~(x) depends on 9 only;  in wha t  follows we 
write ~(9).  Observe, incidentally,  t h a t  by  vir tue  of dza = dx  for a = e, we 

1 
have ~(o) = X-" We have fur thermore dx = 9 2 shu  d 9 du dv 2, hence on D :  

d t t (a )=o~(9 )9~shud9dudyJ .  On the  other  hand  (3.11) gives dtt(a ) 
[ ~ .  q~ 2 

2 ( s m ~ - )  /(u, ~p) dgdud~o,  where ] is the gacobian of (~, kt) according to  

1 
(u, ~o). Comparing the two expressions for d/x (a), we finally get  /=---~ shu.  

We now pu t  g (x) = ] (expx); it is defined and C ~ on R a if / E C~ on G 1. 
Defining 

2~ 

(321) F ( y . y ~ ) = ~ -  g "~(Y~ + Y~),-~(Yl - Y~) c o s ~ , - f f ( y l -  y~.)sin~o d~o 
o 

F(Yl, Y2) is again C °°, and  b y  vi r tue  of the  previous discussion we can write 

O0 

(3.22) I~ = 2 f F ( g e " ,  9 e - " )  (e" - e-")  d u  (9 > 0 ) .  
o 
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2. Our main tool when proving statements (P) will be the following lemma 
(cf. [4] Lemma): 

Suppose H ( X l ,  X2)  is a C ~ function with a compact support. Put  

o o  

g(~) = f H(q~e u, qDe -u) (e u -- e -u) du  (0 < (p < 1).  
0 

Then we have 
c o  

(3.23) lim q~ g(~) = f H(s, O) ds 
9--+0 0 

and 

(3.24) l(9 g(~))' + 2H(0,  0)] < A ~ollog ~l 

/or sufficiently small q~; A is independent o I 9. 
Hence, in particular lim (q g(~0))' = -- 2H(0,  0). To prove all this, we put. 

9-->0 
oo oo 

gl(~) = ~ f H ( 9  e~, 9e-U) eu du,  and g~(q~) = -- ~ f H(q)e  u, q~e-U)e -u  du,  such 
0 0 

tha t  9 g ( ~ ) =  g l ( ~ ) +  g~(9). Making the substitution ~ e " =  s in the first 
expression, we get 

oo M 

/,(v) = f H(s ,~ )  as = f H(s,~)ds 
9 9 

with a sufficiently large M, independent of ~, since the support of H is compact. 
Similarly, the substitution 9 e -~ = s gives 

9 9 

0 e~0~ 

where 0 < e < 1 does not depend on 9. But  these expressions immediately 
oo 

imply linl G1(9) = f H(8, 0) ds and lim g*(9) = 0, proving (3.23). 
9-->0 0 9-->0 

On the other hand 
M 

g[(q~) = - / / (~o ,  ~o) + 2 9 //~ s,-T- 7 
¢ 

OH 
with/-I3 (xl, x~) ~ ~ (xl, x2). I-Ienee for 0 < ~o < 1 ,  say, 

~-(g;(~l + H(o, m) =< ~(H(~o, ~ol- H(0, 01) + 

3,/ M 
( q ~ ) d 8  d8 

+ 2 f •, s,-;- -7<A1 + a , f - 7 <  &llog~l 
9 ~0 

where A1, As and A a do not depend on q. 
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Furthermore 

q~ 

-2~ f H~(~ ~d, ' I s  
~ q)2 

aH 
(Hl(Xl, X~) -~ -~l (xl, x~)). This gives 

l ( 9~ (q )  + H(0,0)) < l ( H ( q ,  q)-- H(0,0)) + 

q~ 

ds 
+ 2e H ( 1 , e q 9  ~) +B f-a-< 

< B1 + B~llogcpl < B~llog~p}. 

These two estimates together prove (3.24). 
Finally, we observe, that  in the lemma it evidently suffices to assume H 

to be of a compact support, when restricted to 0 < xxx 2 < 0, x 1, x 2 >= 0, with 
some fixed ~ > 0. 

3. Now we are ready to prove (P). 
a. First we remark, that  since g (x0, xl, x~) is of a compact support, when 

restricted to the closure of the domain 0 < ~/x0 ~ - x~ -- x~ < ~ < 2 ~, x 0 > 0, 
so is F(yl, Y2) (cf. 3.21), when considered for 0 ~ YlY2 < ~2, Yl, Y~ > O. Hence 
we can apply the lemma above to F in place of H. 

a. Using (3.22) and (3.23) we get 

O(o+) = lim G(q~) = lim s i n a i  
~ - ' + 0  ~ - ' + 0  2 q~ 

c~ co 

= ,~,, 2sin-~ f ~(vo~, ~ -~) (~  - ~-~)e,, = f F(~, o ) ~ .  
q~-..+O 

0 0 

ca 2 ~  

By virtue of (3.21)the last integral is 1 f f g (~ ,  2c°sw ' 2 sinyJ) d ~ . d s .  
0 0 

To find its group theoretic meaning, we put n~ = (~ ; ) E N  + (A.l.a.~¢); 

then if 
~-.l(z~ z , - -  zol 

Z 
- -  z ,  + Zo - - z ~  / 

8 8 
with z e = Y ,  z 1 = 0 ,  z 2 = - ~ - ,  we have z = n  , .  Hence (cf. the similar 

8 8 8 
( .~_) z ~ x ,  withxo~-~,xl------~cos~v,x,=-~sin~,v. reasoninginA.2.a.fl) A d o  + 
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- - o o O  
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oo 2 ~  

l(a), this gives a(+)o - 4 J -  ± f f l(%n-'°-O aWd, 
0 0 

Replacing ] (a) by /(a -1) and denoting the corresponding function by G (~) 
we have G(~) = -- G ( -  ~). Hence 

Oo 2 ~  

¢p "---~" - -  O 
0 0 

1 
Summing up, we have 2(G(o + ) -  O(o -)) = ~  f f / (%n,o_v,  ) dvods. But by 

- - o o 0  

(3.2) this is I~ = f0(0). 
Evidently G(0 ÷) and G (-) are averages of I taken on the common boundary of 

G(r e) and G~ 1), G~ -1) resp. (el. A. 1. b. ~ and A. 2. a. ~). The above discussion shows, 
that  they can be obtained through an appropriate limit transition from the 
averages over conjugacy classes determined by dements of 0. 

The C °o character of G(~0) follows immediately from (3.21) and (3.22). 

b. We have F(0,0)  ~-g( ) 41(e).  Writing s i n ~ = ~ - +  ~03gl(~),and 
1 

applying (3.24), we get for 0 < ~ < y ,  say, 

(el) ~ /(e) ½ = l(e) G' + ~ < (~I~)' + ~ + [((~O2gl((p)) (~oI~))'[ < A ~o[log~o I 

where the appropriately chosen A does not depend on ~0. 
Substituting aga in / (a  -1) in place of ](a), and observing G' (~0)~ G'(--~o), 

1 
we get a similar estimate for -- -~- < cp <: 0. 

By virtue of the remarks made at  the beginning of C, a and b. together 
prove (P) for any j = 0, ± 1, ± 2 . . . . .  and ] E C~ ° on G. 

D. Now we are ready to derive our final formula. 
1. We know, (cf. B), tha t  by virtue of the results of C. we have R = 0 in 

(3.20) ; hence 

(3.25) ~ o 

-2 f 
- -  ora 

Next we eliminate the functions {l~(t)} from 271, by aid of the traces cor- 
responding to the family {Cq (~)} in the following fashion. By virtue of (3.8) 

(3.26) Tr(TtX)) = f X (h)I a d #(h) , 
H 

where X (h~) - e-~ '~*~ 2"~ with an appropriately chosen real a, and 0 ~ T < 1 
(cf. A. 1. c. ~ and fl). The left hand side of (3.26), incidentally, up to a constant 
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factor, is T~)(/) (cf. I I .C and the remark at the end of A. 1.c). Using the 
notations of A.2. c, (3.26) gives readily 

o o  

Tr (TtX)) = -~ . 
- - o o  

We denote the right hand side by F (0, T) for a while. Observe, that  F (0, r) 
---- F ( - - a ,  3) (since ]j(t) -~ 1¢(-- t)), F(a ,  3) ---- F((~, 7: + 1), and/~(t) # 0 but for 
a finite number of ]'s. An easy computation gives 

co 1 

f s; (t)e'°' dt = 2~ f F (0, ~)+=,= dt 
- -  ¢x~ 0 

the Plancherel formula for the real line (l > -~-) 
# 

and, u s i n g  
k 

" ( > )  
f l ;  + 

(t) e -(1--ff td t  = e2#is~ _ 1 F((~, ~) .............................. [<2 d(~l d r .  

0 --co 

Substituting this in the expression of Z 1 (3.25), we get 

t IF(a ,  t) ÷ F ( a ,  - -  l)]  2 d a .  (3.27) /:1 = 2zt ~2 + 1- - - -  

2. Next  we prove the following simple lemma: 
Suppose, that the continuous/unct ion g (u), defined on the real line satisfies ~. 

g(u) ~ g ( - -u ) ,  ft. g(u + 1 ) ~  g(u). Then we have/or  any fixed real a 
oo 1 

f ~ (1 )  ,<f (3.28) (r~ 5~ u' g u + du  = -~ g@) [Re tanhzr(~ -t- i~)] d~.  
0 0 

For the proof we observe, that  

~ 2z 
tanh~z = z., 

~=0 z~ + ( j + l )  2 ~=0 

gives 

1 1 + -) 

On the other hand 
co 1 

s ° ( ' )  s (  ° ) a" ~ u~ g u +  d u =  g u +  ~ _+ (u + i)~ du  
0 0 i 

3 

1 
2 
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Taking into account,  t h a t  b y  vir tue  of properties ~ and fl 

1 
1 T 

o,÷ ÷ ; _  
1 0 

and 

du 

and similarly for do'. 
This gives 

and 

1 0 , d o - - - - f ( ~  Od~°), dzgu~_~ (du doU ) 1 

2(dza)~ 1 = c hu  dcp + du + d~'  

2 (d~a)~ 2 -- -- shu  d ~  

2(d~a)x ~ -- - - ¢ h u  d~p + du - dqY 

3 1 
Y 

1 0 

we obtain  finally 

f ~ a(~ + ½)d~ = = f a(r)ERe tanhz~((r + ir)] dr 
0 0 

1 

= ~ j  g(r) [Retanh~(~ + it)] d r .  
0 

3. Before proceeding, we wish to compare the normalizat ion of the H a a r  
measures as in t roduced in I I . A .  1. and I I I . A . l . e ;  in wha t  follows we denote  
them by  d/~ (a) and d ~ (a) resp. Again, it suffices to  check the  relation between 
the  corresponding measures o n  G 1. The subsequent  computa t ions  will be ve ry  
similar e.g. to  those of A. 2. a. 

I n  any  case we have dr(a) =/(el ,  u, cp') dc fdudc f '  where (~0, u, ~')  are 
Eulerian coordinates ( I I .A.  1) (for reasons of convenience, we now write T, ~ '  
in place of ~1, ~2 resp.). Using the invariance of d~,(a) under  left and r ight  
translat ions by  elements of O, we conclude, t h a t  / does not  depend on ~0 and ~0'. 
Taking the differentials of bo th  sides of a -- oguo' (o, o' E O, gu E V), mult iplying 
on the left by  a -1 = o'-~g_uo -1 and put t ing  o = o' = e we get  

d~a = g_~ do g,, + d~g~, + do ' .  
Here 

ch ~- sh 

h ~ -  c h 2 ]  
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whence 
shu . .  

(dta) ,  1 A (dza)~. A (d~a)lg. = --  --~-- ( ~  A du A dcf') 
shu shu . . 

or Ill ~ - - 4  ' and  d r ( a ) = T a c f a u d q o ' .  Since, on the  o ther  hand  d~(a) 
1 

= (2 ~)2 shu  d ~o d u d ~o' we finally conclude t h a t  d / ,  (a) = c -  d v (a) wi th  c = ar -~. 

4. (3.25) and  (3.27) give 
oo oo 

- - o o  - -  ¢ . ~  

B y  vir tue  of P. 1 and P .2  in B above,  and  since G(q)) vanishes outside a finite 
interval ,  the  Fourier  t rans form of G'(~p) is summable .  Hence,  since the  first 

s ~ m m a n d  on the  r ight  hand  side, too,  i~ s u m m a b l e i n  1 over  [~-, + oo], s o i s t h e  

second. In teg ra t ing  bo th  sides over  this interval ,  the  left hand  side gives 
~ l ( 0 )  (of. P.2) .  Observing again, t h a t  in the  definition of F ( a ,  ~:) (el. D. 1), 
ls (t) 6 C~ and lJ ~ 0 bu t  for a finite number  of j's, in the  first s u m m a n d  on the  
r ight  hand  side we can interchange the  order of the  two integrations.  Keeping a 

1 
fixed, and  apply ing  the  l e m m a  of D.2  with  g(u)-- ~ (F(a ,  u) + F ( a , - u ) ) ,  

in tegra t ion according to  1 gives 
1 

f F(q, IRe tanh~r(a  + iT)] d~ 
0 

whence, t ak ing  into account  F(a, r ) ~  F ( -a ,  ~), and  integrat ing according 
to  a we get  

1 
f f aF(a, r)  [Re tanh~r(a  + i~)] d~ da. 
0 0 

B u t  b y  vi r tue  of D. 3 ~ F (a, ~) and  1 T,  (1)in (3.29) coincide wi th  T~ )(1) 

and  T~([) resp.,  as these were defined in I I . C .  - -  Summing  up, in tegra t ing 

(3.29) over  . , + oo , and  dividing bo th  sides wi th  ~ ,  we finally get. 

oo 1 ¢~ 

ff<,motanh,,(<, + i:)] m'::>(l) + f (1-½) m,(,) 
o o 

B u t  this  is the  same as (2.19), finishing our second proof  for the  Plancherel  
theorem.  
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