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In the late twenties E. Cartan initiated the study of riemannian manifolds which 
are symmetric with respect to each of their points, i.e. for which the reflexion 
reversing geodesics through a given point is an isometry. In view of the rapid and 
rich development of this theory it seems surprising that differential geometers for 
fifty years overlooked the question for an extrinsic analog. If there exists a 
(reasonably defined and non-trivial) class of "symmetric" submanifolds in euc- 
lidean space, we expect to obtain "very detailed and extensive information about 
these spaces. They might therefore often serve as examples for the testing of 
general conjectures. On the other hand, their special nature among submanifolds 
should be so clear that a properly formulated extrapolation to general sub- 
manifolds should often lead to good questions and conjectures". (Adapted from 
the preface of Helgason [5].) 

My aim in this note is twofold. At first I want to define and classify symmetric 
submanifolds of euclidean space. The classification is done by a trivial reduction to 
a problem solved earlier [4]. However I want to give a new and simpler version of 
the algebraic part of my proof in [4]. The second aim is to demonstrate the 
prominent r61e played by symmetric submanifolds in extrinsic differential geo- 
metry. I therefore show that they offer a common frame for various results, e.g. for 
apparently so divergent topics as tight submanifolds, and the studies of Simons, 
Chern, Do Carmo, Kobayashi, and Yau on minimal submanifolds of spheres. 

1. Definition and Classification of Symmetric Submanifolds 

I want to deal with immersed submanifolds. Let M be an n-dimensional 
riemannian manifold, and f :M-,IR "+p an isometric immersion into euclidean 
(n + p)-space. (Everything will be of class C°.) For the second fundamental form of 
f I shall adopt the notation of [13]. For each x~M let a x denote the reflexion at 
the normal space ±~M of f at x, that is the motion of IR" + p which fixes the (affine) 
space through f(x) normal to df(TxM), and reflects f (x)+dj(TxM ) at f(x). 

* To my mother and the memory of my father 
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Definition. f : M--*IR "+p is an (extrinsic) symmetric submanifold (or immersion), if 
for every xeM there is an isometry i of M into itself such that i(x)=x and f,..i 

O" x e l .  

It is (extrinsic) locally symmetric, if every xeM has a neighborhood U and an 
isometry i of U into itself, such that i(x)=x and f,i=ax.~ f on U. 

Remarks. 1. If f is an imbedding, then ax(f(M))cf(M) for all x implies global 
extrinsic symmetry. 

2. Symmetric submanifolds are obviously (intrinsic) riemannian symmetric. 
Hence we are concerned with the problem of "natural" isometric imbeddings of 
riemannian symmetric spaces. 

Examples of Symmetric Submanifolds. Let G be a real connected semisimple Lie 
group of non-compact  type with finite center. Let g = t + p be a Cartan decomposi- 
tion of its Lie algebra, and K the corresponding maximal compact  subgroup. 
Let 0 # q e p ,  and K0: = {k~ KlAd(k)r/= r/}. Then 

f :M : =K/Ko--*p, [k]~-*Ad(k)q 

is an embedding into the euclidean space p with metric given by the Killing form of 
g. The riemannian metric induced on M turns M into a riemannian symmetric 
space, if (adq) 3 =adq .  M is then called a symmetric R-space, and f its standard 
imbedding, see [,11] for explicit descriptions. If f is followed by an affine 
conformal map into some euclidean space, this composition also will be called a 
standard imbedding. Symmetric R-spaces are classified in [,12, 23]. They include 
all riemannian symmetric spaces of the compact type but some of the exceptional 
ones. The standard imbeddings for the hermitian symmetric spaces are those given 
in [,18, 7], while for the classical groups they coincide with the natural imbeddings 
into the space of matrices of the same size. The Grassmannians are imbedded as 
idempotents of constant rank in the spaces of self-adjoint maps. For the projective 
spaces in particular one gets the Veronese maniflolds, [6, 19, 30]. 

I shall now show that standard imbedded symmetric R-spaces are symmetric 
submanifolds. Since adr/is a derivation of g, we have a vector space decomposition 
g = g o O g l ,  where go: =ker(adt/), and gl is the 1-eigenspace of (adr/) 2. Moreover 
go is a subatgebra, and [.qo, g l ]Cgl ,  [-gl,gl] C go' It follows that the reflexion 
s :xo+xl~-~xo-xl, xiegi, defines an involutive automorphism of g, commuting 
with the Cartan involution corresponding to g = f + p .  Tangent and normal 
space of f at the base point [e]e K/Ko are glC3p and goc~p respectively, so that 
s[p is the reflexion at the normal space. (Note q = f ( [ e ] ) e  goc~p.) gl (3[ represents 
the tangent space of M at [e], and for Xe  .ql c~l~ one has 

Ad ( e x p -  tX)q = Ad(exp ts(X))q 
.= e tads(X)~  

etS'~ad X" Sl~ 

= S '~e tadX . s ( l~)  

= s(Ad(exp tX)t/). 

This proves the symmetry of the standard imbeddings. 
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I want to prove a converse of this fact: All (irreducible) symmetric sub- 
manifolds are standard imbedded symmetric R-spaces. To do so, I need a 
formulation of the symmetry condition that is more apt to calculations. For 
intrinsic symmetric submanifolds this is the condition DR=O. For symmetric 
submanifolds we obtain: 

Lemma 1. Locally symmetric submanifolds have covariantly constant second 
fundamental form. 

Proof. Let xe  M. Let ( )± denote the orthogonal projection onto the normal space 
L~M. LetX~ TxM, and c" I--,M be a geodesic such that c'(0) =X.  If~ : =foc  then, 
with the usual identifications, 

~'(O)=df(X) 

~"(0) = c~(x,x) (1) 

~'"(0) = - df(A~(x, xrg) + (DxCO(X,X), 

where D~ denotes the normal covariant derivative of ~. Now the local symmetry 
of f implies ~±(-t)=gL(t) .  Hence g"(0) l=0 ,  showing (D~)(X, X)=0.  Since Dc~ 
is symmetric by Codazzi's equation, it follows Dc~ = 0. 

The converse of Lemma 1 is true. This can be seen from the classification given 
below. A direct proof is due to Strtibing [36]. The classification of submanifoids 
with Da = 0 was done in [2-4]. Here I shall give an outline including details of a 
simplification of the central construction. 

The covariant parallelity of c~ as well as our extrinsic symmetry are hereditary 
under direct products and direct factorization of immersions. I therefore restrict 
my attention to an irreducible symmetric f, such that f (M) is not contained in an 
affine hyperplane of IR~ +p. Moreover let M be connected. According to Lemma 1 
and [3], f is then a minimal immersion into some hypersphere of IR "+p. 

Theorem 1. Under the above assumptions f (M) is an open part of a standard 
imbedded symmetric R-space. 

The proof has two steps. In the first step I construct a standard imbedded 
symmetric R-space in IR "+p which has a point in common with f(M), and such that 
the tangent spaces and second fundamental forms of both spaces agree at this 
point. In the second step, for which the reader is referred to [4], it is shown that the 
parallelity of both second fundamental forms implies then, that the two spaces 
coincide locally. 

The basic algebraic fact deduced from De = 0 is 

Lemma 2. Let x~M. On T: = T~M define a tritinear multiplication by 

{X, Y,, Z} : = R(X, Y)Z + Am<x, y)Z. 

For U, VcTput  L (U ,V) :={U,V , . } :T~T .  
Then for all X, Y, Z, U, Ve T 

{x, E z} = {z, E x }  (2) 

L(U, V) {X, Y,Z} = {L(U, V)X, E Z } -  {X,L(K U)Y,Z} 

+ {x, Y, L(U, V)Z}. (3) 
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This means that {...} turns Tinto a Jordan triple system, see [22]. 

Proof. (2) follows immediately from the Gauss equation 

R(X, Y)Z = A~(r,z/Y - A~(x.z) Y. 

To verify (3) we note that Dc~ = 0 and the local symmetry DR = 0 of M imply 

R(U,V).R=O and R(U,V).An=O 

for all U, Ve 7." ftere R(U, V). denotes the natural extension of the curvature tensor. 
This implies 

R(U,V).{...}=O 

which is (3) with R(U, V) instead of L(U, V). 
[Note R(V, U)= - R ( U ,  V).] 
We are therefore left to show (2) with A~(v,v) instead of L(U,V). Put 

: =c~(U, V). Then the left hand side minus the right hand side of (2) equals 

= A¢R(X, Y ) Z -  R(A ~ ,  Y)Z + R(X, A¢ Y)Z - R(X, Y)A ~Z 

+ AcAn(x, r) Z -  An(a~x, r) Z + An(x,A~r) Z - -  An(x, r)A¢ Z 

= - (R(X, Y)A~Z - A _ ~(aex, r)+ n(x, A~Y~ Z -- A~R(X, Y)Z) 

+ [A~, An(x, r ~ ] Z -  R(AcX, Y)Z + R(X, AcY)Z 

= - (R(X, Y)A~Z- A g ( x "  y ) ¢ Z  - A~R(X, Y)Z) 

+ [A¢, A~tx, r ) ] Z -  R(AcY, Y)Z + R(X, AcY)Z 

(by the normal Gauss equation) 

= - (R(X, Y).A)~Z 

+ [A~, Antx. r)] Z - R ( A  ¢~, Y)Z + R(X, A~ Y)Z. 

The first term equals 0 as we noted above. To show that the other terms cancel, we 
multiply by We T: 

([A¢, An(x, r>JZ-  R(A~,  Y)Z + R(X, A¢ Y)Z, W) 

= (R(Z, W)~, ~(X, Y)>-(R(Z, W)A~, Y)+ (R(Z, W3X, A~Y) 

= (R(Z, W)~, c~(X, Y ) ) -  (Amz, w,gg , V ) -  (A~R(Z, W)X, Y) 

+ <R(Z, w)x, A~ V> 

[because R(Z, I4)- A = 0] 

= <R(Z, W)~, a(X, r)> - <R(Z, W)~, cz(X, r)> 

- (AcR(Z, W)X, Y) + (AeR(Z, W ~ ,  Y) = 0 .  

This finishes the proof of Lemma 2. 
The trace form of the Jordan triple system (T, {...}) is defined as 

2(X, Y): = trace (L(X, Y) + L(EX)). 

Above we made the assumption that f is minimal into a hypersphere, Let r denote 
its radius. 
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Lemma 3. For all X, Ye T 

2(X, Y) = ~ (X, Y).  

Hence 2 is positive definite, which by definition says that (T, {...}) is formal real 
( = compact). 

Proof. Let (Xi) be an orthonormal basis of Z 

2(X,X) = 2 trace L(X,X) 

= 2 ~ ( R ( X , X ~  i + A~,(x,x~i, Xi)  

=2 ~. <~(x,x), ~fx,,xi)> 
=2(~(X,X), nr/) (r/=the mean curvature normal) 

=2n(A~ ,X>.  

By assumption on f A, = ~  Id. Hence 

2(X,X) = ~ <X,X>. 

Now there is a well-known relation between formal real Jordan triple systems and 
symmetric R-spaces based on the construction of a semi-simple Lie algebra from 
such a triple system, see [21]. This construction is due to Tits [31] and Koecher 
[15] for Jordan algebras, and to Meyberg [22] for triple systems. 

Let L be the subspace of End (T) spanned by {L(X, Y)~, Ye T}. 
Put 

g: = Tff)LG T, 

and define a Lie bracket by 

[(X, F, Y), ()(, F, Y)] 

: = (F2~-- fiX, [F,/5] -½L(X, ~+½L(X, Y), F ' Y -  Ft}'). 

Here [ F , F ] : = F F - F F ,  and U is the adjoint of F with respect to the metric 
+..,...>. 

Lemma 4. W~th the above definitions we have: 
(i) (g, [ , ] )  is a Lie algebra. 

(ii) g is semi-simple, and a Cartan decomposition g = ~ Q p is given by 

~ : =span {(X,R(U, V),X)~, U, Ve T} 

p: =span {(X, A~(v,v),-X)[X, U, Ve T}. 

(iii) f f  t 1 is the mean curvature normal o f f  at x, then for 

7/:=(O,A ~n,O)=(O,-Id,  O)~p 
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we have 
(ad ~)3 = ad F/. 

(iv) I f  f : M: = K/Ko--* p is the standard imbedded symmetric R-space determined 
by the data (i), (ii), (iii), then 

df(TLe~) = {(X, 0, -X)lX~ r}, 

and the second fundamental form o f f  is given by 

~((x, o, - x ) ,  (x, o, - x ) )  = (o, &(x,x), o). 

(v) For (X, A¢, -X ) ,  (X, At, - ) ( )  the Killing form of g is given by 

<(x, &, -x) ,  (2L &, -2?)5 = ~(<x,275 + <4, ~5). 

Proof For (i), (ii) see [22] and [16]. In the latter paper the Killing form of fl is 
computed : 

((X, F, Y), (X, F, Y))~ = (F, F>L -}- 2 tr (F o F ) -  ½(2(X, Y) + 2(Y,)f)) 

= ,~(F, ~ )  - ½(~(x,  i 9  + ,~(~ 2~)), 

where 2(F, F) is the bilinear extension of 

2(L(U, V), L(X, Y)) : = 2(L(U, V)X, Y). 

This is used to show that f + p  is a Cartan decomposition. (iii) is a trivial 
computat ion which also shows that  { ( X , 0 , - X ) ~ 6 T }  is the fixed point set of 
(adF/) 2 on p. But this fixed point set is df(T[~]f/l) as remarked earlier. Let 
( X , 0 , - X ) 6  T, and consider c :IR~p, t~-+Ad (exp t(X,O,X))~. 

Then 

c'(O)=ad (X, O,X)~=(X, O, - X ) ,  

and 

c"(0) = (ad (X, O,X))2O = (0, A~(x, x), O) 

proving (iv). From the above formula for the Killing form (v) is obvious if ~ = 0 or 
~=0.  On the other hand, fo rX,  Y~T, ~ =a(X, Y) we have 

((O,A¢ O),(O,A¢,O))g=([(X,O,X),(Y,,O, - Y)],(O,A¢,O)>q 

= - ((Y,  o,  - r ) ,  [ ( x ,  o , x ) ,  (o, A v 0 ) ] ) ~  

= -<(Y,O, - Y ) , ( - A ~ , O , A ~ ) > ,  

= ~(2(Y, AcX) + 2 ( -  Y, - AcX)) 

= ~ <~(x, Y), ~) 

2n 4, 
= 7 ( 4 ) .  

This proves (v). 
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We finally identify IR"+P= TxM@_I_{M and p by 

(x, O~(x,  A v -X) .  

According to (v) of the preceeding lemma this is a homothetic isomorphism, which 
maps f ( x ) = -  r2r/into F/=y([e]), the tangent space df(TxM ) onto df(T[¢~l), and 
preserves the second fundamental form at x. 

This completes the construction of the model symmetric R-space, which in the 
second step of the proof (see [4-]) is shown to coincide locally with the given 
submanifold. This fact can also immediately be seen from [36]. 

From Theorem 1 and Lemma 1 we obtain 

Theorem 2. I f  f :  M--*IR "+" is a connected, locally symmetric submanifold, then f (M)  
is an open part of a standard imbedded symmetric R-space, or of an afJlne subspace, 
or of a product of such spaces. 

For later use I conclude this section with the determination of all flat 
symmetric submanifolds. 

Theorem 3. A connected, .fiat, locally symmetric submanifold f :M~IR "+p maps M 
onto an open part of a Clifjord torus or of an orthogonal cylinder over a Clifford 
torus. (A Clifford torus is the product of plane circles, not necessarily of the same 
radii.) 

Proof Let f be irreducible and not totally geodesic, f (M)  not contained in any 
hyperplane. Then, with the notations of the proof of Theorem 1, we have 

L =  {A¢]~ normal vector at x}. 

But L is a Lie algebra, see [22], and therefore [A¢, A~] = 0 for all normal 3, ~. But 
then the normal bundle is flat. This together with the irreducibility of f implies that 
dim M = 1, and f (M)  is a plane circle, see [3]. 

2. The Geometry of Symmetric Submanifolds 

In this section I want to give a catalogue of results, most of them known, in which 
symmetric submanifolds play a central r61e. I shall outline proofs which emphasize 
the common core of these theorems. 

K~hler Submanifolds. The first result seems to be new. Studying real isometric 
immersions of K~ihler manifolds it is natural to ask for ones that in some 
reasonable sense respect the complex structure. One possible condition to look for 
would be 

e(JX, J Y) = - ~(X, Y) 

for all tangent vectors X, Y. This condition however is satisfied by every complex 
analytic submanifold of ~m considered as a K~hler manifold in IR 2". Hence there is 
not enough rigidity for strong results. The more surprising is 
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Theorem4. Let f:M--*IR "+p be an isometric immersion of a connected Kiihler 
manifold with complex structure J and second fundamental form ~. Suppose 

a(JX, J Y) = a(X, Y) (4) 

for all X,  Y. Then f ( M )  is an open part of a standard imbedded hermitian symmetric 
R-space, of  an affine subspace, or of a product of such spaces. 

Proof Equation (4) is equivalent with 

~ ( J x ,  Y) = - ~(x,  J r ) .  (5) 

Differentiation using DJ = 0 yields 

Dzct(JX, Y) = - Dz~(X, J Y). (6) 

Therefore 

Dz~(X , Y) = Dyer(X, Z) = - Dye(X, JZ Z) 

~)Dyo:(JX, J Z) = O j z ~ ( J X  , Y) 

= - Djz~(X , J I7) = - Dx~(JZ , J Y) 
(6) 

(6)Dx~(JZZ, Y)= -Dxoc(Z , I1)= -Dzoc(X , Y). 

Hence D~=0.  

Remarks. 1. The J-invariance (4) of ~ was first studied by Rettberg [26], see 
Theorem 8 below. 

2. According to [12], p. 877, the complex structure on a standard imbedded 
R-space M = K / K  o with canonically decomposed Lie algebra f = [o + m is given 
by J X = [ l q , X ]  for X e m  where I is a complex structure on g. But an easy 
computation shows that ~(X,X) = IX, IX, q]], see [2]. From this we conclude that 
the standard imbedded hermitian symmetric R-spaces really satisfy (4). 

Minimal Submanifolds of  the Sphere. Simons' paper [28] initiated an extensive 
study of the Laplacian of I] ~ [] 2, and of submanifolds of constant mean curvature in 
the sphere. I f f :M--*lR "+p has image contained in the unit sphere in IR "+p, let h 
denote the second fundamental form with respect to the sphere. Note that D~ =0, 
if and only if Dh = 0. One has 

A(h ,h )  =2(h ,  Ah) + 2(Dh, Dh),  

and integration over a compact M yields 

0 < I (Oh, Dh) = - I (h, Ah).  (7) 

Let M be minimal in the sphere, and put S : =  (h, h). Simons showed 
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/ / 1 \  
Hence, i f S < = n / 1 2 - - ~  ) everywhere on M, then Dh=O (and therefore D~=0), 

and either ~ = 0 ,i.e. f is totally geodesic into the sphere,, or ~ :  n/(~ - ~ ) .  'n 

the latter case one can show p < 3, see [1]. A view on the list of standard imbedded 
symmetric R-spaces in [11] shows that spheres and the 2-dimensional Veronese in 
euclidean 5-space are the only possible irreducible examples. This is the main 
result of Chern et al. [1], who give a direct proof of this fact. 

Opposite to Simon's inequality Yah [35] proved 

-(h, Ah}<S(n-2nK - 1 ) p _ l  S , 

where K denotes the minimal sectional curvature at the point considered. If 
S > ( p -  1)n(1 - 2 K )  everywhere on M, then we see from (5), that again Dh = 0, and 
S = 0  or S = ( p - 1 ) n ( 1 - 2 K ) ,  where K is now a constant on M. Yah shows, that 
K = 0 only for a product of spheres. Since symmetric R-spaces are of compact type, 
we have K > 0 ,  and the only possible case left is that of a standard imbedded 
symmetric space of rank 1, a Veronese. Computation of S for the Veronese 
manifolds shows, that S = ( p - 1 ) n ( 1 - 2 K )  only for the real case. This proves a 
conjecture of [35] : 

Theorem 5 (Yah). A compact minimal subman(fold of dimension n in S "+q with 

S > q n ( 1 - 2 K )  

is a product of spheres (of appropriate radii) or a real Veronese manifold. 

Submanifolds with Plane Geodesics. Hong [8] was the first to ask for all 
submanifolds of euclidean space, whose geodesics are plane curves. He showed the 
following 

Lemma 5. I f  M is connected, and f : M ~ l R  "+p an isometric immersion which is not 
totally geodesic, and such that for every geodesic c in M f~ c is a plane curve in 1R" + P, 
then foc is a plane circle. 

Proof From (1) in the proof of Lemma l we see that A~(x,x~elRX, and Dxc~(X,X) 
and c~(X,X) are linearly dependent for each tangent vector X. Hence (X, Y } = 0  
implies 

<~(x,x),~(x, Y)>: <A~{x,x~;, Y> : 0 .  

So the map X~-,(e(X,X), a(X,X)} is constant on each unit tangent sphere, that is 
all geodesic emanating from a point have the same curvature in IR "+p. Now, if 
(X, Y} = 0, and X, Y are parallel unit fields along geodesics emanating from xe  M, 
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then at x 

X. (c~(X,X), ~(X,X)) =X.  (a(Y, Y), a(Y, Y)) 

= 2 ((DxO:) ( Y, Y), ~( Y, Y)) 

= 2((Dr~)(X, Y),a(K Y)) 

= 2Y. (c~(X, Y), c~(Y, Y)) 

- 2<~(X, Y), (Dr~) (Y, Y)> 

----0. 

Hence t~f~,exp tX is of constant curvature. This proves the lemma. 
But f is obviously locally symmetric, if all geodesics are mapped into circles. 

The latter property is not preserved under direct products. In particular, in view of 
Theorem 3, such a manifold cannot contain a flat totally geodesic submanifold of 
dimension greater than 1. This yields 

Theorem 6. A connected immersed submaniJold , f  :M--*IR n+p which is not totally 
geodesic, and maps geodesics into plane circles, maps M onto an open part of a 
standard imbedded symmetric R-space of rank one, i.e. onto a sphere or a Veronese 
manifold, Conversely all these submanifolds have plane geodesics. 

The last statement is proved in Little [-19], who also gives an elementary direct 
proof of Theorem 6. That theorem was independently found by Nomizu and this 
author. A weaker result was obtained by Hong [8]. 

Submanifolds with Isometric ~. Steiner [29] considers submanifolds of spheres for 
which h : T x M ® T x M - ~ Z f M  yields an isometry of the symmetric tensor product 
i.e. 

(h(X, Y),h(U, V))= (X, U ) (  Y, V ) + ( X ,  V ) (  Y,, U) .  

It follows immediately that 

(Dzh(X, Y), h(U, V)) = 0 

for all tangent vectors. He then assumes the spherical normal space to be of 
dimension=½n(n+ 1), which implies it to be spanned by {h(t], V)]U, V tangent}. 

Therefore Dh =0. Again from the isometry condition we conclude 

(h(X,X),h(X, Y)) = (~(X,X), ct(X, Y)) =0 

for orthonormal X, Y. From (t) we see that the geodesics are plane curves, and 
Theorem 6 together with the information on the codimension restrict the possibi- 
lities to real Veronese manifolds, which in fact have the assumed isometry 
property. 

O-Tight Submanifotds. A compact, connected immersion f :M~IR  n+v is called 
O-tight, if for almost all {elR "+p the height function { f  :M~IR,  x~--,(~,f(x)) has 
only one local minimum. I shall use the notation ~f  also for normal vectors ~ of f ,  
using the canonical identification. Then x is a critical point of i f ,  if and only if 
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~e .I_{M. In this case Hessx ~f  = Ae. A point x e M  is called an extreme point, if there 
exists ~e L{M such that A~ is positive definite. 

The following temma is well-known, see for example [20]. 

Lemma 6. Let f :M-~IR "+p be O-tight, and x e M  an extreme point. Let ~ be normal 
at x. Then i f  > d f(x)  if and only if A~ > O. I f  f is substantial in the sense that f (M)  
is not contained in an affine hyperplane, then ~-+A~ is injective on the normal space, 
and the image of ~ is the full normal space. 

It follows that the codimension of a 0-tight substantial immersion of an 
n-manifold is <½n(n+ 1), which is the dimension of the space of symmetric 
endomorphisms on a tangent space of M. 

Theorem 7 (Kelly [10]). Let G/K be a compact riemannian symmetric space, and 
n :G~SO(n+ p) a real class one representation such that 7~ induces a O-tight 
isometric immersion f :G/K~IR "+p, [g]~-~n(g)t7 for some rleIR n+p. Then f is 
extrinsic symmetric. 

Proof. c~ and De are computed easily in terms of dn, and one obtains 

(Dzot(X, Y), ~(U, V) )=0 

for all X, Y,Z, U, V, see Lemma 6.1 of [10]. We now restrict our attention to the 
affine space spanned by f(M), that is, we assume f to be substantial. Since f (M)  is 
contained in a hypersphere, every point is extreme, whence D~ = 0 by Lemma 6. By 
Theorem t f covers a globally symmetric submanifold, and is therefore itself 
globally symmetric. 

Conversely compact connected symmetric submanifolds are 0-tight, as an easy 
geometric argument shows. Kobayashi and Takeuchi proved that they are in fact 
not only 0-tight but tight [-14]. 

The Kuiper-Little-Pohl theorem ([17, 20]) states that a 0-tight submanifold of 
maximal codimension, i.e. of codimension ½n(n+l), n the dimension of the 
submanifold, is projectively equivalent with a real Veronese manifold. Looking for 
an analogous characterization of the complex Veronese, one can try to make the 
appropriate codimension (namely n 2 for a manifold of real dimension 2n) the 
maximum possible. This is achieved by the additional assumption that M is 
hermitian (not necessarily k~hlerian), and a is J-invariant in the sense of (4). Then 
Rettberg [26] could show by a nice induction argument on the dimension, that all 
geodesics are plane curves, which led him to 

Theorem 8 (Rettberg [26]). Let f :M-dR 2~+p be an isometric immersion of a 
compact connected hermitian manifold of real dimension 2n, which satisfies (4). I f  f 
is substantial, O-tight, and of codimension p = n 2, then f (M)  is a complex Veronese. 

It might be possible to give a similar proof for the real case under the 
additional assumption that f (M)  lies in a sphere (or is 0-taut). 

Remark. One may be tempted to study symmetric submanifolds in more general 
spaces, which of course must admit sufficiently many symmetries themselves. The 
spherical case coincides with the euclidean, but I have not thought about the 
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hyperbolic case. K~ihler submanifolds with D~=0 in complex projective space 
have been considered in [25, 24]. 

Acknowledgements. I want to thank N. Kuiper for pointing out an error in a previous version of this 
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