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Rings for which Every Cyclic Module
is Quasi-Projective

ANNE K OEHLER

Introduction

Let R be a ring with an identity. A ring R will be called a left (right) g*-ring
ifevery R-homomorphicimage of R as a left (right) R-module is quasi-projective,
that is, if every cyclic left (right) R-module is quasi-projective. The study of
rings with the dual property (rings in which every left (right) ideal is quasi-
injective) was begun by Jain, Mohamed, and Singh [5]. They call these rings
with the dual property left (right) g-rings. One object of this paper is to see if
some of the results for g-rings are also true for g*-rings. S. Mohamed has a paper
[10] in which the goal is to prove the following theorem: A left (right) Artinian
ring is a left g-ring if and only if it is a right g-ring. The problem was suggested
to him by C. Faith. By using the notion of a g*-ring, a short proof of Mohamed’s
theorem is obtained in Section 3. In addition it is seen that Mohamed’s theorem
is true in a more general case.

1. Background

In this paper all modules are unital modules, and homomorphisms are
R-homomorphisms. The Jacobson radical will be denoted by N. The results
in this section will be stated for left R-modules. A module 4 is large in M if
BnA=£0 for every nonzero submodule B of M. A module A4 is small in M if
whenever A+ B =M for a submodule B of M, B= M. A projective module P
is a projective cover of M if there is an epimorphism ¢ : P — M such that Ker¢
is small in P. An injective module Q is the injective hull of M if there is a mono-
morphism j: M — Q such that j(M) is large in Q. A ring is semi-perfect if every
finitely generated module has a projective cover. Bass [1] has characterized
these rings by

Theorem 1.1. A ring R is semi-perfect if and only if R/N is semisimple
Artinian, and idempotents modulo N can be lifted.

It follows from the proof of this theorem that if R is semi-perfect,
R=Re; +:--+Re, where e, ...,e, are orthogonal indecomposable idem-
potents, Re;/Ne, is simple, and Ne, is a unique maximal left ideal in Re,.

A module M is quasi-projective if for every epimorphism ¢q: M — A,
Hom(M, A) =gq° H(M, M). Miyashita [9, p. 92-—93] and Wu and Jans [16,
p. 440] have proved.
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Theorem 1.2. Let P be a projective module, ¢ : P— M be an epimorphism,
and S = End(P). Then i) M is quasi-projective if Ker ¢ is invariant under S, and
ii) Ker ¢ is invariant under S if Ker ¢ is small in P and M is quasi projective.

It is clear from i) that every commutative ring is a left g*-ring. A
module is quasi-injective if for every monomorphism j: 4 - M, Hom{(4, M)
= Hom (M, M)-j. The dual theorem of Theorem 1.2 was proved by Johnson
and Wong [6, p. 261] in the form of

Theorem 1.3. Let Q be the injective hull of M and S =End(Q). Then M is
quasi-injective if and only if M is invariant under §.

A ring R is quasi-Frobenius if R is left Artinian and left injective. There are
many equivalent forms of this definition. See [12, p. 373] for several references
for studies of these rings. For this paper it is necessary to know that if R is quasi-
Frobenius, it is a left injective cogenerator. A module M is a left cogenerator
if M contains a copy of the injective hull of each simple left module {12, p. 374].

In both Sections 2 and 3, the results will be stated for left g*-rings. It should
be clear that the corresponding statements for right g*-rings will also be true.

2. Structure of Special g*-Rings
In this section several types of g*-rings are investigated.

Theorem 2.1. Let R be a semi-perfect ring. Then R is a left q*-ring if and
only if every left ideal in the radical N of R is an ideal.

Proof. i) Assume R is a left g*-ring. It is known that every left ideal in N
is small. Hence, by Theorem 1.2 every left ideal in N is an ideal.

ii) Assume every left ideal in N is an ideal. Let L be a left ideal in R. Then
R/L has a projective cover ¢ : P->R/L, and P can be considered to be a direct
summand of R. Since Ker ¢ is small in P, it is small in R and contained in N.
If fe End(P), then there is an r € R such that f(x)= xr for every x € P. There-
fore Ker ¢ is invariant under End (P). By Theorem 1.2 R/L is quasi-projective.

Theorem 2.2. If R is a semi-perfect left injective q*-ring, then R is the ring
direct sum of a semisimple Artinian ring and a ring B=Re + --- + Re, where
Re;=Re;onlyifi=j,and e,, ..., e, are orthogonal indecomposable idempotents.

Proof. Since R is semi-perfect, R=Re; + -+ Re,+Rep y + -+ Re,
where ey, ..., e, are orthogonal indecomposable idempotents. One can assume
Re,, ..., Re, are all the simple components of the decomposition. By Theorem
2.1 Ne;-e;Re;=0 if i +j. Since Hom(Re,, Re) =e¢;Re;, Re; % Re; for i,j>k
and i #j.

Let A=Re,+--+Re, and B=Re,,,+ -+ Re,. The proof will be
complete if A and B are shown to be ideals. Let i £ k and j > k. Then Re; - ¢;Re;
is 0 or simple and is contained in Re;. Since Re; is a simple injective module,
and Re; is not simple and is indecomposable, Re;-e;Re;=0. Similarly
Re;- e;Re;= 0 because Re; is a simple projective module.
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Corollary 2.3. If R is a quasi-Frobenius left g*-ring, then R is Frobenius.

Proof. The corollary follows immediately from Theorem 2.2 and Naka-
yama’s original definition for quasi-Frobenius and Frobenius rings {11, p. 8].
The next lemma has been proved by Golan [3] and Rangaswamy [13].

Lemma 2.4. If a module M is the homomorphic image of a projective module P,
and P ® M is quasi-projective, then M is projective.

Theorem 2.5. Let R, be the n by n matrix ring with entries from a ring R and
n> 1. Then R, is a left g*-ring if and only if R is semisimple Artinian.

Proof. i) If R is semisimple Artinian, then R, is semisimple Artinian. Every
semisimple Artinian ring is, of course, a left g*-ring.

it} Assume R, is a left ¢*-ring. To show R is semisimple Artinian it is
sufficient to show that every simple left R-module is projective [14]. Let L be
a maximal left ideal in R. The set of all matrices in R, with entries in L will be
denoted by L,, and ¢;; has the usual meaning of the matrix with 1 in the i
row and i'"™ column and O elsewhere. Let I be the left ideal L,e,, in R,,

M=R,e,,/I, and P= ( Y R,,eii+1)/1. Observe that P is projective because

i=2

P= ) R,e;. Also, R,/I=P@®M as R,-modules

i=2

Define an R,-epimorphism ¢:P—M by ¢((a;)+I)=(b;)+I where
b;=0for j>1 and b;; =a,;, for i=1,...,n. Since P@®M is quasi-projective,
it follows from Lemma 2.4 that there is a monomorphism j: M - P such that
¢ j =identity on M. Let ¢* be the natural map from R to R/L. The simple
module R/L will be projective if there is 2 homomorphism j*: R/L— R such
that ¢*.j* =identity on R/L. Define j*: R/L-—R by j*(r+ L)=a,, where
jreyy +1)=(a;) + 1. The function j* is well defined, an R-homomorphism,
and ¢* - j* = identity.

The preceding theorem is true if g*-ring is replaced by g-ring [5]. Also,
a prime g-ring is a simple Artinian ring [5]. However, a prime g*-ring does
not need to be simple Artinian even if the ring is semi-perfect (i.e. a local ring
which is an integral domain).

Theorem 2.6. If R is a prime semi-perfect left q*-ring, then R is a simple
Artinian ring, or R is a local ring.

Proof. Since R is semi-perfect, R =Re, +--- + Re, where ¢,,...,e, are
nonzero orthogonal indecomposable idempotents. If n=1, then R is local
because Ne, is a unique maximal left ideal in Re,. From Theorem 2.1
Ne;-Ne;CNe;nNej=0 for i+j. Hence Ne;=0 for all but at most one i,
say i =k, because R is prime. Since ¢, Re; + 0 (because R is prime), there is an
epimorphism from Re, to Re;. So Re,~Re, for i=1,...,n because Re, is
simple and projective, and Re, is indecomposable. Therefore R is simple
Artinian if n> 1.
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3. g*-Rings and g-Rings

A few relationships between left g*-rings, right g*-rings, left g-rings, and
right g-rings will now be studied. The first theorem appears in [5], and it can
be proved in a manner dual to the proof of Theorem 2.1.

Theorem 3.1. Let R be a left injective ring. Then R is a left q-ring if and only
if every large left ideal is an ideal.

Theorem 3.2. If R is a semi-perfect right g-ring, then R is a left q*-ring.

Proof. Mohamed has shown that left ideals in N are ideals if R is a right
g-ring in the following way [10]. Let L be a left ideal in N and a € L. Since R
is right injective, N ={a:r(a) is large right ideal in R} and I(r(Ra))=Ra
[2, p. 26]. In addition r(Ra)=r(a) which is a large ideal in R. Therefore, Ra
is an ideal, that is, L is an ideal. By Theorem 2.1 R is a left g*-ring.

Theorem 3.3. Let R be a left injective and semi-perfect ring. If R is a left
g*-ring, then R is a left q-ring.

Proof. Let I be a large left ideal in R. The module R/I has a projective cover
P % R/I-0. Let f: R— R/I be the canonical homomorphism. Then there is an
epimorphism f’: R— P such that ¢ - f' = f because P is projective and Ker¢
is small. Since P is projective and f’ is onto, R=Re, @ Re, with Re, =P.
Also, it can be seen that I = K@ Re, where K=~ Ker¢ and K < Re,. The left
ideal K is small in R, and R is a left g*-ring. Thus K C N, and K must be an
ideal by Theorem 2.1. The left socle S of R is contained in I because I is large.
The left ideal Ne, is an ideal in R. So Re, - e, Re, € § because Ne, - ¢,Re; =0
and R is semi-perfect. Therefore I is an ideal, and R is a left g-ring by Theo-
rem 3.1.

Theorem 3.4. Let R be a left injective and semi-perfect ring. If R is a left
q*-ring, then R is a right q*-ring.

Proof. The result follows immediately from Theorem 3.3 and Theorem 3.2.

Theorem 3.5. Let R be semi-perfect and both right and left injective. Then
the following statements are equivalent.

1. Ris a left g*-ring.

2. Ris a left g-ring.

3. Ris aright g*-ring.

4. Ris aright g-ring.

Proof. Use Theorems 3.2 and 3.3.

The equivalence of 2 and 4 in Theorem 3.5 is a generalization of S.
Mohamed’s theorem (see the introduction),

It has not been shown that a semi-perfect left g-ring is a g*-ring. However,
the next theorem and Theorem 3.5 indicate that this statement may be true.

Theorem 3.6. If R is a left cogenerator and a left g-ring, then R is a left
g*-ring.
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Proof. A left quasi-injective ring is left injective. So R is semi-perfect
[12, p. 377]. Let I be a left ideal in N. It follows that I is quasi-injective. By
Theorem 2.1 it is sufficient to show I is an ideal. First it will be shown that one
can assume [ is indecomposable. The injective hull of I, E(I), can be chosen
in R. Then E(I}) = Re where e is an idempotent. Since R is semi-perfect Re is a
direct sum of indecomposable modules. Hence I is a direct sum of indecom-
posable quasi-injective left ideals [4, p. 354].

Suppose I is an indecomposable left ideal in N. Then R=Re, + Re, + -+
-+ Re, where E(I)= Re,, and e,, ¢,, ..., ¢, are orthogonal indecomposable
idempotents. In addition it is known that each Re,, i=1, ..., n, is the injective
hull of a minimal left ideal. This last statement can be proved by using the
facts that R is a cogenerator, each simple module is isomorphic to Re;/Ne; for
some i, Re;> Re; iff Re;/Ne, = Re;/Ne;, and each Re; can contain at most one
minimal ideal.

The left ideal I is contained in Ne;. Obviously, Ne;-¢;Re;=0 if i+ 1.
Also,Ie; Re; C1by Theorem 1.3. All that remains to be shownis thatIe; Re;=0
when j+ 1. Let A; be the minimal left ideal in Re;, and consider the large left
ideal A =Re; +---+ A;+ --- + Re,. This left ideal must be an ideal by Theo-
rem 3.1. Thus Ne, -e, Re;=0 because Ne, is the unique maximal left ideal
in Re,. Therefore, Ie; Re;=0, and I is an ideal.

Corollary 3.7. If R is a quasi-Frobenius left q-ring, then R is a Frobenius
ring.

Proof. Use Theorem 3.6 and Corollary 2.3.

The paper will now be ended with an example of a ring which is both left
and right Artinian, a right g*-ring, but not a left ¢g*-ring.

b -
Example 3.8. Let R= {{%’ E}: aieZ,and b, e Zz} where Z, is the ring

of integers modulo 2, and Z,, is the ring of integers modulo 4. Define

5 e [o A-1 =

o g 1o fl | o ©c¥r
and
{gg} '5} Pc_ij é}_ ladl ae+bf
0 ¢ |0 f] |o cf
: . la] b - _
The radical of Ris N = o ol lal = |0} or |2),and b€ Z,;. Every right ideal
in N is an ideal. However, the left ideal L= { %)1 %}, {%‘ %}} is not an ideal.

Hence, by Theorem 2.1 R is a right g*-ring but not a left g*-ring.
22 Math. Ann. 189
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