Rings for which Every Cyclic Module is Quasi-Projective

ANNE KOEHLER

Introduction

Let R be a ring with an identity. A ring R will be called a left (right) q^* -ring if every R-homomorphic image of R as a left (right) R-module is quasi-projective, that is, if every cyclic left (right) R-module is quasi-projective. The study of rings with the dual property (rings in which every left (right) ideal is quasiinjective) was begun by Jain, Mohamed, and Singh [5]. They call these rings with the dual property left (right) q-rings. One object of this paper is to see if some of the results for q-rings are also true for q^* -rings. S. Mohamed has a paper [10] in which the goal is to prove the following theorem: A left (right) Artinian ring is a left q-ring if and only if it is a right q-ring. The problem was suggested to him by C. Faith. By using the notion of a q^* -ring, a short proof of Mohamed's theorem is obtained in Section 3. In addition it is seen that Mohamed's theorem is true in a more general case.

1. Background

In this paper all modules are unital modules, and homomorphisms are *R*-homomorphisms. The Jacobson radical will be denoted by *N*. The results in this section will be stated for left *R*-modules. A module *A* is *large* in *M* if $B \cap A \neq 0$ for every nonzero submodule *B* of *M*. A module *A* is *small* in *M* if whenever A + B = M for a submodule *B* of *M*, B = M. A projective module *P* is a *projective cover* of *M* if there is an epimorphism $\phi: P \to M$ such that Ker ϕ is small in *P*. An injective module *Q* is the *injective hull* of *M* if there is a monomorphism $j: M \to Q$ such that j(M) is large in *Q*. A ring is *semi-perfect* if every finitely generated module has a projective cover. Bass [1] has characterized these rings by

Theorem 1.1. A ring R is semi-perfect if and only if R/N is semisimple Artinian, and idempotents modulo N can be lifted.

It follows from the proof of this theorem that if R is semi-perfect, $R = Re_1 + \dots + Re_n$ where e_1, \dots, e_n are orthogonal indecomposable idempotents, Re_i/Ne_i is simple, and Ne_i is a unique maximal left ideal in Re_i .

A module M is quasi-projective if for every epimorphism $q: M \to A$, Hom $(M, A) = q \circ H(M, M)$. Miyashita [9, p. 92-93] and Wu and Jans [16, p. 440] have proved. **Theorem 1.2.** Let P be a projective module, $\phi : P \rightarrow M$ be an epimorphism, and S = End(P). Then i) M is quasi-projective if Ker ϕ is invariant under S, and ii) Ker ϕ is invariant under S if Ker ϕ is small in P and M is quasi projective.

It is clear from i) that every commutative ring is a left q^* -ring. A module is *quasi-injective* if for every monomorphism $j: A \to M$, Hom $(A, M) = \text{Hom}(M, M) \circ j$. The dual theorem of Theorem 1.2 was proved by Johnson and Wong [6, p. 261] in the form of

Theorem 1.3. Let Q be the injective hull of M and S = End(Q). Then M is quasi-injective if and only if M is invariant under S.

A ring R is quasi-Frobenius if R is left Artinian and left injective. There are many equivalent forms of this definition. See [12, p. 373] for several references for studies of these rings. For this paper it is necessary to know that if R is quasi-Frobenius, it is a left injective cogenerator. A module M is a *left cogenerator* if M contains a copy of the injective hull of each simple left module [12, p. 374].

In both Sections 2 and 3, the results will be stated for left q^* -rings. It should be clear that the corresponding statements for right q^* -rings will also be true.

2. Structure of Special q*-Rings

In this section several types of q^* -rings are investigated.

Theorem 2.1. Let R be a semi-perfect ring. Then R is a left q^* -ring if and only if every left ideal in the radical N of R is an ideal.

Proof. i) Assume R is a left q^* -ring. It is known that every left ideal in N is small. Hence, by Theorem 1.2 every left ideal in N is an ideal.

ii) Assume every left ideal in N is an ideal. Let L be a left ideal in R. Then R/L has a projective cover $\phi: P \rightarrow R/L$, and P can be considered to be a direct summand of R. Since Ker ϕ is small in P, it is small in R and contained in N. If $f \in \text{End}(P)$, then there is an $r \in R$ such that f(x) = xr for every $x \in P$. Therefore Ker ϕ is invariant under End(P). By Theorem 1.2 R/L is quasi-projective.

Theorem 2.2. If R is a semi-perfect left injective q^* -ring, then R is the ring direct sum of a semisimple Artinian ring and a ring $B = Re_1 + \cdots + Re_n$ where $Re_i \cong Re_j$ only if i = j, and e_1, \ldots, e_n are orthogonal indecomposable idempotents.

Proof. Since R is semi-perfect, $R = Re_1 + \dots + Re_k + Re_{k+1} + \dots + Re_n$ where e_1, \dots, e_n are orthogonal indecomposable idempotents. One can assume Re_1, \dots, Re_k are all the simple components of the decomposition. By Theorem 2.1 $Ne_i \cdot e_i Re_j = 0$ if $i \neq j$. Since $Hom(Re_i, Re_j) = e_i Re_j$, $Re_i \ncong Re_j$ for i, j > k and $i \neq j$.

Let $A = Re_1 + \dots + Re_k$, and $B = Re_{k+1} + \dots + Re_n$. The proof will be complete if A and B are shown to be ideals. Let $i \leq k$ and j > k. Then $Re_i \cdot e_i Re_j$ is 0 or simple and is contained in Re_j . Since Re_i is a simple injective module, and Re_j is not simple and is indecomposable, $Re_i \cdot e_i Re_j = 0$. Similarly $Re_j \cdot e_j Re_i = 0$ because Re_i is a simple projective module.

Corollary 2.3. If R is a quasi-Frobenius left q*-ring, then R is Frobenius.

Proof. The corollary follows immediately from Theorem 2.2 and Nakayama's original definition for quasi-Frobenius and Frobenius rings [11, p. 8].

The next lemma has been proved by Golan [3] and Rangaswamy [13].

Lemma 2.4. If a module M is the homomorphic image of a projective module P, and $P \oplus M$ is quasi-projective, then M is projective.

Theorem 2.5. Let R_n be the n by n matrix ring with entries from a ring R and n > 1. Then R_n is a left q*-ring if and only if R is semisimple Artinian.

Proof. i) If R is semisimple Artinian, then R_n is semisimple Artinian. Every semisimple Artinian ring is, of course, a left q^* -ring.

ii) Assume R_n is a left q^* -ring. To show R is semisimple Artinian it is sufficient to show that every simple left R-module is projective [14]. Let L be a maximal left ideal in R. The set of all matrices in R_n with entries in L will be denoted by L_n , and e_{ii} has the usual meaning of the matrix with 1 in the i^{th} row and i^{th} column and 0 elsewhere. Let I be the left ideal $L_n e_{11}$ in R_n , $M = R_n e_{11}/I$, and $P = \left(\sum_{i=2}^n R_n e_{ii} + I\right)/I$. Observe that P is projective because $P \cong \sum_{i=2}^n R_n e_{ii}$. Also, $R_n/I = P \oplus M$ as R_n -modules

Define an R_n -epimorphism $\phi: P \to M$ by $\phi((a_{ij}) + I) = (b_{ij}) + I$ where $b_{ij} = 0$ for j > 1 and $b_{i1} = a_{i2}$ for i = 1, ..., n. Since $P \oplus M$ is quasi-projective, it follows from Lemma 2.4 that there is a monomorphism $j: M \to P$ such that $\phi \circ j =$ identity on M. Let ϕ^* be the natural map from R to R/L. The simple module R/L will be projective if there is a homomorphism $j^*: R/L \to R$ such that $\phi^* \circ j^* =$ identity on R/L. Define $j^*: R/L \to R$ by $j^*(r+L) = a_{12}$ where $j(re_{11} + I) = (a_{ij}) + I$. The function j^* is well defined, an R-homomorphism, and $\phi^* \circ j^* =$ identity.

The preceding theorem is true if q^* -ring is replaced by q-ring [5]. Also, a prime q-ring is a simple Artinian ring [5]. However, a prime q^* -ring does not need to be simple Artinian even if the ring is semi-perfect (i.e. a local ring which is an integral domain).

Theorem 2.6. If R is a prime semi-perfect left q^* -ring, then R is a simple Artinian ring, or R is a local ring.

Proof. Since R is semi-perfect, $R = Re_1 + \dots + Re_n$ where e_1, \dots, e_n are nonzero orthogonal indecomposable idempotents. If n = 1, then R is local because Ne_1 is a unique maximal left ideal in Re_1 . From Theorem 2.1 $Ne_i \cdot Ne_j \subseteq Ne_i \cap Ne_j = 0$ for $i \neq j$. Hence $Ne_i = 0$ for all but at most one *i*, say i = k, because R is prime. Since $e_k Re_i \neq 0$ (because R is prime), there is an epimorphism from Re_k to Re_i . So $Re_k \cong Re_i$ for $i = 1, \dots, n$ because Re_i is simple and projective, and Re_k is indecomposable. Therefore R is simple Artinian if n > 1.

3. q*-Rings and q-Rings

A few relationships between left q^* -rings, right q^* -rings, left q-rings, and right q-rings will now be studied. The first theorem appears in [5], and it can be proved in a manner dual to the proof of Theorem 2.1.

Theorem 3.1. Let R be a left injective ring. Then R is a left q-ring if and only if every large left ideal is an ideal.

Theorem 3.2. If R is a semi-perfect right q-ring, then R is a left q*-ring.

Proof. Mohamed has shown that left ideals in N are ideals if R is a right q-ring in the following way [10]. Let L be a left ideal in N and $a \in L$. Since R is right injective, $N = \{a: r(a) \text{ is large right ideal in } R\}$ and l(r(Ra)) = Ra [2, p. 26]. In addition r(Ra) = r(a) which is a large ideal in R. Therefore, Ra is an ideal, that is, L is an ideal. By Theorem 2.1 R is a left q*-ring.

Theorem 3.3. Let R be a left injective and semi-perfect ring. If R is a left q^* -ring, then R is a left q-ring.

Proof. Let *I* be a large left ideal in *R*. The module R/I has a projective cover $P \stackrel{\Phi}{\to} R/I \rightarrow 0$. Let $f: R \rightarrow R/I$ be the canonical homomorphism. Then there is an epimorphism $f': R \rightarrow P$ such that $\phi \circ f' = f$ because *P* is projective and Ker ϕ is small. Since *P* is projective and f' is onto, $R = Re_1 \oplus Re_2$ with $Re_1 \cong P$. Also, it can be seen that $I = K \oplus Re_2$ where $K \cong \text{Ker} \phi$ and $K \subseteq Re_1$. The left ideal *K* is small in *R*, and *R* is a left q^* -ring. Thus $K \subseteq N$, and *K* must be an ideal by Theorem 2.1. The left socle *S* of *R* is contained in *I* because I is large. The left ideal Ne_2 is an ideal in *R*. So $Re_2 \cdot e_2 Re_1 \subseteq S$ because $Ne_2 \cdot e_2 Re_1 = 0$ and *R* is semi-perfect. Therefore *I* is an ideal, and *R* is a left *q*-ring by Theorem 3.1.

Theorem 3.4. Let R be a left injective and semi-perfect ring. If R is a left q^* -ring, then R is a right q^* -ring.

Proof. The result follows immediately from Theorem 3.3 and Theorem 3.2.

Theorem 3.5. Let R be semi-perfect and both right and left injective. Then the following statements are equivalent.

- 1. R is a left q^* -ring.
- 2. R is a left q-ring.
- 3. R is a right q*-ring.
- 4. R is a right q-ring.

Proof. Use Theorems 3.2 and 3.3.

The equivalence of 2 and 4 in Theorem 3.5 is a generalization of S. Mohamed's theorem (see the introduction),

It has not been shown that a semi-perfect left q-ring is a q^* -ring. However, the next theorem and Theorem 3.5 indicate that this statement may be true.

Theorem 3.6. If R is a left cogenerator and a left q-ring, then R is a left q^* -ring.

Rings

Proof. A left quasi-injective ring is left injective. So R is semi-perfect [12, p. 377]. Let I be a left ideal in N. It follows that I is quasi-injective. By Theorem 2.1 it is sufficient to show I is an ideal. First it will be shown that one can assume I is indecomposable. The injective hull of I, E(I), can be chosen in R. Then E(I) = Re where e is an idempotent. Since R is semi-perfect Re is a direct sum of indecomposable modules. Hence I is a direct sum of indecomposable quasi-injective left ideals [4, p. 354].

Suppose I is an indecomposable left ideal in N. Then $R = Re_1 + Re_2 + \cdots + Re_n$ where $E(I) \cong Re_1$, and e_1, e_2, \ldots, e_n are orthogonal indecomposable idempotents. In addition it is known that each Re_i , $i = 1, \ldots, n$, is the injective hull of a minimal left ideal. This last statement can be proved by using the facts that R is a cogenerator, each simple module is isomorphic to Re_i/Ne_i for some i, $Re_i \cong Re_j$ iff $Re_i/Ne_i \cong Re_j/Ne_j$, and each Re_i can contain at most one minimal ideal.

The left ideal I is contained in Ne_1 . Obviously, $Ne_1 \cdot e_i Re_j = 0$ if $i \neq 1$. Also, $Ie_1 Re_1 \subseteq I$ by Theorem 1.3. All that remains to be shown is that $Ie_1 Re_j = 0$ when $j \neq 1$. Let A_j be the minimal left ideal in Re_j , and consider the large left ideal $A = Re_1 + \cdots + A_j + \cdots + Re_n$. This left ideal must be an ideal by Theorem 3.1. Thus $Ne_1 \cdot e_1 Re_j = 0$ because Ne_1 is the unique maximal left ideal in Re_1 . Therefore, $Ie_1 Re_j = 0$, and I is an ideal.

Corollary 3.7. If R is a quasi-Frobenius left q-ring, then R is a Frobenius ring.

Proof. Use Theorem 3.6 and Corollary 2.3.

The paper will now be ended with an example of a ring which is both left and right Artinian, a right q^* -ring, but not a left q^* -ring.

Example 3.8. Let $R = \left\{ \begin{bmatrix} a & \overline{b} \\ 0 & \overline{c} \end{bmatrix} : a \in Z_4 \text{ and } \overline{b}, \overline{c} \in Z_2 \right\}$ where Z_2 is the ring of integers modulo 2, and Z_4 is the ring of integers modulo 4. Define

$$\begin{bmatrix} \underline{a} & \overline{b} \\ 0 & \overline{c} \end{bmatrix} + \begin{bmatrix} \underline{b} & \overline{e} \\ 0 & \overline{f} \end{bmatrix} = \begin{bmatrix} \underline{a+d} & \overline{b+e} \\ 0 & \overline{c+f} \end{bmatrix}$$

and

$$\begin{bmatrix} \underline{|a|} & \overline{b} \\ 0 & \overline{c} \end{bmatrix} \begin{bmatrix} \underline{|d|} & \overline{e} \\ 0 & \overline{f} \end{bmatrix} = \begin{bmatrix} \underline{|ad|} & \overline{ae+bf} \\ 0 & \overline{cf} \end{bmatrix}$$

The radical of R is $N = \left\{ \begin{bmatrix} a & \overline{b} \\ 0 & \overline{0} \end{bmatrix} : |\underline{a}| = [0] \text{ or } [\underline{2}], \text{ and } \overline{b} \in \mathbb{Z}_2 \right\}$. Every right ideal in N is an ideal. However, the left ideal $L = \left\{ \begin{bmatrix} 0 & \overline{0} \\ 0 & \overline{0} \end{bmatrix}, \begin{bmatrix} 2 & \overline{1} \\ 0 & \overline{0} \end{bmatrix} \right\}$ is not an ideal. Hence, by Theorem 2.1 R is a right q*-ring but not a left q*-ring. 22 Math. Ann. 189

References

- 1. Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings. Trans. Amer. Math. Soc. 95, 466-488 (1960).
- 2. Faith, C.: Lectures on injective modules and quotient rings. Berlin-Heidelberg-New York: Springer 1967.
- 3. Golan, J. S.: Characterization of semisimple and perfect rings using quasi-projective modules. Israel J. Math. (to appear).
- 4. Harada, M.: Note on quasi-injective modules. Osaka J. Math. 2, 351-356 (1965).
- 5. Jain, S. K., Mohamed, S. H., Singh, Surjeet: Rings in which every right ideal is quasi-injective. Pacific J. Math. **30**, 73-79 (1969).
- Johnson, R. E., Wong, E. T.: Quasi-injective modules and irreducible rings. J. London Math. Soc. 36, 260-268 (1961).
- 7. Lambek, J.: Lectures on rings and modules. Toronto: Blaisdell Publishing Co., 1966.
- 8. Miyashita, Y.: On quasi-injective modules. J. Fac. Sci. Hokkaido Univ. 18, 158-187 (1965).
- 9. Quasi-projective modules, perfect modules, and a theorem for modular lattices. J. Fac. Hokkaido Univ. (I) 29, 86—110 (1966).
- 10. Mohamed, S. H.: q-rings with chain conditions. J. London Math. Soc. (to appear).
- 11. Nakayama, T.: On Frobeniusean algebra II. Annals of Math. 42, 1-21 (1941).
- 12. Osofsky, B. L.: A generalization of quasi-Frobenius rings. J. Algebra 4, 373-387 (1966).
- 13. Rangaswamy, K. M.: Quasi-projective modules (to appear).
- 14. Satyanarayana, M.: Semisimple rings. Amer. Math. Monthly 74, 1086 (1967).
- 15. Utumi, Y.: Self-injective rings. J. Algebra 6, 56-64 (1967).
- 16. Wu, L. E. T., Jans, J. P.: On quasi-projectives. Ill. J. Math. 11, 439-447 (1967).

Dr. Anne B. Koehler Department of Mathematics Miami University Oxford, Ohio 45056, USA

(Received December 8, 1969)