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The Consistent Shapley Value for Hyperplane Games 

By M. Masch le r  1 and  G. Owen 2 

Abstract: A new value is defined for n-person hyperplane games, i.e., non-sidepayment 
cooperative games, such that for each coalition, the Pareto optimal set is linear. This is a 
generalization of the Shapley value for side-payment games. 

It is shown that this value is consistent in the sense that the payoff in a given game is related 
to payoffs in reduced games (obtained by excluding some players) in such a way that corrections 
demanded by coalitions of a fixed size are cancelled out. Moreover, this is the only consistent value 
which satisfies Pareto optimality (for the grand coalition), symmetry and covariancy with respect 
to utility changes of scales. It can be reached by players who start from an arbitrary Pareto optimal 
payoff vector and make successive adjustments. 

1 Introduction 

Let ~h be a 1-point so lu t ion  concept  for  the class o f  coopera t ive  games  (N,v) wi th  side 
payments .  For  a n o n - e m p t y  subset  S o f  N w e  def ine  the  reduced games (S ;v ,  S) bY 3 

V. s (T )  = v (T  U S  c) - ~qESCd~q[VlT USC], T c_ S ,  (1.1) 

where v IT u s C is the  res t r ic t ion  o f  v to the  set o f  players  T U S c (S c = N \ S ) .  We 
regard  v .  S as the eva lua t ion  o f  the  members  o f  S o f  their  " o w n "  game,  given tha t  
they live in an envi ronment  o f  peop le  who believe in the  so lu t ion  ~. Indeed ,  i f  a coal i-  
t ion  T forms,  then,  wi thou t  the members  o f  S \ T ,  they will r ema in  in a game  
v IT U S c, the  member s  q o f  S c will d e m a n d  and  receive (4~q[V IT U SC])qcS c so tha t  
the  wor th  o f  T i n  the  game  on S will be v ,  S. 

Once  the member s  o f  S agree tha t  v .  S represents  their  own game,  na tura l ly  they 
will examine whether  thei r  payo f f  (q~q[V])qES is compa t ib l e  with thei r  own game;  
namely,  whether  
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4)q[V] = Oq[V, S] , all q E S. (1.2) 

A solution that has this property for every non-empty coalition S will be called 
strongly consistent. The property (1.2) will be called also the reduced game property. 

Hart  and Mas-Collel [2] proved recently that the Shapley value is strongly con- 
sistent. 4 In fact, they proved that the Shapley value can be characterized by Pareto 
optimality (for the coalition N), symmetry, covariance with respect to strategic 
equivalence and strong consistency.5 This beautiful result is particularly interesting 
because it resembels a similar theorem by Sobolev [8], concerning the axiomatic 
characterization of  the prenucleolus. The axioms are the same, except that the 
definition of  the reduced game is different; namely, 

I v,s(S) = v ( N ) -  F., qbq[V] 
qEs c 

V,s(T)-= Max [v(T UQ] - E 
Q c_ s c qcQ 

~bq[V]], 0 :/: T ~ S. 
(1.3) 

Thus, the Hart  and Mas-Collcl result, together with Sobolev's result, yield an 
understanding of the difference between the Shapley value and the prenucleolus in 
a deep sense. 

It should be noted that strong consistency plays an important role in other solu- 
tions for various classes of  games. We refer the reader to Peleg [5], [6], Lensberg [3] 
and Aumann and Maschler [1], where some applications are provided as well as 
references to previous occurences of this property. 

Naturally, one would like to know whether a strongly consistent, Pareto op- 
timal, symmetric and covariant solution exists for games without side payments. We 
tried a simple 3-person game (the one given in the example in Section 6) and found 
out that such a solution existed neither in the sense of  (1.1), nor in the sense of  (1.3). 
The resulting equations were inconsistent! 

We then adopted a dynamic approach: Suppose someone suggests that a payoff 
vector x is a solution to the game of that example. Since it is not strongly consistent, 
some 2-person coalitions will realize that they are not receiving their Nash point in 
the reduced game. They will therefore ask for "corrections" which, when performed 
simultaneously, will yield a new payoff vector x 1 . This, in turn, will lead to x 2, etc. 
(See Section 7 for details.) Putting these calculations in a computer, we found out 
to our surprise that, regardless of the starting point x, the sequences always converg- 
ed to a unique outcome ~. If  the starting payoff was ~, it turned out that ~1 = 
so that if all corrections were made, the players found out that all corrections 
cancelled out. We call this property consistency (see Section 4). The payoff ~ could 
also be characterized in a different way; namely, as an expected marginal contribu- 

They used the word "consistent". 
Another proof of this result was supplied by the first author of the present paper, but was not 
published. It should be noted that the first three requirements are needed only for 2-person 
games. 
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tion of  the players entering in a random order. These findings could easily generalize 
to arbitrary hyperplane games (Section 2) and this is the subject of  this paper. 

In Section 3 we define this new solution and prove that it is consistent in Section 
4, 5. Section 6 characterizes the solution axiomatically, where one axiom will be 
bilateral consistency. Section 7 shows how this solution can be reached dynamically 
from an arbitrary Pareto optimal payoff vector. Section 8 comments on the 
possibility of  extending this solution for arbitrary non-side-payment games. 

2 Preliminary Notations and Definitions 

We consider here a special type of  game. Given a player set N = {1,2 ..... n], 
hyperplane game on N i s  a function Vwhich assigns, to each nonempty S __c_ N ,  a 
subset of  IR s of  the form 

V(S) = {x E IR s : i t s  pSxi <~ rS} " (2.1) 

It is assumed that psi > 0 for all i E S ,  all S c N .  Otherwise the p S  i , r s are 
arbitrary constants, though in paractice certain values would give rise to improper 
(non-monotone or non-superadditive) games. 

As usual, we interpret V to mean that a coalition S can obtain any point x E 
V(S) for its members. In this case, V(S) consists of  all points on, or below, a certain 
hyperplane; hence the name. The hyperplane itself, i.e. the set of  all x satisfying (2.1) 
as an equation, is the Pareto-optimal surface of  V(S). We point out that what 
distinguishes these (hyperplane) games from ordinary games with side payments is 
that the several hyperplanes are inclined at varying angles whereas, for side 
payments games, all pSi = 1, i.e. all planes are "equally inclined". 

It will be of  interest to study the behavior of  certain concepts under linear 
transformations o f  utility. We say two games, 6 Vand l v, are equivalent under a linear 
transformation o f  player i's utility if there exist constants/3 > 0 and 3' such that: 

(a) for all j :~ i, all S c N,/7 S = pS 

(b) for all S such that i E S ~ N /~si - pS 
' /3 

(c) for all S such that i ~ S c_ N ,  i S = r S 
vpS. 

(d) f o r a l l S s u c h t h a t i E S c _ N , i  S = r S + ~--  

(2.2) 

6 Games are denoted by (N; V), but when N is fixed we shall shorten the notation and write 1I.. 
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In this case, it is easily verified tha t  x E V(S) if  and  only if )? E IT(S), where 

)?i = ~Xi + Y 

3 )?j= xj if j . i. 
(2.3) 

More  generally, we will say tha t  two games,  Vand  W, are equivalent under linear 
transformations o f  utility if  there is a sequence V,V(1),V (2) ..... V(k) = W such that  
each V(e) is equivalent  to V(e-l) under  a linear change of  some player 's  utility, f = 
1,2 ..... k, V 0 = V. 

Let H be a solut ion concept  which assigns either one or m a n y  payof f  vectors 
to each game  V. We will say tha t  H is covariant with linear changes o f  utility if, 
whenever V a n d  P a r e  related as in (2.2), we find tha t  x E H ( V )  if and only if)? E 
H(17), where x and s are related as in (2.3). 

3 The Value 

Let (N;V) be a hyperplane  game,  and let ~r be a pe rmuta t ion  of  the set N. For i C 
N,  let Q(i, Tr) ~- Q(t) be the set o f  a l l j  preceding or equal  to i : 

Q(i,~r) = {j E N ] 0(J)  <~ 0(t)}, ~ = 7r-1. (3.1) 

Define now the vector y(Tr) by 

Yi (Tr) = [rQ(t) - ~ pQO) y. ]/pQi(O 
e(J)<o(0 j J " " 

(3.2) 

This equat ion  defines yi(zc) inductively and so y(~r) is well defined. 
Heuristically,  if ~r represents an order  (i l , i2,i  3 ..... in), the vector y0r )  gives 

player i 1 the mos t  he can obtain  in V({il} ). Then  i 2 gets as much  as is possible in 
V({ il, i2}), given wha t  player i 1 has already been given, etc. In  this way, each player 
receives the most  tha t  he can obtain  with the help of  those preceding him, given what  
these players have already been given. 

Cer ta in  propert ies  o f  this vector are obvious: 

Proposition 1: For each i E N,  the vector y(~r) l Q(i) is Pareto-optimal in V(Q(i)). In 
particular, y(~r) is pareto-optimal in V(N).  

Proof" From (3.2) we have: 

F, pQ(i) 
jEQ(i) )J = r Q(i) ' 



The Consistent Shapley Value for Hyperplane Games 393 

which is the condition for Pareto-optimality. 

Proposition 2: The vector y(Tr) is covariant with linear transformations o f  utifity. 

Proof" Let 7r be a fixed permutation, and y(Tr) be the corresponding vector in game 
V. Let l?be obtained from Vby a change in player i's utility, as given by (2.2), and 
let )700 be the corresponding vector in I?. 

Now, if 0(J) < 0(t), then 37j = yj ,  because (Z(Q(1)) = V(Q(1)) for all suchj.  
Next, 

.)7 i trQ(/) o(J) < ~(/) 

and so, by (2.2), 

vpq(O 
3~ = [rQ( 0 + 

p y ( 0 j j j / _  (0 _ _ my/+  

oq) < o(0 

For O(J) > 0(/), we proceed by induction on O(/)- We assume Yk = Yk for all 
o(k) < O(J), k ~ i. Then, 

Q(k) < o(J) 

SO 

vpQ~J~ pqO~ 

= [rotj) + 13 0(k)<00), k~ i  J 

e(k) < oq) " ~ " 

It follows that y(a-) is covariant as desired. 
Having defined the vector y(Tr) for a given permutation 7r, we now define the 

expected marginal payoff vector 4~ by 

1 
~b[l/] = ~.v ~y(Tr) ,  (3.3) 

where the summation is taken over all n! permutations of N. 
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It is well known (see Shapley [7]) that if Visa game with transferable utility (side 
payments), then r is nothing other than the Shapley value. Thus our 4 is a 
generalization of the Shapley value. We note that, as the definition implies, 4~i[ V] 
can be interpreted as an expected payoff: it isplayer i's expected marginal contribu- 
tion, assuming all n! orderings of  the players are given equal probabilities. 

Proposition 3: The vector r is Pareto-optimal in V(N). 

Proof" By Proposition 1, y(~r) is Pareto-optimal in V(N) for all ~r. But 4~[ V] is merely 
the arithmetic mean of the y(~r). Since V(N) is a half space, its Pareto-optimal sur- 
face is convex, and so q~[V] is Pareto-optimal. 

Proposition 4: The vector q~[V] is covariant with linear transformations of  utility. 

Proof." Since ~[V] is the mean of they(Tr), all of which are covariant, q~[V] must also 
be covariant. 

Given Proposition 4, there is no loss of generality in assuming that allp/Y= 1, 
l 

i.e. the set V(N) is "equally inclined", so that V(N) is simply given by 

E x i < r  N . 
i~.N 

Such games will be called normalized games. 

4 The Reduced Game. Consistency 

Suppose that a population N"believes" in a certain one-point solution concept ~I,. 
Thus, if the members participate in a game (N;V), they will tend to agree to the 
payoff ~I,[ V] .  Now, any non-empty subset S of N may consider its "own" game, 
hereby denoted by V, s, and its members may examine whether their payoffs 
(qlk[V])kES agree with ,I,[V,s]. If it does not, then, presumably, the members of S 
will request that adjustments be made, to bring their payoff to 'I'[V,s]. The main 
question, of course, is how they evaluate their "own" game, henceforth called the 
reduced game on S, or the S-reduced game. There are several possibilities. In this 
paper we define it to be the game (S;V.s), where, for 0 :~ T c S, 

V , s ( T )  = {(Xj) jET : ((Xj) j e  T ,(Zq) qES c) E V(T USC)} . (4.1) 

Here, 

Zq = ~Zq[VI T US c] , q E S c ,  S c = N \ S .  (4.2) 
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(Here, V I T U S c is the restriction of the game (function) V to subsets of T U S c.) 

Interpretation." The members of T evaluate their worth; namely, what they can 
achieve in the game (N;V) without the presence of S \ T  They therefore consider 
themselves as participating in a game (T U SC; V I T U S c) in which the members of 
S c (who believe in ,I,) receive (qlq[V[T U SC])qeS c . Every T-payoff that is feasible 
under this requirement belongs to their characteristic function. 

Proposition 5." I f  V is a hyperplane game, then the games V,  S are all hyperplane 
games, regardless o f  9. 

Proof." Suppose V(T  US  c) is given by Z qQx. <x rQ, where Q = T US c. Then, by 
jeQ J J  

(4.1), V , s ( T  ) is given by 

p ? ~  <<. rQ - E pQ z . 
jET qES c q 

Thus, V, S is also a hyperplane game. 

Remark: We note in passing that the coefficients p .Q on the left side are precisely the 
coefficients in V(T U S  c) for the indices in T. i1n particular, the coefficients in 
V, s (S  ) are the same as the coefficients in V(N), restricted to indices in S. Thus, if 
(N;V) is normalized, then so is (S;V, s) and V,(S)  is given by 

xj <~ r N -  ~ '~q[V]. (4.3) 
jES qES c 

Proposition 6: I f  a solution ,I, is covariant with linear transformations o f  utifity, then 
so are the reduced games. 

Proof" Let (N; 12) be related to (N;V) by (2.2). Then a similar relation holds between 
(Q; 121 Q) and (Q; v[ Q), where Q = T U S c. Thus, if g = 9112[ Q] and z = xI, [V] Q] 
then zi = t3zi + ~ (relevant, if i E T U S c) and gq = Zq, otherwise. Therefore, 

12, S (T) = {(2j )j6T : ((2j )j~T ,(Zq)q~S c) E 12(T kJ SC)] = 

= {('~j ) jcT:  ((Xj)jcT ,(Zq)qES c) E V(T USC)] , 

where, x and 2 are related as in (2.3). This shows that 12.s(T) = [V,s(T)] ~ . 
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We are now prepared to state our consistency requirement: 

Definition: Let ,t, be a solution defined over a class of games H. The solution xI, is 
called k-consistent if for every (N;V) E H with n >/k, all the reduced games are in 
H and for every i in N, 

F. ,t,i[V, S] = ( /~_-1 )~ i [V] .  (4.4) 
S:i~S 
Isl--k 

Discussion: The players are assumed to be "believers" in ~. A coalition S views its 
own game as (S;V.s). Thus, each player i of  S would ask for an adjustment of  
~i[ V*S] - '~i[ V]. The solution is k-consistent if, whenever such adjustments are 
made simultaneously for all coalitions of a fixed size k, the players will find 
themselves back at their original payoff vector ,t'[V] ; i.e., all credits and debits will 
cancel out for each player in N. 

Definition: A solution is called consistent if such adjustments made simultaneously 
for all coalitions leave it intact. 

5 Consistency of the Value 

In this section we shall prove that the solution q~, as defined in Section 3, is k-consis- 
tent for  every k. Note that consistency is well defined for the class of  hyperplane 
games. 

I_emma 1: I f  iET  and }T I = t ,  then 7 

0.[ VI T~j] + (r T - jET\  i p ?  ~j [V I T\i]) /p T = tOi[ VI 7] .  
jET\i  t 

(5.1) 

Proof" Recall that q~i[ V[ T] is the expected payoff to i in the game V I T, given the 
marginal payoff scheme discussed in Section 3, assuming all permutations of Thave 
equal probability. 

In such a case, i can appear in last position (probability 1/t) or in some other 
positions (probability (t-1)/t). If he appears in the last position, his (conditional) 
expected payoff will be 

(r T -  ~ pT. O. [VI T\i])/p.T l 
jET\i  J J 

7 We shall write T\i instead of T\{i} and T\ij instead of T\{i,j}. 
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since, this is what will be left for him after the other t-1 players take their expected 
payoff (all coming before i). 

If  i appears in any other position, then some player j,  jE  T \ i ,  will be in the last 
position. If  so, then i's conditional expected payoff is merely 0i [v IT'\J]. But each 
j has probability 1/t of being last, and so i's expected payoff in viTis 

1 
-7-1 Z 0 i [ v  I T s ]  + ~-- - ~2 p f  d~j[V IT\ i ] ) /p  T. jET\i  (rT jET\i  t 

Multiplying by t gives us, then (5.1). 
In particular, if T = N and all pN = 1 then 

1 

nOi[V] = Z Oi[VlN\ j]  + r N -  Z c~j[VlN\i] .  (5.2) 
j ~ \ i  j~_N\i 

The following lemma plays a key role. It relates the case of removing a player 
j before passing to the reduced game to the case of removing him after the passage. 
We show that the order does not matter. 

l_emma 2: I f  j E S c N and the reduced game is with respect to the solution 4~ then 

( V I N \ J ) , s \  j = V, s I S \ j .  (5.3) 

Proof." Suppose T c S \ j  . Then 

V,s (T  ) = [(Xi)iET : ((Xi)i~ T ,(Zq)qES c) E V(T USC)} , 

where Zq = 4Jq[V] T USe]. Moreover, 

(VINNJ) , s \  j (7) = {(xi)ie T : ((Xi)ieT, (Zl)qeS c) E V(TUSC)} , 

where z 1 = r T USC], because ( N \ j )  \ ( S \ j )  = S c . Clearly, Zq 1 = Zq for all 

q in S c and we see that 

V , s ( T  ) = ( V I N \ j ) , s \  j (T) . 

Now V, sis defined for all subsets of S, while (V] N \ j ) , s \  j is defined only for 
subset of S \ j ;  hence, (5.3) is established. 
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Theorem 1: The value ~ is k-consistent for  every k, k <~ n ; thus, it is a consistent solu- 
tion. 

Proof" By induct ion on k. The theorem is trivially true for k = 1 and arbitrary n. 
Assume that  it is true for k-1 or less and arbitrary n. The induct ion hypothesis reads: 
if i E M a n d  1 ~< k-1 ~< m, m = IMI, then 

C 
T c M  

ieT, ITI =k-1 

Here, M can be any subset o f  N. In  particular, let M = N \ j ,  then 

C 
TC_N\j 

i6T, [TI =k-1 

q~i[(vlg\j).T] = (~-2) Oi [VIN\J]  . (5.4) 

We wish, now to prove that  

k ' S  
S~N 

iES, IS [ =k 

ffgi[V,s] = k(~- l )  (Pi I V ] ,  (5.5) 

which is clearly equivalent to (4.4) with ~I, = ~. 
To do so, we will anlyse the left side of  (5.5), but  first note  that,  in view of  (4.3), 

Proposi t ions  4 and 6, we can assume that  all the reduced games are normalized.  By 
L e m m a  1 (see (5.2)) and (4.3), 

- ~ ~Sq[V]- ~ Oj[v, sls\i], k O i [ V , s ]  = C 4 ~ i [ V , s [ S \ j ]  + r N q c S  C 
jES\i jES\i 

ands ince thereare (~ -~)S ' sw i th iESand[S[  = k, the left side o f  (5.5) is equal to 

S:iES jES\i S:iES qES c 
ISL =k IsI = k  

~ Oj[V, slS\i] .  
S:iES jES\i 
ISI =k 
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Rearranging the order of  summation,  we have 
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k 2 4i[V,s] = 
S:i E S 
Isl =k  

j E N \ i  S:i,j E S 
Isl =t, 

v,,  ~./ q E N \ i  S : i E S , q E S  
Isl =t, 

Z ~bj[V,s[S\ i l .  
j ~ N \ i  S:i,j c S 

Isl =k 

We apply Lemma 2 to the first term on the right, setting also T = S \ j .  We also 

note that  for a given q, q ~e i, there are (~-12) possible sets S for the third term on 

the right. We also apply Lemma 2 to the last term on the right, setting here T = S\ i .  
Altogether, we obtain, 

k ~ (~i[ V'S] = 
S:i E S 
ISl =k 

Z c~i[(VIN\J)*T] + K-l/  q ~ N ~ i  
j E N \ i  T : i E T , j c T  

ITI=k-1 

Z ~ 4 ) j [ (V[N\O,T]  �9 
j E N \ i  T: i~T, jET 

I TI =k-1 

By Proposit ion 3, r N -  ~ chq[V] = c~i[V ] and so 
q ~ N \ i  

k d~ i[ V.  S] = 
S:i E S 
Fsl = k  

j E N \ i  T:i E T, j  C T 
I T l = k 4  

/n -2 \  r 

-- Z Z dpj[(V[N\O,T]  �9 
j E N \ i  T : i cT , jET  

I rl=k-1 
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We now apply the induction hypothesis (5.4) to both the first and last terms on 
the right side, to obtain 

k E O~[V, s] = 
S:i c S 
Isl =k  

= Z - 4)i[V]N\J] + \k-ZJ N + Oi [V] -- 
j E N\i  

- E (~ -2 t4 ) j [VIN\ i ] .  
j ~ N\ i  - 

Finally, applying (5.2) to the first, second and fourth terms on the right yields 

k n-1 ~i[V ] k s:iEs s 4~i[V*s] = \k-ZJ ~'I[V] + nk'-- 4)i[V] : k-1 " 

ISq =k  

This concludes the proof. 

6 Axiomatic Characterization of the Value 

In this section we show how our consistency requirement can be used to define the 
value axiomatically. We prove: 

Theorem 2: The value cb , for the class o f  hyperplane games (as defined in Section 
3), is the unique 1-point solution satisfying: 

(i) Pareto optimality in N, 
(ii) Symmetry, 

(iii) Covariance under linear transformations o f  utilities, 
(iv) Bilateral consistency (2-consistency). 

Proof" We already proved that 4~ satisfies (i), (iii) and (iv). Symmetry is straightfor- 
ward. It remains to show that any 1-point solution ~I,, satisfying (i)-(iv), must coin- 
cide with ~. By Propositions 5 and 6, there is no loss of  generality in assuming that 
our games, and therefore also our reduced games w.r.t. 'I,, are normalized. 
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The  claim is trivial for  n = 1. For n = 2, (i)-(iii) imply  tha t  the solut ion must  
be given by 

1 
�9 [V] = ~ [r12 + r 1 - r  2 , r 1 2 -  r 1 + r2] = ~b[V] . (6.1) 

Note  that  'I'[ V] is characterized by the equat ions  

~ I [ V ]  + ~I,2[V ] = r12,  ~ I [ V ] -  ~ 2 [ V ]  = r 1 - r  2 . (6.2) 

We now make  the induct ion hypothesis  that  4~ = ~I, for  every hyperplane  game  
with n-1 players. Let (N;V) be an n-person hyperplane  game,  n >1 3. Bilateral con- 
sistency means  8 (see (4.4)): 

E ~ i [ V ,  ij] = (n-1)~i[V],  all i in N .  (6.3) 
j c N \ i  

Here, V,q  is the reduced game on [i , j} with respect to the solut ion ,I,. Let IT",q 
be the reduced game on { i , j ] ,  with respect to the solut ion ~. By the induct ion 
hypothesis,  it follows f rom (4.1) and (4.2) tha t  V, ij(t) = V*ii(O, V ,q( j )  = V%ij(J), 
so tha t  V, ij and I?,q may  differ  only  on the coali t ion [ i , j ] .  By (0 and (4.3), 

V, ij {i , j} = {(xi,xj) : x i + xj <~ qli[V ] + ~ j [V] ]  . 

I t  now follows f rom (6.2) that  

'~i[V, ij] + ~j [V,  ij] = qli[V] + ~ [ V ] ,  (6.4) 

qli[V, ij ] - qlj. [V,  ij ] = qli[l~,ij ] - ~I~[V, ij] = ~i[V,  ij] - (oj[~',ij] (6.5) 

For a fixed i, let us add the terms in (6.4). We obtain: 

qli[V, ij] + Z ~ [ V ,  ij] = (n-1)'~li[V] + ~ ~ [ V ] .  
j E N\ i  j c N \ i  j E N\ i  

8 We write V,q, V, ij(O, etc., instead of V , { i d  ] , V,{i , j}({ i}  ) , etc. 
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In view of (6.3) this reduces to 

s ,~[V, gj] = c ~ [ v ] ,  
j ~ N\i j E N\ i  

so that by Pareto optimality (i), 

~]i[V] + ~ ~j[V,/j] = r N .  
j ~ N\ i  

A similar analysis yields 

Oi[V] + ~ @ [ l ~ , i j ]  : r N .  
j E N \ i  

Thus, 

�9 i [v]  + ~ ,~[v ,  ij] = ~i[v]  + ~ ~ j [ r  
j E Nki j E N\ i  

(6.6) 

For a fixed i, let us add the terms in (6.5). We obtain: 

�9 i [V, ij] - E '~[V,  gj] = E +g[V, gj] - 
j E N\ i  j E N\ i  j E N\ i  

E 
j ~ N\ i  

which, in view of  the bilateral consistencies of 4~ and ~I,, reduces to 

( n - 1 ) g i [ V ] -  E ~ [ V ,  ij] = (n-1)Oi[V]-  ~ Oi[V, i j] .  
j E N\ i  j ~ N\ i  

(6.7) 

Adding (6.6) and (6.7) and dividing by n yields 

,I,i[v] = 4,~[v]. 

This holds for each i so that 9[ V] = 4~[V] and the inductive proof has been con- 
cluded. 
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The Consistent Shapley Value for Hyperplane Games 403 

(a) The symmetry axiom (ii) was employed only for 2-person games. This suggests 
that non-symmetric values can be obtained by fixing the solution on 2-person 
games and proceeding by consistency. We shall not pursue this direction here, 
except for noting that in the side-payment case this leads to the weighted Shapley 
value (see Hart  and Mas-Collel [2]). 

b) Covariancy (Axiom (iii)) too is only needed for 2-person games. To see this one 
has to repeat the proof  without assuming that the games are normalized. This 
involves replacing 4%, ~v,  rN by l~vv O v , l~v ~ , l~vr v , respectively. 

(c) Pareto optimality (Axiom (i)) can be replaced by Pareto optimality only for 
1-person games and 1-consistency. Indeed, one obtains Pareto optimality by ap- 
plying l-consistency to the game V,{i], using the requirement of  Pareto op- 
timality for 1-person games. 

(d) The Axioms (i)-(iv) can be replaced by (i)-(iii), applied only to 2-person games, 
together with 1-consistency and 2-consistency. Indeed, (i)-(iii) determine the 
solution for 2-person games and Pareto optimality for 1-person games can be 
deduced from applying 1-consistency to the game ({1,2};V), where V(1) = a - 
IR+ , V(2) = 0 - IR+, V(1,2) = {(Xl,X2) : x 1 + x 2 < a]. Remarks (a)-(c) above 
conclude the proof  9. 

(e) Theorem 2, as well as Remark (d), remain valid if one restricts the consideration 
to side payment  games. The proofs are practically the same. This is, therefore, 
a weakening of  the axioms in Hart  and Mas-Collel [2] which charactgerize the 
Shapley value for such games (see Section 1); the 2-consistency [and 
1-consistency] replace their strong consistency requirement (see Section 1). The 
price paid for this weakening is that 2-consistency is somewhat less intuitive than 
strong consistency. 

In the case of  general hyperplane games we cannot ask for strong consistency 
and must remain satisfied with 2-consistency, as the following example shows. 

Example: N = {1,2,3], v{i] = 0 - IR+ for i = 1,2,3. V(1,2) = {(x 1,x2) : 2x 1 + 3x 2 
~< 180}, V(i,j) = (0,0) - IR  2 for {i,j} = {1,3} and {2,3}, V(1,2,3) = {(x 1,x2,x3) : x  1 
+ x 2 + x 3 ~< 120}. A solution satisfying (i)-(iii) and strong consistency obviously 
satisfies (iv), so it must be 4~[V], by Theorem 2. By the definition of  4 (Section 3), 
O[V] = (55,50,15) and this vector is not strongly consistent. Indeed, V,12 (t) = 0 - 
IR+ for i = 1,2 and V.12(12 ) = {(Xl,X2) : x 1 + x 2 ~ 105}. Thus, ~b[V.12 ] = 
(52.5,52.5), which is different from (55,50). For this case q~[V,13] = (57.5,12.5) and 
~[ V,23] = (47.5,17.5) and the reader can verify that it is k-consistent for k = 1,2,3, 
as it should be by Theorem I. 

We have shown that biconsistency and other axioms yield a consistent solution. 
A priori there is a possibility that if one replaces the axiom of  biconsisteney with 
an axiom requiring consistency one may get additional solutions. Recently Orshan 
[4] proved that this is not the case. 

9 A similar procedure, for side payment games was employd in Hart and Mas-Collel [2]. 
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7 A Dynamic Approach to the Consistent Value 

The axiomatic justification of our value, like many justifications of other solution 
concepts, is static in nature. One would like to find also dynamic processes that lead 
the players to 4, starting from an arbitrary Pareto optimal payoff vector. Such pro- 
cesses should make some use of  the bilateral consistency. In this section we exhibit 
such a process. In order to do so, let us define an x-dependent reduced game: 

Definition: Let x be a payoff vector on the Pareto optimal surface of V(N). The 
reduced game (s;VXs) is given by 

VX*s(S)x = {(Yi)i E S : ((Yi)i E S ,  (Xk)k E S c) E V(N)} 1 
V , s ( T )  = V , s ( T  ) ,  0 4: To_ S .  

(7.1) 

Here, V,s(T) is given by (4.1) and (4.2) with �9 = 4~ �9 

Discussion: By a process of induction we assume that the players have already agreed 
on the solution 8 for all m-person games, 1 ~< m < n. In particular, we assume that 
they agreed on ~b for 1-person games (involving only Pareto optimality) and for 
2-person games (which are side-payment games after an appropriate change in the 
utility scale of  one player). Now somebody suggests that x should be the solution 
for an n-person game (N;V), thus suggesting a solution concept 't, which should 
satisfy 

I qS[U] for all m-person games (M;U) , m < n 
'I'[U] = (7.2) 

x f o r  U = V.  

Then (7.1) is nothing but (4.2) with respect to this ~. 
Of course, if x = O[V] , then V~.S coincides with Is, S for all S. 

On the basis of this ,I,, the members of a coalition 1~ S will examine VX.s for 
consistency. If the solution turns out to be inconsistent, they will modify x "in the 
direction" which is dictated by (~(VXs) in a manner which will be explained subse- 
quently (see (7.3)). These modifications, done simultaneously by all 2-person coali- 
tions, will lead to a new payoff vector x 1 and the process will repeat. The hope is 
that it will converge and, moreover, converge to 4~[V]. Since we are considering only 
bilateral consistency, this process makes sense only if n ~> 3. We start by extending 

to games lTobtained from Vby changes in the utility scales of  the players, by re- 
quiring it to be covariant under such changes. Then, by Proposition 6, all the games 

x 
(S; 12~.s) will be obtained from (S;V *S) by the same changes in the utility scales. 

10 Only 2-person coalitions will be studied here, because we only employ the concept of Bilateral 
consistency. 
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Here, 2" is related to x in accordance with the changes in the scales. This procedure 
enables us to discuss only normalized hyperplane games. 

Let (N;V) be an n-person normalized hyperplane n-person game, n/> 3. Let 
~'(N) be the Pareto surface of  V(N). We define now the correction function f :  V(N)  
- -  F ' ( N )  by 

X 
f i ( x )  = X i + ~ o~((oi[V , i j  ] - x i )  , all  i E N ,  

j E N \ i  
(7.3) 

where o~ is a fixed positive number, which reflects the assumption that player i does 
not ask for full correction (when ot i = 1) but only (usually) a fraction of  it. Note 

X X 
that ~i[ V *ij] - xi + chj[ V *ij] - xj = 0 (see, e.g., (6.2) and use the fact that 
V'*ij(ij) = {(Yi Yj) : Yi + Yj <~ xi + xj] , becausexis  Pareto optimal); therefore, f (x)  

is also Pareto optimal. 11 
We can now consider the dynamic sequence x = x0,x 1,x 2 ..... where x q +  1 = 

f ( x q ) ,  q = 1,2 .... 

Theorem 3: I f  O < a < 4/n, then for  each x in V(N),  the above dynamic sequence 
converges geometrically to 4~[V]. 

Proof" It follows from (6.2), and (7.1) that 

Oi[ VX, ij ] + dpj[ vX, ij ] 

X X 
qSi[V,t j  ] - ~b j [V, / j ]  

therefore, 

X 
2(~i[ V *ij ] - xi) 

= x i +  x j 

= ~ i [ V ,  ij] - ~ i [ V ,  ij] ; 

= O i [ v . i j ] -  O j [ v . ; j ] - x i  + ?9. 

Summing up for j in N \ i ,  we obtain from (7.3) that for each i in N, 

f i ( x )  = xi  + -~[ ~ Oi [V*ij]  - ~ ~bj [ F ,  ij] - (n-1)x  i + (rN-xi) } . 
j E N \ i  j E N \ i  

11 Note also that changes in utility scales affect f(x) the same way they affect x. 
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Now, r is 2-consistent and Pareto optimal; therefore, 

a { ( n _ l ) r  ] + - n x  i - ~ 4~j [ V ,  ij]} = f i (x )  : Xi + 2 rN j e N \ i  

or 
= x i + ~ [ n r  

We have proved that 

X1 +1 : X q + - ~ [ r  q] 

or 

xq+l  ~xn.. q 
i - r  = (1 - y ) t x  i - r  [V]) . 

I f  O < a < 4 / n ,  then-1 < 1 -  a n ~ 2  < 1 and the sequence (x q - r  [V])q=l,2 .... 
is a geometric sequence converging to zero. 

8 Concluding Remarks 

At present, the extension of  the consistent value to arbitrary non-side-payment 
games is an open problem. Apparently, for unanimity games such a value should 
be the Nash point, which is even strongly consistent (Section 1). See Lensberg [3], 
who uses strong consistency to characterize the Nash point for such games. It seems 
that  such extension should be a fixed point of  a differential relation, at least in the 
dynamic approach, because one cannot usually perform discrete simultaneous cor- 
rections without leaving the Pareto optimal  surface of  V(N), unless it is a hyper- 
plane. We consider such an extension as a challenging and interesting enterprise, and 
we plan to propose one extension in a subsequent paper. 
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