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Abstract. We analyze the perturbations due to solar radiation pressure on the orbit of a high artificial 
satellite. The latter is modelled in a simplified way (axisymmetric body plus despun antenna emitting a 
radio beam), which seems suitable to describe the main effects for existing telecommunication satellites. 
We use the regularized general perturbation equations, by expressing the force in the moving Gauss' 
reference frame and by expanding the results in terms of some small parameters, referring both to the 
orbit (small eccentricity and inclination) and to the spacecraft's attitude. Some interesting results are 
derived, which assess the relative importance of different physical effects and of different parts of the 
spacecraft in determining the long-term evolution of the orbital elements. 
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List of the Main Symbols 

spacecraft's cross section 
antenna's cross section 
transmitted power by the antenna 
mass of the spacecraft 
unit vector along the spin axis of the spacecraft 
unit vector along the symmetry axis of the despun antenna 
unit vector along the radiowave beam transmitted by the spacecraft 
unit vector toward the Sun 
sun angle: between O3 and 
sun angle: between fi and 
perturbation parameter; magnitude of F divided by Earth's gravitational acceleration on 
the spacecraft 
perturbating acceleration produced by radiation pressure force on the spacecraft 
components of perturbing force according to the model given in Equation (1.4) 
first order terms in the expansion of D, E in D'Alembert series (see Equation (2.17)) 
Fourier components of D, E as function of 2 
unit vector from the spacecraft toward the center of the Earth 
unit vector ew x es 
unit vector normal to orbital plane 
components of the perturbing force along ~s, ~r, ~rr 
angle between err and (3 
angle between the projection of -~s  on the equatorial plane of the spacecraft (the plane 
normal to o3) and 
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angle measured on the orbital plane from the origin of the angles to the projection of 03 
angle between fi and the equatorial plane of the spacecraft 
complex representation of ~ in the equinoctial system (see Equation (2.16)) 
usual Keplerian elements of the spacecraft orbit 
mean motion of the spacecraft 
true and mean anomaly of the spacecraft 
true and mean longitude of the spacecraft 
decomposition of 2 according to Equation (2.1) 
regularized element in complex form: H = e exp(fl5) 
regularized element in complex form: P = tgi exp (itS) 

complex conjugate of H 
number of spacecraft's orbits in 1 yr 
absorption coefficient. 

1. Introduction 

The main limitation to an accurate determination and prediction of satellite trajector- 
ies for high Earth's orbits is t he  poor modelling of the perturbations due to solar 
radiation pressure. This problem becomes very important when precise tracking 
methods are used, like laser ranging or two-frequency Doppler tracking. There 
are two main difficulties in constructing a good model: (a) the complex physical 
interaction between the sunlight and all the spacecraft surfaces and the power 
system; (b) the large secular effects in the orbital perturbations which may result 
from a small error in the force model. 

In this paper we concentrate on the second aspect of the problem, but we rely 
upon a fairly general model of the spacecraft, suitable for most telecommunication 
satellites. We shall neglect the effects of the Earth's albedo (at geosynchronous 
distance this contributes only for about 1 ~ of the total radiation pressure); moreover, 
we shall not consider eclipses. The effect of the eclipses is very complicated even for 
spherical satellites (Kozai, 1963) and is difficult to model accurately because of 
penumbra effects (Aksnes, 1976). However, a high satellite is not eclipsed for long 
orbital arcs (about 140 days for geosynchronous orbits) and we restrict our analysis 
to these arcs. 

The main body of the spacecraft is assumed to be axially symmetric (or rapidly 
spinning) around an axis f'Lxed in the inertial space, corresponding to the unit vector 
tb. In this case, the radiation acceleration is of the form: 

V ' =  ( a ~  ~z [A'(~h')~ + B'(~h')tb]. (1.1) 
k r e /  

A' and B' are accelerations depending on the angle ~b' between the spin axis and the 
direction of the Sun, given by the unit vector ~. The order of magnitude of F' is 

]F,I ,,~ (I)S' _- solar constant x spacecraft's cross section, (1.2) 

mc velocity of light x spacecraft's mass 
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i.e., for S'---104cm 2, m =  5 • 1059, about 10 -6cms  -2. The coefficient (a|174 2 
in Equation (1.1) takes into account the effect due to the difference between a e = 1 AU 
and the actual distance r e between the spacecraft and the Sun. This latter depends 
essentially on the orbital eccentricity of the Earth; we neglect the changes both in 
r 0 and in the Sun's direction due to the geocentric orbit of the spacecraft. Both r 0 
and if' are periodic functions of the time, with the period of one year. For long missions 
one should take into account also the additional time dependences caused by the 
changes in the optical coefficients of the spacecraft's surface (due to the space environ- 
ment) and by the decrease in the mass of the spacecraft due to the fuel consumption. 

In general the functions A'(~') and B'(~b') depend both on the geometry and on the 
optical properties of the spacecraft's surface; in practice their calculation is rather 
intricate because of the occurrence of mutual shadowing effects and multiple re- 
flections between different parts of the spacecraft. If it is spherical or completely 
absorbing, B' = O;B'(~')/A'(~') is, in general, fairly small. 

Another significant effect may be produced by the thermal re-emission of the 
absorbed radiation, which may occur in a highly anisotropic way due to the anisotropy 
of shape, surface temperature and emissivity. In particular, the surface temperature 
is not easy to model, depending not only on the absorbed sunlight but also on the 
internal heat sources and on the thermal properties of the whole spacecraft. If the 
spacecraft's thermal properties are axially symmetric as well (or if the body is rapidly 
spinning), this effect can be included in the B' term, yielding a fraction of the total 
acceleration of the order of the mean absorption coefficient times the relative tem- 
perature difference between the upper and lower part of the body. 

To the acceleration F' coming from the spacecraft body we add another component 
due to another part of the spacecraft axially symmetric around a unit vector fi; 
this vector makes a constant angle with tb and rotates around it with the orbital 
period, in such a way that its projection on the orbital plane always points towards 
the Earth's center or, possibly, makes a small and constant offset angle with it. This 
component corresponds to the telecommunication system, e.g. a despun, Earth- 
pointing antenna with an axis fi; one could also have a despun plate normal to 
fi reflecting the beam from an antenna fixed to the main body on its axis. If ~ is the 
angle between ~ and fi, this additional acceleration is necessarily of the type 

/~(O)~ +/~(~,)fi; (1.3) 

it depends on the Sun's anomaly and the spacecraft's true longitude 0. Its order of 
magnitude is ~S'a/mc, where S] is the antenna's cross section. In the case of a despun 
plate D could be expressed as 

R' cos q, + R"lcos  q, I , 

where the two terms take into account the possibility of different optical properties 
of the two surfaces and R', R" are constant; in general, the situation can be more 
complicated. Moreover, we shall always neglect the mutual shadowing (and the 
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multiple reflections and diffusions) between the body and the antenna. These pheno- 
mena cannot be treated in any simple way, and we shall assume that their orbital 
effect is not of outstanding importance. 

If ~ is the unit vector along the radio beam emitted by the satellite, there is an 
other component C~ due to the transmitted power itself. Clearly, this cannot be 
negligible, if a relevant part of the surface is covered with solar cells, whose absorbed 
power is in part re-irradiated in the radio beam. ~ is supposed to lie in the plane of 
~b and fi (and to be orthogonal to d~) (see Figure 1); if W' is the transmitted power, 
the order of magnitude of C is W'/mc. 

To summarize, we consider an acceleration of the general form 

F = [A + O(0)]~ + B& + E(0)fi + C& (1.4) 

In A -  (ae/re)ZA ', B -  (ae/re)2B ' we have now included the slow change due to 
the distance from the Sun (as we have implicity done for /3  and/~. D and E are the 
same physical quantities as / )  and/~, but expressed as functions of 0). 

The plan of our work is conceptually simple. Each of the five terms in Equation (1.4) 
gives a contribution to the force components in the Gauss' moving reference frame 
(as defined in Section 2). Using the general perturbation equations we can, in principle, 
evaluate the various periodic and secular terms for each orbital element (Sections 3 
and 4) at the first order in the perturbation parameter #, given by the ratio between 
the perturbing acceleration and the principal 'monopole'  term (for a geosynchronous 
satellite, p ~ 10-7). The separation between periodic and secular terms is useful, 
because orbit determination generally refers to arcs much longer than one orbital 
period. The arc length is anyway limited, at least for active satellites, not only by 
the eclipses but also by attitude and orbital manoeuvers, which are usually performed 
every few months. For  this reason the interaction with the orbital changes caused 

fi 

Fig. 1. Scheme of the spacecraft. The model used in this paper is showed. Q is the center of mass of the 
satellite, -es is the unit vector towards the center of the Earth. The angle between o~ and 6 is ~/2; the angle 

between r and fi is In - or. The other symbols are explained in the text. 
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by other perturbations (e.g,, Earth's oblateness), which have longer timescales, can 
be neglected (see Section 3). 

The calculation becomes practical and significant for a high Earth satellite with 
small eccentricity e and small inclination i with respect to some reference plane; 
hence, we need also to express the perturbation equations in terms of a set of regulariz- 
ed variables (see Section 2). In addition to e and i, two more 'small parameters' will 
be defined in order to get linearized expressions: t/, the angle between the spin axis 
and the normal to the orbital plane, and ~, the misalignment angle of the antenna 
with respect to the Earth's center (for a high gain antenna both t/ and ~ must be 
small). Then, we have, for each orbital element and for each term in Equation (1.4), 
secular and periodic contributions of zero-order, first order, etc., in the four small 
parameters e, i, tt, ~. 

As an example, for a very precise determination of the orbit of a high Earth satellite 
the secular change in the semi-major axis has a crucial role, resulting into a quadra- 
tically-growing longitude perturbation. It is easy to see that, if the eccentricity is 
neglected, the only secular effect in the semimajor axis comes from the tangential com- 
ponent of the radiative force; for a satellite of constant attitude this component 
averages to zero. In the simplest case of a spherical satellite, this result was known 
from the first years of the space age (Musen, 1960), but we prove that it holds for an 
arbitrarily shaped spacecraft of constant attitude (see Appendix). In Section 3 it is 
shown how this conclusion is modified by the antenna. 

Finally, we discuss (Section 5) how the different terms of the resulting orbital 
perturbation affect the orbit determination of high Earth satellites (with a particular 
attention for geosynchronous satellites), when precise tracking methods are used. 
In the particular case of a rapidly spinning synchronous satellite carrying on board 
a high-gain despun antenna we derive the order of magnitude of the radiation pressure 
perturbations from the analytical results. 

2. General Perturbation Equations 

To evaluate the effects of the radiation pressure on the satellite's orbital elements 
a, e, i, fL 05, 2 (semimajor axis, eccentricity, inclination, longitude of the node, longi- 
tude of the pericenter and mean longitude of the osculating ellipse) we use the general 
perturbation equations in Gauss' form (see Roy, 1978, p. 184). They are obtained 
by expressing the perturbing acceleration F in its S, T, W components along the unit 
vectors of the righthanded orthogonal moving frame es, er,  ew : 

~s : from the center of the Earth to the spacecraft; 

er : normal to ~s in the orbital plane; 

ew : normal to the orbital plane. 

The mean longitude 2 is decomposed into two parts (in order to simplify the double 
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integration): 

2 =  n d t ' + ~ = p + ~ ,  (2.1) 
o 

where n is the mean motion. The equations are: 

da 2 
n ~ ( T  + Se sin v + Te cos v) (2.2) 

dt 

- Ssin v + T k t- cos v (2.3) 
dt na 

di W x /1  - e 2 
- cos(o5 - f~ + v) (2.4) 

dt na 

df~ W x /1  - e 2 
sin(o5 - ~ + v) (2.5) 

dt na sin i 

do5 _ ~ / l _ _ r  1 - - -  e2 df~ 2 i (2.6) 
dt n a e  L -  S c~ v + T(2 + e c~ v)sin v j + 2 dt sin 

de e 2 do5 df] i 2(1 - -  e2)S (2.7) 
d t  = 1 + x/1 - e 2 dt + 2-d-f x /~  - e2 sin2 2 na(1 + e cos v) 

d2p 3 n da 

dt 2 - 2 a dt (2.8) 

(v is the true anomaly of the satellite). 
These equations allow some immediate conclusions about the effects of the radia- 

tion pressure force in the case in which the acceleration F does not depend on the 
spacecraft position (constant attitude satellite with no rotating antenna). These 
results, which do not depend on the specific adopted force model, will be discussed 
in the Appendix. In the following the model of Equation (1.4) is used. 

Since we are interested in expanding the perturbations with respect to e, i, assumed 
to be small, Equations (2.2)-(2.7) are not in a suitable form because they are singular 
for zero e and i. The singularity is not a physical problem but only an effect of the 
use of a singular set of variables, hence we adopt a set of regular elements which are 
conveniently expressed in the complex form: 

H = e exp (jos) 

P = tg i exp(jf~) = i exp(jf]) + 0(i2), 

where j = ~ -  1 and 0(i  2) contains the terms of order t> 2 in i. The regularization 
is performed by using H, P instead of e, O5, i, f~ and expressing the remaining 
angular variable in terms of the true longitude 0 = e5 + v. The following step is the 
linearization with respect to the small parameters H, P; this requires also the expan- 
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sion of 0 in D'Alembert series with respect to 2, H (see Roy, 1978, p. 86)" 

exp(j0) = exp(j2) - H + / 4  exp(2j2) + 0(H2), 

where 0(H 2) contains the terms of order i> 2 in H, while/Y is the complex conjugate 
of H. In this way the following regular and linearized set of equations is obtained" 

2da 
- T + Im [/4 exp (j2)IS + Re [/~ exp (j2)] T 

n dt 
dH 

n a - -  = (2T - j S ) e x p ( j 2 )  + (3T  - jS)[ITI exp(2j2) - H]  
dt  
dP 

Y/a v 

dt 
de 

n c / - -  

dt 

= [exp(j2) - 2H3 + 5H1 - exp(2j2)]W 

(2.9) 

(2.10) 

(2.11) 

= - 2S + im [/7 exp( j2)]T - ~Re [/~ exp(j2)]S + 

+ Im [/5 exp(j2)]W (2.12) 

d2p 3 n d a  

d T  - 2a dt" (2.8) 

In order to introduce in the Equations (2.8)-(2.12) the adopted force model we need 
to express the unit vectors g, oh, fi, ~ in the es, eT, ew 'Gauss' frame. This can be con- 
veniently done by expressing the force model in an inertial Earth-centered reference 
frame with the x and y axes in the orbital plane, the x axis being rotated by an angle 
- c h  from the pericenter direction. This definition can be extended to the e = 0 
case by a passage to the limit in which the angle between the satellite and the x axis 
remains 0 ('equinoctial' reference frame). In this reference frame we have: 

es -- (cos O, sin O, O) 

eT ---- ( -- sin O, cos O, O) 

~w=(O,O, 1). 

We assume that & does not deviate much from the direction ew of the nominal 
attitude. In this hypothesis, at first order in the small parameter q (t/ is the angle 
between tb and 6w), the components of r in the moving frame are: 

r = (t/cos (( - 0), t 1 sin (( - 0), 1), (2.13) 

where ( defines the azimuthal orientation of ch (see Figure 2). Since we have assumed 
that 6-r = 0 and that the misalignment angle ~ is small, again at first order we have: 

= ( -  1, - 4, t/cos(~ - 0)). (2.14) 

The normal to the antenna fi is in the plane of&, 6; hence 

f i  = - ~ cos a + ~ sin a, (2.15) 

a being the angle between fi and the equatorial plane of the spacecraft (see Figure 1). 
The Sun direction ~ can be expressed as: 

= (Re [s exp( - jO) ] ,  I m [ ~  exp( - jO)] ,  c~) (2.16) 

with 5 a and ~ functions of the time oflly through the mean longitude of the Sun. 
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Fig. 2. Unit vectors and reference system. The figure shows the relative orientation between the Gauss' 
reference frame (es, er ,  ew) and the spacecraft's attitude frame (& o3). 0 is the true longitude, measured from 
the x axis of the equinoctial orbital frame, ~ is the azimuth of the projection on the orbital plane of the & 

unit vector. N is the nodal line and 17 is the orbital plane. 

By using Equations (2.13)-(2.16) the components of the force in the moving frame 
are obtained; now the trigonometric functions of 0 can be expanded in power series 
of H with argument 2, while the periodic functions D(O), E(O) are expanded as follows: 

O(O) = D(2) + HD'(2) + 0(H 2) 
(2.17) 

E(O) = E(2) + HE'(2) + 0(HZ). 

Hence, the linearized components of the perturbing acceleration are: 

S = [A + D(2)]Re [&e exp( - j2 )  - 5P/~ + s exp( - 2j2)] + E(2) cos a - 

- C + r/[B + E(2) sin a] cos (~ - 2) + HD'(2)Re [ ~  exp( - j 2 ) ]  + 

+ HE'(;,) cos a ; (2.18) 

T = [A + D(2)]Im[Lf exp( - j2 )  - s + ~ f H  e x p ( -  2j2)] + 

+ q [B + E(2) sin o-] sin (~ - 2) + ~ [E(2) cos a - C] + 

+ HD'(2)Im[Lf exp( - j 2 ) ] ;  (2.19) 

W = [A + D(2)]cd + B + E(2) sin o- + q[C - E(2) cos a]  cos (( - 2) + 

+ HE'(2) sin a. (2.20) 

In the following these expressions, together with the perturbation Equations (2.8)- 
(2.12), will be used to study the effects of our force model on the various orbital 
elements. 
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3. Long-Periodic Effects on Semimajor Axis and Longitude 

Substituting Equations (2.18) and (2.19) into Equation (2.9) we find da/dt. The most 
relevant changes in the satellite position due to radiation pressure are produced by 
long-term changes in a; these can be approximately computed by averaging with 
respect to the fast angular variable 2, with an error (of the second order in the per- 
turbation parameter p) t h a t -  apart from short periodic effects- remains negligible 
for a long time (many orbital periods). This is equivalent to the classical technique 
of operating formally on the Fourier series expansions of the orbital elements, 
retaining only long-periodic or secular terms; hence difficulties can arise from 
resonances ('small divisors'), but in this case the resonances are not very important 
(see the Appendix). The results can be expressed in terms of the Fourier coefficients 
of the periodic functions D, E, D', E' (the latter being defined by Equation (2.17)), 
e.g. : 

21t 

Dk=~fD(2)e--ik'~d2. 
o 

We obtain, for the long-period and secular effects (generically indicated by the 
subscript l.p.) : 

nda =_im[D~]+tls inalm[Etexp( jO]+~[Eocosa_C] + 
a dil,.p. 

+ Im[HA~ - Im [HE, cos a] + I m  [H~-~D'I]. (3.1) 

The main term (i.e. the one containing no small parameters) is Im [D1A a] ; but in the 
hypothesis that D is a function of cos ~ = ft. ~ only (axially symmetric antenna), this 
term is zero. This can be proved as follows. We have (see Equations (2.15)-(2.16)): 

cos ~ - fi'~ = R e [ ~  exp( -jO)] cos a + cg sin a + 0(4, q), (3.2) 

where 0(4, q) indicates all the terms containing the small parameters 4, t/; hence (to 
order zero in 4, ~/, H) D can be expressed in the following way: 

O(2) = / [ R e  (A a exp ( - j2)) ] (3.3) 

and its Fourier coefficients can be computed as follows: 

2n  

O 

This expression is real for symmetry reasons. Q.E.D. 
By analyzing Equation (3.1) we deduce the following relevant conclusions: 
(1) The body causes no long-periodic effect on a (this is true even for a non-axi- 

symmetric body; see the Appendix). 
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(2) The antenna causes no long-term effect in the case of the 'nominal' attitude 
and of zero eccentricity; but this is not an exact result because the mutual shadowing 
between the body and the antenna has been excluded from our model. 

(3) The long-term effects on a, to order zero in H, are due to the E component 
(antenna reflection and diffusion) and to the C component (radiowaves transmission). 
The latter is a truly secular effect (as opposed to the essentially annual effects of the 
other terms). 

The longitude effects are obtained by the double integration into Equation (2.8) 
plus the effects on s; by substituting Equations (2.18)-(2.20) into Equation (2.12) 
and by averaging, we obtain the long-periodic evolution of s: 

ds t.p. na~t = 2[C - E o cos a] - 2 Re [Ol~q ~] - 2t/sin a Re [E,  exp(j~)] - 

- �89 [(DICK + E 1 sin a)P] + �88 [A + Do] Re [/~s - 

- ~Re[HD2~LP ] - 2 Re [HD' 1 ~o] _ 

- 2HE o cos a - ~ cos a Re [HE1]. (3.5) 

From this formula we see that the spacecraft body (with constant attitude) produces 
long-periodic effects on e proportional to the eccentricity; hence for zero eccentricity 
there is no long-periodic effect in longitude. This also is true for more general space- 
craft bodies (see Appendix). 

To add together the long-periodic (mainly annual) terms of Equation (3.5) and the 

effects on p due to long-periodic terms on a, we must take into account that the double 
integration of an annual term introduces a factor y2, if y is the number of spacecraft's 
orbits in one year; on the other hand the single integration requested by Equation 
(3.5) introduces only a factor y. If ~y, t/y ,,~ 1, the terms containing 4, t / in  Ap are as 
significant as the zero order terms in As. The resulting amplitudes are summarized 
in Table I. 

The terms containing the inclination (or P) have a special status. At the first order 
in the perturbing parameter /x (magnitude of the radiation pressure acceleration 
divided by the gravitational monopole term) we can assume that P to be inserted 
in the formulas is the initial value; but being the reference plane completely arbitrary, 
the initial value can be always chosen to be zero. On the other hand, if other per- 
turbations are present, e.g. those due to "/2 (Earth'oblateness), mixed terms containing 
products as "/2# do appear. They can be estimated by putting P = P(t), a solution 
of the long-periodic J2 perturbation problem, into the right-hand side of Equation 
(3.5). The mixed terms are not at all negligible over time spans comparable to the 
precession period of the nodes (For the theory of the mixed effects in the spherical 
satellite case, see Hori, 1966). A similar argument holds for the precession of the 
perigee induced by '/2" However, for high satellites, whose orbit is affected by the 
radiation pressure as the main non-gravitational perturbation, the precession periods 
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TABLE I 
Long-periodic perturbations in longitude ,k 

All the entries must be divided by n 2 and multiplied by the corresponding parameter to give the order of 
magnitude of the perturbation. For the truly secular terms (as those containing C, the transmission) the 

effects are computed after a time of the order of 1 yr/21r. 

multiplier aAp aAe 

1 0; 2yE o cos tr; 2yC; 2yD 1 ; 

; 3yZE~ ; 3yZD'~ ; 4(A + Do); ~yD2; 2yD'~ ; 2yE' o cos er; ~yE~ cos ~r; H 3yZD2 

P 0; YY-eD 1 "YE 1 sin a; 
2 ' 2  

rl 3yZE1 sin or; 2yE 1 sin a; 

3y2Eo cos a; 3y2C; 0; 

of perigee and node are very long ( > 1 yr), and this justifies a treatment neglecting 
the mixed terms over moderate intervals of time. 

4. Long-Periodic Effects on Eccentricity and Inclination 

The inclination and the node are affected only by the out-of-plane component W, 
hence substituting Equation (2.20) in Equation (2.11) and averaging we have: 

dP 
na~-  l.p. 

= D_ lc~ + E_ 1 sin a + ~[C - E o cos a] exp(j~) - 

2 -2 c o s a e x p ( - j ~ )  + 

+ HID'_ led + E'_~ sin a - 3(A + Oo)~ - 3B _3yE ~ sin a] + 

+ ~[D_2Cd + E_ 2 sin a].  (4.1) 

The qualitative informations contained in Equation (4.1) can be summarized as 
follows: 

(1) To order zero in the eccentricity, there is no long-periodic effects in P produced 
by the constant attitude spacecraft body. This is also true for more general shapes 
(see Appendix); 

(2) For a spacecraft with a despun antenna there are long-periodic effects in P 
containing no small parameter. This affects in a very important way the determination 
of some geophysical parameters (see Section 5). 

The formula for the long-periodic perturbations in H, obtained by Equations 
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(2.10), (2.18) and (2.19), is more complex: 

nad~ ~H = -3j[A + D o ] ~  -k-JD_2 ~ -  JE_ 1 co sa  + 
(1~ t t.p. Z 

I j sinaexp(-j()-3j(B+ Eo sin a) exp( j ( ) ]  + 

+ 2 r  _, cos a + O_ a[�88 - 3 ~ H ]  - xO+' ,&all + 

+�88 32/?-3 , H[eo _ 7DoSfH + �89 2 ~ , H  + COS 

- cos a[HE' 1 +/tE_2]. (4.2) 

The essential feature of Equation (4.2) is the appearance of zero-order terms both 
from the spacecraft body and from the despun antenna. As it is known, in the spherical 
satellite case (A = const, B = C = D = E = 0) the apsidal line rotates with the Sun. 
In the general case the path described by H in the (e, 6~) plane is not a simple ellipse, 
but the main qualitative feature is the same: a forced eccentricity arises, of the order 
of 3A(y2/n2a) (Van der Ha and Modi, 1977). 

5. Effects on the Orbit Determination Accuracy 

In this section, in order to show how to use the formulas given in the paper and to 
asses the physical significance of the various effects, we shall compute the order of 
magnitude of the most important terms in the orbital perturbations for a simple 
example. 

As an idealized, but representative case we choose a geosynchronous satellite 
with e = 0.001; the spinning spacecraft body is assumed to be spherical* with an 
area-to-mass ratio of 0.05 cm 2 g-  1; the despun antenna is assumed to be flat with an 
area equal to 1/3 of the cross section of the sphere and with a = 45 ~ In this case the- 
order of magnitude of the total accelaration due to the radiation pressure is (see 
Equation (1.2)): 

,kS' 
- 2 . 3  x 10-6 cms  -2 

mc 

To compute the various terms of Equation (1.4) we make the following assumptions: 
(1) The optical properties are specified by a reflectivity of 0.2 and an absorptivity 

c~ of 0.8 (no diffusivity); hence, in CGS units: 

A = 2.3 x 10 - 6 ,  

D = 6.2 x 10-7]cos ~bJ, 

E = 3 . 1  x 10- 71cos Ol cos ~b ; 

* The cylindrical case does not differ in any essential way. 
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(2) The power system dissipates the energy in the lower part of the spacecraft, 
yielding (with the anisotropic solar illumination) an average temperature difference 
AT of the lower half-sphere with respect to the upper one, such that [ATI/T = 1/30. 
From radiation balance considerations we find 

4 AT 
B = ~ a  T A--~0'035A; 

(3) The emitted power in the radio beam is supposed to be 3 ~  of the radiation 
incident on the sphere; this means 

C = 0.03A ; 

(4) We assume for the spacecraft's orientation ~ = r / =  0.01 tad. The long-term 
effects in the semimajor axis can be evaluated with Equation (3.1), noting that the first 
term is zero (see Equation (3.4)) : the main terms have the amplitudes 

2 

while the terms containing H are smaller by one order of magnitude. The exact value 
of E o, E 1 is a function of the Sun's mean anomaly M o and of the initial inclination 
with respect to the ecliptic, but their order of magnitude is ~ x 3.1 x 10 - 7  CGS 

units. Then the effect in 1/4 of a year is, for each of the E terms: 

Aa-,~Yn~--~2(1.1 x 1 0 - 9 ) - - -  lm .  

For the C term we have a truly secular effect with an amplitude over 1/4 of a year of: 

Aa ~ 2Y(7 x 10- io) ,,~ 0.5 m. 
n 2 

The corresponding longitude effects are given by 

alAP[ = -~y[Aa I ,,~ 5501Aa [ . 

Hence, the combined effect is of the order of 1 km. By comparison, the short-periodic 

(daily) effects due to the spacecraft body only are 

2A 
Aa,~ ~5---- 8.6 m 

3A 
- - " ~  13 m. alAPl,~ n2 - 

For e the inspection of Equation (3.5) shows that the main terms produce, over 

1/4 of the year, longitude displacements aAe of the order of 

2y .~Yx/2 E 2y A Y 
~ C ,  n 2 o, ~ D 1 ,  4 n 2e' 
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whose respective amplitude is approximately 

95 m, 151 m, 426 m, 40 m. 

Note that the term coming from the body of the spacecraft would become dominant 
if e were larger than r/and 4. 

As regards the inclination, the main terms (see Equation (4.1)) contributing to 
a[Ai} are of the type 

~22D1, YX/2E 
2n 2 1, 

respectively of amplitude 

213 m, 75 m, 

while the most important term due to the body of the satellite is about 2 m (containing 
a factor e). 

The forced eccentricity evaluated in Section 4 gives a term 

alAe [ ,,~ 3 a Y  ~ 237 m .  

From this example we can derive useful considerations about the achievable orbit 
determination accuracy and, in particular, the possibility of using the tracking 
data of high satellites to recover geophysical informations. Since it is very difficult 
to model the perturbing force due to the radiation pressure to a high accuracy (in 
practice, uncertainties of some percents seem unavoidable unless ad hoc satellites 
are used), the following limitations must be considered: 

(1) Even for very short ( ~  ld) orbital arcs, it is extremely difficult to predict the 
satellite position to an accuracy below 1 m. 

(2) The recovery of geophysical parameters using a resonant effect in longitude 
(like the geopotential coefficients with ( l -  m) even in the case of a synchronous 
orbit) is limited to a longitude accuracy of the order of 100 m (for an orbital arc of 
,,~ 3 months). 

(3) The recovery of geophysical parameters using secular effects in the node (like 
the zonal geopotential coefficients) or in the inclination (like the polar motion) have 
an accuracy limitation of tens of meters. For the polar motion, the effect to be deter- 
mined has, for a geosynchronous orbit, an amplitude of ~ 40 m, with a nearly annual 
periodicity. It follows that the effects of the radiation pressure, having a similar 
signature, cannot be easily separated (at least if there is a despun antenna). We note 
that for a lower satellite the situation is even worse, because the ratio between the 
effects of radiation pressure and of polar motion is proportional to 1/a 2. 

(4) The long-term effects in eccentricity produce obviously only short-periodic 
changes in the satellite coordinates. However, if the tracking data have a non-uniform 
distribution in mean anomaly, some 'systematic' error in the orbit determination 
can arise. 
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All these limitations are important because they show that the accuracy of the 
tracking data is presently better that the accuracy in the modeling of the orbital 
perturbations. This is not true if special efforts are made in the spacecraft and mission 
design, as in the case of perfectly spherical satellites without antennas. On the other 
hand, if the spherical model is used to determine the orbit of spacecraft whose real 
shape is complex, the recovered parameters (interstation baselines, geopotential coeffi- 
cients, polar motion) will be biased; some cases of discrepancy between different 
determinations of these parameters can be attributed to this problem. 

A p p e n d i x  

In this Appendix we prove some results about the long-term perturbations due to 
radiation pressure for a spacecraft of completely arbitrary shape and thermo-optical 
properties, in the following hypotheses: (a) the attitude is constant, i.e., the space- 
craft's orientation in an inertial reference frame is fixed (implying no despun antenna; 
the spacecraft can be spun, provided that the spin axis is fixed and that the spin 
period is much shorter than the orbital period); (b) the surface optical properties do 
not change with time; (c) the temperature can change, but only as a function of the 
Sun's position. We summarize these assumptions by stating that the perturbing 
acceleration F induced by the radiation pressure can be expressed as function of the 
Sun's position vector s only: 

F = F ( s ) .  

Then the long-term perturbations of the orbital elements have the following proper- 
ties: 

THEOREM 1. Thesemimajoraxisundergoesnolong-periodicorsecularperturbation. 
Proof. From Equation (2.2) 

nx/i- -- e 2 da 
2 dt = F(s)'(6 T + e sin ves + e cos v 6T). 

Now we suppose e r 0 (the result holds even for e = 0 by a continuity argument), 
and use a right-handed reference system with the x axis in the pericenter direction 
and the z axis in the angular momentum direction. We have 

es=(C~ sinv, 0) 

e r = ( - s i n v ,  cosy, 0). 

If Fx(s ), Fy(s) are the components of the perturbing acceleration in this frame, we 
have: 

nx/1 - e 2 da 
- Fx(s ) sin v + Fy(s)(e + cos v). 

2 dt 



42 L. ANSELMO ET AL. 

By averaging over the osculating mean anomaly M of the satellite, since 

2 ~  

f sin v dM = 0 

0 
and 

we find 

2 ~  

f cos v dM = - 2he, 

0 

2 ~  

f da dM = O. (A.1) 
dt 

0 

To illustrate the relationship between this average and the long term evolution of a, 
we have to consider da/d t  as a function of both M and M o ; then it can be expanded, in 
Fourier series: 

da _ Fda-] -5=h L Jhkexp[j(hMo + kM)]. 

Hence, (A.1) means that for every integer h 

H_-0 
ho 

Since 
dM o 

dt - no < n = n ~  

the long-periodic terms in the perturbation of a are of two kinds: those with k = 0 
and those with the small divisor hn o + kn ,,, 0 (i.e. - h/k  ~- y). But the latter are of 
very high order, because ]h I ~>y (e.g., i> 366 for a geosynchronous orbit). Hence, 
the harmonics of order h in the Fourier expansion of F(s) will be negligible for every 
reasonable shape. We can then conclude that Equation (A.1) is equivalent, for every 
practical case, to 

da x = 0 .  
l.p. 

THEOREM 2. The mean longitude 2 = e + p undergoes no long-periodic or secular 

perturbation at zero order in the eccentricity. 

Proof. From Equation (2.7) 

de 
--2 F(s).~ s + O(e) + o(i), 

dt na 
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where the term O(i) containing the inclination can be assumed to be zero because the 
reference plane is arbi t rary;  O(e) contains the terms of order  t> 1 in e. Using the same 

frame as before, we have 

de 2 
- [Fx(S ) cos v + Fy(S) sin v] + 0(e). 

dt na 

By averaging, since 

2n 

f cos v dM = 0(e), 

0 

we have 

d~t = O(e). 
l.p. 

On the other  hand, the long-periodic or secular per turbat ions  on p = Sn dt are zero 
as a consequence of Theo rem 1. 

T H E O R E M  3. The inclination and the node undergo no long-periodic or secular 
perturbation to zero order in the eccentricity. 

Proof. F r o m  Equat ion  (2.4) and (2.5) 

_di = cos(oh - f~ + m)F(s) .~w + 0(e) 
dt na 

df~ _ sin(oh - f~ + M)F(s).~w + 0(e). 
dt na sin i 

Since F(s) '~ w does not  depend on M, by averaging we get 

di = 0(e) 

~ l . p  

df~ = O(e). 

l.p 
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