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ABSTRACT. Numerical studies over the entire range of mass-ratios in 

the circular restricted 3-body problem have revealed the existence of 

families of three-dimensional 'halo' periodic orbits emanating from 

thegeneral vicinity of any of the 3 collinear Lagrangian libration 

points. Following a family towards the nearer primary leads, in 2 

different cases, to thin, almost rectilinear, orbits aligned essen- 

tially perpendicular to the plane of motion of the primaries. 

(i) If the nearer primary is much more massive than the further, these 

thin L3-family halo orbits are analyzed by looking at the in-plane 

components of the small osculating angular momentum relative to the 

larger primary and at the small in-plane components of the osculating 

Laplace eccentricity vector. The analysis is carried either to Ist 

or 2nd order in these 4 small quantities, and the resulting orbits 

and their stability are compared with those obtained by a regularized 

numerical integration. (ii) If the nearer primary is much less massive 

than the further, the thin L1-family and L2-family halo orbits are 

analyzed to Ist order in these same 4 small quantities with an 

independent variable related to the one-dimensional approximate 

motion. The resulting orbits and their stability are again compared 

with those obtained by numerical integration. 

I. INTRODUCTION 

Previous papers have presented three-dimensional, periodic 'halo' orbits 

found in the restricted, 3-body problem. Farquhar and Kamel (1973) first 

predicted and found halo orbits near the translunar L 2 libration point in 

the Earth-Moon system. Breakwell and Brown (1979) then extended these into 

an L 2 family of orbits. They also found and computed a family originating 

near the L I libration point between the Earth and the Moon. Of particular 

interest, stable orbits were found in each family. From these results, 

additional families were calculated for various mass ratios (Howell, 1984). 

Mass ratios both larger and smaller than that for the Earth-Moon case of 

~=0.012 were used. This also permitted calculation of halo orbits near L 
3' 

on the far side of the Earth. Stable three-dimensional orbits were found 
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in the majority of cases. In both the L 2 and L 3 cases, the families tend 

toward almost rectilinear orbits as the initial point moves closer to the 

nearest primary. Breakwell and Brown presented an 'analytical' approxi- 

mation to these orbits in the L 2 family. The almost rectilinear orbits 

constituted in fact a kind of bridge between the L 2 family and the L 1 

family. The approximation produced linear non-homogeneous equations to 

calculate position and velocity as well as indicate stability. 

2. ANALYSIS 

2.1. Problem Definition 

The circular restricted three-body problem involves the two finite masses 

m I and m2, assumed to be point masses, moving in circles around their 

common mass center, each under the gravitational influence of the other. 

A rotating coordinate system, with origin at m 2 is chosen. ~ is defined as 

the mass ratio m 2 to the sum m1+m 2. 

The system is shown in Figure I as it would appear for ~>0.5. 

t 2 c, 2"o= ta > x  

Fig. I . 

b 5 

Libration points. 

The x-y plane is the plane of motion of the masses m I and m 2. 

A z-axis out of the page completes the right-handed system. The third body, 

m3, is assumed massless but may travel in three dimensions. The five 

equilibrium, or libration, points are shown. For convenience, nondimensional 

units were used such that the sum of the masses, m1+m 2, is equal to I, the 

distance between the primaries is equal to I, and the angular velocity of 

the x-axis equals I. The equations of motion are 

~U 
~ - 2 9 - 

~X 
~U 

9 + 2 ~  = 

~Y 
aU 

~. - 

~ z  

(2.1) 
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where 

1 * 2  2 1 - p  
U = -  (x + y )  + +- 

2 d r 

x = x + I - 

d = distance from ml, 

r = distance from m2, 

Dots denote d/dt. The equations are known to yield a constant of inte- 

gration, C, given by 

.2 .2 .2 
x +y +z 

2 

C 
~- U m m �9 

2 
(2.2) 

Also needed is the 6x6 transition matrix, %(t, 0), of partial derivatives, 

SX(t)/~X(0) . X is a column vector with elements x, y, z, i, ~, 9. Here 

%(0, 0) = I, the identity matrix and 

d 

dt 
%(t, 0) = A(t)r 0), (2.3) 

where 

0 I AItl < ). 
UXX 2~ 

0 1 0 

= (-1 0 0 / . 
0 0 0 

and UXX is the symmetric matrix of second partial derivatives of U with 

respect to x, y, z, evaluated along the orbit. The values of r at a re- 

crossing of the x-z plane are used to assist (see Breakwell and Brown, 

1979) the convergence toward an orbit with a second perpendicular crossing 

of the x-z plane, i.e., a periodic orbit. Stability is determined by the 

eigenvalues of the full-cycle transition matrix ~(tF, 0). Two of the 

eigenvalues are always I. The other four are in reciprocal pairs (Ii, I/I 

since the equations are invariant under t § y § The 6x6 matrix 

~(tF, 0) can be reduced as shown in Breakwell and Brown (1979) and Howell 

(1981) to a 4x4 matrix ~ to produce the 4 critical eigenvalues. Two 

stability indices have been defined as the arithmetic mean of each pair, 

v . = 1 / 2 ( t  +1/ I  ) 
l i i " 

The stability indices can be calculated directly (see Broucke, 1969) 

from 

= �88 + /8 + 2 tr(~ 2) 2 
- (tr ~) ]. (2.4) 

Stability requires real v's between -I and +I. 

Planar projections of selected members of the family of halo orbits 
W 

found near L 3 for p=0.96 are shown in Figures 2a-b. The value x =x+1-~ and 

is the distance from the barycenter in the x-direction. The x-z projections 

i ) , 
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Fig. 2a. x-z projection, L 3 family, 

X 
! 

W=0.96. 
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Fig. 2b. y-z projection, L 3 family, ~=0.96. 
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are shown in Figure 2a. It can be seen that the point with the maximum x 

and maximum z value is unique for each orbit. For that reason, the x 
max 

value is used to identify each member of the family. It can be seen in the 

two plots that the family is tending toward orbits which have a large out- 

of-plane component (z) and increasingly smaller in-plane components. They 

also appear to be approaching a collision with m 2. 

2.2. Integrgtion Scheme 

One of the main difficulties involved in the results shown thus far is the 

third body moving toward a close approach with the nearer mass. The singu- 

larities of the differential equations, notably in the potential U (i.e., 

~U/Zxi) and in the equations for the transition matrix result in a consider- 

able increase in computer time and serious accuracy problems. The singu- 

larities can be eliminated by using a regularization transformation. 

The method employed for three-dimensional regularization developed 

from that presented by Kustaanheimo and Stiefel (1965) for Kepler motion. 

Bettis and Szebehely (1971) discussed the numerical approaches in 

considerable detail. 

Regularization in the three-dimensional space R 3 involves a simple 

mapping of a four-dimensional space R 4 onto R 3. In R 4 the equations remain 

completely regular at the center of the chosen primary. In the restricted 

three-body problem, singularities occur at both primaries. This paper is 

concerned only with close approaches to one of these masses. 

To remove the singularity when r becomes small, it is necessary to 

introduce both a coordinate transformation and a transformation of the 

independent variable. The transformation of the time, t, is 

dt = r dT. (2.5) 

The new independent variable, T, was used in the equations to produce most 

of the results in Figures 2a-b. It facilitated a smoother and more efficient 

change in step size. For the coordinate transformation, Kustaanheime and 

Stiefel introduce two four-dimensional column vectors, R and the new varia- 

bles in u, which are related by 

~-- R = ~(u)u, (2.6) 

where 

(x, y, z, 0) T 

u = (u I, u 2, u 3, u4)T, 

~(u) u2 Ul -u4 -u3 . 

u 3 u 4 u I u 2 

u 4 -u 3 u 2 -u I 

Superscripts T denotes transpose. Recall that the equations of motion in R 3 

are in the rotating coordinate system and appear as written in (2.1). 

The equations in R 4 in the variables u. are produced from these. In matrix 
l 

notation, they are: 
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h 
U" -- -- U = 

2 

RT (u)~R(u) u' + 
(U "U) 

2 

RT (u) F, (2.7) 

where 

m 

B 

/ 0 2 0 

-2 0 0 

0 0 0 

0 0 0 

0\ 

0 

0 

02 

F = 

(I - U)(I + x) .h 
-- + X 

d 3 

(I - ~)y 

d 3 

(I - ~)z 

+ y 

0 

d 3 

Prime indicates differentiation with respect to T, the new independent 

variable. Very significant in eliminating the singularity is the quantity 

m m 

2(u''u') H (I - H) I *2 2 C 
h : -- : +- (x + y ) -- . (2.8) 

(u-u) r d 2 2 

The constant C is evaluated from Equation (2.2) at the initial time. Note 

that (u.u)=r. (See Appendix A for details of the derivation.) 

For the transition matrix, ~(t, 0) , it is not sufficient to simply 
5 

transform the differential equation. It contains r in the denominator and 

the coordinate transformation could not completely remove the problem. 

Instead the 8x8 transition matrix associated with the u's is calculated. 

The resulting equations contain no singularities. It is used at tF/2 to 

help convergence toward a periodic orbit. Then at tF, the full-cycle 8x8 

matrix can be reduced to the desired 4x4~ matrix needed to indicate 

stability where 

/dx F ~ ~x 0 

dz F 6z 0 
~ . (2.9) 

d~F ~0 

dZF/ ~6z0/ 

(See Appendix A for the derivation of ~.) 

A disadvantage of this method is that there are now 73 differential 

equations and they are much more complicated (requiring more computations) 

than the original 42 or 43. This is generally offset, however, by the fact 

that they can be used in regions where the original equations were 

unsatisfactory. In some regions where the original equations were used 

successfully, the regularized equations may use a stepsize 2 or 3 orders of 

magnitude larger than the original set - many more computations per 

integration step, but many times fewer the number of steps. 

Any long integration scheme, however, takes much computer time and 

stepping along a halo family is slow - small jumps from one orbit to the 

next to successfully converge. The next section will be devoted to discussing 

an analytic approximation to those orbits which pass close to the nearer 

primary. 
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3. APPROXIMATION FOR THE L 3 F~{ILIES 

The orbits near the mass in the L 3 case are characterized by the fact that, 

except near close approach, x, y << z. The first and second order approximate 

approaches developed are based on that assumption. An example of the orbit 

being approximated appears in Figure 3. 

0 

-1 

- 2  

1 - -  

Z - -  

/ 

-i O 1 
X 

F i g .  3 .  H a l o  o r b i t s  i n  L 3 f a m i l y .  

8 

-I 

-2 

I I L 

Y 

-I O 1 
Y 

The orbits are very close to the larger mass. The distance from m 
2 

is given by r, with the x value changing very little during one period. 

It can be modelled as a perturbed Kepler orbit. 

The vector V is denoted V. A unit vector in the same direction as V 

is written V. Then, with the definition of the constant 

a = �89 
max 

position in the orbit from the large mass at a given time can be written as 

-- a(1 - cos E)(-~) + ~ x h sin E, (3.1) 

where 

E = eccentric anomaly (E = ~ at r ) ; 
max 

e = Laplace's eccentricity vector - 

= angular momentum vector = ~ • V; 

A 

r; 

V = velocity as seen in the non-rotating frame. 

To aid in determining the effect of the smaller mass choose the small 

parameter s=ml/(m1+m2)=1-~. 

To produce both a Ist order and a 2nd order approximation, 

definitions are used, truncated to 2nd order, 

where 

m ~ A A 

e e x + e (I s2 (2) yy - - e 
X Z 

h h x + h x yY ' 

A 

)z, 

(I) 2 (2) 
e = se + s e , 

h = 8h (I) + ~2h(2) 

: (x, y) , 

: (x, y) , 

the followina 

(3.2) 



36 K. C. HOWELL AND J. V. BREAKWELL 

of M, 

both of which are small. The superscripts (I) and (2) indicate Ist and 2nd 

order terms. Finally the presence of the mass m I will not only disturb the 

position of m 3 from that in a 2-body Kepler orbit, it will also make a time 

correction necessary. To produce a differential equation for the correction 

to the time, start with the mean anomaly M. It can be approximated here as 

M=E-sin E. M is also defined in terms of the mean motion n as nt=M with t 

measured from periapsis. Because of the perturbation this is no longer 

strictly true. If the first order correction is defined to be 4, a function 

it can be rewritten 

where 

nt : M + ss , (3.3) 

n : 7H/a 3 , 

which is truncated to first order. The first order equation of motion is 

used to determine the time correction. 

2 3 
n a 

,o 

r - + f 
2 r" 

r 

(3.4) 

To rewrite the left side of the equation, differentiate the first order 

form r=a(1-cos E) with respect to time (noting that E:M/(1-cos E)) to 

produce 

a sin E 

r - 

I- cos E 
(3.5) 

Find M by differentiating (3.3) such that 
n 

= 

1 + ~' 

(3.6) 

where prime indicates differentiation with respect to M. Then (3.5) appears 

as 

a sin E 

r = n(1 + ~s -I. (3.7) 

1 - cos E 

Differentiating (3.7) again with respect to time, substituting (3.6) and 

dropping higher order terms results in 

2 2 
n a na sinE 

oo 

(I - 2~s - sA". (3.8) 
r = - 2 (I - cos E) (I - cos E) 

On the right side of Equation (3.4), f is the perturbing force in the r 
r 

direction. The total perturbing force due to m I, written in nondimensional 

variables, is 

51 = ( 1  - ~) Ix - 

(x + r) 

^ - 3 
I x  + r l  

(3.9) 

So the needed approximation is 

f ~ _ 
r 

2 4 
En a (I - cos E) 

2 2 3 / 2  
[I + a (I - cos E) ] 

( 3 . 1 0 )  
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Substituting (3.8) , (3.10) and r=a(1-cos 

produces a differential equation for the 

2 
A l l  - A I : 

(I - cos E) sin E 
sin 

E) into (3.4) and rear ringing 

time correction A, 

2 
(I - cos E) 

2 3/2 
I 

a 

(3.11) 

The other differential equations for the 

h = rxf 
I' 

" m m 

e : (I/p) [fl x h + V x (r x 51) ]. 

system can be derived from 

(3.12) 

The Equations (3.12) can be reduced 

separately for angular momentum and 

to produce ]st and 2nd order terms 

eccentricity. The resulting equations 

are 

where 

h(1) ' : K3/2h(1) ' 
x y 

h(1) ' = _K 3/2 h(1) 
y x 

(2) ' = K3/2 h(2) h 
x y 

(2) ' = _K3/2 h(2) h 
y x 

_ K5/2(I _ 

e(1) ' K3/2 (I) 
= e - 

x y 

e(1) ' _K3/2 (I) 
= e , 

y x 
(2)' 3/2 (2) 

e = K e + 
x y 

y - K2B 2 [ + 

e(2) ' 3/2 (2) 
= -K e - 

y x 

A 
K = a, 

+7, 

+ K3/2Bh(1) 
Y 

_ K3/2Bh(1) 
X 

+ K5/2(I - cos E)B2h(1) 
Y 

cos E)B1ex(1) + YB, 

K 2 sin E(I - A), 

K3/26e(1) + K2B sin 
y I 

sin E] h (I) , 
Y 

K3/26e(1) _ yh(1) , 
X X 

(1) 
E e  + 

x 

(3.13) 

A = [I + K 

B I = 3K(I - 

y = K 5/2- ( I 

2 2 
(I - cos E) ] 

cos E)A 5/3 , 

- cos E)(I 

-3/2 

A), 

6 : �89 + A'. 

= -3K1/2(sin E)A 5/3 
B 2 

For the 2nd order approximation an additional equation is needed, 

(2) ' K3/2_ = [ (I - cos E)h (I) - K 2 sin E e(1) e 
z y x 

+ 

+ K7/2(I - cos E) 2e (I) - K2(I - cos E) 2 

Y 

+ K 3/2 sin E(I - cos 

The initial state for these equations is 

calculated using the fact that h~IJ=h t 2 J "  " " " 
Y Y 

(I)' 
e + 
X 

E)h (I) '] (I - A) . 
Y 

at r=0. Periodic 
(.1) (2) 

=e =e =0 at 
Y Y 

orbits are 

any crossing 

(3.14) 

of the 
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x-z plane of symmetry, i.e., at E=0, ~. Solutions of the differential 

equations in (3.13) and (3.14) can be used in Equation (3.1) to produce 

r which can be compared with the fully integrated results. 

It can be noted that the equations in (3.13) are linear. This leads to 

a simple form for elements of vector W at M, the mean anomaly, 

W(M) = Y(M, 0)W(0) + P(0), 

where 
- (I) h(1) h(2) h(2) (I) (I) (2) (2))T 
W = (h x , Y , x ' y , e x , ey , e x , ey . 

Y(M, 0) is the 8x8 transition matrix of the homogeneous equation associated 

with (3.13), ~W(t)/~W(0). It is calculated from 

d 
~(M, 0) = G(M)~(M, 0) . 

dM 
(3.15) 

~(0, 0)=I and the 8x8 matrix G has non-zero elements such that 

= K 3/2 
G12 = G34 = G56 = G78 

= _K 3/2 
G21 = G43 = G65 = G87 

032 = 076 = -O41 = -085 

= K5/2 
G42 (I - cos E)B 2, 

= _K 512 
G45 (I - cos E)B I, 

G72 = y - K2B2 sin E, 

= K2B sin E, 
G75 I 

: K3/2 B 

G81 = -y. 

As the vector W indicates, ~ is the transition matrix for the 2nd order 

approximation which contains the Ist order results as well. 

The eigenvalues for the Ist order equations can be found in the upper 

left 2x2 matrix contained in the full cycle Y(MF, 0) . The two eigenvalues 

are always complex conjugates. To evaluate the stability of the periodic 

orbits produced in the 2nd order case, the 4x4 transition matrix 

m 

~Y(M) 
r(M, 0) - , (3.16) 

~Y(0) 

where 

= (h , hy, ex, ey) T 
X 

is actually needed. But F can be calculated from ~. It may be assumed that 

the initial 2nd order variations are always zero, so that the elements of 

F can be calculated according to the following example for element F 

2h(2) (I) (2) ~h (t) ~(Eh (I) + s ) ~h ~h 
X X X X X 

2h(2) (1) (1) " ~h (0) ~(sh (I) + ~ ) ~h ~h 
y y y 0 y 0 y 0 

12' 

(3.17) 

The four eigenvalues of the matrix F can be compared with the eigenvalues 

found for the fully integrated equations. The stability indices for F can 

be calculated directly as shown previously in Equations (2.4). 



4. NUMERICAL RESULTS FOR L 3 

Shown in Figures 2a-b, many orbits had previously been calculated in the L 3 

family at ~=0.96. Integration of the regularized equations of motion produced 

additional members of this family located very close to m 2. Initial and 

final conditions for some representative orbihs in this region are shown 

in Table I. The values for T/2 indicate half the period in units of non- 

dimensional time. Also shown are the values of the stability indices. 

TABLE I: Orbits in the L 3 family at p=0.96. 

W 

x 0 0.040096 0.061790 0.120314 0.197908 0.257036 0.350513 

z 0 0.422546 1.368386 1.673604 1.778059 1.809052 1.824026 

~0 -0.005004 -0.036044 -0.081819 -0.140186 -0.185697 -0.256747 

T/2 0.311104 1.800978 2.440748 2.692939 2.787250 2.872278 

C 4.617555 I .450699 I .192248 I .130949 I .120449 I .128648 

V 0.81867 -0.86859 0.28203 0.79518 0.97237 1.13479 
I 

V 0.80587 -0.91578 0.11582 0.58190 0.72525 0.83356 
2 

X-Z PRSFILE, Ls FAMILY, U=o96 

bq 

t 
f 

5- 

5- 

x 
< 
7- 

Fig. 4. 
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0 0,5 i io5 
MAXIMUM X" 

It is desired to compare the exact and approximately calculated orbits. 

The best comparison is made by looking at the family of orbits rather than 

at individual members. Both integrated and approximate results appear in 

Figure 4. Here only the X'max, Zmax value has been plotted for each orbit 
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The solid curve which is the exact result, is the boundary of the x-z 

projection, part of which is seen in Figure 2a. Note that the z values 
max 

drop off quickly after reaching a peak as x continues to decrease. 
max 

This is consistent with results at other mass ratios. Results from the 

2nd order approximation are seen in the dashed curve. The Ist order result 

is the dotted curve. Near m2, only the approximations are shown. They are 

on the solid curve when it is continued through this area. The 2nd 

order curve is clearly better at this mass ratio, following the exact 

curve closely to about z ~ 1.8. This corresponds to x* ~ 0 25 Even 
max max " " 

with that difference, however, the Ist order may be preferred because of 

the very simple form of the equations. Figure 5 indicates the stability of 

STABILITY INOICES  /8=~ 

2 

Fig. 5. 

0 

2 

m2 

, 

J j f  

J 
i f 

X 

Ls 

I I I I I I I 
0 O~ i io5 

MAXIMUM • 

members of this family by plotting x* the identifying point for each 
max ' 

orbit, versus the stability indices, v.. Although none of the orbits is 
1 

extremely unstable, they are only stable when both ~ are between -I and +I. 

Difficult to see on this scale, the two v's do not have quite the same 

value. Also, as x* decreases, both v appear to pass through -I Actually 
max 

one curve dips just Delow -I, technically outside the sable region. The 

other curve doe~ not quite reach -I. The almost rectilinear orbits for 

which the 2nd order approximation is good are almost all contained within 

the stable region. The v's both appear to converge to +I as z ~ 0. How 
max 

well the approximation predicts the stability is shown in Figure 6. Here 

the portion of Figure 5 in which the approximation is good has been enlarged. 

The dashed curves are stability indices in the 2nd order case. The ]st order 

case produces two equal v and that curve is dotted. 
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Fig. 6. 

Of course, this approximation works best in the region where the 

initial assumption is valid, i.e., x, y << z . 

As ~ is reduced, and s therefore increased, the approximation is good 

in a smaller region near the mass. Orbits were both integrated and approxi- 

mated also at ~=0.988 which corresponds to the L 3 case in the Earth-Moon 

system. Again a family exists from L 3 to the Earth. However, very close to 

the point where the ~'s dip into the stable range, the orbits dip beneath 

the surface of the Earth. The outer members of the family are only mildly 

unstable, much as in Figure 5. 

5. APPROXI~,~TION FOR THE L I - L 2 BRIDGE FAMILY 

In Figure 1, the smaller primary is on the left. For analysis of the almost 

rectilinear orbits near the smaller primary, the corresponding situation in 

the equations of motion is choosing ~ to be small. When ~ < 0.5, the libration 

point on the far side of ~(m 2) is then redefined to be L 2. As in the L 3 

case, the halo family associated with both L I and L 2 tend toward recti- 

linear orbits as x is decreased. Breakwell and Brown (1979) presented 
max 

an analytic approximation to this case for ~ very small. The initial as- 
2 

sumptions are now z << I and x, y of order z . 
max 

Although these are different than those in the L 3 case presented 

earlier, a similar Ist order analysis can be carried out using some of the 

variables introduced in Breakwell and Brown (1979) . 
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It is still of interest to analyze the orbit by looking at the in-plane 

components of the small angular momentum vector and the small in-plane 

components of the eccentricity vector. To first order, use 

h = h.x s + hyg, 

e ~ ex ~ + ey9 - ~, 

where h , hy, e x, e are small. 
x y 

Ignoring x, y, ~, 9, the motion is purely one-dimensional, given 

approximately by 

.2 2 
Z Z 

+ 

2 2 z 

3 
Introducing n=1-2g/z 

max 
it as 

2 
�9 2 ~M r - 

U 

- constant - 

2 
z 
max 

2 z 
max 

1 / 3  
and ~=z/~ , %M=Zmax/~ 

2 
(I -u)(I - n + u + u ). 

I / 3  

(5.1) 

(5.2) 

, and u=~/~M, rewrite 

(5.3) 

Also introducing S = -(sgn ~) gl -u, 

R 

2VU 

where R = ~-~+u+u 2. This permits the introduction of S as the independent 

variable in place of time, which is determined by a quadrature. Now the 

perturbation due to the other primary, seen in (3.9), can be written in 

another form (with ~ small) as 

3 
- 2R. 

= i ~,3~ T - 1)r +- z 

2 

(5.4) 

The approximation for r in (3. I) in another form is 

) r - z 9xh - e ~ - e 9 + ~. �9 
x y 

Using these in (3.12) , obtain 

(5.5) 

�9 ( ) = _3z2 9 3 3 
e + --h ~ + -- z ~ 
x ~ Y 2 

2 3. 
. 3z 9 ( ~ ) z 3 z z 

e e + -h ~ + - (h ~ - hxY) 
x ~ Y ~ Y 2 p 

(5.6) 

Next it is convenient to eliminate the small parameter p by scaling 

according to 

hx~ + hy~ = 

ex~ + ey9 

x y 
I/3 

(~x y 

(5.7) 
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Hence, the scalar equations in the new scaled variables are 

x y 

3r 2 3 
[ = -I + ~MSR I 3~ 2 3 

- s + -- ~ , 
y x /u Y X 2 

( ) ~MSR = ~ + ~ + 3 2 3 S2R2 3~2 
~x y ~M - - X _ ~MSR ~ + 3 ~3 

Y x 2 

(5.8) 

= -s - ~ . 
y x x 

Desiring to use S as the independent variable introduce the 4-vector 
T 

X = (I I ~ ~ ) . Use 
x y x y 

dX 

dS 
- A(S)X + B(S) , 

where the non-zero elements of the 4x4 matrix A and the vector B are 

A12 = A34 : -A21 : -A43 : 2 gu/R, 

(5.9) 

A41 = %A21, A33 = ~A12 + 6%~3S2R ~, 

2 
A22 = -A33 = 6~ ~M S, A23 = -6% 

2 ~ / R ,  

B 2 : 3~3 Vu/R, B 3 = 3~ 3~M S. 

The periodic halo orbits again have ~ and I zero at intersections with 
Y Y 

the x-z plane, i e., at S = -I and S = 0 This determines s and I at 
�9 " X X 

S = -I (closest to the small primary) as well as at S = 0. 

The stability is determined by the eigenvalues of the full-cycle 

transition matrix ~(I, -I) from S = -I to S = +I. Here r -I) = I and 

d 
r -I) = A(S) r 

dS 

- 1 )  �9 ( 5 . 1 0 )  

These 4 eigenvalues are again in pairs (li' I/~i) , since the equations are 

§ , ey § . The stability indices are calcu- invariant under S § ly Y Y 

lated as before from (2.4). Equations equivalent to (5.8), with slightly 

different dependent variables and a more laborious derivation, were given 

in Breakwell and Brown (1979). The stability indices ~I' ~2 as functions of 

~M were identical with those obtained here. 

6. NUMERICAL RESULTS FOR THE L I -L 2 BRIDGE FAMILY 

Being considered are almost rectilinear orbits near the smaller primary. 

They can be on either side of m 2, in either the L I or L 2 family. Orbits 

were calculated with the Earth-Moon mass ratio ~ = 0.012 for comparison with 

results obtained by Breakwell and Brown �9 The results are identical. 
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Figure 7 shows the exact apolune points for the L I and L 2 halo family 

in the Earth-Moon case, as well as the almost rectilinear approximation. 

Figure 8 shows the stability indices ~. for the same problem, the 
1 

approximation forming a bridge between the two families. 

The orbits are found to be stable for ~M < 0.761, at which value one of 

the v's reaches -I. At %M = 0.832, the other ~ reaches +I and the corre- 

sponding initial small parameters (~) and (s x) approach +~ and -~ 
x 0 0 

respectively, indicating a complete breakdown in the approximation. 

However, for ~M > 0.832, the initial small parameters are again finite and 

with reversed signs. This second branch approximates the L I halo family, 

while the earlier branch (~M < 0.832) approximates the L 2 halo family. 

At ~M = 1.310 the orbits again become stable (both ~'s less than I), the 

positive v having in fact already passed below +I at {M = 1.2815, without 

however any divergence of the initial small parameters. The stability is 

however short-lived, since above ~M = 1.3186 the ~'s become complex, 

being both -0.192 at this ~M" 

7. CONCLUSIONS 

The halo orbits originating in the neighborhood of either L I or L 2 near the 

smaller primary, or of L3, near the larger primary, tend toward almost 

rectilinear orbits perpendicular to the plane of motion of the primaries as 

the halo orbit moves away from the libration point toward the nearer primary. 

These almost rectilinear orbits can be approximated by one of the two 

linear analyses, depending on whether ~ or (I -~) is small. The linear 

analysis also gives a satisfactory account of the stability of the orbits 

in question. 

APPENDIX A 

At. Re@ularization of the Restricted Three-Body Problem in the Rotating Frame 

This derivation is very similar to that shown in Bettis and Szebehely (1971) 

for a more general problem in a nonrotating frame. Begin with the equations 

of motion, written in the original variables from Section 2 as 

DU 
~1 - 2 9 - 

~x 

~U 
+ 2~ - 

~Y 

(At .I) 

where 

DB 

Z - 

~U 

~z 

I ,2 2 I - ~ 
U =-- (x + y ) + + -- 

2 d r 

X = x + I - p, d = distance from ml, r = distance from m 2. 
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The constant C, is given by 

.2 .2 .2 
x +y + z 

2 

C 
--" U M 

2 

Regularization involves first, the transformation of the independent 

variable, t, and second, the transformation of the coordinates x, y, 

The time transformation is defined by 

dt = r dT, 

to the new independent variable T. The equations (A.I) now appear as 

(AI .2) 

Z . 

(AI .3) 

x' Ux 
_ _ r2F x" - 2ry' = 2 (r'r') - + 

r r 

y" + 2rx' - 
Y' UY 
2 (r-r') + r2F 

r r 

I ' 

2' (A1 .4) 

where 

Z 
I! __ 

Z' ]/Z 

(r'r') + r2F 
2 

r r 

r-r' = xx' + yy' + zz', 

(I - ~)(I + x) 

, 

F 1 = - d3 + (I - ~) + x, 

(I - U)Y 
= _ + y, 

F2 d 3 

(I - 

3 
d 

m --- B 

3 

Prime indicates differentiation with respect to T. 

The coordinate transformation is from the position variables x, y, z 

to the new variables Ul, u2, u3, and u 4. To move from a three-dimensional 

representation to one in four dimensions, it is convenient to define the 

four-dimensional column vectors 

= (x, y, Z, 0) T, 

R' : (x' ' ' 0) T , y , z , 

n 

U = (ul, u 2, u 3, u4)T. 

Then the equations in (A].4) can be written in a four-dimensional 

matrix form as 

N.N' 

- =_ r 2 R" - R' + rBR' - ~- + F, 
R 

(AI .5) 

where 

R - IRI, 
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B 

0 2 0 0] 

j 

-2 0 0 0 

0 0 0 0 

0 0 0 0 

- T 
F = (F I , F 2, F 3, 0) . 

This equation is still written in the rotating coordinate system. Numerical 

problems for orbits in which r, or equivalently R, approaches zero can be 

seen since that variable appears in the denominator. 

To effect the coordinate transformation use the relation 

R : H(u)u, (AI.6) 

where 

u I -u 2 -u 3 u 4 

u 2 u I -u 4 -u 3 

u 3 u 4 u I u 2 

u 4 -u 3 u 2 -u I 

It 
m m 

can be shown that r = u-u. 

(I) HT(u) H(u) : rI. 

(2) ~' (u) = ~(u') . 

C3) H(u) u' : HCu')u: �89 

variables u. satisfy 
1 

The operator R(u) has the following properties: 

assuming that the derivatives of the new 

an additional condition that 

! ! 

u4u I - u3u �89 + u2u 3 - UlU ~ : 0. 

(4) (u-u) R(u')u' - 2(u'u')R(u)u' + (u'-u')H(u)u : 0. 

Further differentiation of R' in Property (3) and application of Property 

(2) provides the useful relationship 

R" : 2~ (u) u" 

Using (AI.6) , Property 

becomes 

(u-u) ~ (u) u" 

+ 2~(u')u' . 

(3) and (AI.7), 

+ (u-u)~(u')u' : 

the matrix equation in (At .5) 

m ~ ~ J 

2(u-u')R (U)U' + 

(AI .7) 

+ (u-u) 2~(u) u 
(u'u) 3 

' -- ~(u) u + F. 

2 2 

(At .8) 

Apply ing Property 

~(u) u" - 

(4) of the operator ~ produces 

I m 

(u' "u') 

(U "U) 
e ( u )  u = (u-u) ~ (u) u' 

(u-u) 2 

+ F. 
2 

~(u) u 

2 (u-u) 

+ 

From Property 
= ~T (u) / (u-u) 

(I), the 

�9 Multiply 

inverse 

by the 

of the operator can be defined 

inverse and rearrange Equation 

~-i (u) 

(AI .9) 

(At .9) 

for a 
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more useful form 

m l 

- 2(u'-u') (u-u) 
_ _ = S T - = sT u" + u (u)BE(u)u' + (u)5. 

2 (u'u) 2 
(AI.10) 

The second term of (AI.10) still contains (u'u) = r in the denominator �9 

However, a new variable h can be introduced and defined such that 

h = 

m 

(R-R) 

2 R 
(At . 1 1 ) 

or equivalently 

m 

2H(u)u'-s 

h : 2 " (AI .12) 
r r 

From linear algebra 

(u)u (u)u - sT(u) ''~ ' : u'" ~(u)u'. (AI �9 

Using (At .13) and Property (I), h can also be defined as 

D m 

2(u'-u') - 

h = , (AI .14) 
(u-u) 

which is very similar to the second term of (AI.10) . Replace that term by 
B 

-(h/2)u and calculate h using (AI.11) . (R'R) is the square of the velocity 

in the rotating frame which has been related to R through the constant in 

(AI.12) . The result is 

where 

h (u-u) 
_ _ = S T - = sT u" u (u) B~(u)u' + (u)F, (AI.15) 

h _ 

2 2 

I - ~ I *2 2 C 

+- (x +y) , 

d 2 2 

which contains no singularities �9 

The 6x6 transition matrix, %(t, 0), as seen in Section 2, cannot be 

transformed directly to remove all singularities �9 Rather an 8x8 transition 

matrix, ~(T, 0), associated with the u's can be calculated where 

4 ' ~(m, 0)= ~Y(m)/~Y(0) and Y= (Ul, u2, u3, u4, u , u2, u , u 4 . As usual 

~(0, 0) = I and 

d 

-- ~(m, 0) = A(Y)~(T, 
dT 

0) , (At. 16) 

where A(T) is an 8x8 matrix defined by 

= ( o  
A = t , G  H ) '  
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Gij 

Hij 

1 

~U. 
3 

3u" 
1 

3U! 
3 

i, j = I, 2, 3, 4, 

i, j = I, 2, 3, 4. 

Matrices G and H are determined using the forms of u'~ shown in (AI.15) . 
1 

The system of equations to be integrated then consists of the 

independent variable transformation in (AI.13) , the 8 first order equations 

in (AI.15) , and the 64 equations for Y in (AI.16) for a total of 73. 

A2. Finding Periodic Orbits 

For the desired simply symmetric orbits the initial vector appears as 

X 0 = (x0, 0, z0, 0, Y0' 0)T' (A2.1) 

indicating a perpendicular departure from the x-z plane. By introducing 

the 4th dimension, one of the initial u's may be arbitrarily chosen. Here 

u 4 
0 

= 0 was selected so that the transformed initial vector appears as 

= ' 0 u~ )T 
Y0 (u10, 0, u30' 0, 0, u20' ' 0 " (A2.2) 

As before, integration continues until the next crossing of the x-z plane 

at y = 2(UlU 2 -u3u 4) = 0. For integration purposes, tF/2 is defined to occur 

when lyl < 10 -11 . The exact initial conditions for periodicity are not 

known so the second crossing of the x-z plane may not be perpendicular. 

This is tested using two values 

_ , , _ u3u { + , v I - UlU I - u2u 2 u4u 4, 

- ' + u ' + u3u ~ + ' v 2 - UlU 3 2u4 u4u 2, 

(A2.3) 

since ~ = 2Vl/R and { = 2v2/R. The orbit is considered 'periodic' when 

Iv11, Iv21 < 10 -8. If this is not the case, corrections to the initial 

vector Y0 can be calculated using ~(TF/2 , 0) . The desired changes in the 

end values at TF/2 , -v I and -v2, need to be produced by changes in the 

initial conditions. The changes in end conditions are described by the 

variation of (A2.3) as 

, _ E6U2E u3 E UiE6U'iE + UIE6UIE U2E6U2E - u~ - 6U'3E - 

' 6u 
- U3E 3E + U4E6U~E + U4E6U4E = -v1' 

u IE 6u3E' + U3E' 6UlE + U2E6U4E + U'4E~U2E + U3E6UiE' + 

(A2.4) 

+ UiE' ~U3E + U4E6U~E + U'2E6U4E = -v 2. 

Knowing the vector YE = Y(TF/2) it is necessary to describe the end variations 
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in terms of initial variations. These are 

@YE : ~(TF/2' 

~Y 

O) ~Y0 + -- 6(TF/2) (A2.5) 

where 

6u I ' 0 ~u~ @Y0 ( , 0, @u 3 , 0, 0, 6U20 0 
0 0 

T ) 

and @Y/@T is evaluated at TF/2. The variation ~(TF/2) is determined by 

using the fact that the value y = 0 does not change at TF/2 or 

= E @ + u I 6U2E ~Y 2(u2 UIE E 
- 6u 

u4 E 3E - U3E@U4E ) : 0. 
(A2.6) 

The first four equations in (A2.5) are substituted for 6u. and (A2.6) is 
i E 

solved for 6(TF/2) . 

Because there are four initial values to correct, two additional 

equations must be added to (A2.4). First, the value C remains constant 

along any solution. Rewrite equation (AI.2) in terms of the new coordinates 

and vary it in such a way that C remains unchanged, so that 

C 

' + ' 6u~ )= (Ul 6u + u ~u ) (U* ) 
! 

gu2 u4 I 3 3 O 2(u20 0 0 0 0 0 0 0 2 

+ 

* DUo 1 
(u 2 + u~ ) DU O 

10 0 ( + 6u30 f 

+ 6ui0 ;u 3 
2 ~u I 

0 0 

(A2.7) 

where 

1 - p 1 

U 0 - + -- X 0 
d O 2 

Second, vary an equation from Property (3) of ~(u) to produce 

l ! l 

u 3 6u 2 + u ~u 4 =-u~ @u I -u 2 @u 3 �9 0 0 10 0 0 0 0 0 
(A2.8) 

A3. Derivation of Matrix ~ to Evaluate Stability 

Once a periodic orbit is obtained, the second half of the orbit must be 

integrated to obtain the full-cycle 8x8 transition matrix, ~(T F, 0) . 

However, from %(TF, 0) , the 4x4 matrix ~ can be derived to give the 4 

critical eigenvalues such that 

dXFh 

dz F 

d~ F 

dl F 

= ~  

/6x0\ 

6z 
0 

6::: o 

0 

(A3.1) 

was derived in the original system by supposing that x 
! 

not Y0 are varied. This corresponds to adding 6u I 

v a r i a t i o n s  i n  t h e  p r e v i o u s  s e c t i o n .  

, 6u{ 
0 0 

0' z0' x0' z0 but 

to the possible 
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The term on the left in (A3.1) o can also be written 

/ dx F 

dz F 

d~ F 

d9 F 

I I 0 S I 0 

0 1T S'l S 

where 

i o) 
0 I 

(A3.2) 

0 1/R 

u -u U4F ] S = I F 2F -U3F 

U3F U4F UIF U2F/ 

,) S' = IF U2F -U3F U4F 

v v U w v 
3F U4F 1F U2F 

T ! ! 

6Y F = (6UIF , 6U2F, 6UBF, 6U4F, 6UIF, 6U2F, 6U~F, 6U~F) �9 

6YF can again be described by (A2.5) but now 

= ' ~u' 6u~ 6 ' ) 
20 ' 2 ' ' U4 ~Y0 (~Ul0, 0, 6u , 0, 6ui0 0 0 0 

T 

A new value of 6(TF/2) can again be defined in terms of the elements of 

$Y0 by using (A2.6). Next, since u 

! valid and can be used to write @u 2 

After the above manipulations, 

' = u' is still true, (A2 7) remains 
1 3 
0 0 

' in terms of @u and 6u . 
and du 4 10 30 0 0 

(A3.2) appears in the form 

dXFh 

dz 
F 

d~ F 

d~ F, 

= p 

~U 
10 

~u 
30 

6U~o 
; 

6u30 

(A3.3) 

with the 4x4 matrix P. But it can also be shown that 

where 

6u I 
0 

6u 3 
0 

! 

6u I 
0 

! 

6u 3 o ) 

N = 

2(u 

I 6 x  '~ 
0 

~ z  
0 

= N 

6~ 
\ 0 

2 2 
] + u 3 ) 
0 0 

{ 
< 

Q { 0 I { 0 \ 

l l ) 
o iQ/koIT 

(A3.4) 
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Ul 0 u30 ] 
Q= 

-u 3 u 0 I0 

0 R 

Although 

apparent 

calculation of P is certainly not trivial, 

that 

from here it is 

: PN. (A3.5) 

In comparisons made, this matrix ~ was found to correspond very well with 

the matrix from the original set of equations�9 
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