
Rheologica Acta Rheol Acta 25:638-641 (1986) 

Short Communications 

Peristaltic transport of a couple-stress fluid 
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Abstract: The problem of peristaltic transport of a couple-stress fluid has been 
investigated under a zero Reynolds number and long wavelength approximation. A 
comparison of the results with those for a Newtonian fluid model shows that the 
magnitude of the pressure rise under a given set of conditions is greater in the case 
of the couple-stress fluid. The pressure rise increases as the couple-stress parameter 
f/ decreases. The difference between the pressure rise for a Newtonian and a 
couple-stress fluid increases with increasing amplitude ratio at zero flow rate. How- 
ever, increasing the flow rate reduces this difference. 
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1. Introduction 

The study of the mechanism of peristalsis, in both 
mechanical and physiological situations, has recently 
become the object of scientific research. Since the first 
investigation of Latham [1], several theoretical and 
experimental attempts have been made to understand 
peristaltic action in different situations. A review of 
much of the early literature is presented in an article 
by Jaffrin and Shapiro [2]. A summary of most of the 
experimental and theoretical investigations reported so 
far, with details of the geometry, fluid, Reynolds 
number, wavelength parameter, wave amplitude pa- 
rameter, and wave shape, has been given in a recent 
paper by Srivastava and Srivastava [3]. 

Most theoretical investigations have been carried out 
for Newtonian fluids. Although it is known that most 
physiological fluids behave like non-Newtonian fluids, 
only a few recent studies [3-8] have considered this 
aspect of the problem since the initial investigations by 
Raju and Devanathan [9, 10]. The present paper con- 
siders the peristaltic transport of a couple-stress fluid, 
which is a special case of a non-Newtonian fluid which 
is intended to take into account the particle size effects. 

2. Formulation and analysis 

Consider the axisymmetric flow in a circular tube 
with a sinusoidal wave travelling down its wall. The 
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geometry of the wall surface is described as 

2~z 
h' (x', t') = a + b sin ~ -  (x'  - c t') , (1) 

where a is the radius of the tube, b is the amplitude of 
the wave, 2 is the wavelength, c is the wave propaga- 
tion velocity, t' is the time and x'  is the axial moving 
coordinate. 

The circular tube is filled with a homogeneous and 
incompressible couple stress fluid of constant viscosity 
/~ and density ~. The constitutive equations and equa- 
tions of motion for couple-stress fluid flow are [11] 

dvi (2) 
Tji,  j = 0 dt ' 

eqk Tj~ + Mjij = 0, (3) 

rij = - p '  6q + 2~t2 dq, (4) 

f l i j  = 4r loJ j ,  i + 4rf  COl, j ,  (5) 

where vi is the velocity vector, r/j and T~ are the sym- 
metric and antisymmetric parts of the stress tensor Tq 
respectively, Mq is the couple-stress tensor, /~q is the 
deviatoric part of Mij,  coi is the vorticity vector, dij is 
the symmetric part of the velocity gradient, t/ and t/' 
are constants associated with the couple stress, p'  is the 
pressure, and the other terms have their usual meaning 
from tensor analysis. Using the long wavelength ap- 
proximation and neglecting the inertia term, it follows 
from eqs. (2-5)  that the appropriate equations in 
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dimensionless form for describing the flow are 

[ dP =V2 1 u 
dx ~22 ] 

with 

(6) 

V 2 = L L / r L I  
r a t \  at/' 

r / X t b f  C t ~ 
r : - - ,  X = 7 ,  b/ = - ,  t = 

a z c ,~ ' 

(7) 

V ~  P' a 2 
=c~a= /~ a ,  P = 2 c # ,  (8) 

where u' is the axial velocity, r' the radial coordinate 
and ~ the couple-stress fluid parameter• 

The non-dimensional boundary conditions are: 

~U 
- - = 0  at r = 0 ,  
~r 

b / ~ - - i  at r= h= l + ~osin2=x , 

~2u 0 Ou 
0 at r = h ,  

~r 2 r ~r 

~2U F/ ~/A 
is finite at r = 0, 

Or 2 r ~r 

(9) 

(10) 

(11) 

(12) 

where h = h'/a, the amplitude ratio ~o = b/a < 1, and 
fl = rl'/rl is a couple-stress fluid parameter. 

Boundary conditions (11) and (12) show that couple 
stresses vanish at the tube wall and are finite at the 
tube axis, as suggested by Valanis and Sun [12]. 
Integrating eq. (6) and using boundary conditions 
(9-12), we obtain the velocity profile as 

1 @ 
u = -  1 4 dx (13) 

[ 2(1-fl){Io(~r)-Io(Y~h)} ] 
• h 2 -  ' 

where I0 and Ii are the modified Bessel functions of 
order zero and one. The dimensionless flux q = q'/na2c, 
where q' is the flux in the moving system, is then given 
by 

h 
q = 5 2 r u d r = - h 2 - 1  dP [h4+H(~,O,h)] (14) 

o 8 dx ' 

with 

8 ( 1 - 0 ) [  hI,(~h)/g-(h2/2)Io(~h) ] 
H(g~,fl, h) -~5 io(~2h ) _ (l + fl) ii(~Yh)/~2 h • 

(15) 

The pressure drop per wavelength Ap = p ( O ) - p  (2) is 
obtained from eq. (14) as 

a p = -  5 ~ dx= 2q Ll + 2L2, (16) 
0 

where 
1 dx 

L,  = 4 5 +-----~ , 
h4 

0 

I h2 
L 2 =  4 * - U Z - - #  d x  . 

0 

(17) 

(18) 

Following the analysis given by Shapiro et al. [13], the 
mean volume flow Q over a period is given as 

(/92 
Q = q + l + - -  (19) 

2 

which on using eq. (16) gives 

(0 2 L 2 z~ p 
0 = 1 + - -  Jr - -  (20) 

2 L1 2L1 

The dimensionless friction force per wavelength F =  
F'/z2c#,  where F' is the friction at the wall, is given 
as 

F = } h 2 ( - ~ x )  (21) 

Substituting eqs. (14) and (16) in eq. (21) yields 

2 
F = 2 L 3 - 2 L ~  + AP L2 (22) 

Ll L1 ' 

where 

1 h 4 
L 3 = 4 ~ (23) 

o h4+H" 

The expressions for Q and F just obtained are in terms 
of the integrals L1, L2 and L3 (eqs. (17, 18, 23)). These 
integrals are not integrable in closed form, as they 
involve complicated functions of I0 and I1. For further 
study it is helpful to have simple analytical expressions 
for Q, Ap and F. Therefore, we obtain expressions for 
Q, AP and F, after evaluating the integrals L1, L2 and 
L3 using expansions of the Bessel functions I0 and Ii 
(for small arguments), 

let\  2n 
Io(zr) ~ )_£, (M)-2{2-£-1 , ]zlr < 1, (24) 

n=0 \ z /  

II(zr)~n=o ~ n [ ( n + l ) ! '  ] z ] r < 1 . (25) 
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With these approximations, the expressions for Q and F are obtained as 

0 - 2B(1 - (02)2 (16 (02_ (04) q_ 4A(14 + 89(02 + 74(04 + 12(06) + AP(1 - (j~2) 11/2 

8A(8 + 40(02 + 15(04) + 4B(2 + 3(0 2) (1 - (02)2 (26) 

F = 8  
A 4A(2 + 3(02) + 8B(1 - (02)2 ] 

J 
.[ 4(1-(02)2{A(2+3(02)+2B(1-(02) 2} ] 

[A (8 + 40 (02 + 15 (02 ..1._ 4B (2 + 3 (02) (1 - (02) 2 ] ' 

where 

24(1-0)  3 (3 -0 )  
A (7-  q) a 2 ' B (7 - f/) (28) 

In the limit O ~ 1 (i.e. 7/' --+ ~/, no couple-stress effect) 
and ~ :# 0, eqs. (26) and (27) give the corresponding 
expressions for a Newtonian fluid as 

16(02-(04 AP (1--(02) 7/2 
0 = 2 (2 + 3 (02) "-I- 4 2 + 3 (02 , (29) 

2 (1_ (02 )1 /2 ]  2 (1 - - (02)  2 
F = 8  1 -~+5~5~ 2 ]+AP 2+3(02 (30) 

Eq. (29) is the same as that obtained by Barton and 
Raynor [14] and Jaffrin and Shapiro [2]. 

To observe the effect of the amplitude ratio (0 on the 
flow behaviour analytically, we approximate eqs. (26) 
and (27) for small squeeze ((0 < 1) as 

( 0 2 [  ( 14(80A- B) ] 
Q ~  32A+4B 16B+A 178 8 - - ~ B  ] 

A P ( l l +  (80A - B)]] AP+56A 
4 ~ - + B  ]] q 64A+ 8 B '  

- 36A 2 -  16AB + 5 2 A -  4B 

(31) 

F =~ (02 [20B 2 

(27) 

For f / ~  1, eqs. (33) and (34) reduce to Jaffrin and 
Shapiro's [2] results. 

3. Numerica l  results and d i scuss ions  

In order to be able to discuss the results obtained 
above quantitatively, the expressions for Q, (Q)~e=0, 
(-AP)0=0, and F from eqs. (26, 27, 33, 34) are plotted 
in figures 1-4  for various values of (0 and the couple- 
stress parameter 0. The average pressure rise (-AP) 
versus the time-mean flow rate is plotted for various 
values of the parameter f/for (0 = 0.4 in figure 1, which 
shows a linear relation between them as for a New- 
tonian fluid. As expected, an increase in flow rate 
reduces the pressure rise and thus maximum flow rate 
is achieved at zero pressure rise and maximum pres- 

3Z, O 
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( l lA + 7B)•p] 
2(A+-~ ] + AP. (32) ~ 

150 

Eqs. (31) and (32) show that Q and F increase with (0. 
The pressure rise for zero time-mean flow and the 
time-mean flow for zero pressure rise can be obtained m0 
from eq. (26) as (33) 

2B(16 (02_ (04) A(96(02 + 102(04 _ 9(06) 
(- A P) o= o - -} ( l  -- (02)7/2 2 (1 -- (02)11/2 

~ = 0.~, ] 
~ = 0 - 5  

(Q)~P=0 (34) 
4B(1 - (02)2 (16(o2_ (04) +A(96(02+ 102(02_ 9(06) 

2A (8 + 40(02 + 15(04) + 8B (2 + 3 (02) (1 _(02)2 
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~=O-S 

TT=O-B 

• ~=1[ Newtonian) 
O~ 0'.1 0-=2 013 04, 

Fig. 1. Pressure-flow rate relationship 
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Fig. 2. Variation of flow rate with amplitude ratio 
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Fig. 3. Variation of pressure rise with amplitude ratio 
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sure occurs at zero flow rate. A significant result is that  
the magni tude of  the pressure rise under  a given set of  
condit ions is greater  for the couple-stress fluid than for 
a Newtonian fluid. 
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