Short Note

Determination of the Partial Electron Captureand Spontaneous-Fission Half-Lives of ²⁵⁴No

A. Türler¹, H.W. Gäggeler², D.T. Jost², P. Armbruster³, W. Brüchle³, H. Folger³, F.P. Heßberger³, S. Hofmann³, G. Münzenberg³, V. Ninov³, M. Schädel³, K. Sümmerer³, J.V. Kratz⁴, and U. Scherer⁴

¹ Universität Bern, Switzerland

² Paul Scherrer Institut, Würenlingen, Switzerland

³ Gesellschaft für Schwerionenforschung mbH, Darmstadt,

Federal Republic of Germany

⁴ Universität Mainz, Federal Republic of Germany

Received September 6, 1988

Abstract

The isotope ²⁵⁴No was produced in the fusion reaction ⁴⁸Ca + ²⁰⁸Pb. Using the velocity filter SHIP and radiochemical techniques it was found that the nuclide ²⁵⁴No with a half-life of 55 s decays by α , EC, and spontaneous-fission. Deduced partial half-lives are (61 \pm 2) s for α -decay, (550 $^{+370}_{-1.0}$) s for EC and [2.2 $^{+2.0}_{-1.0}$] × 10⁴ s for spontaneous fission.

The spontaneous-fission half-lives of even-even trans-plutonium nuclides exhibit a pronounced maximum at the neutron number N = 152. For elements beyond lawrencium (Z = 103), however, this effect disappears completely [1], see Fig. 1. It is assumed, that this is caused by a change in the structure of the fission barriers, being double humped for Z \leq 102 and single humped for Z \geq 104 [2]. However, for the last nuclide

Figure 1: Experimental spontaneous-fission half-lives for even-even nuclides (circles, from [1]). The cross shows our result for 254 No.

which exhibits this shell effect, 254 No, only a lower limit of about 10^5 s for its spontaneous-fission half-life is known. This value was deduced from the fusion experiments 15 N + 243 Am [3,4] and 13 C + 245 Cm [5] where no fission decay from 254 No was observed.

We have produced ²⁵⁴No in the reaction ²⁰⁸Pb(⁴⁸Ca,2n)²⁵⁴No at the UNILAC accelerator at GSI. For separation of fusion products from the primary beam and other reaction products the velocity filter SHIP [6] was used. A rotating target wheel equipped with 0.38 mg/cm² metallic ²⁰⁸Pb targets on 40 μ g/cm² carbon backings was bombarded by typically 5 × 10¹¹ p/s of ⁴⁸Ca. The separated products were implanted into an array of position sensitive surface barrier detectors and assayed for α - and spontaneous-fission decay [7]. The maximum cross section for the production of ²⁵⁴No was found to be about 3.0 μ b at a projectile energy of 4.50 MeV/u [8]. During the experiment, a total number of 1615 α -events assigned to

Figure 2: Time distribution (differences between implantation and decay) for the 11 fission events measured with the surface barrier detectors of SHIP in the bombardment of 4.5 MeV/u ⁴⁸Ca on ²⁰⁸Pb. The indicated half-life of 53 s is determined by the method given in Reference [9]. The dashed line represents the theoretical distribution for $T_{1/2} = 53$ s.

the decay of ²⁵⁴No and 11 fission events were accumulated. The time distribution of the fission events is shown in Fig. 2. Using the method described in [9], for these 11 events a half-life of (53^{+46}_{-24}) s is deduced at a 95 % confidence level, in good agreement with the literature value for the ²⁵⁴No halflife of 55 s. We did not find any fission from the 0.28 s isomer of ²⁵⁴No, in agreement with theoretical predictions [10]. During the SHIP-bombardment, a long-lived alpha-activity, possibly due to ²⁵⁴Fm, was found. This is indicative of an EC-branch of ²⁵⁴No to ²⁵⁴Md, which then decays by EC to ²⁵⁴Fm. First evidence for an EC-decay branch of ²⁵⁴No has already been reported previously [11]. We have therefore performed a chemistry experiment to determine the production cross section of ²⁵⁴Fm. The same irradiation conditions were used as for the SHIP experiment, however, the products recoiling out of the ²⁰⁸Pb target were collected in a Ni catcher foil. After bombardment this foil was chemically processed. The Cf and Fm fractions were separated from other actinides elements by using a liquid-liquid chromatographic technique with di-2-ethyl-hexyl-orthophosphoric acid (HDEHP) as stationary phase and were then electroplated on Ta-discs for α and fission-decay counting. Following the decay of the measured α -peak at 6.75 MeV, ²⁴⁶Cf as a granddaughter of ²⁵⁴No was identified in the Cf fraction. In the Fm fraction the isotopes 255 Fm and 254 Fm were identified from their α -energy and half-lives. ²⁵⁵Fm is the EC-decay product from ²⁵⁵No, formed in the ²⁰⁸Pb(⁴⁸Ca,1n)²⁵⁵No reaction, however, produced with a much lower cross section than ²⁵⁴No from the 2n reaction [8]. This radiochemical experiment was repeated at two other projectile energies, 4.34 and 4.42 MeV/u. It was found that the ratio between the cross sections of ²⁵⁴Fm and ²⁴⁶Cf did not vary with the bombarding energy, which we consider as a proof that the ²⁵⁴Fm activity observed is indeed produced from an EC-decay branch of ²⁵⁴No.

From the measured α - and spontaneous-fission activities of ²⁵⁴No from the SHIP run and the activities of ²⁴⁶Cf and ²⁵⁴Fm from the chemistry run we deduce the following branches for the decay channels of 254 No: (90 ± 4) % for α , (10 ± 4) % for EC, and $(0.25^{+0.20}_{-0.11})$ % for spontaneous-fission decay. The errors given represent mainly statistical uncertainties from the count rates at a 95 % confidence level. Our EC-branch is in good agreement with [11]. The decay branches as given above lead to the partial half-lives of (61 \pm 2) s, (550⁺³⁷⁰₋₁₆₀) s, and $\left[(2.2^{+1.8}_{-1.0})\right] \times 10^4$ s, respectively, for the α , EC, and spontaneous-fission decay channels. Theoretical estimates of the EC-decay half-life using the formalism given by Takahashi [13] give values of 1300 s or 500 s, respectively, if the mass tables of Liran and Zeldes [12] or Møller and Nix [14] are used. Our value for the spontaneous-fission half-life of about 2×10^4 s is significantly lower than the literature values of $\geq 9.4 \times 10^4$ s from Flerov et al. [3] or $\geq 1.1 \times 10^5$ s from Sommerville et al. [5]. At present we have no explanation for this discrepancy. Our value also shown in Fig. 1 is indicating that the effect of the N = 152 shell on the spontaneous-fission half-life for No is not as pronounced as believed so far. However, theoretical calculations of spontaneous-fission half-lives are yet far from reaching an accuracy better than several orders of magnitude. Theoretical estimates for 254 No given in the literature range from about 10 s to 21 y [2,10,13,14].

Acknowledgement

We would like to thank the crew of the UNILAC accelerator for providing an excellent beam of 48 Ca. This work was partly supported by the Swiss National Science Foundation.

References

- Yu.Ts. Oganessian, Yu.P. Tretyakov, A.S. Ilinov, A.G. Demin, A.A. Pleve, S.P. Tretyakova, V.M. Plotko, M.P. Ivanov, N.A. Danilov, Yu.S. Korotkin, G.N. Flerov, JETP Lett., 20, 265 (1974)
- [2] J. Randrup, S.E. Larsson, P. Møller, S.G. Nilson, K. Pomorski, A. Sobiczewski, Phys. Rev. <u>C13</u>, 229 (1976)
- [3] G.N. Flerov, V.I. Kuznetsov, N.K. Skobelev, Sov. J. At. Energy <u>22</u>, 611 (1967)
- [4] E.D. Donets, V.A. Shchegolev, V.A. Ermakov, Sov. J. At. Energy <u>20</u>, 257 (1966)
- [5] L.P. Sommerville, M.J. Nurmia, J.M. Nitschke, A. Ghiorso, E.K. Hulet, R.W. Lougheed, Phys. Rev. <u>C31</u>, 1801 (1985)
- [6] G. Münzenberg, W. Faust, S. Hofmann, P. Armbruster, K. Güttner, H. Ewald, Nucl. Instr. and Methods <u>161</u>, 65 (1979)
- [7] S. Hofmann, G. Münzenberg, F.P. Heßberger, H.-J. Schött, Nucl. Instr. and Methods <u>223</u>, 312 (1984)
- [8] H. Gäggeler et al., to be published
- [9] K.-H. Schmidt, C.C. Sahm, K. Pielenz, H.-G. Clerc, Z. Phys. <u>A316</u>, 19 (1984)
- [10] A. Baran, Z. Lojewski, Phys. Lett. <u>B176</u>, 7 (1986)
- [11] O.A. Orlova, H. Bruchertseifer, Yu.A. Muzychka, Yu.Ts. Oganessian, B.I. Pustynik, G.M. TerAkopian, V.I. Chepigin, Choy Val Sek, Sov. J. Nucl. Phys. <u>30</u>, 317 (1979)
- [12] S. Liran, N. Zeldes, Atomic Data and Nucl. Data Tables <u>17</u>, 411 (1976)
- [13] K. Takahashi, M. Jamada, T. Kondoh, Atomic Data and Nucl. Data Tables <u>12</u>, 101 (1973)
- [14] P. Møller, J.R. Nix, Atomic Data and Nucl. Data Tables, in print (1988)
- [15] P. Møller, G.A. Leander, J.R. Nix, Z. Phys. <u>A323</u>, 41 (1986)
- [16] P. Møller, J.R. Nix, W.J. Swiatecki, Preprint Los Alamos LA-UR-88-823 (1988)