
Arch. Math. Logic (1994) 33:109-119 P~'chi~ve foe'

Mathematical
logic

�9 Springer-Verlag 1994

There is no plus-capping degree*

Rodney G. Downey**, Steffen Lempp **

Department of Mathematics, Victoria University of Wellington, P.O. Box 600 Wellington,
New Zealand
Department of Mathematics, University of Wisconsin, Madison, W153706, USA

Received January 15, 1993/in revised form November 15, 1993

S u m m a r y . Answering a question of Per Lindstr6m, we show that there is no "plus-
capping" degree, i.e. that for any incomplete r.e. degree w, there is an incomplete r.e.
degree a > w such that there is no r.e. degree v > w with a N v = w.

1 The theorem

In [2], Feferman defines relative interpretability for extensions of Peano arithmetic.
The induced structure D T of degrees of interpretability turns out to be a lattice (cf.
[4]). Lindstr6m [5] proved a number of algebraic facts about this lattice. He recently
raised the question whether one of these, namely

V w < l ~ a (w < a < 1 A Vv > w ~ (a A v = w)) ,

also holds in the upper semilattice of r.e. degrees. This question turns out to be of
independent interest to classical recursion theorists as they try to better understand
the algebraic structure of the r.e. degrees. The purpose of this paper is to answer
Lindstr6m's question posit ively by proving the following.

Theorem. For any incomplete r.e. degree w, there is an incomplete r.e. degree a > w

such that there is no r.e. degree v > w with a N v = w.

This theorem can be abbreviated as "There is no plus-capping degree." Since it
stands in contrast with the following theorem by Harrington on plus-cupping degree
(we quote here a slightly weaker version to point out the duality):

* Mathematics subject classification : 03D30
** The authors would like to thank Per Lindstr6m for raising the question and Carl Jockusch for
communicating it to them. The first author was partially supported by a U.S./New Zealand binational
grant. The second author was partially supported by NSF grant DMS-9100114 and the U.S./New
Zealand binational NSF grant INT-9020558

110 R.G. Downey, S. Lempp

Plus Cupping Theorem (Harrington, see [3, 6]). There is a nonrecursive r.e. degree
w such that for any nonrecursive, r.e. degree a < w there is an r.e. degree v < w with
a u v : w .

Obviously, our theorem asserts that the dual statement of the Plus Cupping
Theorem (as quoted above) fails, and thus, a fortiori, the dual statement of the full
version of the Plus Cupping Theorem fails.

A related theorem is the following result by Downey and Stob:

Theorem (Downey, Stob [1]). For any nonrecursive r.e. degree w, there is a
nonrecursive r.e. degree a < w such that there is no nonrecursive r.e. degree v <= w
with a N v = O.

Our notation generally follows Soare [7] with the following exceptions: The use
of a computation ~X(z) is the largest number actually used in that computation and
is denoted by p(z) (and similar for other Greek letters). We assume the "hat-trick"
for all functionals ~ not constructed by us, i.e.

(1) VzVs(q3x(z)[s] I A X I (p (x) § [s] 4 Xs+l I (Ps(Z)q -1) ~ q~X(z) [s-q-l] T).

Furthermore, we assume the uses of all functionals ~ not constructed by us to be
nondecreasing in the stage and increasing in the argument, i.e.

(2) VxYs(~X(x)[s] ~----~ ~s(X) ~ (fls+l(X) A ~s(X) < (~s(X "Jr- l)) .

We set p~(x) = oc if qpX(x) [s] is undefined. Finally, when the oracle of a functional
is given as the join of two sets, we assume the use to be computed separately on each
set, i.e.

fib(X@Y) I((p(x)+l)(x) = (b x I(p(x)+I)OY I(p(x)+l)(X).

2 The requirements and the strategies

We fix an r.e. set W and build an r.e. set A satisfying the following requirements:

~/~:~ bA| : K --+ 3A(A w = K)

for all partial recursive (p.r.) functionals ~. (This ensures that a = deg(A �9 W) < 0 /
unless w = deg W = 0t.)

Furthermore, for each r.e. set V, we built r.e. sets B (= B v) and p.r. functionals
/" (= I 'v) and A (= A v) satisfying

~ v : B = F A e W = A V e W and ~7~v~ , :B=pw-+ ~O(v = o W)

for all p.r. functionals ~o. (Thus b = deg t3 _< a; h =< v (= deg(V @ W)); and b ~ w
unless v _< w, witnessing ~(a N v = w) unless v =< w.)

The strategy for ~ is the usual Sacks preservation strategy: As the length of
agreement between q~A| a n d / 4 increases, we extend the domain of A w, and we
ensure that if q~AeW(y) becomes undefined (and thus K(y) can change and ~A|)
can be redefined correctly) then AW(y) will become undefinded also. This will usually
be ensured by A-restraint but sometimes we add a new twist to this. If a link (as defined
below) is traveled on the tree of strategies skipping over the JU~-strategy then the
J/#~-strategy's A-restraint (to protect some computation ~A| may be injured by
a lower-priority strategy. In this case, we ensure that if the approximation to the true
path ever returns to the J/#~-strategy then a W-change must have occurred making
AW(y) undefined. For this sake, we will arrange the outcomes of an f/~-stratgegy not

There is no plus-capping degree i 11

in the usual way but of order type 2. co (= w) where the outcome 2j roughly denotes
that ~ACW F J ~= K r J but ~bAew(j) is undefined, and the outcome 2j + 1 roughly
denotes that q5 AOW F J l = K F J but ~aew(j) $~: K(j). (The precise version of
the outcomes is more complicated as it depends on the order of events leading up to
the least disagreement, which may actually occur at a number j / < j.)

The strategy for ~;~v simply consists in defining F A| and z5 v| on larger
and larger arguments and in occasionally increasing the use 8(x) of a computation
AVeW(x) when requested by another strategy. The ~v-strategy has only one single
outcome.

The :'5~v,~v-requirements is too complicated for one strategy and is thus split up into
subrequirements

�9 ~v,~,/:B I (x + 1) = ~ w I (z + 1) ~ V(i) = ow(i)

(where x = x i depends on the ~v,%i-strategy).
The requirement ~v ,e is now worked on by a ~v,e-strategy and infinitely many

.r below it, each trying to define @w(i). The SPy, e-strategy has two
outcomes, infinite and finite, where the latter denotes the fact that some ~v,e,i-strategy
below the infinite outcome of the ~v,e-strategy has created a disagreement between

~pw and B and that therefore there is no reason to work on :;~v,e until W changes,

allowing ~pw to be corrected.
A 5;~v,~,i-strategy will pick a fresh x, wait for B(x) = giN(x), and then define

ow(i) = V(i) with use v~(i) = r If now V(i) cbanges then we have V-
permission to put B, and we also put 7(x) into A to correct FAeW(x). There are
two complications arising here:

Firstly, V-permission for x (to correct Avow(z)) are measured at the stages at
which the ~v-strategy appears to be on the truth path (since the :~v-strategy must
keep AVOW(x) defined). The ~v-strategy cannot let the b~v,e#-strategy act before

redefining AveW(x) if the latter appears to be to the left of the true path (i.e. we
cannot form a link from the ~v-strategy to the ~;~v,~,i-strategy) since the 9v,~#-
strategy's enumerating 2/(x) into A may injure intermediate X-stra tegies . Instead,
the ~v-strategy will increase the use 8(z) when V(i) changes so that when the ~v ,e -
strategy again appears to be on the true path, the corresponding W-change will have
made BreW(x) undefined.

On the other hand, once ow(i) is defined and V(i) may change, we must form
a link from the b~v,~,-strategy down to the 5;~v,~v#-strategy. This is because there are

many ~v,e#-strategies below the ~v,e-strategy, all competing to define @w(i) for
the same i. So when the ~v,~-strategy appears to be on the true path and has a
link down to a ~v~, ~-strategy that has the V | W-permission to put x into B, the
former will let the ~atter act immediately even if the latter appears to be to the left of
the true path. Again there will be .~4#~-strategies between the :~v,~- and the .~v,e#-
strategy that are injured by the enumeration of 7(x) into A. But the :~v,~v-strategy

now switches outcome since the .r has established ~pW(x) ~: B(x). If
this computation ~ (x) ever disappears then the corresponding W-change will allow
the injured ./U~-strategies to correct their A w as long as these A-uses exceed the use
r We will ensure this to be true.

We are now ready for formally describe the construction.

112 R.G. Downey, S. Lempp

3 The construction

We use a tree of strategies T C co <~~ which we will define inductively. We first
define satisfaction of a requirement along a node of T:

Definition 1. Let ~ be a node on T.
(i) Requirement JUr ~ v , or ~v,g, is satisfied along ~ if there is a strategy ~ C

working on JU~, ~ v , or EPv,~v, respectively.
(ii) Surrequirement ~y ,e# is satisfied along ~ if there is a .~v,~v,i -strategy/3 with

/3^(1) C_ ~ or if there is a ~v,e#-strategy "~ C ~. (The first case here corresponds to

/3 having found a disagreement between kvw and/3.)
We now fix an effective co-ordering of all requirements JU~, ~ v , ~v,~v, and all

subrequirements ~v ,e# such that
(i) E;~ v precedes all E;~v,~;

(ii) ~v,~ precedes all ~v,~p#; and
(iii) ~v,~,i precedes ~v,e,i , if i < i'.
We define the tree of strategies T C co <~ inductively as follows:

Definition 2. Let ~ be a node on T. Then ~ works on the requirement 3 of highest
priority that is not satisfied along ~. (We call ~ an ~-strategy.) The immediate
successors of ~ on T are the following:

(i) ~^(j} for all j E co if ~ is an .A/~-strategy;
(ii) only ~^(0} if ~ is a Pv- or ~v,g,#-strategy; and

(iii) ~^ (0} and ~^(1) if ~ is a ~v,~v-strategy (denoting ~'s infinite and finite outcome,
respectively).

We next define initialization. An ~ - s t r a t e g y is initialized by making its functional
A W totally undefined. A ~v-strategy is initialized by making its functionals F A|
and A VoW totally undefined and by discarding its set /3. A 3v,~v-strategy /3 is

initialized by making its functional @w totally undefined and by initializing all
the ~v,~#-strategies "y _D /3^(0}. A ~v,~v#-strategy is initialized by making all its
parameters undefined, by removing any link to it, and by canceling all its requests.

A parameter is defined big by setting it to a number greater than any number
mentioned so far.

The construction now proceeds in stages.
At stage 0, we initialize all strategies and let A be the empty.
A stage s > 0 consists of finitely many substages t with some additional action at

the end of the stage. At each substage t, a strategy of length t is eligible to act and
will, after it acts as described below, determine a strategy ~ of length t § 1 eligible
to act at the next substage (unless we end the stage) and initialize all strategies > z ~"
We end the stage after substage t if s <= ~ and for any .~v,~v-strategy /3 eligible to
act at a substage =< t of stage s which let/3^(0} be eligible to act next, and for any
i such that Ovf(i) is currently defined, some ~v,e#-strategy was eligible to act at a
substage =< f of stage s.

We now describe the action of the strategy eligible to act at substage t of stage s.
We distinguish cases depending on the type of strategy eligible to act.

Case 1. An ~ - s t r a t e g y 5 is eligible to act. Define the length of agreement

(3) ~[s] = max{x 1~ A| I x[s] += K s { x}

There is no plus-capping degree 113

and the maximum length of agreement

(4) re[s] = max{f [s '] I s' < s A (A �9 W) r (~(x - 1) + 1) [s']

= (A | W) s I (~ s , (x - l) + 1)}.

Let s* be the last stage at which 6 was eligible to act (or let s* = 0 if this is
the first stage since 6's most recent initialization at which 6 is eligible to act). Let
m* = min{m[s t]]s* <_ s ~ _< s}. For all y < m* such that AW(y) is now undefined,
set AW(y) = K~(y) with use

(5) A(y) = min{J [6 eligible to act at s' A ~AOW(y) [St] ~ Ay < m*[s ']

A (A | W) F (~(Y) + 1) [s t] = (A O W)~ I (~j (Y) + 1)}.

If 4)AeW(m*) [s I] was defined for all s ~ ~ [s*, s] then 6^(2m * + l} is eligible to act
next, otherwise 6^(2m * } is eligible to act next.

Case 2. A ~v-strategy a is eligible to act. Since the definition of 1 "AeW and A VoW
can only occur at the end of the stage (to allow the 5~y,e-strategies to act and to allow
the lifting of uses), a merely lets a^(0} be eligible to act next.

Case 3. A ~v,e-strategy /3 is eligible to act. First, check if there is some ~v,v&i-
strategy 7 2/3^(0) such that/3 has let 7 diagonalize before (as defined below) at a
stage s ~, say, 7 has not been initialized since stage s ~, and 7 's computation ~W(x.y)
has not been destroyed since stage s / (i.e. 7 is not ready to move from state waitW
to state stop). If there is such a 7 then let/3^(1) be eligible to act next.

Otherwise, check if there is a link to a ~y,~v#-strategy 7 D /3^(0} which is ready
to proceed to state waitW. If so then pick 7 leftmost such, let 7 diagonalize according
to Case 4 below, initialize all ~ - , ~9 - , and 5~9,r > 7, and let/3^(0} be
eligible to act next.

Otherwise, i.e. if there is no such 7, let/3^(0) be eligible to act next.

Case 4. A ~v,~,i-strategy 7 is eligible to act. We describe 7 's action using the flow
chart in Diagram 1. After each initialization, 7 starts in stage init, and at each substage
at which it is eligible to act, it proceeds from one state (denoted by a circle) to the
next, following the arrows and along the way executing the instructions (in rectangular
boxes) and deciding the truth of statements (in diamonds, following the y-arrow iff
the statement is true). Some parameters formally defined in the flow chart have the
following intuitive meaning: i is the argument at which 7 is trying to define o w ; x
is the witness at which 7 is trying to diagonalize B against gtw; and s o is the (most
recent) stage at which 7 found a computation ~W(x) ~[= 0. a and/3 are the :~v- and
~v,~-strategy C 7, respectively. The delayed permission parameter d is defined by

d = min({g~(y) [a C 6^(2j) C_/3 V a C 6^(2j + 1) C_/3) A 6 is an X- s t r a t egy)

U {r] a C/3o(0) _C/3 A/30 is a ~Vo,eo-Strategy A i0 E V o A/30

is linked to a ~Vo,eo#o-Strategy 70 A g/~V(x.~o)

has not been destroyed since stage So,~o}).

(We allow d = oc if none of the computations is defined. Intuitively, the delayed
permission parameter d is such that a W-change on a number _<_ d will allow the
correction of AV| even if the initial V-permission (via i entering V) has

114 R.G. Downey, S. Lempp

E V
)X~ew((

r

~ e d ~ l e t 30 be the strategy

V [last having defined (gu'(i)

~ set .So = current stage,t r
~eq~ ~(~) > d ~.J ~t ew(0 = o,

i I - ' I la(/) t stage

/ l ~ k ,~ ~ ~ : t ~ e I I '

reset @w(i) = 0,] j ~ ./~w : (~,o(Z) + 1) #N,.,
o(1) = so

(re)set ew(0 =
j o(0 =o

cancel request that 5(z) >_ d, 1

remove link "F to fl,

into B, 7(x) into A ~

Diagram L The flow shaft of a ~y,~#-strategy ~y

w t (r + 1) r
w ~ (r + i)[~0]

occurred long before.) The phrase "request 6(x) >__ d" wil l be exp la ined be low when
we speci fy the defini t ion of A y e W by c~.

The strategy e l ig ib le to act next is 7^(0}.
At the end of s tage s, i.e. after we end the stage, we let all ~ v - s t r a t e g i e s c~ c 6 t

define their funct ionals F AeW and AI V e w as fol lows. For all x _< s such that
FA| (or A v e W (x)) is current ly undefined, c~ sets F A | B(x) (or
A v e W (x) = B(x), respect ively) , a sets the F - u s e 7 (x) = x and defines the A -
use by

(7) 6(x) = max({x} U {6s,(x~)ls ' < s A x ~ <= x A AVeW(x~) [s ~] .L}

U {d 7 1 7 is a ~ v , ~ # - s t r a t e g y request ing

"5(x') __> d7 i i.~ E V~ i x' < x})
This comple tes the descr ipt ion of the construction.

4 The verification

We define the true path f E [T] of the const ruct ion by induct ion on n as fol lows:

f (n) = # z E w ((f r n)^(z) is e l ig ible to act infini tely of ten) .

There is no plus-capping degree 115

(Notice that conceivably f (n) may not be defined for some (least) n in which case
we assume 9 = 9 F n E T. We will show in Lemma 2 that if W < r K then this will
not happen.)

We begin with a lemma on the ~ - s t r a t e g i e s .

L e m m a 1 (~/~-Strategy Lemma). Suppose (5 is an ~ - s t r a t e g y that is initialized at
most finitely often.

(i) There is a stage s 6 after which/5 is no longer initialized and such that for all
stages s 2 > s 1 > s6 the following holds: I f 8 defines AW(y) (for some y) at stage s 1
with use A(y) = s 1 and at stage s 2 at which 6 is eligible to act again we still have
A W (y) .[with use A(y) = s 1 then the computation qsa@W(y)from stage s 1 has also
not been destroyed by an (A @ W)-change by stage s 2.

Assume furthermore that/5 is eligible to act infinitely often. Then
(ii) 6 satisfies its requirement; and

(iii) W <T t (then l i m i n f m 2 is finite.

Proof. (i) We proceed by induction on)51 and assume (i) fails for 5. Since AW(y)
is defined with use A(y) > qosl(Y) at stage sl, the destruction of the computation

q~A| at some (least) stage s s E [s 1, s 2] must be caused by the enumeration of
some number 7(:c) = z < g)~l (y) into A by some 5Pv, e#-strategy 7o. This z was
originally picked by some 5~v,o#-strategy 7 at some stage s 4 < s s. Then 7 must also

have defined o w (i) = 0 at some stage s 5 ~ (s4, s3). Since z < ~s~Ql) < s~, we have

84 < 81 . If 7 = 70 then 70 ~ L 7 since whenever a ~v,~v ~-strategy 7; is initialized
(without the corresponding ~v,e-s t ra tegy/3 being initialized) while O w (i) ~= 0 then

some ~v,~v#-strategy 7;; < c 7; is linked to/3 at the same stage by the way we end
the stage. Furthrmore, by the same reasoning,

(8) V8 c [85, 82] (% ~ (~s)"

We now compare the relative locations of 7 (or 7o) and 5.

Case 1. 7o < 15: This is impossible since then 6 is initialized by 70 at s s.

Case 2. 6 < 7o and g <L 7: Let ~ be the longest common substring of 7 and/5. Then
is an ~4~- or a @,~-s t ra tegy , and s 5 < s~ by initialization of 7 at s 1.

Subcase 2a. ~ is an ./Ur162 Pick 9 such that ~^(2~)) C_/5 or {^(2~)+ 1) C_ & Then
qSAeW([l) is defined at stage s s but is destroyed by stage s 1. By induction, we may
assume s 5 > s~ (excluding only finitely many Sl). Then by (i) applied to {, we have

W [(A~Q))+I)[s5] d e W~I [(A{,~5(~))+I) and A~,ss(~)) __< s~[ssl < s 5 < 81 = kSl(Y)
as desired.

Subcase 2b. ~ is a ~9,r Pick :~ such that ~ lets {^(1) be eligible to act next

at stage s 5 because of a diagonalization ~ w (~) ~=/3~(~). Since {^(0) C_ ~5 C 6Sl , we

have W [@(:~) + 1) [s5] =F W, I [(085(3:) + 1) and ~(a~) [s5] < s 5 < s 1 = A,l(y) as
desired.

Case 3. ~5 < 70 and /5 C 7: Then /5 C 70, say /siJ) _C %. Since /ssT <L /5^(2y + 1)

(for s~ = s*[sl]) and by (8), we have j < 2y; fix y; such that j = 2y; or = 2y; + 1.

116 R.G. Downey, S. Lempp

Since the computation qsA| from stage s 1 is first destroyed at 83, we have that
7o ~ 68 for any stage s E Is 1, s3], and thus a ~v,~-strategy/3 (necessarily C 6) lets

70 diagonalize at s 3. But, by/3^(0) C_ 6 C_ 582' the computation !pW(x) from stage s 5

is destroyed between stages s 3 and s 2, so W~3 [(~ 5 (z) + 1) ~: W~2 F (~b~s(x) + 1).

Thus zbss(x) < s 5 < s 1 = A~l(y) establishes the claim in this case.

(ii) Suppose r = K. Fix the stage s5 from part (i) and an arbitrary y. By (5)
and since qsAmW(y) is defined and l iminfm~ > y, AW(y) is defined with (eventually)

constant use at almost all the stages at which ~ is eligible to act unless AW(y) is still
defined from before. Thus AW(y) is defined. By (i) and our assumption on stage se,
any permanent definition AW(y) made after stage s~ satisfies AW(y) = ~A|

We have thus established that q5 A e w = K implies AW(y) = K(y) for cofinitely
many y as desired.

(iii) If W <T K then ~AeW(y) A? K(y) for some (least) y by (ii). If ~AeW(y) is
undefined then clearly l iminfm~ = 2y by (4). I f q~A~W(y) ,~=~ K(y) then lim/6 = Y,

and so lim m~ must exist and be finite. []
8

We can now show that the true path is well-defined and has nice properties,
assuming that W is incomplete.

L e m m a 2 (True Path Lemma). Assume that W <T K, and set ~ -= f F n for any
integer n. Then:

(i) ~ is initialized at most finitely often,"
(ii) ~ is eligible to act infinitely often; and

(iii) f (n) is well-defined, and there is a stage after which no strategy <L (^(n)) is
eligible to act.

Proof. We proceed by simultaneous induction on rb:
(i) This vacuous for n -- 0, so assume the lemma for n - 1 where n > 0. Fix a

stage s o > such that no strategy ~7 <L (is eligible to act after stage s 0. Then ~ can
be initialized after stage s o only if some ~v,~,-strategy/3 C ~ lets a ~v,g,#-strategy
7 < ~ diagonalize. Each time this happens, the corresponding i.~ must have entered
V.~, so this can happen at most once for each ~;~v,e#-strategy % Since there are only

finitely many 2v,~v#-strategies 7 such that 7 C ~ or "y is eligible to act by stage s 0,
cannot be initialized after some stage s I => s 0, say.

(ii) This holds by the definition of f (n - 1).
(iii) Fix a stage s I after which no ~ ----- ~ is no longer initialized. If ~ is

not an ~r then the first half of the claim is clear since each time ~ is
eligible to act (except possibly the first finitely many times), one of the finitely many
immediate successors of ~ is eligible to act next. So suppose (is an ~/~-strategy. By
Lemma 1, l iminfm~ is finite. Thus, in this case, f (n) = 2m 0 or = 2m 0 + 1 where

m 0 = l iminfm~. The second half of the claim is now obvious since whenever 77 D

is eligible to act, r] [(1~1 + 1) is eligible to act also. []

It is now easy to show the following

L e m m a 3 (~-Sa t i s fac t ion Lemma). I f W <T K then all ~/~-requirements are
satisfied, i.e. A | W <T K.

Proof. Fix ~5 and apply Lemmas 1 and 2 to the ~Pe-strategy ~ C f . []

There is no plus-capping degree 117

We next turn to the @-requirements .

L e m m a 4 (@-Satisfact ion Lemma). If W <T K then each @-requirement is
satisfied.

Proof. Fix the 2~v-strategy c~ C f and an arbitrary x. At each stage _> x at which c~
is eligible to act, I"AeW(x) is (re)defined with the use of "7(z) = x if-necessary, and
:c is put into B only if .y(x) enters A at the same time, destroying the old computation
FA| (x) if necessary. Thus F Aew = B as desired.

For the sake of a contradiction, assume z~vew(z) ~ B(z) for some (least) x. First
suppose that AVeW(x) is undefined. Since Aven(x) is (re)defined at each stage __> x
at which c~ is eligible to act we have lim ~(x) = oc. By (7) and the minimality of x,

S

there must be a @ e i-strategy .~ D c~ with x = lim x.y and

(9) lira sup d.y = ec
S

such that q, requests ~5(x) > d~. Since x = l imz~, necessarily 3' =< f- Since ~/'s

request is responsible for lim ~5(x) = oe, we have i.y c V.y (using (7)). Once i.~ C V.y, ",/

cannot cancel its request since it would then never again request g(x) > d.y. Therefore,
/3 <L f for the @,~,-strategy/3 C "/. Let ~ C f be maximal with ~ C/3. Since/3 and
f split at ~, ~ must be an M/~- or a ~v0,e0-strategy"

Case 1. ~ is an ~/K~_-_strategy. Fix j such that ~^{2j) C_/3 or ~^(2j + 1) __C_/3. By (4)
and/3 <r f, ~A| is defined, and thus l imsup d.y =< ~(j) by (6), contradicting

(9) as desired.

Case 2. ~ is a ~v0,e0-strategy. Then ~^(0) _C /3 and ~^{1) C f . Thus there is a

permanent computation ~P0W(x.y0) (for some .~Vo,%,i0-strategy % _D ~^(0)). So again
lim sup d.~ _-< ~0(x.y0) by (6), contradicting (9) as desired.

8

We have thus established that Av~ is defined. Now by the construction, x
enters B only if Aveg(x) is currently undefined, so AV| + B(x) is impossible
as desired. []

We finally prove the satisfaction of the ~v,e-requirements.

L e m m a g (~v,~,-Satisfaction Lemma). If W <T K then each ~u,~,-requirement is
satisfied.

Proof. Fix the @,e-s t ra tegy /3 C f and assume ~pw = B.
First suppose that /3^(1) C f . Then there is a fixed ~v,~#-strategy "y _D /3^(0)

such that 7 has a (permanent) computation vpW(x~) $= 0 :~ 1 = B(x.~) (i.e. 3' is
eventually permanently in state waitW). So .~v,~ is clearly satisfied.

So we may assume that/3^(0) C f . By Definitions 1 and 2, for each i ~ w fix the
~v,~#-strategy "7~ with /3 C "7~ C f . By Lemma 2(i), each "y~ is initialized at most
finitely often and will thus eventually have a permanent witness x.~ = x~ (unless

some ~v,~,i-strategy "~ <L "~ acts for it). We will show that @w(i) ~= V(i) for

almost all i. Since ~ w = B and/3^(0) c f , each 7i will eventually be permanently
in state waitW or permanently in state stop or permanently in state init. In the last

118 R.G. Downey, S. Lempp

case some ~y,~#-strategy x h is permanently linked to/3 and in state waitW or state
stop. We distinguish two cases:

Case 1. 7i (or ~i) is eventually permanently in state waitW: Then Ow(i) must be
defined since almost every time 7i is eligible to act it attempts to redefine @w(i) with
fixed use s o (=-the last stage "7/enters state waitW), or else some ~v,~,i-strategy < 7i

permanently defined Ow(/) . Suppose Ow(i) is permanently defined at stage s 1 by
some ~v,~#-strategy "7 and i enters V at some stage 82 > 81 . Then ~pW(x.y) cannot
be defined at stage s 1 with a permanent computation, and so eventually 7i (or ~i)
will proceed to state stop forever.

Case 2. 7~ (or "~i) is eventually permanently in state stop: Then i E V. If oN(i)
is ever set to 1 with use 0, we are done. Again suppose some ~u,e,i-strategy "7

defines ow(i) = 0 at some stage s 1, and this computation is valid at stage s 2 > s 1
when i enters V. Then ~i (or 7i) will eventually proceed to state stop directly from
state waitW (at a stage s 3 >__ 82, say) with witness x = x.~ (or x#~) = x.~[s 1] since

AV~ is defined at stage s 3. We will show that this can happen for at most finitely
many i, namely that this cannot happen if s 1 => se (as defined in Lemma l(i)) for all
,4@strategies 5 C/3.

Let c~ C/3 be the 3 V-strategy, let s 4 be the least stage __> s 2 at which c~ is eligible
to act. Then at any stage s E [s 4, s3), there will be a request to c~ from some 5;~v,e#-

strategy "7 D/3 to set ~(x) => d.~, and since/3 is neither initialized nor eligible to act
at any stage s E [s4, s3), this request will always come from the same 7-

Define
S ~--- {S E [S4, 83]] 5(X)[S] ~ d.y[s]}.

We claim s 3 E S. First of all, _s_4 E S (and thus S =~ ~) by the minimality of s 4
since i entering V causes AV~ to be undefined at stage s 2. Suppose for the
sake of a contradiction that s t = max S < s 3. Since 5(x)[sq < ~(x)[s ~ + 1], we have
d.~[s ~] < d~[s ~ + 1]. By (6), we can distinguish two subcases:

Subcase 2a. d~,[s ~] = pe(j) [s ~] < ~e(J) I s ' + 11 for some ~@strategy 6 with

a c 5^(2j) c_ /3 or a C 6^(2j + 1} C_ /3. Then the computation ~AOW(j)[s']
must be destroyed at stage s ~ + 1. By s 1 = s~ and 5 C/3 C_ 5s~ , ~s3, it follows from
Lemma l(i) that

Bs" E [s' + 1, s31 (W I (~e0") + 1) [J] ~= W~,, I (~ (J) [J] + 1)),

which establishes s ~ < max S as desired.

Subcase 2b. d~[s'l = ~0(i0) Is ~] < "~b~0(i 0) Is' + 1] for some ~Vo,g,o,i0-strategy /3o

with c~ C/3o(0) C_/3. Then the computation kvw(i0)[s ~] must be destroyed at stage
s ~ + 1, thus also destroying Av~ [s ~] as desired.

It is now easy to see that AV~ is undefined at the beginning of stage s 3 as
follows. If s 4 = s 3 then this is clear by the minimality of s 4. Otherwise let s 5 be the
last stage < s 3 at which a is eligible to act. Thus s 2 _-< s 4 _-< s 5 < s~. Now/3 cannot
be eligible to act at s 5 (else/3 would let 7 proceed to state stop at ss). Let (be the
longest common substring of /3 and 5~5. As above in Subcases 2a and 2b, it is now

easy to see that there must be a W-change between s 5 and s 3 that destroys AV~
as desired. This concludes the proof of the lemma. []

Lemma 3, 4, and 5 now establish our theorem.

There is no plus-capping degree 119

References

1. Downey, R.G., Stob, M.: Minimal pairs in lower cones. In preparation
2. Feferman, S.: Arithmetization of metamathematics in a general setting. Fund. Math. 49, 35-92

(1960)
3. Fejer, P.A., Soare, R.I.: The plus-cupping theorem for recursively enumerable degrees. Logic Year

1979-80: University of Connecticut. In: Lerman, M., Schmerl, H., Soare, R.I. (eds.) Lect. Notes
Math., vol. 859, pp. 49-62. Berlin: Springer 198I

4. Lindstr6m, P.: Some results on interpretability. Proceedings of the 5th Scandinavian Logic
Symposium 1979, Aalborg, pp. 329-361 (1979)

5. Lindstr~3m, P.: On certain lattices of degrees of interpretability. Notre Dame J. Formal Log. 25,
127-140 (1984)

6. Shoenfield, J.R.: Non-bounding constructions. Ann. Pure Appl. Logic 50, 191-205 (1990)
7. Soare, R.I.: Recursively enumerable sets and degrees. Perspectives in Mathematical Logic, Omega

Series. Berlin: Springer 1987

