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1. Introduction

Let X be a compact, Hausdorff space and g a Radon probability measure
supported by X, which is in some way “closely related” to the topology of X. One
can ask when some other Radon probability measure v on X is, in some sense,
“isomorphic” to p. The question can be asked, and answered, at several different
levels. For instance, if u is (normalized) Lebesgue measure on an n-cell X, what
Borel probability measures v on X are mapped to u by a homeomorphism of X ? It
is a classical result of von Neumann, Oxtoby and Ulam (see e.g. [13]) that it is
necessary and sufficient that v be positive on open sets, non-atomic, and vanish on
the boundary of the n-cell. A remarkable generalization has recently been obtained
by Oxtoby and Prasad [12], that a similar result holds on the Hilbert cube I,
which has no boundary: here it is necessary and sufficient only that v be non-
atomic and positive on open sets. [t will follow from the results of this paper that
the generalization of this to [I° is false, at least if one assumes the continuum
hypothesis. The corresponding situation for the Cantor set 2™ is much more
complex.

At a more primitive level, it is a folk-lore theorem that if u, v are (non-atomic)
Borel probability measures on Polish spaces X and Y respectively, of the same
cardinal, then there is a Borel isomorphism of X to Y taking p to v. In this paper
we investigate to what extent similar results hold for two measures on an
uncountable product of compact metric spaces. In particular all our results hold
for the power product space X*, where X is a compact metric space (with at least
two distinct points) and A is uncountable. The most interesting cases are those
when X =F=[0, 1] or X =2={0, 1} - indeed we shall show that (in contrast to the
homeomorphism results) it suffices to prove the results for one of these two spaces.
Our results then carry over to arbitrary product spaces [1{X;:ie A}, with the X;
compact metric spaces. Throughout this paper A4 is an uncountable set.
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2. Baire Isomorphism: The Conjecture

Let u be a Radon measure on a compact, Hausdorff space X (see Fremlin [3] 73A
for the definition — however since X is compact this simplifies to a finite, complete
measure, which is inner regular with respect to the compact sets, this implies the
measurability of all Borel sets). Let y, be the completion of the restriction of y to
the Baire sets of X. We recall that p is said to be completion regular if every Borel
set is yt,-measurable. Thus if # denotes the Borel sets, %, the Baire sets, the Radon
measure space is denoted by (X, 2, u) and (X, 2, u,) denotes the completion of
(X, B, o), then p is completion regular if (X, X, ) =(X, Xy, uo). If X = [ [ {X;:ie A},
X, compact metric, and u= (X)  (the direct product measure) with supp(u,) =X,
[where supp(y) denotes the support of p] and uX,;}=1, then u is completion
regular (Kakutani [7]). Similarly, Haar measure is always completion regular
(Kakutani and Kodaira [8]). We recall also that the Baire sets of a product space
[T{X;:ic A} are of the form Ex [] X,, where C is a countable subset of 4, and E

ieA\C
is Borel in [[X,. (A convenient reference for this classical result is Ross and Stone
ieC

[14] Theorem 4 or Choksi [1] p. 326, Lemma.) Two compact Radon measure
spaces (X, 2%, ) and (Y, X7, v), (not necessarily completion regular) are said to be
completion Baire isomorphic if (X, Z%, u,) and (Y, 2%, v,,) are isomorphic as measure
spaces; i.e. there exists a bijection T of X to Y such that TEe X} iff Ee £X and then
WTE)=(E). If such a T exists clearly the respective measure algebras &, and &,
are isomorphic by a measure preserving isomorphism. If u and v are Radon
probability measures on a product space | [ X, then the converse is also true.

Theorem 1. If X, ie A are compact metric spaces, X = || {X;:ie A}, u and v are
Radon probability measures on X, and if there exists a measure preserving
isomorphism y of the measure algebras &,, &, of p respectively v, then u,v are
completion Baire isomorphic.

Proof. Fix ipe A. Let X}, X7 be two copies of X, , and let ¥, be their topological

sum which is a compact metric space. Then if

Z =Xt x [1X,k=12;Y=Y, x []X,:

i*ig i*ig

we have that Z, Z,, and X are all homeomorphicand Y=2,@®Z, Putpon Z,,v
on Z,, then u@v is a Radon measure on Y, whose measure algebra is 8,8, Put
¢=woné, ¢=1v"! on &, then ¢ extends naturally to an involutary measure
preserving automorphism of &,®&,. We wish to show that ¢ is induced by a
completion Baire isomorphism T of Y (onto itself) such that T(Z,)=Z,, which will
necessarily be measure preserving and so will give our desired completion Baire
isomorphism of (X, u) and (X, v). By a theorem of Choksi ([2], II, p. 101 with the
extra comment for Polish spaces on the same page) such a point transformation T
of Y onto itself, inducing ¢, certainly exists, but this only satisfies
(LOVWZ,AT(Z,))=0, and we require that Z,AT(Z,)=0. However this extra
requirement is easily obtained by a slight modification of the argument in [2].
With the notation of [2], let C be a countable subset of A4, containing i, and
invariant under ¢, which therefore induces an automorphism ¢ of the measure
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algebra of the image (u®v). of u@®v on Y, x n X, which necessarily gives a
Cilio}
measure preserving isomorphism . of the measure algebras of the image p. of p
onX] x [] X,and theimage vc of vonX? x [] X, By von Neumann’s classical
Chlio} C\lig} .
theorem there exists an invertible, Borel isomorphism S, of the Polish spaces

X:x [l X;and X2 x [] X, inducing this isomorphism y,; and hence there

Cilio} C\lig} _ . .
exists a Borel isomorphism 7;. of ¥, x H X, {onto itself) which induces ¢, and
which is such that Cilio}

TC(X!-IDX 1 X{.):X!?;)x I1 x,.
C\{io} Citip)

In the proof of Lemma 7 of [2], I, p. 199, we restrict attention to the family of
ordered pairs (B, T,) which satisfy the additional condition (iv) C<B, and T,
extends T.. The point transformation T inducing ¢ obtained from the proof
necessarily also extends T, and so satisfies our extra requirement that
T(Z,)=Z,. This completes the proof of Theorem L.

In the sequel we shall often assume that for all ie 4, X, =X, a fixed compact
metric space, with at least two distinct points; sometimes we shall assume further
that u,=u,, some fixed probability measure on X, with supp(z,j=X,. and

= (X) p; = pd, the power measure. Two very important special cases of this are:
icAd

(i) X,=[0,1], u,=Lebesgue measure on X,. X = [|X,=X4 is then called a
0 0 0 i 0

ieA

generalized cube and p= (X) yi,= i the power Lebesgue measure.
icA

(i) Xo=1{0,1}, uo({0) =po({1}) =3 X = [ X,=X{ is then called a generalized

fad
Cantor space and p= (X) u; = p is still called the power Lebesgue measure. In every
icA

case A is called the dimension of the product or power space; note that we denote
the cardinal of the index set by the same symbol A. If A is infinite, then there is an
easily constructed Baire isomorphism of the cube and the Cantor space which
takes the power Lebesgue measure on one to that on the other; in particular the
respective measure algebras are the same {or rather isomorphic).

We recall that a measure algebra (of finite magnitude) is called homogeneous if
every non-zero principal ideal has a minimal o-basis of the same cardinal; this
cardinal is called the Maharam type of the homogeneous measure algebra. A
famous theorem of Maharam [10] states that a homogeneous measure algebra of
Maharam type 4 with total measure 1, is measure preserving isomorphic to the
measure algebra &, of the power Lebesgue measure in [0,1]7 or {0,1}*; in
particular two such measure algebras are measure preserving isomorphic. It
follows immediately from Maharam’s theorem and Theorem 1 that

Theorem 2. (a) If u is a Radon probability measure on [0,114 (or {0, 1} whose
heasure algebra is homogeneous of type A, then y is completion Baire isomorphic to
the power Lebesque measure.
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(b) If uand v are two Radon probability measures on []X, whose measure
icA
algebras are homogeneous of the same Maharam type, then y and v are completion
Baire isomorphic.
Clearly, in both cases, the conditions are also necessary.

Thus, to determine which Radon probability measures on [0, 1] or {0,1}* are
completion Baire isomorphic to the power Lebesgue measure, it is sufficient to
determine which are homogeneous of Maharam type A. It might be suspected that
positivity on open sets (full support) was sufficient to guarantee this. But this is
easily seen to be false. Consider Wiener measure W (or the measure of the
Brownian motion process) which is defined on R*=RI® ! and is clearly positive
on all open sets. Since the finite dimensional marginal distributions are all non-
atomic, we may replace each IR by its two point compactification R=[ — oo, 0],
and obtain Wiener measure on RS, which is, of course, homeomorphic to the ¢
dimensional cube. However, Wiener measure is carried by the set of continuous
functions on [0, 1], #[0, 1] CIR, which is a Lusin space in the topology induced by
IR® (this topology being weaker than the Polish, norm topology of %[0, 1]) and
hence is Borel in R, Thus the measure W has a separable measure algebra. The
homeomorphic image of W in the cube [0, 1]° is thus separable, non-atomic and
positive on open sets; thus it is of Maharam type ¥, and not ¢

A much more plausible conjecture is that:

If wis a completion regular Radon probability measure on [0, 17* or {0, 1}4, then
u has measure algebra homogeneous of type A, and so by Theorem 2 is completion
Baire isomorphic to the power Lebesgue measure.

It turns out that any assumption that p is positive on open sets (ie. has full
support) is unnecessary ; it also turns out that the above conjecture is equivalent to
the apparently more general conjecture:

Any two completion regular Radon probability measures on a product space
[1{X;:ie 4} (with each X; compact metric, card(X))Z2) are completion Baire
isomorphic.

The hypothesis of completion regularity rules out the counter-example given
above : for Wiener measure is carried by [0, 17, which is Borel of cardinal ¢ in R,
and so cannot contain a non-empty Baire set of IR, which would have cardinal 2°~
thus Wiener measure is not completion regular. A measure homeomorphic to a
completion regular measure (e.g. power Lebesgue measure) has to be itsell
completion regular, We note however that a measure Baire isomorphic to the
power Lebesgue measure is not necessarily completion regular, even if it is positive
on open sets. Let y denote Lebesgue measure on R, and for each measurable set
BC[0,1], put

Y(B)=2u(BA[0.1]).

v is a probability measure on [0,1] and the power measure v* is a probability
measure on [0,1]* which is not completion regular, but its measure algebra is
homogeneous of type 4, and so, by Theorem 2, v* is Baire isomorphic to p?, the
power Lebesgue measure. v4 does not have full support; but #=21(v*+ ) does
have supp () =[0, 114, and is also homogeneous of type 4 and so completion Baire
isomorphic to p4, of course it is not completion regular.
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The main purpose of this paper is to settle the above conjectures. The results
are somewhat surprising. [t is shown that for a large, in fact cofinal, class of
cardinals A, the conjectures are true (Theorem 5). However if we assume the
continuum hypothesis, the conjectures are false for ¢e=N, (Theorem 7). On the
other hand if we assume Martin’s axiom and N, <c¢ (which is consistent), the
conjectures are true for N,, ne N(Theorems 8 and 9); and if we further assume that
¢ =¥, (which is still consistent) the conjectures are true for ¢ (Theorem 9). Thus for
N, and c the conjectures are undecidable (Theorem 10).

3. Results without Additional Set-Theoretic Hypotheses

In this section we first show the equivalence of our two conjectures, and give a
further reformulation. We prove some results on completion regularity and end
the section with our first main result, Theorem 5, mentioned above.

The Maharam type of an arbitrary measure algebra, (&, ), of finite magnitude
is defined to be the supremum of the Maharam types of its homogeneous direct
summands, it is denoted by Maharam(¢&, i), or when no ambiguity arises, simply
by Maharam{u). Hereafter we shall tacitly assume that all compact metric spaces
alluded to have at least two points, and that all topological spaces are Hausdorff.

Lemma 1. Let (X, u) be a compact, completion regular, Radon measure space, Y a
compact space, [:X—Y a continuous map such that for each compact Baire set
FCX, f(F)is (compact) Baire. Then puf ~ ' is completion regular on Y, and

Maharam(pf ™)< Maharam(u).

Proof. Put v=yuf ~'. It suffices to show that every Borel set B in Y has a Baire

kernel for v; i.e. it suffices to show that given ¢ >0, there exists B, Baire in Y, such

that B,CB and v(B)— v(B,) <& Now f~(B) is Borel in X, and u is completion

regular, so there exists K, compact Baire, K, /™ }(B) and p(f ™ 1(B))— u(K,) <e.

Now f(K,) is by assumption compact, Baire and f(K,)SB; hence
STHB)2S T Sf(K))2K,,

and

u(f HBY— i f T f(K o) <e,

W(B)—~ (f(K,) <.
The statement about the Maharam types is trivial.

Corollary. Put {(X) = least Maharam type of any completion reqular measure on X.
If X and Y are as in the lemma, then {(Y)Z{(X).

Proposition 1. Let {(X), be as in the above Corollary.
(a) If BCA, X is compact metric, then

X ={x4).
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(b) If X,, ic A, are compact metric spaces (each with at least two points) then

¢(o, 1}")§C(HX,~) SL{0, 134).
() L0, 1} = ([0, 174

hence in (b) we have equality. We call this cardinal t(A).
Proof. (a) is immediate from Lemma 1, Corollary.

(b) will follow from Lemma 1, Corollary if we can show that HX ;18 a
icd
continuous image of {0,1}%, and [0, 1]* is a continuous image of []X,, both with
ieA

the additional property of preserving compact %;s. Now every compact metric
space X is a continuous image, under a map f;, of the Cantor set {0,1}*; f =[] f;
gives a continuous surjection of {0,1}* onto []{X,:ie4}. Further, the image
under f of a set based in countably many coordinates, is itself a set based in
countably many coordinates: hence f maps compact Baire sets (i.e. compact ¥,
sets), to compact Baire sets.

Since each X; contains at least two distinct points, {0,1}* is embedded in
[{X,;:ieC} for each countable subset C of A. There exists a continuous map of
{0,1}* onto [0, 1], which, by Tietze’s extension theorem, extends to a continuous
map of [ ] {X,:ie C} onto [0,1]. If we divide 4 into countable disjoint sets C,, the
method of the previous paragraph yields a continuous surjection of [ {X,:ie A}
onto [0, 1]* taking compact ;s to compact ¥;s.

{c) Let u be a completion regular Radon probability measure on [0, 114 Let K
denote the Cantor set {0,1}“. For each ie 4, let Z,C[0, 1] be a countable subset,
dense in [0, 1], such that u(z; '(Z,))=0. (Here =, is the canonical projection.) Then
Y;=[0,1]\Z, is homeomorphic to the irrationals (see Kuratowski [9], Chapter 1],
§36.11, p. 442, where the result is proved for R\Z,, but the same proof works for
[0, 11\Z)). Hence, there exists a continuous surjection f;: Y,—= K ([9], p. 440-441). If
Y=[]{Y;:ie A}, then YC[0,1]* and p*(Y)=1. So u induces a measure g, on Y
given by u,(YnE)=g(E) for all Borel EC[0,1]* Let f:Y—X =K be given by

S i) =S ica»

and let v=yuf ~! be the Borel measure induced on K*. We assert that v extends to
a completion regular Radon measure on K* (which is homeomorphic to {0, 1}4).
For let FCK“ be a Borel set. Then [~ }{(F)= YE for some Borel set EC[0,174.
Let ¢>0. Then since u is completion regular, there exists a compact ¥, set (i.c. a
compact Baire set) HCE such that

WH)Z W(E) — e =v(F)~.

Express H as Hy, x [0, 1]*'%, where B is countable, € 4, and H, [0, 1% is compact.
Then since Y, is Borel in [0,1], [[{Y;:ieB} is Borel in [0,1]%, and so
g ‘(H 0] Yi) is Borel in [0, 1]* (where n, is the canonical projection). Further
ieB
since u(n; }(Y;))=1, for all ied, it follows that ,u(n,;‘(ﬂ Yi>) =1, and so
ieB
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1 (ng ! (H 0 1 Y,)) =u(H). Hence there exists a compact DCHpn [] Y, such

icB ieB

that p(ng (D) Z w(H)—e. Now if fz= [] f, then fz(D) is a compact %, in K® and
icB
([ 11

=f3(D) x K*'® is a compact %, in K. Now
icA\B
v(f[D x |1 YiD g,u*(D x |1 Yi)
icA\B icA\B
= pu¥(ng (D) Y)=p(nz (D))
Zu(H)—ez2v(F)—2¢.

Since DCH, Dx [] Yi=nz ' (D)NYSHAY and f{Dx 11 Yi)gF. Since

icA\B \ ieA\B
./[D x [] Y, is Baire (being based in countably many coordinates in K*), and ¢ is
icA\B

arbitrary, this proves our assertion that v is completion regular. Clearly the
Maharam type of v is no greater than that of y, which proves (c).

Since the power Lebesgue measure (on [0, 174 or {0, 1}4) is completion regular
of Maharam type A, we clearly have 1(4)< A. Further 7 is monotone increasing,
ie. BE A implies 1(B)<1t{A4). Also note that if u is a completion regular Radon
measure on a compact space X, and u= (P g, is its Maharam decomposition into
measures with homogeneous measure algebras (see [10]), then each g, is (extends
to) a completion regular Radon measure. Theorem 2 and Proposition 1 now show
at once that our conjecture is equivalent to:

(A)=A.

It is thus purely a property of 4, and independent of what compact metric spaces
the X; are; in the sequel we often assume that they are all {0, 1}.

We now prove some results which we shall need in the sequel, but which are of
independent interest.

Theorem 3. Let (X, p) be a compact, completion regular Radon measure space and
XL 1), ie A. A countable or uncountable, a family of compact, metric, Radon
probability measure spaces, such that supp(u;))=X,, for all ic A. Then the product
Radon measure v=nu® (@ ,ui) is completion regular on X x [] X,
ied icA

(Note. This theorem generalizes that of Kakutani [7], mentioned at the beginning
of §2))

Proof. (a) Suppose first 4={i}. Let {V,},., be a base for the topology of X,. If
GCX xX, is open, it is expressible as | ) G, x V,, where each G,LX is open.

neN

Choose Baire sets H,2 G, such that p(H,)=u(G,) and put H= | ] H,x V,; then H
is Baire in X xX,, H2G and v(H)=w(G). new

(b) Now we turn to the general case. For each BC A, let py= (X, and let
ieB

Vg=;®p, 7y the canonical projection X x [[X;—»X x [[X;. Let G be open in

icA icB
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X x []X. It suffices to show that there exists a Baire cover of G, i.e. a Baire set H
icd
containing G of the same measure. Let G, be any open Baire kernel of G, ie.
G, £ G, v(G\G,)=0. There exists a countable set JC A such that Go=G, x [] X,,
ise AT
where G, is Baire (in fact also open) in X x [ [ X, Put H, ==n; '(n,(G)). Then H is
ief

open, H, 2G; we assert that v(H,)=v(G). To show this it is enough to show that
v,(n,(GN\G,)=0, for v(H,)=v,(n,{G)) and W(G)=w(Gy)=1,(G,). Now by Fubini’s
theorem

G = | (G, (D)

ng(G)
and

WGy)= (i“ NA\J(Gt)VJ(dt) ;

where G' denotes the section of G by teX x [ [X,. But each G, being the section of
ieJ
an open set, is itself open, and p,,,, being the product of measures with full
support, is itself with full support. So for all ten,(G\G,, u,,(G")>0, and so
v, (7, (G\G,}=0 as desired.
Now, however []X; is compact metric, so by case (a) there is a Baire set
ieJ

E27,(G) such that v,(E)=v,(n,(G)). Put H=mn, (E), then H is Baire in X x []X,,

icA
H2G and v(H)=v(G) as required.
In the sequel we shall identify a cardinal & with the initial ordinal of cardinal a.

Proposition 2. If for each ordinal £ <o, X, is a compact metric space with at least
two points, then for any J such that () < A <a, we have a completion regular Radon

measure on X = || X & With homogeneous measure algebra of Maharam type .
¢<a

Proof. (a) A=o. There exists on each X, a Radon probability measure p, with
supp (p:)=X .. We show that u, = ) 1 is homogeneous of type «. (It is completion
¢<a

regular, e.g. by the previous theorem.} If & were countably infinite, then p, would
be separable, it would also be nonatomic since for each ¢, there exists B,, Borel in
X, with 0<u/B,)<1 [because supp(u,)=X,, and X, has at least two points].
Hence if 2 were countably infinite, u, would be homogeneous of (Maharam) type ¥,
In general we may divide « into o disjoint countably infinite sets, and p, will then
be the direct product of « probability measures, each homogeneous of type N, i.e.
&, is homogeneous of type o, as required.

(b) 2=1(x). By assumption, there exists a completion regular measure u on X
such that if u=@yu, is the Maharam decomposition of yx into homogeneous
measures u,, then

sup (Maharam ()} = (o} .
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But each y; is itself necessarily completion regular, and so Maharam (¢;) 2 t(x).
Hence the result.
(¢) If 1(@) <A<, divide a into disjoint sets, 4 and B, 4 of cardinal a, B of

cardinal A. Give [[X : @ homeogeneous, completion regular measure of type ()
teA

as in (b) above; give [[X : @ homogeneous, completion regular product measure

&eB
of type 4 as in (a) above; then the product measure is homogeneous of type A, and
by Theorem 3 is completion regular. This completes the proof of the proposition.

The following theorem is now obvious.

Theorem 4. If for each ordinal { <o, X, is a compact metric space of cardinal at
least 2, then the measure algebras of completion regular measures on X = HX«: are

{<a
precisely those which are decomposable into a direct sum of homogeneous measure
algebras with Maharam types in the closed interval [(a), a].

Note. In connection with Theorem 3, it is known (Fremlin [4]) that if (X, u), (Y, v)
are arbitrary compact completion regular Radon measure spaces then
(X x Y, u®v) need not be completion regular. It is not however known what
happens if X and Y are restricted to be products of unit intervals (or compact
metric spaces).

We now prove two lemmas which will be used a couple of times in the sequel.

Lemma 2. Let X,, ic A, be compact metric spaces each of cardinal at least 2, and let
t be a completion regular Radon measure on [[{X,:ie A}. Then any supporting
closed set F is determined by countably many coordinates, ie. is Baire. [A
measurable set F is supporting if u(FNG)>0, whenever G is a nonempty open set
meeting F.] In particular supp (u) is Baire.

Proof. There is a Baire set EC F such that y(F\E)=0; let J be a countable subset
of A which determines E. Then we claim that F is determined by J. For let

xe [|X;\F. Then there exists a basic open set of the form H'n H", disjoint from F
ied

and containing x, where H' is open and depends only on coordinates in J, H" is

open and depends only on coordinates not in J. Since E depends only on

coordinates in J and EnH'nH” =, we must have EnH' =9 and so

WFAH)Y=wWENH)=0.

Since F is supporting, this implies that FAnH =@. Thus x belongs to a set
depending only on coordinates in J and disjoint from F. Since x is an arbitrary
point of []X,\F, it follows that F depends only on coordinates in J.

ied
Note. The above property of products of metric spaces is not shared by all
Compact spaces. For a counter-example glue the point w, of the ordinal space
{¢:¢<w,} to any point of the closed interval [0, 1], and give [0, 1] Lebesgue

Ineasure ; one thus obtains a completion regular measure whose support is not
Baire
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Lemma 3. If there exists a completion reqular measure which is homogeneous of
Maharam type y on {0, 1}, A uncountable, then there exists such a measure which is,
in addition, fully supported, i.e. has support the whole of {0,1}*.

Proof. Let u be a completion regular measure on {0, 1}* which is homogeneous of
type v, and let K =supp{u). By Lemma 2, K is a compact Baire set and so is
determined by some countable set of coordinates J CA. The result will follow at
once if we can show that K is itself homeomorphic to {0, 1}%. Let I be a countably
infinite subset of A4 disjoint from J. Now K=K, x {0,1}*" for some compact
K,C{0,1}. But K,x{0,1}' is a compact perfect, totally disconnected metric
space and so ([5], p. 100, Corollary 2.98) is homeomorphic to the Cantor set
{0,113 Hence since 4 and A\(IuJ) have the same cardinal, K is homeomorphic
to {0,134

Note. The conclusion of Lemma 3 holds for any product | [{X;:ie A} of compact
metric spaces X,, in place of {0,1}# However the proof is considerably more
complicated, and since we do not need the result, we omit it.

We now show that for a large, in fact cofinal, class of cardinals, t{4)= 4, and so
our conjecture is true. For any cardinal «, o* denotes its successor.

Definition. Let 2 denote the class of cardinals «,
A ={o:f<a implies o <a} .
A is cofinal in the class of all cardinals : for any cardinal A, observe that (A%0)* e %"

Thuse*e.# ", and if GCH is assumed, many cardinals are in .4 ; however, regardless
of whether we assume CH, neither ¢ nor ¥, is in %"

Theorem 5. If Ac .4, then 1(A)= A, hence every completion regular Radon measure

on || X, (X; compact metric of cardinal at least 2) is homogeneous of type A, and
icd

any two such measures of the same total mass are Baire isomorphic.

Proof. Let ube a completion regular measure of type ff on {0, 1}4, by Lemma 3 we

may assume that supp(u)={0,1}* Let (& 1) denote the measure algebra of

({0, 134, ). For each je A, ke{0,1}, let

=10, 134 (k3
Smce each G, , is open, and the symmetric difference of any two of them has non-
empty mtenor the corresponding eclements ij of the measure algebra &

(considered in the usual way as a metric space) are all at positive distance from
each other: further they generate & and

cardinal ({G; .} :je 4, ke {0,1})=4 .

However if f < A, then, since Ae X, f*° < A, and & has at most B*° elements, which
gives a contradiction. Thus =4 (as remarked earlier, we certainly have f<A)
and so 1(A)=A. The remaining assertions follow by the remarks following
Proposition 1.

Remark. The proof of Theorem 5 shows that for any A we have

A A (Ao,
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4. Results with Additional Set-Theoretic Hypotheses

We have noted above that neither X, nor ¢ belong to .#". The rest of the paper is
devoted to showing that for these cardinals our conjecture is actually undecidable.

Definition. Let .«/ be a Boolean algebra. Two sub-algebras #, and #, are weakly
independent if b, nb,+0 whenever b, b, are non-zero elements of #, respectively
A,y A family (b),, in o/ is weakly independent if (mfb) (mf(l\b,J} +0,
whenever J, K are disjoint, finite subsets of 1. kek

Lemma 4. Let (of, 1) be a semi-finite, non-atomic (diffuse} measure algebra,
AC.\{0} a countable set. Then there exists be of such thut anb %0 and a\b+0 for
all ae A.

Proof. Suppose first that p has finite magnitude. (.o, ) is then a complete metric
space under the metric g(a, by=p(al\b). If a0, {b:anb=0} and {b:a\b=0} are
closed sets which, since of includes elements of arbitrarily small measure, have
empty interior. Since A4 s countable it follows by Baire’s theorem that

U {b:anb=0}u{b:a\b=0}

acA
cannot be the whole of .7, The general case, when {7, i) is only semi-finite, can be
reduced to the above by taking an element of finite measure included in each
element of 4, and noting that the ideal .«7, of elements of finite measure is again a
complete metric space.

Lemma 5. Let o be any cardinal, and € the algebra of clopen subsets of X = {0, 1}~
Let (oZ, p) be a measure algebra of finite magnitude and 0:%—.o/ a Boolean ring
homomorphism which preserves the unit elements. Then there is an extension of 0 to a
sequentially order continuous ring homomorphism (which we also call 0) of the
a-algebra 9 of Borel subsets of X into the measure algebra </. If we require that

0G=sup{0H:He%,HL G}

for all open sets GCX, then the extension is unique. Further if v=p0, then v is a
Radon measure on X and 0 gives an isometric embedding 0 of the measure algebra
(65 1") Of (X7 \7) lnto ('Qis /'t)

Proof. On ¢ define v by v=yw6. Then v is finitely additive on the clopen subsets of
the totally disconnected compact space X, and so is countably additive and
extends to a measure v on the Baire sets 2(%) and hence to a Radon measure, also
called v, on X.

Now consider the measure algebra (&,v) of {X,v). As % is a base for the
topology of X, 4 = {E Ec¥%}isdensein & (E denotes the element of & to which E
belongs) Now v(E) HOE) for every Ee%, so there is a well defined ring
homomorphism #: € —.o¢ such that OE=0E for every Ec%; further this ring
homomorphism is measure preserving and therefore an isometric embedding of %
in o7, 1t therefore has a unique extension to an isometric {(and so measure
preserving) embedding, still called 8, of (£, v) in (o, w). Write 0E=0F for every
Ee.#.0 is clearly an extension of our original map 6:4—.«/, and v=puf on 4. This
proves the assertions in the last sentence of the lemma concerning (£, v) and 0.
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Since E—E and 0 are sequentially order continuous, so is 6: 8 — .7 ([3], 61Db
and 54B). If G is open, then

stup{ﬁ:He%,HgG} ,
and 0 is order continuous ([3], 54B), so that
0G=sup{0H:He¥, HCLG} .

Clearly 6 is uniquely determined by this condition ; this completes the proof of the
lemma.

The following theorem gives the measure theoretic essence of what is behind
our undecidability results.

Theorem 6. Let A, k be infinite cardinals with A k. Let (of,, ) be the homogeneous
measure algebra of Maharam type A and magnitude (. Then the following are
equivalent :

(1) there is a completion regular Radon measure on {0, 1}* with measure algebra
isomorphic to (</,, p) (i.e. homogeneous of Maharam type 1),

(ii) there is a family {b:De., in s, weakly independent, with the property that
for every ae of, there is a countable set I, Cx such that the sub-algebras generated by
{a}u{bs:éel,}and {b,:Lex\I,} are weakly independent.

Proof. (i) implies (ii). Let v be a completion regular Radon measure on {0, 1 }* with
measure algebra isomorphic to («7,, u), by Lemma 3 we may assume that v has full
support. For each ek, let E,C{0,1}* be the set {z:4({)=0} and let bé:EC in the
measure algebra of v, identified with .o7,. Then (as in the proof of Theorem 5),
(b, 18 weakly independent, because v has full support.

To see the other property of the {(b.>..,, let a be any member of .«/,, and let
EC{0,1}* be a Baire set such that E=a. Let (F,),_n. {F,>..n b€ sequences of
compact sets which are supporting, and are such that

\ F.CE, V<E\U F,,) =0,
L BRSO, (10,18 ) )=

By Lemma 2 each F, and F, is countably determined, hence there exists a
countable set I =1, such that all the F,, I, are determined by coordinates in I. Let
b respectively ¢ be non-zero elements of the subalgebras of .7, generated by
{a}ulb,:Lel} respectively {b,:{ex\I}. Then one of bna and b\a IS non-zero,
suppose that bna=+0. Now bma is of the form (GAE), where G is a non-empty
clopen set determined by coordinates in I. Since WGNE)=u(bna)>0, there is an
ne N, such that W(GNF,)>0. Next, ¢ is of the form H, where H is a non-empty
clopen set determined by coordinates in k\l. As GnF, is determined by
coordinates in I, HnGNF,+@; as F, is supporting f{HNGNF,)>0 and so
cnbrna=+0,and cnb 0. If it was b\a that was non-zero, the same argument would
apply using the F/ instead of the F,.

(i1) implies (i). Let <b,),., be a family in .o/, with the given two properties. Let
% be the algebra of clopen sets of {0, 1}*. Let again E,={te {0, 1}*:1()=0}. The
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weak independence of the (b,),., and the {E.). . implies that there exists a
unigue, unit element preserving, ring homomorphism 0:4¥—./, such that
B(Eé) b, for every {ex. By Lemma 5, there is a Radon measure v on {O 1}*,and a
umque lsomemc embedding f of the measure algebra (&,v) of ({0, 1}, v) into
o, 1), such that O(E)=6(E) for every Ec¥.

We next show that v is completion regular. To show this it is sufficient to show
that any compact set K in {0, 1}* has a Baire kernel for v. Let F =supp(v|K). Then
clearly FCK and v(K\F)=0, it suffices to show that F is determined by only
countably many coordinates, and so is Baire. Let a = 0(F yeol,,and let I=1_ be the
corresponding countable set. We claim that F is determined by coordinates in /.
For let t {0, 1}*\F. Then there exists & basic open set H containing ¢t and disjoint
from F; express H as [ H.n () H,, where JCI, N&r\l are finite, and each H, is

Eed &eN

either E, or {0, }"\E,. Writing H'= ﬂ H,, H'= ﬂ H, b=0(H"), c=0(H"), we sec

that b is in the subalgebra generated by {b;:cel } ¢ is in the subalgebra generated
by {b.:{ex\I} and that arnbre=0FAH)=0, and that ¢ +0 (because (bepeoy are
weakly independent). The property of I =1, tells us therefore that amb 0, ie.
WFNH')=0; since F is supporting, it follows that FnH'=¢. Thus any point of
{0, 1}\F belongs to a set disjoint from F, depending only on coordinates in I ;
hence F itself depends only on coordinates in [. Thus v is completion regular.
We thus have a completion regular measure on {0, 1}* with measure algebra
isomorphic to a closed subalgebra of .«7,, and thus of Maharam type < A. It follows
that 7(x) <1 <«. By Proposition 2, there exists a completion regular measure on
10,1} whose measure algebra is homogeneous of type 4, i.e. isomorphic to o/,

Theorem 7. If the continuum hypothesis holds, then there exists a completion
regular measure with separable measure algebra on {0,1}={0,1}®. Thus
te)=t(N )=, and the conjecture is false for c=N,.

Proof. Let Q be the first uncountable ordinal, and (.7, 1) the measure algebra of
Lebesgue measure on [0, 1]. Since the continuum hypothesis is assumed, we can
enumerate .o/ as (4., .o with a, = 1. Choose (bé>é<Q inductively by Lemma 4, so
that anb,+0, a\b,+0 for every non-zero element a in the countable subalgebra
. of o/ generated by {a, m=Ctulb, i<l The (by). ., are clearly weakly
mdependent Further since every a in :zi belongs to some .o7,, and the set {n:n <}
is countable, the second condition of Theorem 6 (ii) follows with I,={nn<&}
The conclusion now follows immediately from Theorem 6.

it follows that the Oxtoby-Prasad result [12] on homeomorphic measures on
[0,17%, does not generalize to [0,17]¢, at least if one assumes the continuum
hypothesis.

For our final results we shall assume that Martin’s Axiom (see Jech [67, p. 99 et
seq.) holds and that the continuum hypothesis is false. Our only use of Martin’s
Axiom is the following important consequence.

Lemma 6. If Martin's Axiom is true and (X, ) is any compact Radon measure space
with separable measure algebra, and x is a set with i <c, then whenever CEDee  isan
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increasing directed family of measurable sets, | | E ¢ is measurable and

dex

pe(U Ee> =sup HE;) .

gex
Proof. See D, Normann [11], p. 169.

Theorem 8. If Martin’s Axiom is true and the continuum hypothesis is false, then a
Samily (b.>.., of the type described in (i1) of Theorem 6, cannot exist with A=,
k=W ; consequently T(N )=, and our conjecture is true for .

Proof. Suppose t(X,)=N,, then there exists a completion regular measure y with
separable measure algebra on {0,1}%, where £ denotes the first uncountable
ordinal. p, being completion regular, is non-atomic and so homogeneous. By
Lemma 3 we may assume that p has full support. Let for each £<Q,

H,={1:1e{0,1}% () =1(¢) for &<n<Q}.

Then each H, is closed and therefore measurable. Since we are assuming that

N, <¢,and that Martin’s axiom is true, Lemma 6 tells us that U His measurable.
i<

Let E be any Baire set such that E2 U Hcv and let J be a countable set of
&<

coordinates determining E. Let ¢ <Q be such that JA]¢ Q[ =0. Then for any
te {0,1}% we may define t' by
t=ug) if {<n<Q
=t(n) otherwise .

Thent'e H,CE and t(n)=t'(n) for neJ,so te E,and E={0, 1 12 Thus the only Baire
set containing | ) H, is {0,1}% and so y( U Hi) =1, Again by Lemma 6,
RCE CH

sup p(H;)=1, and so (since N, has cofinality X,), u(H,)=1 for some {<Q.
<0

Now let ne J¢, Q[ and let, as usual, E, = {¢:1/(n)=0}. From the definition of H,
we have E,nH,=E,~H,and so (E,AE;)=0. But E,AE, is a non-empty open set,
and by assumption, u has full support which gives a contradiction.

Corollary. If Martin’s Axiom is true and the continuum hypothesis is false, then
(k) >N, for all k>N,

Proof. This is immediate from the monotone property of 7, mentioned just after
Proposition 1.

We denote the cofinality of a cardinal « by cf(x) {see Jech [6], p. 11 and 12}.
Recall {{6], p. 17, Lemma 18) that for ne N, cf (N,) =N, (this has already been used
in the proof of Theorem 8 for ¥,} although, of course cf (X )=N,.

Lemma 7. If cf(x(x)) >R, then cf (k)< cf (x(x)).

Proof. Clearly we may assume t(x) <k. Let u be a completion regular measure of
Maharam type t(x) on {0,1}", and let <{a.)._,,, be a dense set in the measure
algebra (o7, 1) of u. Let BCk be a set of cardinal t(x), such that each a, is
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representable by a set in {0. 1}* determined by coordinates in B. We may assume k
well-ordered so that B corresponds to (). Each ae .o/ can then be represented by
a set determined by coordinates in a countable subset B, of B; as cf (v(x)) >N,
there is an # <1(x) such that B,C[0,%]; let nl(a) be the least such #.

For { <k, set, as usual, E, = {te {0, 1}":1({)=0}, and consider V;(Eé)<1(k‘). For
each { <1(k), the set

Ce={EmE) <L)

must have cardinal <x: for {0, 1} carries a completion regular Radon measure
of type Smax({,Ny) <t(k), so t{card (C,)) <t(x), and 1 is a monotone function.
Express t{x) as

A&)

& <l (z(x))
with each A(£)<1(x). Then

A=idy= () C

A '
& <cf (x(x)) ©

Each C) ., has cardinal <k, and .« has cardinal (at least) x, thus cf (k) < cf (z(x)).

Theorem 9. (a) If Martin's Axiom is true and the continuum hypothesis is false,
then T(N) =N, for {<w.

(b) If Martin’s Axiom is true and ¢ =N, n22 (which is consistent, Solovay and
Tennenbaum [15]) then t{c)=c.

Proof. (a) For neN, this is immediate from Theorem 8, Lemma 7 and the fact
that cf(X,)=,. For N, it follows since we clearly have

Nn = I(Nn) g T(N(A)) é Nﬂ)

for all ne N
{b) Is immediate from (a).

Theorem 10. The conjecture t(i)=x is undecidable for k=N, and K=c.

Proof. Tmmediate from Theorems 7, 8, and 9.

Remarks. {. Lemma 7 implies that for every ne N (and also for n=) either
N,)=§, or 1(N,)=N, Observe that the continuum hypothesis implies
tN;)=N,, but, by the remark following Theorem 5, ©(N,) =1, since we then have
N§e =c=N,; <N,. Observe also that if t(N,) =N, then the monotone property of
and Lemma 7 imply that t(X,)=N, and ©(NX_)}=N,.

2. We do not know whether Martin's Axiom and the negation of the
continuum hypothesis imply t(c)=c¢ without any extra assumption.

3. We have been able to show, using Theorem 6, that there are models of set
theory in which 7(c)=¥N,, without the continuum hypothesis being true.
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