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I. Introduction 

Let X be a compact, Hausdorff  space and /~ a Radon probability measure 
supported by X, which is in some way "closely related" to the topology of X. One 
can ask when some other Radon probability measure v on X is, in some sense, 
"isomorphic" to/~. The question can be asked, and answered, at several different 
levels. For instance, i f / t  is (normalized) Lebesgue measure on an n-cell X, what 
Borel probability measures v on X are mapped to/~ by a homeomorphism of X? It 
is a classical result of von Neumann, Oxtoby and Ulam (see e.g. [13]) that it is 
necessary and sufficient that v be positive on open sets, non-atomic, and vanish on 
the boundary of the n-cell. A remarkable generalization has recently been obtained 
by Oxtoby and Prasad [12], that a similar result holds on the Hilbert cube 1I ~°, 
which has no boundary:  here it is necessary and sufficient only that v be non- 
atomic and positive on open sets. It will follow from the results of this paper that 
the generalization of this to 1F is false, at least if one assumes the continuum 
hypothesis. The corresponding situation for the Cantor  set 2 s° is much more 
complex. 

At a more primitive level, it is a folk-lore theorem that if #, v are (non-atomic) 
Borel probability measures on Polish spaces X and Y respectively, of the same 
cardinal, then there is a Borel isomorphism of X to Y taking/~ to v. In this paper 
we investigate to what extent similar results hold for two measures on an 
uncountable product of compact  metric spaces. In particular all our results hold 
for the power product space X A, where X is a compact  metric space (with at least 
two distinct points) and A is uncountable. The most interesting cases are those 
when X = l I=  [0, 1] o r X  = 2 = {0, 1} - i n d e e d  we shall show that (in contrast to the 
homeomorphism results) it suffices to prove the results for one of these two spaces. 
Our results then carry over to arbitrary product spaces l~ {Xi:is A}, with the Xi 
compact metric spaces. Throughout  this paper A is an uncountable set. 
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2. Baire Isomorphism: The Conjecture 

Let # be a Radon measure on a compact, Hausdorff space X (see Fremlin [3] 73A 
for the definition - however since X is compact this simplifies to a finite, complete 
measure, which is inner regular with respect to the compact sets, this implies the 
measurability of all Borel sets). Let/~o be the completion of the restriction of/~ to 
the Baire sets of X. We recall that/~ is said to be completion regular if every Borel 
set is/~o-measurable. Thus i f ~  denotes the Borel sets, ~o  the Baire sets, the Radon 
measure space is denoted by (X, Z,/~) and (X, Z0,#o ) denotes the completion of 
(X, ~o,/~o), then # is completion regular if (X, Z, #) = (X, 2;0,/~o). l fX = I] {Xi :it  A }, 
X i compact metric, and ~ = (~/~i (the direct product measure) with supp(#i)=X i 
[where supp(/~) denotes the support of/~] and lti(Xi)= 1, then /~ is completion 
regular (Kakutani [7]). Similarly, Haar measure is always completion regular 
(Kakutani and Kodaira [8]). We recall also that the Baire sets of a product space 
H {Xi:i~A} are of the form E × 1-[ Xi, where C is a countable subset of A, and E 

i~A\C 

is Borel in H x v  (A convenient reference for this classical result is Ross and Stone 
i~C 

[14] Theorem 4 or Choksi [1] p. 326, Lemma.) Two compact Radon measure 
spaces (X, Z x, I~) and (Y, Z r, v), (not necessarily completion regular) are said to be 
completion Baire isomorphic if (X, Zo x,/~o) and (Y, Zo r, Vo) are isomorphic as measure 
spaces; i.e. there exists a bijection T of X to Y such that TE ~ 2;r o iff E~ Z x and then 
v(TE)=#(E). If such a T exists clearly the respective measure algebras g~, and ~,. 
are isomorphic by a measure preserving isomorphism. If/~ and v are Radon 
probability measures on a product space Hx~,  then the converse is also true. 

Theorem 1. I f  X i, leA are compact metric spaces, X =  1-I {Xi:i~A}, ~t and v are 
Radon probability measures on X, and if there exists a measure preserving 
isomorphism ~o of the measure algebras ~ ,  g~ of t~ respectively v, then #, v are 
completion Baire isomorphic. 

Proof. Fix ioEA. Let X/lo , X2o be two copies ofXio , and let Yio be their topological 
sum which is a compact metric space. Then if 

Zk:X~oX H X l ,  k = l , 2 ;  Y : Y i o  × [ I x i  " 
i+io i~:io 

we have that Z1, Z2, andX are all homeomorphic and Y = Z I @ Z  2. Put/~ on Z1, v 
on Z2, then/~@v is a Radon measure on Y, whose measure algebra is ,~u@tg~. Put 
~b = ~v on o~u, q~ = ~ - 1  on o~, then q~ extends naturally to an involutary measure 
preserving automorphism of g~u@g~. We wish to show that q~ is induced by a 
completion Baire isomorphism T of Y (onto itself) such that T(Z1) = Z2, which will 
necessarily be measure preserving and so will give our desired completion Baire 
isomorphism of (X,/t) and (X, v). By a theorem of Choksi ([2], II, p. 101 with the 
extra comment for Polish spaces on the same page) such a point transformation T 
of Y onto itself, inducing ~b, certainly exists, but this only satisfies 
(#@v)(Z2AT(Z1))=O, and we require that Z2~T(Z1)=O. However this extra 
requirement is easily obtained by a slight modification of the argument in [2]. 
With the notation of [2], let C be a countable subset of A, containing i o and 
invariant under q~, which therefore induces an automorphism q5 c of the measure 
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algebra of the image (l~®V)c of #®v on Yio x I-I xi ,  which necessarily gives a 
C\tio} 

measure preserving isomorphism ~c of the measure algebras of the image !L c of/~ 
°nX~o × 1~ X i a n d t h e i m a g e v c ° f v ° n X { o X  I~ Xr Byv°nNeumann'sclass ical  

c\{io} C\{io} 
theorem there exists an invertible, Borel isomorphism S c of the Polish spaces 
X~,x I ]  Xi and X2 x ~ X i, inducing this isomorphism q~c; and hence there 

C\llo} C\{io} 

exists a Borel isomorphism T c of Y~o x [-I Xi (onto itself) which induces q~c and 
which is such that c\~ol 

× lq x i t - x  2 - -  io × I ~  X i " 
c\{io} / c\{ioI 

In the proof of Lemma 7 of [~], I, p, 199, we restrict attention to the family of 
ordered pairs (B;,, T~) which satisfy the additional condition (iv) CO_B;. and T~. 
extends T c. The point transformation T inducing q~ obtained from the proof 
necessarily also extends T c, and so satisfies our extra requirement that 
T(Z1) = Z 2. This completes the proof of Theorem t. 

In the sequel we shall often assume that for all i eA ,  X i = X  o, a fixed compact 
metric space, with at least two distinct points; sometimes we shall assume further 
that ~i=/~o, some fixed probability measure on X o with supp(!~,o)=X o, and 

l~ = @ !g =/~A, the power measure. Two very important special cases of this are" 
leA 

(i) X o =  [0, 1], gto =Lebesgue measure on X o. X =  I - IX~=XA is then called a 
ieA 

.qeneralized cube and II = @ ¢g - I ~A the power Lebesgue measure. 
lEA 

(ii) X o =  {0, l}, ¢to({O})=tto({1})=½. X =  [ ]X~=Xo a is then called a ~teneralized 
i+~:A 

Cantor space and 1~ = ~)/~i = / ~  is still called the power Lebesgue measure. In every 
i~A 

case A is called the dimension of the product or power space; note that we denote 
the cardinal of the index set by the same symbol A. If A is infinite, then there is an 
easily constructed Baire isomorphism of the cube and the Cantor space which 
takes the power Lebesgue measure on one to that on the other; in particular the 
respective measure algebras are the same (or rather isomorphic). 

We recall that a measure algebra (of finite magnitude) is called homooeneous if 
every non-zero principal ideal has a minimal c~-basis of the same cardinal" this 
cardinal is called the Maharam type of the homogeneous measure algebra. A 
famous theorem of Maharam [10] states that a homogeneous measure algebra of 
Maharam type A with total measure 1, is measure preserving isomorphic to the 
measure algebra ~4 of the power Lebesgue measure in [0, l ]  A o r  {0, 1} a" in 
particular two such measure algebras are measure preserving isomorphic. It 
follows immediately from Maharam's theorem and Theorem 1 that 

Theorem 2. (a) / f /~  is a Radon probability measure on [0, 1] A (or {0, 1} a) whose 
measure algebra is homogeneous o f  type A, then IJ is completion Baire isomorphic to 
the power Lebes.que measure. 
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(b) I f  fJ and v are two Radon probability measures on I J x i ,  whose measure 

algebras are homogeneous o f  the same Maharam type, then I~ and v are completion 
Baire isomorphic. 

Clearly, in both cases, the conditions are also necessary. 

Thus, to determine which Radon probability measures on [0, 1] A or {0, 1 }a are 
completion Baire isomorphic to the power Lebesgue measure, it is sufficient to 
determine which are homogeneous of Maharam type A. It might be suspected that 
positivity on open sets (full support) was sufficient to guarantee this. But this is 
easily seen to be false. Consider Wiener measure W (or the measure of the 
Brownian motion process) which is defined o11 lRC--lR L°, 13, and is clearly positive 
on all open sets. Since the finite dimensional marginal distributions are all non- 
atomic, we may replace each IR by its two point compactification IR = [ -  ~., ~ ] ,  
and obtain Wiener measure on IR c, which is, of course, homeomorphic to the e 
dimensional cube. However, Wiener measure is carried by the set of continuous 
functions on [0, 1], ~[0, 1] cIR c, which is a Lusin space in the topology induced by 
IR¢ (this topology being weaker than the Polish, norm topology of cg~[0, 1]) and 
hence is Borel in IRc. Thus the measure W has a separable measure algebra. The 
homeomorphic image of W in the cube [0, 1] c is thus separable, non-atomic and 
positive on open sets ; thus it is of Maharam type N o and not c. 

A much more plausible conjecture is that: 
I f  It is a completion regular Radon probability measure on [0, 1] A or {0, 1 }A, then 

# has measure algebra homogeneous of  type A, and so by Theorem 2 is completion 
Baire isomorphic to the power Lebesgue measure. 

It turns out that any assumption that/~ is positive on open sets (i.e. has full 
support) is unnecessary ; it also turns out that the above conjecture is equivalent to 
the apparently more general conjecture: 

Any  two completion regular Radon probability measures on a product space 
[ I  { x i : i ~ A }  (with each X i compact metric, card(X;)>2)  are completion Baire 
~somorphic, 

The hypothesis of completion regularity rules out the counter-example given 
above: for Wiener measure is carried by c6[0, 1], which is Borel of cardinal e in ~ ' ,  
and so cannot contain a non-empty Baire set oflR ~, which would have cardinal 2 ~ - 
thus Wiener measure is not completion regular, A measure homeomorphic to a 
completion regular measure (e.g. power Lebesgue measure) has to be itself 
completion regular. We note however that a measure Baire isomorphic to the 
power Lebesgue measure is not necessarily completion regular, even if it is positive 
on open sets. Let # denote Lebesgue measure on llL and for each measurable set 
B-c_ [0, 1], put 

v(B) = 2/~(Bm [0, ½]). 

v is a probability measure on [0, 1] and the power measure v A is a probability 
measure on [0, 1] a which is not completion regular, but its measure algebra is 
homogeneous of type A, and so, by Theorem 2, v A is Baire isomorphic to / t  A, the 

1 A A power Lebesgue measure, v a does not have full support; but q = ~(v + p  ) does 
have supp(r/)= [0, 1] A, and is also homogeneous of type A and so completion Baire 
isomorphic to #A, of COUrSe it is not completion regular. 
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The main purpose  of this paper  is to settle the above  conjectures. The results 
are somewhat  surprising. It is shown that  for a large, in fact cofinal, class of 
cardinals A, the conjectures are true (Theorem 5). However  if we assume the 
cont inuum hypothesis,  the conjectures are false for c = N  1 (Theorem 7). On the 
other hand if we assume Mart in ' s  ax iom and N 1 < e  (which is consistent), the 
conjectures are true for N,, n~ N (Theorems 8 and 9); and if we further assume that  
c = N 2 (which is still consistent) the conjectures are true for e (Theorem 9). Thus  for 
N 1 and e the conjectures are undecidable (Theorem 10). 

3. Results without Additional Set-Theoretic Hypotheses 

In this section we first show the equivalence of our  two conjectures, and give a 
further reformulat ion.  We prove some results on complet ion regularity and end 
the section with our  first main  result, Theo rem 5, ment ioned above. 

The Maharam type of an arbi t rary  measure  algebra,  (o ~, ¢t), of finite magni tude 
is defined to be the sup remum of the M a h a r a m  types of  its homogeneous  direct 
summands,  it is denoted by M a h a r a m ( d  ~, kt), or when no ambigui ty  arises, simply 
by Maharam(/ l ) .  Hereafter we shall tacitly assume that all compact metric spaces 
alluded to have at least two points, and that all topological spaces are Hausdorffi 

Lemma 1. Let (X,l~) be a compact, completion regular, Radon measure space, Y a 
compact space, f : X - * Y  a continuous map such that Jor each compact Baire set 
Fc=X, f (F)  is (compact) Baire. Then IJf 1 is completion regular on Y, and 

M a h a r a m  ( / i f -  1) < Maharam(/~).  

Pro@ Put  v = / ~ f  1. It suffices to show that  every Borel set B in Y has a Baire 
kernel for v ; i.e. it suffices to show that  given ~: > 0, there exists B o, Baire in Y, such 
that BoC=B and v(B)-v(Bo)<C. Now f - l ( B )  is Borel in X, and /l is complet ion 
regular, so there exists K o, compac t  Bake,  K o c f - I ( B )  a n d / l ( f - I ( B ) ) - t ~ ( K o )  < e. 
Now f (Ko)  is by assumpt ion  compact ,  Baire and f (Ko)CB;  hence 

f l(B)~=f-l(f(Ko))~=Ko, 

and 

i.e. 

p ( f  l ( B ) ) - # ( f -  l ( , f (Ko) ) <8,,, 

v(B)-  v ( f ( K o )  ) < ~:. 

The statement about the Maharam types is trivial. 

Corollary. Put ((X) = least Maharam type of  any completion regular nwasure on X. 
( f  X and Y are as in the lemma, then ((Y)<= ~(X). 

Proposition I. Let ~(X), be as in the above Corollary. 
(a) i f  B C A, X is compact metric, then 

~(X ~) < ~(XA). 
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(b) I f  Xi, i~A, are compact metric spaces (each with at least two points) then 

(c) (({0, 1}A)<(([0, 1]A); 
hence in (b) we have equality, We call this cardinal z(A). 

Proof. (a) is immediate from Lemma 1, Corollary. 

(b) will follow from Lemma 1, Corollary if we can show that H x i  is a 
ieA 

continuous image of {0, 1} A, and [0, 1] A is a continuous image of HXz, both with 
i~A 

the additional property of preserving compact if6 s. Now every compact metric 
space X z is a continuous image, under a map j]., of the Cantor set {0, t}~; f =  H f i  
gives a continuous surjection of {0, 1} A onto H{Xi : i~A} .  Further, the image 
under f of a set based in countably many coordinates, is itself a set based in 
countably many coordinates: hence f maps compact Baire sets (i.e. compact (~ 
sets), to compact Baire sets. 

Since each X~ contains at least two distinct points, {0, 1}~' is embedded in 
H {xi:i~ c} for each countable subset C of A, There exists a continuous map of 
{0, 1 }o~ onto [0, 1], which, by Tietze's extension theorem, extends to a continuous 
map of I ]  {Xi :i~ C} onto [0, 1]. If we divide A into countable disjoint sets C i, the 
method of the previous paragraph yields a continuous surjection of H {x~ :iE A} 
onto [0, t] A taking compact c£~ s to compact ~ s. 

(c) Let # be a completion regular Radon probability measure on [0, 1] a. Let K 
denote the Cantor set {0, 1 }'J'. For each i~ A, let Z~ C [0, 1] be a countable subset, 
dense in [0, 1], such that P(~i-~(Zi))=0. (Here ~i is the canonical projection.) Then 
Y~ = [0, 1]\Zz is homeomorphic to the irrationals (see Kuratowski [9], Chapter III, 
§ 36.II, p. 442, where the result is proved for 1R\Z~, but the same proof works for 
[0, 1]\Zi). Hence, there exists a continuous surjection Ji" Yi ~ K  ([93, p. 440-441). If 
Y= H {Yi:iEA}, then YC[0, 1] ̀4 and g*(Y)= 1. So p induces a measure Pl on Y 
given by t~I(YcaE)=p(E) for all Borel E_c_ [0, 1] a. Let f : Y - ~ X  = K  A be given by 

f((xi)i~A) = (fi(x))i~A, 

and let v =p f - ~  be the Borel measure induced on K a. We assert that v extends to 
a completion regular Radon measure on K A {which is homeomorphic to {0, 1 }A). 
For let FC=K A be a Borel set. Then f - l ( F ) =  Y n E  for some Borel set E__c[0, l] a. 
Let e, > 0. Then since p is completion regular, there exists a compact .(q~ set (i.e. a 
compact Baire set) H = E such that 

p(H) >=p(E)- e, = v (F) -  e . 

Express H as H B x [0, 1] A\B, where B is countable, __ A, and H~ __c [0, 1] ~ is compact. 
Then since Yi is Borel in [0,1], H{Yi:iEB} is Borel in [0,1] B, and so 
~B I (H ,  c~ H ~] is Borel in [0, 1] A (where ~,  is the canonical projection). Further 

ieB / 
since #(~i-~(Y~))=t, for all ieA, it follows that p ~ H ~ =1, and so 

ieB 
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 ,tt there exists a compact  such 
\ \ ieB /]  i~B 

that/~(Tr~ I(D))>tz(H)-~,, Now i f jB= 1~ ./i, then fB(D) is a compact c¢~ in K 8 and 
isB 

f Dx  ~ ~ =J~(D) x K  A\~isacompact ;~6in  Now 
iEA\B 

--/~*(7~ ~(D)c~ Y) = #(~r;; I(D)) 

> I~(H) - c. > v(F) - 2~. 

Since DC=H~, D x  • YI=Tr[~I(D)~YC=ttc~Y and f ( D x  I1 YitC= F. Since 
ieA\B \ i~A\B , ! 

f[Dx[ iEA\lIB Yi]j is Baire (being based in countably many coordinates in KA), and c is 

arbitrary, this proves our assertion that v is completion regular. Clearly the 
Maharam type of v is no greater than that of/a, which proves (c). 

Since the power Lebesgue measure (on [0, 1] a or {0, 1 }A) is completion regular 
of Maharam type A, we clearly have r(A)< A. Further z is monotone increasing, 
i.e. B<=A implies v(B)<r(A). Also note that if # is a completion regular Radon 
measure on a compact space X, and/~ = @/z~ is its Maharam decomposition into 
measures with homogeneous measure algebras (see [10]), then each #~ is (extends 
to) a completion regular Radon measure. Theorem 2 and Proposition 1 now show 
at once that our conjecture is equivalent to: 

z(A)=A. 

It is thus purely a property of A, and independent of what compact metric spaces 
the X~ are ; in the sequel we often assume that they are all {0, 1 }. 

We now prove some results which we shall need in the sequel, but which are of 
independent interest. 

Theorem 3, Let (X, l-0 be a compact, completion regular Radon measure space and 
((Xi, tQ), i~ A. A countable or uncountable, a family of  compact, metric, Radon 
probability measure spaces, such that supp(/ai)=X~, jbr all ie A. Then the product 

\ t e A /  leA 

(Note. This theorem generalizes that of Kakutani [7], mentioned at the beginning 
of §2.) 
Proof. (a) Suppose first A = {i}. Let { V,},~ be a base for the topology of X i. If 

G c=X x X i is open, it is expressible as U G, x V,, where each G, c X  is open. 
n~N 

Choose Baire sets I:I~=G~ such that tl(H,) =#(G,) and put H =  U H,  x V~; then H 
is Baire in X x X  i, tt~=G and v(H)=v(G). ,~N 

(b) Now we turn to the general case. For each BC=A, let /an= @/~, and let 

v~=/tR®/a, ~n the canonical projection X x I-]Xi--,X x 1]Xi. Let G be open in 
i~A i~B 
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X x lqX~. It suffices to show that there exists a Baire cover of G, i.e. a Baire set H 
leA 

containing G of the same measure. Let G o be any open Baire kernel of G, i.e. 

GoC=G, v(G\Go)=0. There exists a countable set JC=A such that Go=G 1 x I]  X~, 
ieA\J  

where G~ is Baire (in fact also open) inX x 1-[Xi. Put H 1 =nfl(nj(G)). Then H 1 is 
i~J 

open, H~ =G; we assert that v(HO=v(G ). To show this it is enough to show that 
vs(nj(G)\Gl)=O, for v(H1)= vj(nj(G)) and v(G) = v(Go) = vj(G1). Now by Fubini's 
theorem 

v(G)= ~ I~a\s(G')vj(dt ) 
n.1(G) 

and 

$'(Go) = ~ ] 2 A \ j ( G t ) v j ( d t ) ,  
Gt 

where G t denotes the section of G by t eX  x I]xi .  But each G ', being the section of 
iEJ 

an open set, is itself open, and /~A\J, being the product of measures with full 
support, is itself with full support. So for all tEnj(G)\G 1, ]AA\j(Gt)>O, and so 
vj (nj (G)\G i) = 0 as desired. 

Now, however I-Ixi is compact metric, so by case (a) there is a Baire set 
i~J 

E ~= ns(G ) such that vs(E ) = vj(nj(G)). Put H = n~l(E), then H is Baire in X x ]-IXi, 
leA 

H ~ G and v(H)= v(G) as required. 
In the sequel we shall identify a cardinal ~ with the initial ordinal of cardinal c~. 

Proposition 2. I f  for each ordinal ~ < o~, X~ is a compact metric space with at least 
two points, then for any 2 such that r(cO <= 2 <-_ c~, we have a completion regular Radon 

measure on X = [-I X¢, with homogeneous measure algebra of Maharam type 2. 
~<~ 

Proof (a) f l=e.  There exists on each X~ a Radon probability measure p~ with 

supp (,u~)=X~. We show tha t /~  = @ / ~  is homogeneous of type c~. (It is completion 
~<e 

regular, e.g. by the previous theorem.) If c~ were countably infinite, then #~ would 
be separable, it would also be nonatomic since for each 3, there exists B~, Borel in 
X~ with 0</~¢(B~)<I [because supp(/~)=X~, and X~ has at least two points]. 
Hence ife were countably infinite,/~ would be homogeneous of(Maharam) type No. 
In general we may divide c~ into ~ disjoint countably infinite sets, a n d / ~  will then 
be the direct product of e probability measures, each homogeneous of type N 0, i.e. 
#~ is homogeneous of type c~, as required. 

(b) 2 = z(e). By assumption, there exists a completion regular measure/~ on X 
such that if # = O / h  is the Maharam decomposition of /1 into homogeneous 
measures ~h, then 

sup (Maharam (#i)) = z(e)- 
i 
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But each /l i is itself necessarily completion regular, and so Maharam (/~i) >z(~). 
Hence the result. 

(c) If r(e)<2<c~, divide ~ into disjoint sets, A and B, A of cardinal c~, B of 
cardinal 2. Give [IX~ a homeogeneous, completion regular measure of type r(~) 

geA 

as in (b) above ; give H x¢ a homogeneous, completion regular product measure 

of type 2 as in (a) above; then the product measure is homogeneous of type 2, and 
by Theorem 3 is completion regular. This completes the proof of the proposition. 

The following theorem is now obvious. 

Theorem 4. I f  for each ordinal ~ < c~,X¢ is a compact metric space of cardinal at 

least 2, then the measure algebras of completion regular measures on X = ~I X~ are 

precisely those which are decomposable into a direct sum of homogeneous measure 
algebras with Maharam types in the closed interval [z(~),~]. 

Note. In connection with Theorem 3, it is known (Fremlin [4]) that if (X,/0, (E v) 
are arbitrary compact completion regular Radon measure spaces then 
(X x E/*®v) need not be completion regular. It is not however known what 
happens if X and Y are restricted to be products of unit intervals (or compact 
metric spaces). 

We now prove two lemmas which will be used a couple of times in the sequel. 

Lemma 2. Let Xi, ie A, be compact metric spaces each of cardinal at least 2, and let 
l~ be a completion regular Radon measure on l~ {Xi:iEA}. Then any supporting 
closed set F is determined by countably man), coordinates, i.e. is Baire. [A 
measurable set F is supporting i f /~(FnG)>0,  whenever G is a nonempty open set 
meeting F.] In particular supp (p) is Baire. 

Proof. There is a Baire set Ec=F such that # (F \E)=0 ;  let J be a countable subset 
of A which determines E. Then we claim that F is determined by J. For let 

x~ l~xi'\F. Then there exists a basic open set of the form H'c~ H", disjoint from F 
lEA 

and containing x, where H' is open and depends only on coordinates in J, H" is 
open and depends only on coordinates not in J. Since E depends only on 
coordinates in J and Ec~H'c~H"=O, we must have E~H '=O  and so 

/z(Fc~H') = I~(E~H') = 0 .  

Since F is supporting, this implies that F~H'=O.  Thus x belongs to a set 
depending only on coordinates in J and disjoint from F. Since x is an arbitrary 
point of I]X~\F, it follows that F depends only on coordinates in J. 

leA 

Note. The above property of products of metric spaces is not shared by all 
compact spaces. For a counter-example glue the point co I of the ordinal space 
{~ :~co l}  to any point of the closed interval [0, 1], and give [0, l] Lebesgue 
measure; one thus obtains a completion regular measure whose support is not 
Baire. 
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Lemma 3. I f  there exists a completion regular measure which is homogeneous of 
Maharam type 7 on {0, 1} A, A uncountable, then there exists such a measure which is, 
in addition, fully supported, i.e. has support the whole of {0, 1} A. 

Proof. Let # be a complet ion regular  measure  on {0, 1} a which is homogeneous  of 
type 7, and  let K = s u p p ( p ) .  By L e m m a  2, K is a compac t  Baire set and so is 
determined by some countable  set of  coordinates  d C A. The  result will follow at 
once if we can show that  K is itself h o m e o m o r p h i c  to {0, 1 }a. Let ! be a countably  
infinite subset  of  A disjoint from d. N o w  K = K  o x {0, 1 }A\J for some compac t  
KoC{0,1}  y. But K o x  {0,1} / is a compac t  perfect, totally disconnected metric  
space and  so ([5], p. 100, Corol la ry  2.98) is h o m e o m o r p h i c  to the Can to r  set 
{0, 1 }~°. Hence since A and A\(Iv;J) have the same cardinal,  K is h o m e o m o r p h i c  
to {0, 1} A. 

Note. The conclusion of L e m m a  3 holds for any  produc t  [ I{x i : i~  A} of  compac t  
metric spaces X i, in place of  {0, 1} a. However  the p roof  is considerably more  
complicated,  and  since we do not need the result, we omit  it. 

We now show that  for a large, in fact cofinal, class of  cardinals,  r (A)=  A, and  so 
our  conjecture is true. For  any  cardinal  ~, c( + denotes its successor. 

Definition. Let X" denote the class of  cardinals c(, 

J , ( ' = { ~ : f l < ~  implies [3~°<~}. 

is cofinal in the class of all cardinals:  for any cardinal  2, observe that  (2~o)+ ~ f .  
Thus  e + e ,;¢, and ifGCH is assumed,  many  cardinals  are in W ;  however,  regardless 
of  whether  we assume CH, neither c nor  N 1 is in J,/'. 

Theorem 5. I f  Ae ,~ ,  then z(A)= A, hence every completion regular Radon measure 
on [ Ix i ,  (X i compact metric of cardinal at least 2) is homogeneous of type A, and 

leA 

any two such measures of the same total mass are Baire isomorphic. 

Proof. Let # be a complet ion regular measure  of type fl on {0, 1 }a, by L e m m a  3 we 
m a y  assume that  s u p p ( p ) =  {0, 1} a. Let (&#) denote the measure  algebra of 
({0, 1}a,/z). For  each j s A ,  ke{0,  1}, let 

G j, k = {0, 1 }a\{j} X {k} . 

Since each G j, k is open, and the symmetr ic  difference of any two of them has non- 
empty  interior, the corresponding elements Gj'k of the measure  algebra 6~ 
(considered in the usual way as a metric  space) are all at posit ive distance from 
each other :  further they generate ~ and 

cardinal ({Gj k} :.]~ A, k6 {0, 1 }) = A . 

However  if fl < A, then, since A e,;*(', f l s °<  A, and # has at most  fis° elements, which 
gives a contradiction.  Thus  f l=A (as remarked  earlier, we certainly have f l<A) 
and so z(A)=A. The remaining assert ions follow by the remarks  following 
Proposi t ion 1. 

Remark. The p roof  of  Theo rem 5 shows that  for any A we have 

r(A) <= A <= z(A) ~° . 
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4. Results with Additional Set-Theoretic Hypotheses 

We have noted above that neither N1 nor c belong to ~X(?. The rest of the paper is 
devoted to showing that for these cardinals our conjecture is actually undecidable. 

Definition. Let ,~ be a Boolean algebra. Two sub-algebras N1 and ~O~ 2 a r e  weakly 
independent if b 1 ~b z +0 whenever bl, b 2 are non-zero elements of ~ respectively 

~2- A family (bi)i~ I in ,~ is weakly independent if {infbitc~[inf(l\bk)~=t=O, 
whenever J , K  are disjoint, finite subsets of I, 

Lemma 4. Let (~¢,#) be a semi-finite, non-atomic (diJfitse) measure algebra, 
A C-~\{0} a countable set. Then there exists b~ N such that a~b+O and a\b +0/'or 
all a6 A. 

Proof Suppose first that # has finite magnitude, (~ ,p)  is then a complete metric 
space under the metric o(a,b)=#(aAb). If a+O, {b:ac~b=O} and {b:a\b=O} are 
closed sets which, since ,~;' includes elements of arbitrarily small measure, have 
empty interior. Since A is countable it follows by Baire's theorem that 

Q) {b:anb=O}u{b:a\b=O} 
a~A 

cannot be the whole of ,~. The general case, when (,4,/t) is only semi-finite, can be 
reduced to the above by taking an element of finite measure included in each 
element of A, and noting that the ideal ,~;  of elements of finite measure is again a 
complete metric space. 

Lemma 5. Let ~ be any cardinal, and ~';' the algebra 4" clopen subsets o[ X = {0, 1 }~. 
Let ( ~,#) be a measure algebra of finite magnitude and 0 : ~ , ~  a Boolean ring 
homomorphism which preserves the unit elements. Then there is an extension of O to a 
sequentially order continuous ring homomorphism (which we also call O) of the 
a-algebra ~ of Borel subsets of X into the measure algebra ,~/. I f  we require that 

OG=sup {OH : H e ~ ,  H C= G} 

fi)r all open sets Gc=X, then the extension is unique. Further if v=#O, then v is a 
Radon measure on X and 0 ~tives an isometric embedding 0 of the measure algebra 
(& v) of (X, v) into (~,  #). 

Proof On ~ define v by v =#0. Then v is finitely additive on the clopen subsets of 
the totally disconnected compact space X, and so is countably additive and 
extends to a measure v on the Baire sets L'(c~ ') and hence to a Radon measure, also 
called v, on X. 

Now consider the measure algebra (~, v) of (X, v). As ~¢" is a base for the 
topology of X, @ = {/~ : E ~ }  is dense in g. (E denotes the element of g to which E 
belongs.) Now v(E)=#(OE) for every EeC(o ~, so there is a well defined ring 
homomorphism 0: ~ ' - , , ~  such that OE=OE for every E ~ ;  further this ring 
homomorphism is measure preserving and therefore an isometric embedding of (g' 
m .~¢. It therefore has a unique extension to an isometric (and so measure 
preserving) embedding, still called 0, of (N, v) in (~ ,# ) .  Write OE=OE for every 
Ec.~. 0 is clearly an extension of our original map 0 :~6~-~ ~ ,  and v = #0 on ~ .  This 
proves the assertions in the last sentence of the lemma concerning (g, v) and (~. 
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Since E~/~ and 0 are sequentially order continuous, so is 0 : ~ d  ([3], 61 Db 
and 54B). If G is open, then 

G=sup {12I : H e ~ , H  C= G} , 

and 0 is order continuous ([3], 54B), so that 

OG=sup {OH : H e ~ , H  C=G} . 

Clearly 0 is uniquely determined by this condition ; this completes the proof of the 
lemma. 

The following theorem gives the measure theoretic essence of what is behind 
our undecidability results. 

Theorem 6. Let 2, K be infinite cardinals with 2 < ~c. Let (.~¢~, #) be the homogeneous 
measure algebra of Maharam type 2 and magnitude 1. Then the following are 
equivalent : 

(i) there is a completion regular Radon measure on {0, 1} ~ with measure algebra 
isomorphic to (d~, p) (i.e. homogeneous of Maharam type 2),  

(ii) there is a family ( b ~ ) ~  in ,dx, weakly independent, with the property that 
Jbr every a~ sJa there is a countable set I a c__ ~c such that the sub-algebras generated by 
{a} ~ {b¢: ~ ~ I,} and {be : ~ ~ ~c\I, } are weakly independent. 

Proof (i) implies (ii). Let v be a completion regular Radon measure on {0, 1 }~ with 
measure algebra isomorphic to (,dx, #), by Lemma 3 we may assume that v has full 
support. For each ~ c ,  let E¢C {0, 1} ~ be the set {t ' t(~)=0} and let b¢=/~¢ in the 
measure algebra of v, identified with .Jx. Then (as in the proof of Theorem 5), 
(b¢)¢~ is weakly independent, because v has full support. 

To see the other property of the ( b ~ ) ~ ,  let a be any member of ~¢x, and let 
E__C {0, 1} ~ be a Baire set such that E=a. Let (F.) .~ N, (F'.).~ N be sequences of 
compact sets which are supporting, and are such that 

t l sN 

u 
?tEN \ \ , , ~ N /  

By Lemma 2 each F, and F',, is countably determined, hence there exists a 
countable set I = I,, such that all the F,, F', are determined by coordinates in I. Let 
b respectively c be non-zero elements of the subalgebras of Ax generated by 
{a}u{b~:¢~I} respectively {b~:¢~c\I}. Then one of b~a and b\a is non-zero, 
suppose that bna+O. Now bc~a is of the form ((~&/~), where G is a non-empty 
clopen set determined by coordinates in I. Since v(Gc~E)=#(bna)>0, there is an 
neN,  such that v(G~F,)>O. Next, c is of the form /4, where H is a non-empty 
clopen set determined by coordinates in ~c\l. As GnF,  is determined by 
coordinates in I, H n G n F , + O ;  as F, is supporting v(HnGnF,)>O and so 
cc~bna + O, and crib + 0. If it was b\a that was non-zero, the same argument would 
apply using the F', instead of the F,. 

(ii) implies (i). Let ( b ~ ) ~  be a family in ,~¢z with the given two properties. Let 
be the algebra of clopen sets of {0, 1 }~. Let again E~ = {t6 {0, 1 }~ : t(~) = 0}. The 
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weak independence of the (b~)¢~ and the <E¢)¢~ implies that there exists a 
unique, unit element preserving, ring homomorphism 0:cg~,~¢~ such that 
O(E¢)=b¢ for every 4e~'. By Lemma 5, there is a Radon measure v on {0, 1} ~, and a 
unique isometric embedding 0 of the measure algebra (g, v) of ({0, t}~, v) into 
(.~'~,/~), such that O(E)=O(E) for every E e ~  ~. 

We next show that v is completion regular. To show this it is sufficient to show 
that any compact set K in {0, 1 }~ has a Baire kernel for v. Let F = supp (vlK). Then 
clearly FC=K and v(K\F)=O, it suffices to show that F is determined by only 
countably many coordinates, and so is Baire. Let a = 0(/~)e ~4;~, and let I = I,  be the 
corresponding countable set. We claim that F is determined by coordinates in I. 
For let t~{0, 1}~\F. Then there exists a basic open set H containing t and disjoint 
from F;  express H as ("] H~c~ (~ H~, where J c 1, N = ~c\I are finite, and each H e is 

~EJ ~N 

either E~ or {0, 1 }~\E~. Writing H' = 0 ft¢, H" = 0 H~, b = 0(/t'), c = 0(/)"), we see 
~eJ ~eN 

that b is in the subatgebra generated by {b~:~eI}, c is in the subalgebra generated 
by {b~:4e~c\I} and that ac~b~c=O(F&H)=O, and that c4:0 (because <b~)~ N are 
weakly independent). The property of I = I ,  tells us therefore that ac~b=O, i.e. 
v(Fc-~H')=O; since F is supporting, it follows that F~H'=O. Thus any point of 
{0, 1}~\F belongs to a set disjoint from F, depending only on coordinates in I ;  
hence F itself depends only on coordinates in I. Thus v is completion regular. 

We thus have a completion regular measure on {0, 1 }~ with measure algebra 
isomorphic to a closed subalgebra of ,~; ,  and thus of Maharam type _-<2. It follows 
that z(K)_< 2_< K. By Proposition 2, there exists a completion regular measure on 
{0, 1 }~ whose measure algebra is homogeneous of type 2, i.e. isomorphic to s¢~. 

Theorem 7. I f  the continuum hypothesis holds, then there exists a completion 
regular measure with separable measure algebra on {0,1}~={0,1}sk Thus 
~(c)=~(N1)=N0, and the conjecture is Jalse for c = N  1. 

Proof Let f2 be the first uncountable ordinal, and (,~¢,/~) the measure algebra of 
Lebesgue measure on [0, 1]. Since the continuum hypothesis is assumed, we can 
enumerate ~¢ as (a~)~<~ with a o = 1. Choose (b¢)~<e inductively by Lemma 4, so 
that ac~b¢+O, a\b~ 4:0 for every non-zero element a in the countable subalgebra 

of ,N' generated by {a,:~l<~}~{b,:tl<~}. The (b~)~< n are clearly weakly 
independent. Further since every a in ~ '  belongs to some ,~/~, and the set {r/:r/<4} 
is countable, the second condition of Theorem 6 (ii) follows with I,  = {r/'r/<4}. 
The conclusion now follows immediately from Theorem 6. 

It follows that the Oxtoby-Prasad result [12] on homeomorphic measures on 
[0, 1] ~o, does not generalize to [0, 1] ~, at least if one assumes the continuum 
hypothesis. 

For our final results we shall assume that Martin's Axiom (see Jech [6], p. 99 et 
seq.) holds and that the continuum hypothesis is false. Our only use of Martin's 
Axiom is the following important consequence. 

Lemma 6. I f  Martin's Axiom is true and (X, #) is any compact Radon measure space 
with separable measure algebra, and ~c is a set with tc < e, then whenever ( E~)¢~ is an 
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increasing directed ,family of measurable sets, U E¢ is measurable and 

Proof See D. Normann [11], p. 169. 

Theorem 8. If' Martin's Axiom is true and the continuum hypothesis is false, then a 
.family ( b ¢ ) ~  of the type described in (ii) of Theorem 6, cannot exist with 2 =N  o, 
K = N t ;  consequently r(NI)=N1, and our conjecture is true .for N r 

Proof Suppose z(N1)= N o, then there exists a completion regular measure kt with 
separable measure algebra on {0, 1} ~, where ~2 denotes the first uncountable 
ordinal, p, being completion regular, is non-atomic and so homogeneous. By 
Lemma 3 we may assume that p has full support. Let for each ~ < f2, 

H¢={t:t~{O,t}n,t(tl)=t(~) for ~ < r / < ~ } .  

Then each H¢ is closed and therefore measurable. Since we are assuming that 

N t <c, and that Martin's axiom is true, Lemma 6 tells us that ~ He is measurable. 
¢<f2 

Let E be any Baire set such that E~ ~UH¢,~, and let J be a countable set of 

coordinates determining E. Let ~.<O be such that Jc~]~,(2[=0. Then for any 
t6 {0, 1}', we may define t' by 

t'(t/)=t(~) if ~ < q < f 2  

=t(q) otherwise. 

Then t'EH¢CE and t(t/) = t'(q) for rl~J, so teE, and E = {0, 1 }a. Thus the only Baire 

set containing e~)H ~ is {0,1} n, and so /~(\e<~,/'~J//~]=t" Again by Lemma 6, 

sup p(H~)= 1, and so (since N 1 has cofinality N1), p(H~)= 1 for some ~ <~Q. 
~ < ~  

Now let r/~]~, Q[, and let, as usual, E, = {t :t(q)=0}. From the definition of H~ 
we have E,~H~ = Eec~H ~ and so I~(E,/kE~)= 0. But E~AE~ is a non-empty open set, 
and by assumption,/a has full support which gives a contradiction. 

Corollary. ( f  Martin's Axiom is true and the continuum hypothesis is false, then 
r(~c) > N O for all ~ > N o. 

Proof This is immediate from the monotone property of r, mentioned just after 
Proposition 1. 

We denote the cofinality of a cardinal ~c by cf(~c) (see Jech [6], p. 11 and 12). 
Recall ([6], p. 17, Lemma 18) that for ne N, cf(N,)= N,,, (this has already been used 
in the proof of Theorem 8 for N~) although, of course cf(N,,)=N o. 

Lemma 7. I f  cf(z(~:))>N o, then cf(K)__<cf(z(~:)). 

Proof Clearly we may assume r(~-) < ~c. Let # be a completion regular measure of 
Maharam type z(~c) on {0, l} ~, and let ( a ¢ ) ~ )  be a dense set in the measure 
algebra (~¢, #) of p. Let B C ~c be a set of cardinal z(~), such that each a¢ is 
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representable by a set in {0. 1} ~ determined by coordinates in B. We may assume ~c 
well-ordered so that B corresponds to r0c). Each a e ~  can then be represented by 
a set determined by coordinates in a countable subset B, of B; as cf(~(~c))>N o, 
there is an ~?<r(K) such that B,,__c [0, r/] ; let q(a) be the least such r/. 

For { <K, set, as usual, E~= {to {0, 1} ~ :t({)=0}, and consider r/(/~) < ~(~-). For 
each { < z(~c), the set 

must have cardinal <~c: for {0, 1} c~ carries a completion regular Radon measure 
of type < max (~, No) < z(~c), so ~c(card (Q)) < r(~c), and r is a monotone function. 

Express ~(K) as 

U ,z(O 
< cf (~(K)) 

with each 2(~)< r(~c). Then 

~¢=~4~i = U c ~ < l  • 
~ < cf (r(~c)) 

Each Ca(~) has cardinal < ~c, and ,~¢ has cardinal (at least) ~c, thus cf(~c)<cf(z(t¢)). 

Theorem 9. (a) I f  Martin's  Axiom is true and the continuum hypothesis is false, 
then z(N~) = N~ ,for ~ <= ~o. 

(b) I f  Martin's Ax iom is true and e = N,, n > 2 (which is consistent, SoIovay and 
Tennenbaum [15]) then r(e) = e. 

Proof (a) For nE IN, this is immediate from Theorem 8, Lemma 7 and the fact 
that cf(N,,)= N,. For N,,, it follows since we clearly have 

N = T(N.) < r(No,) < N°, 

for all ne N. 
(b) Is immediate from (a). 

Theorem I0. The conjecture ~(~')= K is undecidable fbr ~c = N~ and lc =e.  

Proql] Immediate from Theorems 7, 8, and 9. 

Remarks. 1, Lemma 7 implies that for every h e n  (and also for n={o) either 
r(N,)=N, or z(N.)=N o. Observe that the continuum hypothesis implies 
r(Nl)= N o, but, by the remark following Theorem 5, r(Ne)= N2, since we then have 
R~" =e  = N 1 < N 2. Observe also that if T(N 1)= N1, then the monotone property of 
and Lemma 7 imply that r(N,,)=N, and ~(N,~)=N~. 

2. We do not know whether Martin's Axiom and the negation of the 
continuum hypothesis imply r(e)=e without any extra assumption. 

3. We have been able to show, using Theorem 6, that there are models of set 
theory in which r(e)= N o, without the continuum hypothesis being true. 
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