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Introduction 
Let V be an n-dimensional complex vector space with a hermitian product. 

Let M be a pure p-dimensional analytic set in an open set G C V, and suppose 
that 0 e M. Let n(r, M) denote the function of r e R +, the set of positive real 
numbers, defined by dividing the 2p-dimensional area of M intersect the ball 
of radius r and center 0 by the area of the 2p-dimensional ball of radius r. 
P. LELONG [3] and W. SXOLL [8] have proven that n(r,M) is monotonic 
increasing in r, and thus the limit as r tends to 0 exists. Let n(0, M) denote this 
limit. In the case that p = n - 1 ,  SXOLL in [6] has shown that n(O,M) is an 
integer. In fact, he proves that i f f  is a holomorphic function in a neighborhood 
of 0 such that the germ o f f  generates the ideal of function germs vanishing on 
M at 0, then n(0, M) is simply the zero-multiplicity o f f  at 0 (defined in §4A). 
However the proof is in the language of divisors and cannot be extended to 
an analytic set of arbitrary codimension. In the case of p = 1, n(0, M) can be 
directly computed as M can be parameterized in a neighborhood of 0. If 

~ f ~  is such a parameterization, where (vl . . . . .  ~n) is a base of V and where 
2=1 

the f ; s  are holomorphic functions on an open set U C C, the field of complex 
numbers, 0 ~ U, and fa(O)= 0, then it can be easily shown that n(0, M) is 
equal to rain {v(0, O, fx)}, where v(O, O,f~) is the zero multiplicity of fx  at 0. 

1__.2~n 
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The purpose of this paper is to prove that n(0, M) is a positive integer for 
an analytic set M of arbitrary dimension. The proof is divided into three 
parts. In the first part, it is proven that n(0, M) is an integer if M is an analytic 
cone with center 0 (defined in § 2). The second part relates n(0, M) to the limit 
of the area of a family {N(w)}, w E C - {0} of analytic sets. These sets have the 
property that they "tend to" T, the tangent cone to M at 0 (§ 3), as w tends to 0. 
In § 4, a theorem on the continuity of the area is proven. It is shown that the 
limit of the area of the N(w)'s as w goes to 0 is equal to the product of a positive 
integer and the area of T. Then this together with the result of § 2 applied to T 
yields the final result. 

§ t. Def'mitions 

Let V be a complex vector space of dimension n. Let (" I') be a hermitian 
product on V, that is, 

a) (3lm)~C for 3EV, me  V; 
b) 
C) (~131 + ~t232 It0) = Cq(3t I tO) + at2(32 IW ) for 0~1, 0~2 (~ C 
d) (319>0 if 3~0 .  

Then 13l = 1/~13) defines a norm on V. Let d be the exterior derivative 
on V. Consider (3 [ a) as a function of 3 for fixed a. Define 

(d81 o) = d(31 a), 

(a [ d~) = ~ = d(a [ 3). 

Then (d313) and (31d3) are differentials on V. Define 

(d3 [ d~) = d(8 [d3) = - d(dsl ~), 
r/= (//4) [(3 [d3) - (d313)]- 

Then dr/= (//2) (d3Id~). 
Define 

1 P 
o=dr/ ,  % = ~ = A l o .  

Let M be an analytic set of pure dimension p > 0 in an open subset G of V. 
The set i f / o f  simple points of M forms a smooth complex submanifold of 
dimension p of V. Let L be a subset of M such that L n  J~/is measurable on M. 
If X is an exterior differential form of degree 2p on M such that S. X exists, 
define L ~ M 

/. L 

Let z : ~ / ~ V  be the injection defined by t(3)=3. If ¢ is a continuous ex- 
terior differential form of degree 2p on g with compact carrier in G, then 
aSL~*~ exists ([3], [7]), and is denoted by L ~¢" 
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If L_.g M and L o ~ / i s  measurable and if L is contained in G and compact, 
then ~ op exists and is non-negative. The integral is positive if Lc~M is not 

i. 
a set of measure zero. The integral ~ % is the Lebesgue area of  Lo]f / .  

L 
Define 

n,={$c Vll3t<r} 
M'o =MOB,  

Suppose 0 ~ M and B R C G. For 0 < r < R, define 

O<n(r,M)= Wpr2 p ol,. 
M~ 

Then n(r, M) is a monotonic increasing function ([3 ], [8 ]). The limit 

n(0, M) = lira n(r, M) 
r--* + 0  

exists, and is called the Lelon9 Number of M at O. It will be shown that the 
Lelong Number  is always a positive integer. 

§ 2. The Lelong number o f  an analytic cone 

Again, let V be an n-dimensional complex vector space with a hermitian 
product. Let T C V be a pure p-dimensional analytic cone with center 0, that 
is, a pure p-dimensional analytic set in V such that ~ 6 T implies u~ 6 T for all 
u e C. In this section, it will be shown that n(0, T) is a positive integer. 

Define on V 

i r/ 
t r = ~ -  [ ( 31d3 ) - (d313 ) ]131 -2=-~  for 3 ~ 0 .  

Then 

i (d31d3)lSI 2-(d813) ^ (31d8) 
dtr = - -  

2 1314 
1 p 

Define co = do-, cop = --~-.t vA1 co on V -  {0}. 

Let A be a pure p-dimensional analytic subset of an open subset G of V 
with p > 0. If L is a subset of  A such that Lr~/i is measurable on ,4 and if/~ is 
compact and contained in G -  {0}, then S cop exists and is non-negative. 

L 

If Lg_ A and Ln ,4  is measurable and S co~, exists, define ~cop= ~ co r 
L - {01 L L -  101 

Let t: A--, V be the injection. Let ~ be a continuous exterior differential 
form of degree 2p on V with compact  carrier in G. If ~ = dz, where z is an 
exterior differential form of class C 1 and degree 2 p -  1 on G, and where 
19" 
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has a compact carrier in G, then [3, Theorem 7] 

.~¢= .f&=0. 
A A 

Define, for any subset L of V, 
S _ _  ~ - -  - -  12,-Lc~{31r<131<s} O < r < s < ~ .  

The following two propositions are a generalization of results of W. STOLL 
[8, Propositions 1 and 2]. 

Proposition 2.t. Let A be a pure p-dimensional analytic set in G = {31131 < R} 
where p > 0 and 0 < R <= ~ .  Let f be a function of class C 1 on G. Suppose that 
a number r o exists such that 

1) 0 < t o < R ,  
2) f (3 )=0  for 1516r0. 
Let q be an integer, 0 ~ q ~ p - 1. Let b = p - q. Then 

b!q! 
rP--rP~-K f f(3)°v(3)= ( p -  I), f f(3) o~(3)^wb(3)+ 

A~ A6 

f [  1 1 ] d f A ~ A  (0 o 1) 
+ ]312b --  r2b ° v - 1 .  = 

Ag 

t7 
V:= 0q^ ~- ^COb_~ (coo=l) 

Then 

and 

Proof. Define 

( p -  1)! 1 
Z= b!q! r 2b ~^OP--I" 

p! 1 
&p= oq A COb, d)~ = - -  - -  b!q! r 2b op, 

- a ^ c ° ~ - l =  b! 4 1312 [(31d3)-(d313)]^ 

F(d~d3) (d313)^(31d3)] b-'  
^ L 1512 1514 

( 2 ) ' - x  1 i (31d3)-(d313) 
= b-~ 4 1512 ^ 

F(d ~ d3)b-- 1 (d31 d3)~- 2 
^L 1312b-:  ( b - l )  1312b_ 4 ^ 

_ - ( 2 ) b - '  1 i _ _  (31d3)-(d313) 
b! 4 t31 ~b 

1 1 
= -# ' /^  l~-y o~-,. 

(d3l 5) ̂  (31 d3)] 
1314 3 

A (da I d3) b- 1 
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Thus 
1~ Ob - 1 

~p = oq ^ - f f  ^ 1~12 b 

(p - l ) !  1 
- q lb!  [~12b r / ^ O p - 1 ,  

t P -  Z =  . . i~12b ~ b  rl A Op- l " 

Let 0t be a C°°-function on the real line R such that  0 < ~(x) -< 1 for all x and 
~(x) = 1 for x < 0 and a(x) = 0 for x > 1. Define K by 

K = Max l~'(x)l • 

Take any r in r o < r < R .  Take s in r / 2 < s < r .  Define t = ( s + r ) / 2 .  Then 
/ S 

t - - s =  ( r - s ) / 2 .  Define 2~ by 2~(x)=o~ | - - : ~ } .  Then 
\ ~ - - s /  

a) 0 < 2~(x) < 1 for all x. 
b) 2,(x) = 1 for all x < s, 
c) 2~(x) = 0 for all x > t, 

K 2K 
d) I,VAx)I < - for all x, 

t - - s  r - - s  

2'~(x) 4:0 implies s < x < t, 
2~(x)~ l  as s - * r - O  if x < r ,  

)/~(x)~O as s - , r - O  if x < r .  

i 
d,a,Al~l) ̂  n = ~ 2',(l~l) 

e) 
0 

g) 
And 

For  s _-< 131 ~ r, 

(d3 [ 8) ̂  (8 [ ds) 

181 

1 1 
IZ~(131)I 1312b r2b 

< - -  
p=o 

22b+2Kb 
< 
= r2b+ 1 

Therefore 

(_(p_- 1)[ '~ 1 r_12b)dA~Ar / 

2 K  r 2b-I~l  2b < 
r - s  r2a1312b : 

22~+1K 2b-1 
r4b Z r~1312b-l-~'< 

A O p _ !  

( p - l ) !  f f t  1 1 )  i , • ~ ,L(131)  q[b!  1312b r eb 

~ 0  as  s ~ r - O .  

(d31 ~) ^ (~ I d3) 
131 

AOp-1 
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Moreover 

Therefore 

f 2 , d f  n ( ~ p - x ) ~  I d f  ^ ( v ? - x )  as 
A~ A~ 

~2~fd(~p-~)---, ~fd(~P-Z) as 
A~ 

s-* r--O , 

s--* r--O . 

0=  I d ( f 2 s ( t p -  Z)) 
A~ 

= I f d 2 s ^ ( t p - X ) +  f 2 ~ d f ^ ( t p - z ) +  f 2 J d ( v 2 - Z )  
A~ A~ A~ 

implies that 
O= f d fA( IP-Z)+  f f d O P - Z ) ,  

that is, 

P' 1 I f  of f f o , ^ o g ~ + - -  blql r 2~ = 
a~ a~ 

Proposition 2.2. Let A be an 

(p--I)! f (  1 1 ) d f A r l A O p _  qlb! [~12t, r2b 1" 
A~ q.e.d. 

analytic set of  pure dimension p > 0  in 
G = {31131 < R} where 0 < R <= oo. Take r and s such that 0 < r < s < R. Let q 
be an Mte#er, 0 ~ q < p - 1. Let b = p - q. Then 

p! o q ̂  ~o~ = - ~  % - -Tff %.  

A~ At A6 

Proof. Let ~ be a C°%function on R such that 0 _~ ~(x)< i for all x and 
a(x) = 1 for x < 0 and a(x) = 0 for x > 1. Take 0 < t < r < s < R. Define 

The function f is of class C ® and f(g) = 1 for 13t ~ t and f(3) = 0 for 131 ~ r. 
From Proposition 2.1, 

b!q! 1 
sl2b] d f  ^rl ^ %-1,  ( p - l ) ,  I ( 1 - f ) ~ ° ' ^ ° ~ =  ~2---v I ( 1 - f ) ° ,  + f Ii~12b 

A6 At At 

b!q! I ( l _ f )  OqAtOb = ~2---T f (1-- f )  o, + I['13~2b r1~b] d f ^ * l ^  or-1. 
( p -  1)! 

A 5 A~ A~ 

And 
S d f  ArlAOp_t= - S f drlAOp_l= - p  ~ f o r 
A~ A~ A~ 

I d f  A ~ l A % - l =  - p  l f o, .  
A 6 a~ 
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Hence 
blq! 

(p-1)~ 
b!q! 

- - I O q A O ) b =  (p-_...-1), f ( 1 - - f ) ° q ^ w b  
Ag At~ 

P 

A~ A~ 

+I I ~df ̂ ~̂ o,_,- 
A~ 

1 d f ^ r l ^  + d f A r / ^  op_, 
- -  S2 ~ Op_ 1 W 

ag a~ 

= - ~  ( 1 - f ) o p - - - ~  ( 1 - - f )  o p + O +  

a~ a~ 

--~ If°" 
A~ A~ 

= ~ op-- r2 b Op q.e.d. 
Ag a~ 

Note that by letting q = 0, Proposition 2.2 gives 

I 'f  'f  (Dp : - -  Op -- - -  Up 
s2P r2p • 

m a~ a~ 

Thus n(r, A) = Wi, r2-------- ~ 0p is monotonic increasing, and so n(0, A) = !im ° n(r, A) 

exists, a~ 
Assume now that p > 2. Let q = 1. Then 

O A(/)p- 1 ~ ~ Up 

A~ 

Since lim 1 [ - -  vpexists, 
r-~O r2P J 

A~ 

A~ 
r 2 p -  2 op.  

A~ 

A~ A~ 

In part icular ,  if  T is a pure p-dimensional analytic cone with center 0 and  p > 2, 
then 

r2P- 2 Op = D A fop_ 1 • 

OACOp_I~  ~ Op. 



276 P.R.  TInE: 

Fubini's Theorem shall now be applied to S o ^ ogp_ 1. A statement of 
r~ 

the theorem follows. The theorem in a more general setting is stated and proved 
by W. STOLL in [6]. 

Fubini's Theorem. Let N and Q be pure dimensional complex manifolds with 
dimN =n ,  dimQ = q  <n .  Let a : N ~ Q  be a holomorphic map and suppose 
that a has maximal rank. Define N r = a - l ( y ) ,  a complex submanifold of N. 
Let tp be a differential form of bidegree (q, q) on Q. Let Z be a differential form 
of bidegree (n - q, n - q) on the measurable set L in N. Suppose that 9~ ̂  tr* q9 
is integrable over L. Let ly:N r--} N be the injection. Then 

L t2 
In order to apply this theorem, the following is needed. 
Let P(V) denote the complex projective space of the vector space V. Let 

~: I / -{0}--}P(V)  be the residual map, which can be uniquely defined by 
requiring that Q(3t) = 0(32) if and only if 3a = u~2 for u • C - {0}. One and only 
one exterior differential form 63 of bidegree (1, 1) exists on P(V) such that 
0*(63) = o9. Define 1 q 

Then O*(&q)=ogq. Let T C V  be a pure p-dimensional analytic cone with 
center 0 and p > 2. 

Define e ( T - { 0 } ) =  ~'. Then ~ is a pure ( p -  1)-dimensional analytic set 
in P(V). Define N = J ' - { 0 } ,  a pure p-dimensional smooth submanifold of 
V -  {0}. Define Q = Q(N), a = O t N. Then Q consists of all the simple points 

of T, and N is a cone, that is, 3 • N, u • C - {0} implies u~ • N. Hence N = a -  1 (Q) 
= e -  ~ (Q). And Q is a pure (p - 1)-dimensional smooth submanifold of P(V). 
Let t : N ~ V - { 0 }  a n d j : Q - } P ( V )  be the inclusions. Then 

N ' ,  v - { o }  

1 l o 
Q . i ,  P(V) 

is commutative, and 

~* ogp- 1 = z* 0"(63p- t) = a* j*(63~,_ 1)" 

L e m m a  2.3. The map a : N - ,  Q defined above has maximal rank. 
Proof. Identify V with C" and denote Q(3) = (zl : . . .  : z.) if 3 = (zl . . . . .  z.) 4= 0, 

Let a = (ai . . . . .  a.) be an arbitrary point of N. Define a = a(a) = (al :. . .  : a.) • Q. 
Then there exists W' C C p- 1 0 • W' open, and ~: W'--* p(l / )  holomorphic such 
that ~(0)= a, ~: W'-*a(W')C Q topological, a(W') relatively open in Q, and 
rank=a  = p -  i ,  re • W'. There exists v such that a,  4= 0. Hence ,  if W' is small 
enough, ~: W'--, V -  {0} exists such that ~ is holomorphic and injective, and 
Q o ~ =  a, ~(0)= a. Let ~(re)= (~t(re),---, ~.(re)) and, by choice of W', ~(re)#O 
for re • W'. Define 

f~(re) = g,(re) 2 = 1, v - 1, v + 1, n. 
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Then  a(m) = (a l(m) : . . .  : a,(m)) = ( f l (m) :  ... : f , _ ,  (w): 1 :f~ +, (m): ... :f(m)).  
Hence  

a f t ,  . . . , L - , f ~ + l  . . . . .  f . )  rank. ,  = rank" ,a  = p - 1 
O(wl . . . . .  w~_ 1) 

for w ~ W'  using the coord ina te  sys tem 

( z l  z , - i  z , + ,  , z . ~  
~,(z~:,. . :z.)= ~ . . . . .  z~ ' z~ ' " "  z~/  

in Q{313v#=0}. Define f l : W '  x ( C -  { 0 } ) ~ V -  {0} by 

U 
fl(w, u) = - -  ~(W) = (u f ,  (w) . . . . .  uf,~_ l(W), u ,  ~(w) 

u f ,+  l(m) . . . . .  u f , (m)) .  

Then fl is ho lomorphic .  I f  fl(ml, uO=f l (m2,  u2), then ul = u 2  and  ~(tol) 
= Q(fl(ml, u 0 ) =  Q(fl(vo2, uz))=a(v%).  Hence  ml  = w 2 ,  and  so fl is injective. 
And  fl(W' x (C - {01)) = Q - '  (a(W')), for 

0(fl(to, u)) = e(fi(m)) = ~(w) ~ a ( W ' ) ,  or  f l (W'  × (C - {0})) _~ e -  l (~(W')) .  

And  if 3 ~ Q- I(~(W')), then q(3) = co(m) for some m ~ W'  and ~ = v ~(m) for some  
U 

v ~ C - {0}, Then  u = v- ~v(m) 4: 0. Hence  fl(m, u) = - -  ~(m) = v ~(m) = 8, ~,(w) 
a n d s o  0 -  l(a(W'))__c fl(W ' × (C - {0})). Thus f l :  W '  × (C - {0})--* q -  I(~(W')) £ N 
is bijective, ho lomorph ic ,  and  0 - 1 ( ~ ( W ' ) ) = a - I ( ~ ( W ' ) )  is open  in N and  

dv 
fl(O, av) = ~ ~(0) = a. N o w  

O(u f l  (m) . . . .  , u L - 1  (w), U, 1~ f ,  + 1 (m) . . . . .  u f . (m))  
rank(",.,)fl(m, u) = rank(",,,) O(wl . . . . .  wp_ 1, u) 

= 1 + r a n k .  g ( u f l ( m )  . . . . .  u f~_ l (w) ,  u f~+l (w)  . . . . .  u f . ( w ) )  
0 ( W l ' ' ' " • p - 1 )  

= p for (m, u) ~ W '  × ( C -  {0}). 

Thus  fl gives local coordina tes  of  N at  a. And trofl(m,u) = 0t(ra), or  0t- loaofl(m,u) = m. 
Thus  if ~: W'  × (C - {0})~  W'  is the project ion,  r ank ,  tr = r ank ,  0t- 1 o tro 
= r a n k ,  ~ = p - 1. q.e.d. 

Then  Fubini ' s  T h e o r e m  implies  

I 
T~ N n Br N c~ B~ 

= ~ t * V ^ a * ( l ~ - l )  
lq c~ B,. 

=s( ,  s 
aeQ l(a)r~B¢ 

=,,~Q~ (~- I(o),~B~ ~* 
= j ~ ,  (._ (.,~. '* 
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where a- l (a )nB,={za lO<lz l  <r},  a chosen such that o(a)=a(a)=a and 
lal = 1. Identify Vwith C" by means of an orthonormal basis. Let a = (al, ..., a,). 

i 
Definej, :  {z[0 < Izl < r} ~ V -  {0} byj,(z) = za. Then o = -~- ~=-~1 dz~ ^ d~,~, and 

i ~ a,,ff'~dz^d~= 2 d z ^ d ~ .  

Thus 

f 1, O= 
a- l(a)c~Br 

Hence 

I j*v 
O<tzt<r 

- -  f 2 dz r 2 - ^ d [ =  rc . 

0<tz l< r  

S OAfDP -1  -----~zr2 .((-Dp-I , 

and 

1 s f ~ZP r 2 Wpr2 p I)p = r2p- 2 Op 
T~ T~ 

_ (p-I)!~.r 2 Iv^%_~ 
r~ 

( p -  1I! f .. 
- -  7~ p - ~  ~ COp_ I • 

f 
Now 7" is a pure (p-1)-dimensional analytic set in P(V), and so, from 

Chow's Theorem, 7" is an algebraic set. From a result of G. DE RHAM, [4], 

(p--1)!n p-I f fhp-1 = m ,  
"r 

where m, a positive integer, is the degree of the algebraic set T. With the desire 
do make this paper as self-contained as possible, the fact that 

is a positive integer will also be proven here, by means of a method suggested 
by W. STOLL. 

Proposition 2.4. Let W be an (n + 1)-dimensional complex vector space with 
a hermitian product. Let P(W) be the projective space. Let A be an analytic set 
in P(W) of pure dimension q > O. Then 

re--- i- (b q 
A 

iS a positive integer. 
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Proof. Since A has only a finite number of branches Ax, 2 = t . . . . .  k, and 
because 

--~- ~=Y~-~- ~ 
~,=1 

A Aa 

it is enough to prove the theorem for A irreducible. The proof  is by induction 
on d = n -  q. For  d = 0, A = P(W), and 

n! i re" 6~. = 1. 

P(W) 

Now assume the proposition true for n - q < d - 1, and let A be an irreducible, 
q-dimensional analytic set in P(W), where W is a vector space of dimension 
n + 1, and where n - q = d ~ 1. If n = 1, q = 0 and the proposition is trivial. 
Thus assume n > 2. Choose a point s e P(W), s $ A. Choose an or thonormal  
basis of W in such a way that if W is identified with C "+1 and P(W) with 
P ( C n + I ) = P  n, and if e: C " + 1 -  { 0 } ~ P  n is the residual map, then the point 

= (1, 0 . . . . .  0) e C "+ 1 is in 0 -  l(s). Denote Q(z0, zl . . . . .  z,) = (Zo:Zl : . . .  : z~) e P~ 
for 0 * 3 = ( Z o  ... . .  z , ) e C  "+1. Let p , - 1  = p(c~), ~ :C  ~_  { 0 } ~ p , -  1 the residual 
map, ~(zl . . . . .  z,) = (zl :... : z,) for 0 4= (zl . . . . .  z,) e C ~. Define n: P" - {s} 
~ p , - 1  by 7r(zo:zl:. . .:z,)=(zl:. . .:z,) .  Let a e P  "-1. Then rr-l(a)c~A is 
analytic in the complex manifold n- l (a) ,  and, if it contains an interior point, 
then n-l(a)c~A=rr-l(a). But this would imply that s e A ,  a contradiction. 
Hence n - l ( a ) n A  consists of isolated points for every a e P"-1.  Clearly n lA is 
a proper map. Hence :~(A)= B is an irreducible, q-dimensional analytic set 
in P"-1. Thus, from the induction assumption, 

q~ 

rd f ~q 
B 

is a positive integer, say ml, where rS~ is the volume element in P" -  a associated 
n 

to the hermitian product  (31 w) = ~ z, ff~ on C". 
v = l  

Let S (.4) be the set of non-simple points of .4. Then ~(S(A)) is an analytic 
set, thin in B. Let B'= B-rc(S(A)). Now B irreducible, rc(S(A)) thin, implies 
that B' is a connected q-dimensional complex manifold. Let .4'= rc-l(B')c~A 
= ~ - 1 (B')r~.4, a q-dimensional complex manifold. Let T = rc 1.4'. Then T(A') = B'. 
Let N = {a e A' Irank,~ < q}. Then N is a thin analytic set in A', and T proper 
and ~-l(b) discrete for beB" implies that ~(N) is a thin analytic set in B'. 
Hence B " = B ' - ~ ( N )  is connected. Let A"=~-X(B")=~-I(B")r~A ', and 
a = • I A". Then e :  A"--* B" is proper, and hence a is an unrestricted or regular 
covering map of  the complex manifold A" onto the connected complex manifold 
B". Therefore the number m2 of  points in a - l ( b )  for b e B" is independent of b 
and finite. The map a is of maximal rank with a(A") = B". Hence from STOLL 
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[6, Satz 6 ], 

B'" A" 
and so, 

~ m 2 ~ q =  ~ fC*~ . .  
B A 

Define the following opera tors  on an n-dimensional  complex manifold:  

o= dz~ ~= Y.-=-_ clL. 
v= 1 v= 10Zv 

Then d = ~ + ~. 
DefineEx = {~ ¢ C "+ t 13 = (zo, ..., z~),zx, O} for2  = 0, 1 . . . . .  n .Let  U~ = e(E~). 

Define, for 
[31 Izxl 2 + "'" + l z ,  I 2 

z Ua, f,~(~)= - ~ ,  g~(~)= izxl 2 

where 3 =(Zo, zl . . . .  , zn)¢ e - 1 ( 0 .  No te  that  fx  and g~ are independent  of  the 
choice of  3 ~ e - ~ ( 0 .  Then, for any 4, 0 < ~ < n, it can be shown that  63(0 
= i ~ ~ log fx(~) for ~ ~ Ux, and similarly, ~* c~(0 = (//2) c~ ~ loggx(~) for  ~ z U x -  {s}. 

Ist 2 
Define, for ~ z P ' -  {s}, h(~)= izxl 2 + ... + iz~l 2 , where 8=(Zo . . . .  , z , ) z  e - t ( 0 .  

Let  0(~) = (//2) ~ l o g h ( 0 ,  ~ e Pn - {s}. N o w  on U~ - {s}, for any 0 < ,~ < n, 

c S - ~ * c b =  2 ~ ' l o g f ~ -  i - -~- ~c9 logg~ 

i _ f 2  
= ~ t~c3 log  Ok 

= -~- tP~'logh = 0.  
. 4  

N o w  0 (U~-{s}) = P ~ -  {s}, and  so 
~.=0 

0 = c 5 - ~ t * c 3  on P ~ - { s } .  

Dcfme tp(0 = (//2) ~'logh(~) for ~ ~ P~ - {s}. Then  dcp = (c3 + ~')(cp) = c3q~ = 0, and 

d~ ~ = (d~p + ~t* c5)~ 

= ~ (dtP)~-u ^ ( ~ * ~ )  ~' , 
# = 0  

d:,~- =*6a = ~ (dq,F-" >, (~* ~Y'. 
# = 0  

Def'me 
, '  

~=  ~ ( d ~ ) ' - ~ - ~ ^ ( ~ * ~ )  ~ on  e * - ( s }  
#t=O 

Then  d~ = 0 (dlt* cb = ~* dr5 = 0), and  d~ q - ~* ¢b ~ -- d~p ^ ~ = d(~p ̂  O. Let  
@ ^ ~  

tp = -  on p n _  {s}. 
q! 
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Then 6 0 q - - T g * ( D q = d t p .  Hence, from a previously quoted 
LELONG [3, Theoreme 7 ], 

~(c~q-~*cT)q)= ~dw=O (seA) .  
A A 

Consequently, 

q! - -  & q = ~ .  l r * & q = ~  m2&q=mlm2, a 

A A B 
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theorem of 

positive integer, q.e.d. 
The results of this section are summarized in the following 

Theorem 2.5. Le t  V be an n-dimensional complex vector space with a her- 
mitian product. Le t  T C V be a pure p-dimensional analytic cone with center O. 
Suppose p > O. Then  

1 
VCpr 2p f o, 

r~ 

is a positive integer independent o f  r. 
Proof. For p = n, the theorem is trivial, and for 2 _~ p N n - 1, the theorem 

has already been proven. Ifp = 1 and Tis irreducible, then, for any 0 4= o e T, T 

i f  f = {ua l u e C}, and so - -  o = 1. Thus for p = 1 and T arbitrary, _ _ 1  o 
7g/.2 ~ r 2 

T,( T~ 
equals the number of irreducible branches of T, a finite integer, q.e.d. 

§ 3. The tangent cone 

Let V be now a fixed n-dimensional complex vector space with a her- 
mitian product. Let M be a pure p-dimensional analytic set in an open subset G 
of V such that 0 e M. Then f is said to be a tanffent vector to M at 0 if there 

34 ~ t  as 2~oo .  exists a sequence {3~}, 3~ ~ M, 34 4=0, such that 3 ~ 0  and - ~  

The set T =  {utlu ~ C, t a tangent vector to M at 0},is called the tangent cone 
to M at O. It will be shown that T is a pure p-dimensional analytic set in V. 
This has also recently been proven by H.WRITNEY in [ 10 ]. However the proof 
given here uses a natural geometrical construction which is essential to the 
remainder of this work. 

Define 
H = {(3, w ) j w 3 ~ G ,  3~ V, w ~ C }  

N* = {(3, w ) l w 3 ~ M ,  3e  V, w~C} CH 
n: V @ C  ~ V, projection 

: V@ C ~ C, projection 
E =  V x {0} = T- l (0)  

N (w) = ~ - I (w)c~ N . 
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Extend the hermitian product on V to a product on V ~ C  by defining, for 
(3, w) and (3',w')e V ~ C ,  ((3, w)l(3' ,w'))--(3t3')+w~',  where (1) is the given 
hermitian product on V. 

Proposition 3.t. N is a pure (p + 1)-dimensional analytic set in H, and 
~(N(O))=Tc(N n E ) =  T is a pure p-dimensional analytic set in Is. 

Proof. Define ~ , :V~C- - ,V  by y(3,w)=w3. Then y is holomorphic, 
? - I (G)  = H, and y - t ( M ) =  N*. Hence N* is analytic in H. Define ~ : H -  E - ,  
-* G x ( C -  {0}) by x(3, w)=  (3w, w). Then ~ is biholomorphic, and ~ ( N * - E )  
= M x (C - {0}). Hence, for w ~ 0, 

dim~,w~N* = dim0~,,w)M x (C - {0}) = 1 + dimw,M. 

Therefore M pure p-dimensional implies that N* - E is pure (p + 1)-dimen- 
sional in V x ( C -  {0}). Now, from general theory, H n ( - ~ * - = - ~ =  N is ana- 
lytic in H, and, for points in E n N, N can be expressed locally as the union of 
the irreducible branches of N* not contained in E. Hence N is pure (p + 1)- 
dimensional and N n E = N(0) = N r~ {(3, w) ] w = 0} is p-dimensional. 

Finally, g ( N n E )  = T: Since (0, w) E N* for any w, 0 e ~c(NnE). Let zt ~ T, 
z t4:0 .  There exists a sequence {3x}, 3 x ~ M - { 0 } ,  such that 3x-*0 and 

I ~ ' ) e N * - E ,  and \13xl(-z3x 13xl)_,(zt,0).z t3~1~ --,t as 2--,oo. Then _ [\13a( z3~ , , 

Thus TC n(NnE) .  Conversely, let 3~ n ( N n E )  and assume that 34:0. There 
exists a sequence {(3a, wa)}, (3x, w g ~ N * - E  such that 3 ~ 3 ,  wz~0 ,  and 
3a 4: 0. Then 3a w~ ~ M - {0}, and 34 wa ~ 0 as 2-o oo. There exists a subsequence 

of {wa}, say {w J ,  such that w~ ~ converges, say w~ o u, as v ~ o o .  Let 
Iw~J 

t =  lim 3a, w~ Then 3= 131t~ T. Thus ~r(Nc~E)C T. q.e.d. 
~-'~ 13a~wJ " u 

Define I(w, r) = op for 0 < r < ~w-j--, where B~ C G, and n(N(w))c~B, 

= {3 ~ V 1(3, w) ~ N(w), 13] < r}. Note  that I(w, r)/r ~p is monotonic increasing 
1 

in r, and that n(r, m) = ~ I(1, r). 

Define W = {w l0 < twl < 1 }. For  w e Wand 0 < r < R, define g: M'o-O rc(N(w)) 

by g(3)= --~. Then #(M~)= rr(N(w))nB,/tw I, and 
w 

, ~ Up 

n (N  (w)) ~ B,./iw ! 

= f 0*(%) 
M~ 
I 1 I(1, r) 

MS 
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Thus  I(1, r) = lwl 2p l(w, r/Iwl), and 

1 
l(w, s) = ~ I(1, Iwl s), 

IWl-"  
For  w, w' e 14, 

letting r=lwls. 

lwl 2p I(w, r/Iwl) = I(1, r) = Iw'l 2p I(w', r/Iw'l), 

(w ,w,r) 1 , = I ',-7--z-.. 

Define 

for all w E W. 

Lemma 3.2. - - -  

Proof. 

I(w, r) 
r2p 

, ,ws ,=  

I(w, r) 
l(w) = lim,_.o r 2 ~ - - ~ -  

= lira I(1, Iwlr) 
,-~o Iwl2"r 2p 

= lim ~ = / (1)  
s-'O S 

-~l(w) uniformly on Was r-*O. 

I(w, r) 
0 < l(w) 

- -  r2p 

I(1, rlwl) I(1, r) 
- (rlwl)2p /(1)=< r2-----b--- 

N o w  if twl = Iw'l, then I(w, r) = l(w', r). 
And if 

- / (1) .  

w '  2p / Iwl r 
Iwl < Iw'l, Z(w, r) = -~- I 

!  w,y 7 
I(w', r Iwl/tw'l) 

= (rlwl/Iw'l) 2p < I(w', r) .  

Thus  lim l(w, r) exists, 0 < r < R. 
w-'*O 

Hence,  for w e W, 

n(r,M)= ~ I ( 1 , r ) =  Iwl2P I (w,-~wl) 

1 l(w, r/Iwl) 
n(0, M) = lim - -  

,-.o Wp (r/Iwl) 2p 

= lim I(w, s) 
s",O W p S  2p " 

q.e.d. 
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Thus 
n(0, M) = lim lira l(w, r) 

w~O r~O Wpr 2p 

= lim lim I(w,r) 
r--,O w~O Wpr 2p 

1 
= l im - -  l im l(w, r). 

r~O Wpr 2p w-.O 

In the next section, lira I(w, r) will be related to S op, and thus, the results 
w~0 T~ 

of § 2 can be applied to determine n(0, M). 

§ 4. A continuity theorem 

A. Multiplicity o f  a holomorphic map 

It is necessary to introduce the concept of multiplicity of a holomorphic 
map as the multiplicity of z lN must be considered in the proof  of the continuity 
of the area. Let X and Y be complex spaces and let a:  X--, Y be a holomorphic 
map. Then a is said to be non-degenerate if the fibers o-- 1 (a(x)) consists of iso- 
lated points only. 

Let X be a normal complex space, Y a complex space, and a:  X ~ Y a 
holomorphic, non-degenerate map. Take a e X. Take any open neighborhood U 
of a such that U is compact and such that U c~ a - l (a (a ) )=  {a}. Such a neigh- 
borhood exists. Define 

#v(x ,a )=  ~Uc~a- l (a (x ) )  for x e  U,  

where 4~A denotes the number of  elements of A for a finite set A, defining 
A to be 0 if A is empty and ~ A to be ~ if A is infinite. The number vv(a, a) 

= lim sup #v(X, a) is independent of U [9, Lemma 2.1 ], and is denoted by 

v(a, a). Note that if O': X'--* X is a biholomorphic map from a normal complex 
space X', then, for a' e X', v(a', a o O') = v(o'(a'), a). 

Let X be now an arbitrary complex space and a : X ~ Y be again a holo- 
morphic, non-degenerate map. Let X be the normalization of X, and Q : X--, X 
the normalization map (see for example S. ABHYANKAR [ 1 ]). Then a o Q : 3(--. Y 
is a holomorphic, non-degenerate map, as Q-l(a) consists of only a finite 
number of points for each a e X. Define v(a, a) = ~-l~(o)v(&' a o Q) 1. 

Let X be again normal, and a : X ~ Ya holomorphic map such that a -  1 (a(x)) 
is an analytic set of pure dimension q for every x e X. Suppose that X has pure 
dimension k. Take a e X. Let F~ be the set of sets A satisfying the following 
conditions: 

1. An open neighborhood U a of  a exists such that a e A ( U A and such that A 
is analytic and o f  pure dimension k - q  in U A. 

2. The closure U a is compact. 
3. The restriction a lA is non-degenerate. 

Notice that the definition of multiplicity if X is normal does not require the fact that X is 
normal to be meaningful. Thus a multiplicity, not always equal to the one defined above, could be 
defined without passing to the normalization of X. See Section 4C. 



The Lelong Number of a Point 285 

Lemma 4.t .  F, as defined above is non-empty. 
Proof. There exists an open, connected neighborhood U C X of a and a 

proper, holomorphic map tp:U ~ D where D is an open set in C k such that 
U is compact, tp(U) = D, ~p(a) = 0, ~p- I(0) = a, tp- t(z) consists of isolated points 
for all z e D, and, if S is an analytic set in an open set U1 C U, then either S 
consists of isolated points or else there exists a sequence {x,} such that x~ E S 
and x ~ x  o e U 1 - U1 as v ~  oo. Let a-  la(a) = L a n d  E = ~p(Ln U), a q-dimen- 
sional analytic set in D. There exists an open neighborhood D' C D of  0 and a 
set A' C D' analytic in D' and of pure dimension k - q such that A' n E = {0}. 
Let A " =  tp-I(A'), an analytic set of pure dimension k - q  in ~p-I(D'), an open 
neighborhood of  a. Choose an open neighborhood Q of a such that Q c Q c 
c ~p-~(D'). Now it is claimed that there exists an open neighborhood WC Y 
of a(a) such that x ~ (Q,- Q)nA"  implies that a(x)¢ W. For  suppose that there 
exists a sequence x ~ e ( Q - Q ) n A "  such that a(xO~a(a),  v--.od. Since 
( Q - Q ) n A "  is compact, {x~} contains a convergent subsequence. Without 
loss of generality, assume x ~ x o  e ( Q - Q ) n A "  as v ~  ~ .  Then a(Xo)= tr(a), 
and so x o e a -  1 tr(a)n U = L n  U. Thus ~p (xo) e E. And x o ~ A" implies ~P(Xo) E A'. 
Therefore tp(Xo) e L 'nA '  = {0}, and so tp(Xo) = 0. Therefore Xo = a e Q, a contra- 
diction, and so the claim is established. Choose such a W. Define 

UA=Qna-I(W), A=A"nUA. 

Then Ua is an open neighborhood in X of a, U A is compact, and A is a pure 
(k-q)-dimensional  analytic set in UA. Take any b e A .  Then a- lcr (b)nA 
is an analytic set in UA. Suppose that there exists a sequence {x~} such that 
x~ ~ a-  1 a(b)nA and x ~ x o  ~ Ua - UA as v--* oo. Then x~ ~ A C ~)nA" implies 
that xo ~ Q and Xo e A". And x ,  ~ a -  1 a(b) implies Xo e a -  1 a(b), and so 
a(Xo) = a(b) ~ 14I. Thus Xo e t r -  I(W). But xo$Ua = Q n a -  l(W), and so Xo $ Q. 
Hence Xo ~ ( Q -  Q)nA",  and so a(Xo) ¢ W by the choice of W, a contradiction. 
Consequently, a-Xa(b )nA  consists of isolated points only, that is, alA is 
non-degenerate, q.e.d. 

Thus, for tr: X ~ Y holomorphic, X normal, a -  1 (a(x)) a pure q-dimensional 
analytic set for x e X, define, for a e X, 

v(a, tr) = Min v(a, t r lh) .  
A~F,, 

Note again that if ¢' : X ' - , X  is a biholomorphic map, then, for a '~  X', 
v(a', a o ¢') = v(a, a) where a = ¢'(a'). For  if ,4' ~ Fo,, then ¢'(,4') = ,4 ~ Fo and 
¢'],4': ,4'--, ,4 is biholomorphic. Thus v(a',~o¢'I,4')=v(a, al,4 ) and so 
v(a' ,ao¢')>v(a,a).  Similarly, if A ~ F , ,  then (¢')-I(A)EFo.,  and so v(a, t r)~ 
< (a', a o ¢'). Hence v(a, a) = v(a', a o 0'). 

Finally, let X and Y be arbitrary complex spaces, and let t r : X ~  Y be a 
holomorphic map such that tr-l(a(x)) is a pure q-dimensional analytic set 
for x e X. Let X be the normalization of X and ¢: X--, X the normalization 
map. Define, for a e X, 

v(a, tr) = ~ v(fi, a o ¢). 
ae;~ 

20 Math, Ann, 172 
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The more common concept of the b-multiplicity of a holomorphic func- 
tion is also needed. Let f be a holomorphic function on an open, connected 
set L contained in a complex vector space W, and let a eL .  Then 

f(3) = ~ P~(3-a),  where the series converges uniformly to f in an open 
,,1,=0 

neighborhood of a. The term Px is either identically zero or a homogeneous 
polynomial of degree 2, and the terms Pa are uniquely defined by f .  If f ~ 0 
on L, then the smallest index 20 such that P~o ~ 0 is called the zero-multiplicity 
o f f  at a, and denoted by v(a, 0, f ) .  For  b e C, define the b-multiplicity o f f  at a, 
~(a, b, f ) ,  tobe the zero-multiplicity of the function f(3) - b at a. 

Proposition 4.2. Let J' ~ 0 be a holomorphic function on an open, connected 
set L C C  m. Let a e L .  Then v(a, f )=v(a, f(a) , f ) .  

Proof (see STOLE [9 ], Lemma 2.3). For  n = 1, the proposition has been 
proven by W. STOLE [9, Lemma 2.2 ]. Assume n__> 2. The fiber f - l ( f (3 ) )  is 
analytic and has pure dimension n - 1. In an open neighborhood U C L of a, 

f(])  = f(a)  + ~ P~(3- a), 
2=q 

where P~ is a homogeneous polynomial of degree 2 or identically zero, and 
where Pq ~ 0. Take any A e Fo. Let A be the normalization of A, 0 : A--, A the 
associated map. Let ~ e Q~-~(a). An open neighborhood /)~ of til and a bi- 
holomorphic map g: L~ ~ UI of an open neighborhood L~ of 0 e C exists such 
that g(O)= ~1 and e(g(LO)= e(U1)C Uc~A. Then v(O, f l A  o e ° O)= ( ~ , f l A  ° e). 
But, for t ~ LI, 

f lAo 0o g(t)= f(a(g(O))) + ~ Pa(a(g(t)) - a(g(O))) 
A=q 

= f ( a ) +  ~ c~t ~. 

Therefore v ( ~ , f l A o e )  = v(O, f l A o e o g )  ~ q. Therefore v(a, f l A )  
= ~ v(& f lA o e) >- q. Therefore v(a, f )  > q. Take c such that P~(O # O, 

ae~- t(a) 

and define A = {a + t t  I ttl < ~}, a one dimensional analytic set consisting only 
of normal points. Define g(t) = a + to. Then 

f(g(t)) = f(a) + ~ P~(c) t a (P~(c) 4: 0). 
A=q 

Hence A ~ F, ife > 0 is small enough, and v(a, fJ A) = q. Hence v(a, f )  = q. q.e.d. 
Recall now the definition of  V, M, N, z, n, etc. given in the beginning of  § 3. 
Lemma 4.3. Let (a, b) e 1V(b), where IV(b) is the set of simple points of the 

analytic set N(b). Assume that b 4= O. Then v(a, b), z IN) = 1. 
Proof. An open neighborhood U' of 0 e C p and a: U' ~ ~ bihotomorphic 

exists where U is relative open in N(b) and ~t(O)=(a,b). It is 0t: U'~VO)C 
and r a n k ~  = p for each x e U'. Define fl = n o 0t. Then a(x)= (fl(x), b) and so 
rank~fl = p. Take r > 0 such that 

{(3, b) 11s- al _-< r} c~N(b) C U. 
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Define 

U= {313~ v, 13-al <r} 
U "=  ~-I((U x {b})c~N(b))= o~- 1(~- I(U)(...IN(b)) C U' 

w '  -- {4112-  I < 1/2,,~ ~ ¢ )  

~: U" x W ' ~  V ~ C ,  

defined by ~(x, 4) = (2- t ]~(x), 2b). It will be shown, by means of ~, that Nc~ Y 
contains only simple points of N. Obviously U" is open in U' and 0 ~ U "~. 
Take(x, 2) ~ U" x W'.Then~(x) ~ N(b),~(x) = n(~(x)) ~ U, and~(x) = (/~(x), b)~N 
implies ~(x, 4) = (4-1/~(x), 2b) ~ N as 2-1/~(x). 2b =/~(x) b ~ M. Now I/~(x) - al < r 

asfl(x) e U.Hence  2bb fl(x)2 - a = Ifl(x)- a[ < r, a n d l 2 b -  bl = lblt2- 11 < fbt/2. 

Hence &(x, 2)~ Y. Therefore ~: U"x W'--.Nc~ Y. Because fl is one-one, ~ is 
also one-one. Let x = (x 1 .. . .  ,xp). Obviously ~xv(x, 4) = (4-1 flx,,(x), 0), v = 1 ..... p, 
and ~x(x, 4) = ( - 42 fl(x), b), and so ~ ,  ..., ~ ,  ~ are linearly independent over 
C. Thus rank ~.x)~(x, 4)= p + 1. Define now &:Nc~ Y--, U" x W' by 

If (3, w)eNc~¥, - ~ - a  < r  and ( ~ - , b ) = ( b / w '  

(--~-,b) e U and so ~ is defined. And ~ is holomorphic. It is I b - ' w - I I  

= lbl- ~ Iw - bl < 1/2, and so i(~, w) ~ U" x W'. Now 

b 
Therefore & is surjective, and so, ~ is bijective. Thus ~ -~=& and ~:U"x  
x W ' ~  Nc~ Y is biholomorphic. Hence every point of N c~ Y is a simple point, 

and so, considered as a complex space, N ~  Y is normal. And ~ biholomorphic 
implies that v((a, b), z IN) = v((0, i), *IN ° ~), as ~(0, 1) = (a, b). Define f : U" x 
x W'--,C by f(x,  2)=2b. Then ~(x, 2)=(2-~13(x),f(x, 2)), and z l N o ~ = f .  
But v((0, 1 ) , f )=  v((0, 1), b,f), by Proposition 4.2, and v((0, 1), b , f )=  1. There- 
fore v((a,b), zlN) = v((0, t), b, f )  = 1. q.e.d. 

Let N be the normalization of N and e:/Q-o N the normalization map. 
Let S be the set of non-simple or singular points of/Q. Then ~{ is an analytic set 
of dimension less than or equal d i m / f / -  2 = p -  1, as N is normal [1, 45.15]. 
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Let S = ~?(S). Then S is an analytic set in N of dimension less than or equal p - 1. 
Recall that T = n(N(0)) was the tangent cone of M at 0. Now Tis an algebraic 

set in V and so T has only finitely many irreducible branches 7"1 . . . . .  Tb, each 
branch being an analytic cone with center 0 and dimension p. 

Lemma 4.4. For fixed 2,v((3, 0), TIN) is constant on (T × {0})c~(T~ x {0})n 
n (N - S). 

Proof. Identify V x {0) = V. Now T n  Tx is a smooth, connected submani- 
fold of V containing S n  Tc~ Tx, a thin, analytic subset. Consequently J ' n  Tan 
n ( N  - S) is connected. Thus it is sufficient to prove that v((3, 0), ~ IN) is locally 
constant. 

Let a ~ T n T x n ( N - S ) .  Let {al . . . . .  hg}=0-1(a). For each i = 1  . . . .  ,q, 
there exist neighborhoods X* of ai and X[' of 0 e  C p÷I and a biholomorphic 
map ai:X~---)3(*, ai(0)=3i. And there exist neighborhoods U * C N  of a 
and W" of 0 e C p and a biholomorphic map ~: W" ~ Tc~ T~c~ U*, or(O) = a. 
Then there exists pairwise disjoint neighborhoods X1 . . . .  ,Xq of ~1 . . . . .  ~ 
in X* . . . . .  X* and analytic sets Ya, ..., Y~ in a neighborhood U of a in U* such 

q q 
that Q-~(U)= U X,, U =  U Y~,and ~(~',)= Y~ for each i =  1 . . . .  ,q, [1,46.15]. 

i=1 i=1 
Define X~ = a~ ~ (X~) C X:.', and 0~ = 0[X~: X~---) Yi, i = 1 . . . . .  q ,  and 

W ' = ~ - ~ ( U n T n T ~ ) C  W", W = a ( W ' ) .  

Each Y~ is locally irreducible, and so 0i is a topological map [ 1, 46.10 ]. 
Define, for i = 1 . . . . .  q, 

A~ = {x ~ XjI T o ei o at(x) = 0} 

= ,r/- ~(07 ~(Y~n w ) ) ,  
6i = ~i ° a~l A'i : A'i"* Yi~ IV, 

a topological, holomorphic map. Now W n Y ~ = U n T ~ . n i " c ~ Y i = E n Y i ,  
where E = V x {0}. Thus dim Wc~ Yi = P. But W = U n  Txc~ T is an irreducible 
analytic set, and Y~ca Wis analytic in I4'. Therefore Yin W = Wfor each i = 1 ..... q. 
A diagram: 

Cp+ 1 

U 
A~i c~ inj. ) X i (  biholo. 

top. h o t o ~ ~  

W c 
i" inj. 
holo. 

CP_~ W' 

) g i  

¢~1 top, holo. 

, I q  
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Now, for any i, o(- 1 o #~: A;---, W' is a holomorphic, topological map, and there- 
fore, ~-  1 o #~ is biholomorphic outside of a thin analytic set. Hence 

~ f l o o~ : W '  --~ A ' i 

is continuous on W' and holomorphic except on a thin analytic set. Then, by 
the Riemann Extension Theorem, ~i -1o ~ is holomorphic on W'. Hence 
~-1 o a~" is a biholomorphic map, and so, A'~ consists of simple points only. 
Thus there exists a function f~ holomorphic in a neighborhood Z'~ C X'~ of 0 
such that 

A',c3Z; = {x ~ Z;I f ,(x) = 0} 

and v(x,O, f i )= l  for x~A;nZ~,  that is, ~xf~ (x)4=O for x~A;c~Z; and at 
d 

least one j, depending on x. Now A'~c~Z;= {x~Z; lzo  Qi o a~(x)=0}, and so, 
in a neighborhood Z i C Z; of  0, (z o ei ° o'i) m'= f i  for some natural number my 

q 

Let W = ~ (Vdc~ e,(a,(Z,))), a neighborhood in Tac~ i"c~(N-  S) of a. For 3 ~ W, 
i=1  

v(8,~lN)= E v(~,zlNoe) 
i6 e - 1(~) 

q 

= Y. v(O;I(S),,IN ° a) 
i=1  

q 

= E v ( a / l ( e ;  t(8) ), z l N  o e, o tri) 
i=1 

= E v ( t r ; l (O / ' l (3 ) ) , f? '  ) 
i=1 

= E /'hi. 
i=1  q.e.d. 

B. Local continuity 

In this section, it will be shown that almost every point in N(0) has a system 
of neighborhoods such that, in any one of these neighborhoods, the area of 
N(w) tends to the area of N(0) modulo v(., z IN) as w tends to zero. 

Lemma4.5.  Let ( a , 0 ) ~ ( T x  { 0 } ) n ( N - S ) .  Let U*~_V(~C be an open 
neighborhood of (a, 0). Let 0 be a real valued C°°-function on H. Then there 
exists an open neighborhood U C U* n H of (a,0) such that 

S O(~,w)v((~,w),~lN)%--, ~ O(~,O)v((~,O),zlN)op as w--*0. 
U~N(w) OnN(O) 

Proof. Let /V be the normalization of N, and o : N ~ N  the associated 
map. Let {al, ...,a~} = O-l((a,O)). There exists a unique 2 such that a e  T~. 
As in the proof of Lemma 4.4, there exist pairwise disjoint neighborhoods 
)~1 . . . . .  )fq of al . . . .  , fi~ and analytic sets Yi,..., Y~ in a neighborhood U C U*c~ 
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N C H of (a, O) such that: 
i) UnE_g T~ x {0}, 

q 

ii) Q- I(U) = U )¢i, 
i = 1  

q 

iii) U = U Y[, 
i=1 

iv) 0(.~/) = Y; for each i=  1 . . . .  , q,  
t t .  r v) there exist an open neighborhood X / o f  Oe C p+I and a / . X / - ~ X i  bi- 

holomorphic, a'/(O) = a/, for each i = 1,..., q. 
For each i=1  . . . . .  q, it has been shown that 0 is a simple point of 

o ¢ A;= { t eX ' [~ ° O  at(t)=O}. Hence there exist an open neighborhood Xi 
of O e C  p+I and a biholomorphic map a[:X/-- ,a[(Xi)cX' /  such that 

¢ t¢ / ~  t tr"(X~n{x' ~X~ I x p + l = 0 } ) =  Ainai(Xi) ,  tr[(0)=0, and X i {x IXp+l =0} is 
connected, where x' = (xl . . . . .  xp, xp+ 1). Define 

,, Xi__.tr(X3C Y[. O'i : Q o 0"~ ° 0"/ : 

Then tr/is holomorphic and topological, ai(Xi) is open in F[, and a~(0) = (a, 0). 
Let (vl, .... v,) be an orthonormal base of V and v,+ 1 =(0, 1)e V~)C. Then 

n + l  

,~/(x')= Y ,r~(x')~,,. 
v = l  

Let rh(w ) = {x' e Xiltr~°+ 1 (x') = w}. Then th(rh(w)) = N(w)c~th(Xi), and rh(0) 
={x 'EX~lxp+l=O}.  Now there exist an open neighborhood R / C X /  of 0 
and gi, a holomorphic function on R/, such that 

o - ( i )  t y r t  ~ m t  n+l~. .~l - -Xp+lgi(Xf) ,  X ~ R  i , 

with g~(x') ~ 0 for x' e R .  and where 

m/= v(O, O, ~/~+ 1)" 
Choose y'/> 0, ~'/> 0 such that, if 

Q'i = Qi x {Xp+l I Ix,,+ 11 < a'i}, 
then 

" " 7  
O_.i ~_ R /  . 

Hence there exists 0 < ~ ~ tS~ such that 

' - -  ( x 3 * 0  m/gi(x ) + Xp+ 1 C?Xp+ 1 

for x ' eQ i  x {xp+l [Ixp+ll<cS'i'}. Now define fi:Q~ x C - - C  by 
m t  ¢ _ _  f/(x', w) = xp+ I gi(x) w,  

Then f/(O,... ,  O, xp+ 1, 0) = m, xp+lg(0 . . . . .  0 ,xp+l )~0 ,  and so there exists a 
Weierstrass polynomial 

r o t - 1  
_ _  n i t  v ogi(xp+1, x ,w) - -xp+l  + ~., a/,,,(x,w)xp+l 

v = 0  
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where x = (xl . . . . .  xp) and the ai,~'s are functions holomorphic in neighborhood 

xl . . . . .  xp, w) ~ lx~l 2 < (~, iv)2,  lwl < e; 
v = l  

of (0, 0) e C P ~ C  with 0 < ~'i' < 7;, 0 < e't and a function e~ holomorphic on 

xl  . . . . .  xp÷l,w)l Y~ I x f < ( ~ )  2, I x p ÷ l l < ~ i ,  twl<e;  ; L ~ ,  
v = l  

pr 
with 0 < ~ _-< 8i, such that 

f i = e i m i ,  e i •0  on L~. 

For  x=(xl , . . . , xp)  , define I x l = ( ~ l x , 1 2 t  1 ' 2 . - -  Then there exist , , ,  e i in 
\ v - -  ] = 1  

0 < ~i < 7'i', 0 < ei < d~, such that o~i(xp÷ 1, x, w) = 0, Ixl < ~, Iwl < e? imply 
Ixp÷ll < ~.  Define 

P, = {x t fxl < ~'3 

P'i = P, × {xp+ 1 I ix,+ 11 < 8,}. 
Then 

• t t . v t v 1. ~ r i . P ~ Y  i is holomorphic, ~r~.Pi~ri(P 3 is topological and a~(P~) is 

open in Y;, oA0) = (a, 0), ~ ~g' (x') 4= 0, 
2. x' ~ P'i implies mi gi(x') + xp+ 1 cxp+ 1 

3. x ~ P~, Iwl < ei, x '  = (x, xp+ 1), o)(xp+ 1, x, w) = 0 imply x' ~ P~. 
Recall that in the proof  of Lemma 4.4 it was shown that Y[c~E = Y jnE  

q 

for any l < i ,  j ~ q ,  where E = V x  {0}. Thus D =  ~ ai(P~)nE is an open 
i = 1  

neighborhood in N(0) of a, as ai(P'i) is open in Y~'. Take ~ such that if 
f~ = {a + ~1~ ~ V, lal < ¢}, then (f2 x {0})c~N(0) =c (12 x {0}) n N(0) C D. Take 

> 0, ( < min e~ and such that 
i= l , . . . , q  q 

1. (Ox {wmClO<lwl<(l )mNC I,.) Y [ c U ,  
i = l  

2. (f2 x { w ~ C I 0 <  lwt<(})c~Y'C=a~(P3, i= 1 . . . . .  q. 
There exists an open set U C H such that (a, 0) e U ~ U* and 

(f2 x { w ~ C l O < l w l < ( } ) ~ N =  U m N .  
q 

Define Yi=U~Y[ ,  i = 1  . . . .  ,q. Then Nc~U= U Y~. From Lemma 4.3, 
1=1 

v((3, w), z lN)= l for (~, w)e lV(w), w 4:0, and so Yic~ YjnlV(w)=~ for any 
i #:j, 1 < i, j < q, and w 4: 0. Now N(0)c~ U = Yd~N(O) for any i = 1 . . . . .  q, and 
for (~, 0) e N(0)c~ U, 

q 

v((~, 0), ~IN) = ~ ~(o; 1(~, o), ~llVo o,) 
i = l  

q 

-- F, v(o/-l(~,o), o, ""~-.* ~, 
i = 1  

q 

i = 1  
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Assume for the moment that 

S O(3, w)%~mi  ~ 0(3,0)% as w ~ 0  
Y~n N(w) Y~ ~N(O) 

for each i =  1, ...,q. Then, as w--*0, 

I v((3, w),~lN)O(3,w)o,(3, w) 
N(w)c~U 
q q 

= ~'. I" O ° p ~ E m ,  I Oop 
i = l  Y~oN(w) i=1  Yic~ N(O) 

q 

= 2 m, I 0 o, 
i= 1 UnN(O) 

= I v((3,o), ~IN) o(s,o) o,(s,o). 
Ur~N(O) 

Thus all that remains is to prove that for any i, 

l < i < q ,  ~ Ovp~mi j" 0 %  as w ~ 0 .  
Y~ r~ N(w} Yi n/¢ (0) 

Let i be fixed, 1 < i <  q. The index i shall henceforth be omitted. Thus, 
n + l  n + l  

for example, tr = ~ trv Vv = ~ at~)v~. Define, for x e P, 
v = l  v = l  

' . . . . .  
Ao(x ) = O(a(x, 0)) ~, c3(xl, xp) 

l _~v t< . . .  <vp~_n " "~  

Take w in 0 < Iwl < ~ and x ~ P. Then 

co(x,+,, x, w) = I~I (x,+ ~ - x~+l(x, w)) 
/ J = l  

where Ix~,+ 1 (x, w)l </i ,  that is, (x, x~+ 1 (x, w)) e P'. Hence 

tl(w)nP' = {x' ~ P'I a.+ 1(x3 = w} 
= {(x, x~ +t (x, w))lx ~ P, 1 </1  < m}.  

as co(xp+ 1, x, w) e(x', w) = ~r+ t(x') - w, e(x', w) * O. Now co(x', w) e(x', w) 
, , Of , r,,_l(mg(x,)+xp + a~p+l(x,))" = f ( x ,  w) = x~+l g(x ) -  w, and ~ (x,  w) = xp + 1 1 

Let z,, = (x, x~, +l(X,' w), w). 

c~f (z~) 4: 0. But Thus axp+ 1 

0co (z" = e ( z ~ ) ~  ~). 

Then w 4= 0 implies x~,÷ l(X, w) 4= 0 for any x ~ P. 

ae (z~ + e(z,) dco cgf (z~)=co(z#)_~xp+ -~xp+ (z~) 
~Xp+ I I I 

Hence ~ gco (z~) 4: O, and so the x~+ l(x, w), p = 1,..., m, are distinct for 
~TXp + t 

any 0 < [w[ < ~ and x e P. Now, keep w in 0 < [w[ < ~ fixed. Then 

co(x,+,, x, w) = ~I (x,+ 1 - x~+,(x, w)), 
~=1  
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0co 
where x~ + 1 (x, w) ~= x~ + 1 (x, w) if# + v for all x ~ P, and so ~ (xp+ 1, x, w) ~ 0 

for all xp+ l=  x~+ l(x, w) and x e P. Hence 

to(xp+ 1, x, w) = ~I (xp+ I - h~(x, w)), 
#=1 

where h~(x, w) is a well-defined, holomorphic function of x e P, with h~(x, w) 
~: hv(x, w) if # ~: v. Define 

#=1  

1 ~v~<...<vp__<n 

It is now claimed that Aw(x)-,mAo(x) as w--*0 uniformly on P." There 
exists a constant K such that tg(x')l > K for all x ' s  P'. Take e > 0. Define 
d(e) = min(Ke m, 0. Take w in 0 < Iwl < d(~). For any x s P, 

h~;(x, w) a(x ,  h . (x ,  w)) - w = O, 

and so [hu(x, w)l < ~ T J  ~ ~" A constant  x > 0 exists such that, for all x' ~ P', 

0-~t(x') < x ,  t = l , . . . , p + l .  

(,.K 
For w fixed, 0 < lw] < d \ - ~ - r  } 

Ih~(x,w)l<mK/2x, x ~ P .  
And from h~(x, w) g(x, h~(x, w)) - w = O, 

c~h~,(x, w) 
0 = m h~- 1 (x, w) g(x, h.(x, w)) ~ xt + 

+hr~(x,w)(_~xt (X,h~(x,w))+ , c~g (x,h.(x,w)) Oh~t (x,w)). 
~TXp+ 1 

Since h~(x, w) ~e O, 

O=m9 vx, +h~' ._ . . ,  OXp+~ Ox,}' 

Ohm, ~g dg 
Ox, ('ng+h~, oxp+, )=-h~ ,  ox, " 

Now 

mg+h~ a g  [ > ] m g l - ] h ~ , ~  ~ m K -  mK mK 
Oxp+ t L = - 2x " r = - - f - '  

and so 

t~h. 
- 

2x 
8g }h.I ~ - ~  Ih.t 
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mK 
for t = l  ..... p, g = l  ... . .  m. Thus define d1(a)=min(d(a),d(-2K~-x),d(--.Z~--r~)). 

Then, for xeP, O<lwl<dl(a), t = l ,  ...,p, p = l  . . . . .  m, it is 

0h, (x, lh~(x,w)l<a and ~ w) < a .  

Now there exists a constant Co such that 

I ~ ( x ' )  <Co for x ' ~ P ,  v = l , . . . , n ,  

t = l  . . . . .  p + l .  

And for any a > 0, there exists do(a) such that for all 

l<v<_n, l _ _ < t < p + l ,  

0tr v -~-(x,x.+l)- ~ax~ (x, 0) <a 

i fx E P and [xp+ 1t ~ Ao(a). Also, there exists a constant cl such that 

t0(~(x'))t< c~ for all x '~  P ' ,  

and for any a > O, there exists A 1 (a) such that 

[O(a(x, xp+O)-O(a(x,O))l<a for x ~ F  and lxp+d---Al(a). 

For every fl > 0, there exists A (fl) > 0 such that, if 

( ), b.)b. A = a l ,  ..- alp B = 
\ap 1 app . .. 

with laijl _-< 2Co, Ibq] < 2Co, laij-  bii] _-< d (fl) for 1 < i, j =< p, then 

[[detA[ 2 --ldetBI21 < ft. 

Moreover there exists a constant c2 such that 

IdetAI 2<c2 if [a~l<2Co. 

(1, Now take any f l>0 .  Take a = m i n  \ ~ } .  Take d2(fl)=min(dl(a), 
d1(Ao(a)), d~(A1(a)))., Take any w in 0 < Iw[ < d2(fl) and any x ~ P. Take/~ in 
1__</~< m. Then 

Ih,(x, w)t < rain(a, Ao(a), A1 (a)) 
and 

| , ~ !  1 

And for 1 <v<n, 1 <-t<=p, 
Oa~ . Oa, (x, 

TiTx, {x, h.(x, w))-  7Zx, o) < a. 
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H e n c e  
t~ t~ v 

~--F (~(x, hAx, w))) - 0 7  (~' o) 

= ~ ,  (x, hAx, w))- ~ (~, o) + 

O a____L_~ O h ~ 
+ ~x~+~ (x'hAx'w))o~x,(X'W) <-6 

< a + C o ~ = a ( 1  + c) < d(fl) . 
For  1 < vl  < "'" < vp __< n, define 

A~,vt ...... p(X) = c9(O'~'(X' hv(x, w)) . . . .  , av~(x, hu(x, w)) 
~(xl . . . . .  xp) 

a( .~  (x, O) .. . . .  % (x, o)) 
A~, ..... ~p(x) = tg(x 1 .. . .  , xt,) 

Then IA~,~, .. . . .  .(x)l 2 - JA~I ..... vp(x)[2l<fl, and IA~, ...... .(x)l 2 ~ c  2. Now 
[O(a(x, h~(x, w))) - O(a(x, 0)) < ft. Hence 

lAw(x) - mAo(x)t 

- {oio,/,o,/ x . . . . . .  

/*=1 t-<-vt<-- <vp~_n 

<---- ~ ]O(a(x,h~,(x,w)))l X ]ta:,,,1 . . . . . .  p ( x ) ] 2 - I a v ,  . . . . . .  p(X)t 2] + 
/.4=1 l_--<vt< "" <vp_--<n 

+ ~ ]O(a(x,h,,(x,w)))-O(,~(x,O))[ X [A~, ..... vp(x)[ 2 =< 
#=1  l___vt<-.. <vp~n 

£ ladlC t n P f l  JV m c  2 n P f l  = C 3 f l  

where ca=m(c 1 +c2)n e is independent  of fl, x, w. Thus Aw(x)~mAo(x)  as 
w ~ 0 uniformly on P. 

Now let W be any open set in P. Define W ' =  W x {xp+t [Ixp+ll < 6}. 
Then a : W  x {0} ~ a(W')c~N(O)is topolbgical and holomorphic,  and so 

I O(8,O)vp= I O(a(x ,O) ) (2 ) ' x  
a(W'}c~N(O) W 

t tg(a~, . . . .  , avp) 2dx 1 X ~ C3(x 1 . . . . .  xp) ^ d ~ l  ^ "'" ^dxpAd~p  
l__<v~<... <vp-<n+l  

--f 
w 

i P 
= f A o ( x ) ( - f ) d x ,  A d ~ l A ' " ^ d x p ^ d ~ p .  

w 
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Take w fixed, 0 < [wt < ~. Then 

a(,7(w)n w') = a(w3nN(w). 

Let tw :rl(w)nW'-,P'  be the inclusion. Then a o lw: r/(w)n W ' ~ a ( W ) n N ( w )  
is topological and holomorphic, and so 

f 0(3, w) % 
o(W') n N(w) 

~(w)t~W' 

Define h'#: W ~  h'~(W) C r/(w)n W' by hi(x ) = (x, h~,(x, w)) for # = 1 . . . .  , m. Then 
t h# is biholomorphic, and 

rl(w)nW'= 0 h'~(W), h'~(W)nh'~(W)=#, #4:v.  
# = 1  

Thus 

S 
¢rlW'l~N(w) 

Define 

Hence 

# = 1  
W 

x E [ cg(av,(x, h~,(x, (w)) ..... ave(x"1 ha(x' w))) 2 
X 

I ~= v, < ... < v, ~, c9.xi .... , xp. 

x dxl ^ d~l ^""  ^ dxp ^d'~p 

i t, 
= I A . ( x ) ( - ~ - ) d x t ^ d ~ l ^ ' " ^ d x , ^ d - ~ p .  

W 

S Oop---,m ~ Oop, w-.~O. 
o(W') ¢~ N(w) o(W') c~ N (0) 

I~'. Cp+ I---I.C p , l ~ ( x  1 . . . . .  xp+ l ) = ( x  1 . . . .  ,Xp )  

Wo = tp(a- ' ( Y n E)) C ffZo C P . 

Take any open set W CP such that W Cff 'C Wo. Define as before 
W ' = W x  {xp+ leC[ [xp+ l [<3} .  It shall be shown that there exists 0e>O 
such that for [wl<~e, a(W')nN(w)C YnN(w). For assume that there exists 
a sequence {(3v, wv)} such that w , ~ 0  as v ~ o o  and (~ ,w0~a (W' )nN(wv) ,  
(3,, wO~Yc~N(w,). Then {a-t(~v, w0} C # ' ,  and so there exists a convergent 
subsequence, which will also be denoted by {a -1 (~, w0}. Let a - t (~  v, w O ~  

(x, xp+ 1) C W_-' as v ~ ~ ,  where tp(x, xp+ 1) = x. Then wv ~ 0 implies xp+ t = 0. 
Now (x ,0)e  W', and so x ~  I~C Wo. Therefore (x ,O)ea- l (Y)  open, and so, 
for v large enough, a-l(3v, wv)~a-l(Y),  that is, (],, w o e  Y, a contradiction. 
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Hence there exists ~ > 0 such that for Iwl < ~, a(W')c~N(w)C YnN(w). Thus 

0%< ff 0%, Iwl<~. 
o (W' )  o IV(w) Y n N (w) 

Now 

and 

O%~m ~ Oo n as w ~ O ,  
o (W') c~ N(w} o(W') ~ 1~ {0) 

f Oop= I A o ( x ) ( 2 ) P d x a ^ d ~ l ^ ' " A d x p ^ d X p .  
o(W')nN(O) W 

Thus for any open set W C W C Wo, 

(9" m Ao(x) d x l ^ d 2 l ^ ' " ^ d x p ^ d 2 n < l i m i n f  Ov n . 
w"*O 

W Y~bl(w)  

Therefore, 

m O o p = m  Ao(x) dxt ^d~l  ^ "'" ̂ dxpAd~p<liminf  
W-*-O 

Y n N(O) Wo 

Now define, for 0 < s < ~, 

F(s) = V x {w ~ C [ lw[ < s} , 
W(s) = ~(cr- I ( Y c~ F(s))) , 

W'(s) = W(s) x {x~+ ~ [txp+ ~f < 6}. 
Then W(s) is open in P, and 

Yc~V(s) C o(W'(s))nF(s) 
a s  

Therefore, for Iw[ < s, 

~- ~(YnF(s)) C W'(s). 

00p < j 0 op. 
Y r~ N (w) o(W' (s))~ N (w) 

But as w-~ 0, 

I OO°-~m I 00,  
o(w'(s))t~.~ (w) o(w'(s))r~N(o) 

- . ~ m  

Hence, for any 0 < s < (, 

l imsup f 0Op=_6m 
W-'*O 

Y n N(w) 

0 Op. 

YnN(w) 

I Ao(x) (2)Pdxl  ^d~l  ^ "'" ^dxp^d~p.  
W (s) 

i p 
I Ao(x) (-~) dxlAd~lA'"AdXpAd~p. 

W(s) 
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Now if 0 < s' < s, then W(s') C W(s), and 

Thus 

lim sup 
w ~ 0  

N W(s)= Wo. 
0<s<~ 

i p 

Y ~ N ( w )  Wo Yc~N(O) 

Consequently, 

m ~ 00p-<liminf 
Yc~N(O) w~O YtaN(w) 

and so 

0 0 p < l i m s u p  ~ 0 o v < m  ~ 0Op, 
w--',O YnN(',v) Yc~N(O) 

lim ~ 0 u v = m  ~ 0or .  q.e.d. 
w-*O Yc~N(w) Yc~N(O) 

C. Local boundedness 

In this section it will be shown that for every point of N(0), there exists a 
neighborhood such that for any ball in this neighborhood, the product of 
v(., z IN) and the area of N(w) intersect the ball is bounded by a constant times 
the radius of the ball to the power 2p, the constant independent of w for twl 
sufficiently small. This result essentially has been proven by W. STOLE in § 2 
of [9 ]. However in [9 ], the normalization of a complex space is not considered 
when the multiplicity of a holomorphic map is defined. Thus the two defini- 
tions of multiplicity must be related. Here the symbol ~ will be used to denote 
the multiplicity of a map in the sense of [9 ]. The definition of ~, along with the 
definitions of a distinguished base and a distinguished polycylinder, will 
be given here for the convenience of the reader. 

Let X and Y be complex spaces and tr: X ~ Y a holomorphic, non-degene- 
rate map. Take a e X. Take any open neighborhood U of a such that U is 
compact and such that Uc~o'-l(o'(a))= {a}. Define 

~(a, a) = lim sup #v(x, a) 
x-.*a 

where/zv(x, tr) is as defined in § 4 A. 
Now let tr: X---, Y be a holomorphic map such that tr-1 (a(x)) is an analytic 

set of pure dimension q for every x ~ X. Suppose that X has pure dimension k. 
Take a ~ X and let Fa be as in § 4 A. Define 

~(a, a) = Min ~(a, a [ A). 
A~Fa 

Thus ~ is defined. 
Let D be an open subset of an m-dimensional complex vector space W. 

Let a be a point of an analytic subset A of D. A base C = (q . . . . .  c~) of W is 
said to be distinguished with respect to (A, a, k) if and only if the intersection 
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F c ~ A o f A w i t h F =  a +  ~ z,c contains a as an isolated point. And U 
v = k +  1 

is said to be a distinguished polycylinder with respect to (A, C, a, k) if and only if 
1. It is l < k < m .  
2. Numbers e~ > 0 exist such that 

U={a+v=x~ z~c~[lz~l<e~ for 

3. Define 

Y= + 2 z~c,,tlzJ<ev 
V=I 

and tr: U ~ Y the projection given by 

v = l  .. . . .  m}~OC_D. 
for v=  t , . . . ,k} 

O" + ZvC = a +  E ZvCv" 
v=l  v= l  

Define 

x ' = a - l ( ° ) =  { °+~=~÷~ lZvC~[lz'l<~v for v = k + l  ... . .  m} 

Then 

and 
Ac~X,=Ac~X~ forall y~  Y 

A n X . = { a }  

for r ~ Y .  

is required. 
Lemma 4.6. Let a ~ N (O). Let 1V be the normalization of N and ~ : I~ ~ N 

the associated map. Let {al . . . .  , aq} = Q-l(a). Let X1 . . . . .  Xq be pairwise dis- 
joint neighborhoods of at, ..., aq and X 1 . . . .  , Xq analytic sets in a neighborhood 

q q 

X C N  of a, such that O-I(X)= [.) J(i, X =  U xi, and o ( f f i ) = X  i for each 
i=1 i=1 

i = l , . . . , q ,  and such that X C K n N  for some compact set K C  V ~ C .  Let 
C = ( q  ... . .  %) be a base of V, and let c=(O, 1)e V(~C. Let C ' = ( q  .... , ¢p, c, 
cp+ 1,-.., %), a base of V O C .  Suppose that 

is a distinguished polycylinder with respect to (N, C', a, p + 1) and to (N(O), C, a, p). 
Suppose U c~ N C X. Suppose that t l in 0 < tl < i exists such that N (O) c~ U - U~ = ~, 
where 

g,= { ,+ .=l  ~" z'cv+wcllzvl<" v--1 .... ,p, Iwl<~.+x. 
1 

Define fr: U - , ~ ( U ) =  Y' by [zv[ <qe~, v = p +  1 . . . .  ,n~.  

-4- ZvCv+W = a +  Y' ZvC v. 
v=1 v = l  
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For t) e Y', define 
L(r~, w) = U c~N(w)c~rr- ~(~). 

Then there exist constants 6 > O, x > 0 such that 

v((8, w), r I N)  < x for Iwl<,~. 
(~, w)eL(~, w) 

Proof. Define L~(tg, w) = L(t 9, w) c~ X~ for i = 1 . . . . .  q. Now z ] X i is not constant 
on any irreducible branch of Xi, that is, no N ( w ) n X ~  contains an irreducible 
branch of X e Hence there exist constants ~:~ and 6i such that if [w[ < ($~, then 

P((5, w), z[Xi)  < xi for each i =  1 . . . .  , q.  
(a, w)~ L(r~, w) 

The proof of  this is contained in the proof of Lemma 2.6 of [9 ]. Compare 

There I V t£ 

Here V ~ C  C' 

t /  U. 

r/ :U,~ 

M G k 

X i H p + l  

? N(w) 

Y' N(w)nX~ 

a U 

. u 

L(v, w) 

Li(~), w) 

n 

n + l  

f 

T 

Define Qi = Q[Pfi: X ~ X i ,  i=  1, ..., q. There exists a constant l such that 
@ Q - l ( x ) < /  for all x e X .  It will be shown that v(~,zoQ~)<l~((z ,w) ,z lXi )  
for any ~ e Xi such that Qi(~) ~ (3, w). 

Let i be fixed. Take b ~ Xi. It is claimed first that v(b, z o Q~<= ~(b, z o Q~). 
Take any A e Fb. Then A is a pure 1-dimensional analytic set in a neighborhood 
orb. Let {Ai . . . .  , At} be representatives in a neighborhood orb of the irreducible 
components of the germ of A at b. Then A I e  Fb and ~(b, 1: o 0il A1)_-< ~(b, zo 0ilA). 
Let A1 be the normalization of A 1 and ~ the associated map. Now A1 is pure 
1-dimensional, and so, consists only of simple points. Hence, A1 irreducible 
at b implies ~: ,4~ --. A ~ is topological in a neighborhood Z C A t of ~ = ~-  1 (b). 
Choose an open neighborhood D of b such that the closure of D is compact 
and contained in Z, and such that /~c~(zoQ~o~)-l(xoQio~(b))= {b}. Let 
D = ~(b). Then D C A1 is an open neighborhood in A1 of b, D is compact, and 
Dn~°Q~tAO -~ (z°edAdb))={b}.  Since ~ ~s topological on D, for any 
~ D  with ~(~)=z, ~ D n ( ~ o ~ i o ~ ) - t  (zo0io~(~)) = ~ D c ~ ( z o o ~ l A 1 ) - ~ o  
o (~ o ¢i)(z). Hence P(b, ~* ~ o  ~)=~(b, zo e~lAO. Since A1 is a normal, pure 
1-dimensional analytic space, 

~(t', ~° o,° O)= ~(~, ~o ~,o 0). 

Since ~ -  ~ (b) = ~, 
v(b, ~ o ot la t )  = v(b, zo 0,o ~). 

Since Al e rb, 
v(b, z o Q~) < ~(b, z o Qi] A I ) .  

Hence v(b, 1: o Qt) -~ P(b, x o Ql[ A) for any A e Fb. Therefore 

v(b ,  ~ o Qt) ~- ~(b,  • o QL) . 
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Now let Qi(b) = b ~ Xi. It is claimed that ~(b, z o 0",) < l~(b, T IX~). Take B e Fb, 
considering b as a point in the analytic space X/. Then there exists an open 
neighborhood UB C X~ of b such that b E B CUB, B is a pure 1-dimensional 
analytic set in Un, UB is compact, and r iB is non-degenerate. Let Q~ :(b) 
= { b , , . . . , b J ,  with b l = b .  There exist pairwise disjoint neighborhoods 
Y1, " ' ,  Yt in Xi  of bl . . . .  , bt such that Q/(Y~) CUB, j = 1 . . . .  , t. Let B = Q~ l (B)c~ Yt, 
U~= Q?'(UB)c~Y1. Then UB is an open neighborhood of b, and B is a pure 
1-dimensional analytic set in U~. And Ua_~e?)(UB)c~YI is compact as ei 
is proper. And r I B non-degenerate implies z o e~lB non-degenerate as the fibers 
Q71(x) consist of isolated points for xeX~ .  Thus BeFb.  Take now WEB, 
an open neighborhood in B of b such that I~ is compact, b e W C if" C B, and 
l~c~ {(riB)- 1 (r(b))} = {b}. Then 

~(b, r i B ) =  lim sup 4~ We'd(riB) - I  (T(~)). 
~ b , ~ e B  

Define l~ ~.~.0i l(W)c~fi. Then if/is an open neighborhood in/} of b, ~ i s  com- 
pact, and Wr~(zo eilB)-~ (z ° e~(b))= {b}. Thus 

~(b, z o e/l/})= lim sup # I~'c~(r o eil/})-1 (to ei(z)). 
z ~ b , z ~ B  

But 
l~'n (.co e/[/})- 1 (re ei(z)) < 1 ~ W n  (riB)-1 (re e/(z)) 

for all z e/~. Thus 
~(b, To eil/})< l ~(b, r iB).  

Choose B e Fb such that ~(b, z lX~) = ~(b, r l B). The existence of/} e Fb such that 

(,(b, r o ell/}) < l ~(b, zl B) 
implies 

~(b, re 0i)< l ~(b, ~:lXi). 
Combining these two results, 

v(b, r o el) < l ~(b, "clX.,). 

Consequently, for w such that Iwl < 6 = Min 6i, 
i= , , . . . , q  

Y~ v((~, w), r IN) 
(~, ~)~L(rl, w) 

= E E 
(t,w)¢L{~,w} ieO- l ( t ,w) 

q 

= E E E re 
i= 1 (i,w)~L~(r~,w) ~¢Or ~(l,w) 

q 

< E E E lF'((~,w),rlXt)< 
i = t  (~,w)¢Lt(lhw) . t¢~Ft(~,w) 

q 

< E E 12v((~,w),rlXi) < 

q 

</2 E t¢t=/¢" 
/=, q.e.d. 

21 Math. Ann. 172 
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Lemma 4.7. Let a ~ N ( O ). For d > O, define B'd( a) = {(3, w)[ 15--a[2 + [wl 2 <d2}. 
Then there exist constants d > O, x > O, 6 > 0 such that for every y > 0 and for 
any ball B' of  radius y with B' C B'd(a), 

w), N) < 
B' c~N(w) 

for all w with Pwl < 6. 
Proof. Let N be the normalization, 0: ]Q~N the normalization map, and 

{a,, ..., aq} = Q- i (a). Then there exist pairwise disjoint neighborhoods X,,  ..., -('q 
of al, ..., aq and analytic sets X,  . . . . .  Xq in a neighborhood X C N of a such 

q q 

that 0 -  t (X) = U ~'i, X = U Xi, Q(-~i) = X~ for each i = 1 . . . . .  q, and X C K c~ N 
i = 1  i = ,  

where K is a compact set in V@C. And it will be proven in the appendix of this 
paper that there exists a basis C = (q . . . . .  c,) of V such that C~ = (c~,(1) . . . . .  c,(,)) 
is distinguished with respect to (T, a, p) for each permutation # of {1, ..., n}. 
Define c=(0,  1)~ VOC. Define C'~ = (cu,) . . . . .  c~(p~, c, c~(p+,~, ..., c~(j, a basis 
of V@C. Identify V = V x {0}. Then a is an isolated point of 

implies that a is an isolated point of 

N ( 0 ) n { a + . = p + t  ~ z ~ c ~ , ( . , + w c , z . e C . w ~ C }  

and 

N n  a +  ~ z~cu(,)lz,,e . 
v = p + l  

Hence C~ is distinguished with respect to (N, ct, p + 1) and with respect to 
(N(0), a, p). Hence a polycylinder U u distinguished with respect to (N, C~, a, p + 1) 
and (N(0), C~, a, p) exists such that Uuc~NC X. It can be chosen such that 

in 0 < ~/< 1 exists such that if 

" x  

v = p + 1, n; [wl < "~(~ i 1 • ,.~ , i O n +  
J 

then U~.- Ug . ,nN(0)=  q,. Define 

7~# -{- ZvCv"~-W =(1"~ 2 Z~(v) C.u(v) ' 
v = l  v = l  

~u(U~) = Y',, 

L~(o,w)=U/~N(w)c~fr-~l(l~) for o ~ Y ~ .  

According to Lemma 4.6, xu > 0 and 6~ > 0 exist such that 

Z v((3, w). z 1 N) < ~:u 
(iL w)e Lu. (r~, w) 
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if Iw[ < 6~ and t9 ~ YA. Define 
K'= Max {x,l/l is a permutation of {1, ..., n}}, 

6 = Min {6~1~ is a permutation of {1 . . . .  , n}}. 

Take d > 0  such that B~---~C 0 Uu. Define on V ~ C ,  for 3= ~, z,c~, 
(p) v = 1 , f  

)~(3) = ~ -  dzv ^ dz~ 
V = I  

1 
Zp = ~ Z ~. 

A constant l > 0 exists such that 

~ * o p ~ l  * zw Zt, 

on B'd(a)nN(w),  where t w : N ( w ) ~ V ~ C  is the inclusion map for each w. 
Take 7 > 0 and let 

n' -- {(3, w) i1~ - bl ~ + I w -  bl 2 < r 2 / C  B}(a)  • 

Take w in Iwl < ~. Then 

f I * J(w) = v((3, w), z lN) op < l v((3, w), z lN) t~(X,) 

B' nN(w)  B' c~ N (w) 

= 1 ~ v((3, w), z IN) dz~ ^ dff~ ^ "'" ̂  dzv~ ^ dg~  
1 =<v~<... <vp<-n 

B ' c ~ N ( w )  

f = ~ E E ~((3, w), • tN)  × 
I < V l <  . . .  <Vp <n (i~,w)eLu(tLw)nB 

× dz~, ^ d ~  ^ "" ;~ dz~p ^ d~vp 

where the permutation is defined uniquely with respect to the v~, ..., vp by 
requiring that 

~(1) = v~ . . . .  , ~(p) = vp, ~(p  + 1) < ..- < ~(n) .  

Now define 

(313')= ~, z~z~ for 3= ~ Z~Cv, 3 ' =  ~ z'~cv. 
V = I  V : I  V = I  

Then 11311 = [<3]3> ] 1 / 2  is another norm on V. A constant A > 0 exists such that 

At3I~II31I~A-~I3I fora l l  3~V. 

Define B"=  {(3, w) [ 113- bll < r /a ,  Iw - b[ < ~}. If (3, w) ~ B', then 13 - bl < ~, and 
lw - bl < T- Hence A 113 - b tl < ~, and so (3, w) e B". Thus 

~,,(B') ~_ ~,,(B" c~ U,,) ~_ 

V = I  V 
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P 

with % = ~ b ~  q,{~) + ~, a~)  c~,t~ ) where 
v= I v = p +  I 

ct= ~ a~c~+Oc, b =  b :~+Oc .  
v = l  v = l  

Hence 

J(w)<l ~,, f ~ v((~'w)'zlN)(2) p× 
1 ~_ vl < ' . .  < vr, < n (~, w)~ Lu (~, w) 

~ , (B ' )  

x dz~, ̂ d ~  ^ "'" ̂ dz~, ^d~,, < 

if Iwl < & where 

is independent of y. 

x :  Ix' ~.~ (-~-) zp 

q.e.d. 

D. The limit of I(w, r) 
In this section, the two local results of sections 4 B and 4 C are used to 

compute lim S v((3, w), zlN)op. This limit along with the results of 
w- .O n(N(w))r~B. 

§ 4A will yield lira S Op. 
w-*O n ( N ( w ) ) n B r  

Recall ~z: V ~ C ~  V, the projection 

Br = {3 E V l 131 < r} 
= w) N(w), B,} 

I(w, r)= ~ op 

n(N(0)) = T. 

And S = Q(S), where S was the set of singular points of the normalization N of 
N and Q:N--} N the normalization map. Define 

Q =  [B,r~(T- T ) l u  [B , r~(SnN(0) ) ]u  [ ( B , - B , ) n T ] .  

The s-dimensional Hausdorff outer measure in R m is needed. Let L C R m. 
Defme O k = {B(t) lB(t) a ball of radius t < l/k}, dS(B(t)) = W~' : ,  W~' = the volume 
of the unit ball in R s, 

i = 1  . )  

2k(L)=inffl~=ldS(Bi)l{Bi}t~N~k(L) } 
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This limit exists, and is called the s-dimensional Hausdorff outer measure of L. 
Note that /~(L) = 0 implies that for e > 0, there exists k0(e ) such that 2k(L) 
< W~' e/2 for k > ko(e ). Hence for any k > k o, there exists {Bi}i~N e Ok(L) such 
that, if the ball B~ is of radius t~ < I/k, then 

i=1 i=1 

that is, 

U Bi~=L and ~ t~<e. 
i=1 i=1 

Identify V=  R 2n. Now the sets T -  2/and n(Sc~N(0)) lie thin and analytic 
in V, and so they may be expressed as the finite union of manifolds, each mani- 
fold of dimension less than or equal 2 p - 2 .  Hence /~2p(~rc~(T-2/))=0 
= #2p(B,c~n(Sc~N(0)))(see for example HUREWICZ and WALLMAN, [2]). Also, 
ifA is a real analytic set in an open set of R% and ifA is without interior points, 
then A is a set of measure zero. This can be easily shown by induction on m 
with the use of Fubini's Theorem. Now T.n ( ~  - B,) is a real analytic set in 2/. 
Suppose that a is an interior point of T n ( B , -  B,) with respect to 2/. Then 
there exists an orthogonal coordinate system (v~ . . . . .  v~) of V and a biholo- 
morphic map 

?: U--,2/ 

of an open set U C C P such that 

a ~ , ( tO c ( ~ , -  B,)n 2/, 

7(z,,...,zp)= ~ z .v .+ ~ f . (z)v . ,  
v=l  v = p + l  

where z = (z I, ..., zp) and fp+ 1,---,f, are holomorphic on U. Then for z e U, 

r 2 = I~,(z)l z = ~ lzvl 2 + I/v(z)l z . 
v=l  v = p + l  

For any 2, 1 < 2 ~ p, 

o ~ of,(z) 
0 = ~ Ir(z)l 2 = ~z + f,(z), 

v = p + l  ~Z~ 

~ ~ c~f~(z) 2 
o =  Ir z)t =  + L >__l, 

v=p+ 1 

a contradiction. Thus 2 / n ( B , -  B,) is without interior points in 2/, and so has 
measure zero in 2i. Since T is the union of 2/and a finite number of manifolds 
of dimension less than 2p, it follows that #2p(Tn (/~, - B,)) = 0. Thus #2p(Q)=0. 

Lemma 4.8. Given any e > O, then t5 = ~(~) > 0 and an open set W = W(e) C H 
exist such that Q × {0} C W and 

S v((8, w),tIN) Up<e if Iwl < 6 .  
N(w)c~W 
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Proof. Take a ~ Q. Then, according to Lemma 4.7, d, > 0, 6, > 0, x, exist 
such that if 

n~°(a) = {(3, w) 113-  al 2 + Iwl 2 < d.~}, 

and if B' C B~,(a) is a ball of radius ?, then 

S v((3, w),~lN)%<x.? z" 
B" c~ N (w) 

for all w with Iwl < 6.. Then Q × {0} ~_ U B~o(a), and so al , . . . ,  % in Q exist 
aEQ 

such that q 

Q × {0} =c U B'~aj(%), where d j=doj .  
j = l  

Define dq+ 1 > 0 to be the distance between/7 - H and Q × {0}, and 

d =  Min d j ,  6 =  Min 6oj, 
j =  1 , . . . , q , q +  l j =  1 . . . . .  q 

x = Max x,~. 
j = l  ..... q 

Let B' be any ball of radius ?<d/4 and B'n(Q x {0})~:~. Then (b, 0)EB'c~ 
c~B'~n~(a~) for some index j exists. Take (3, w)~ B'. Then 

[13 - %t 2 + Iwl 2 ],/2 = 1(3, w) - (% 0)1 _-< 1(3, w) - (b, 0)1 + l(b, 0) - (% 0)1 _-< 
1 

< 2 ? +  -~ dj < d~ . 
~'7 C , Hence B = Ba~(%), and so, for all Iw[ < ~, 

v((3, w),~lN) o~< ~? ~" • 
B' c~N(w) 

Now/~2p(Q x {0})=0 in R 2~+2. Thus there exists {B~}/~N such that B'iC H 
is an open ball of radius ?~ < d/4, and such that 

w =  B ,~Q × {O}, ? ~ . < - - .  
i =  1 i =  1 K 

It can be assumed that B'f~ (Q x {0}) ~: ~, i e N. Hence ~ v((3, w), ~IN) x 

x op < ~¢?/2, for lw[ < 6. Hence 

I v((3, w),~lN)o,<~ 
Wc~N(w)  

for lwl < ~, where W C H is an open neighborhood of Q x {0}. q.e.d. 
Lemma 4.9. 

I v((S,w),zlN)o,--, I ((3,0),~1N)% 
~(N(w)  n B r T n Br 

as w-+O. 
Proof. Take ~ > 0. From Lemma 4.8, there exist W = W(e) open, fi~ = 61 (e) > 0 

such that Q × {0} _~ W~_H and, for lwl < ,h .  

v((3, w), ~ IN) % < ~ .  

N(w)c~W 
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Now T ~ ( B . -  B.) is compact and contained in Q c W open. Hence there exist 
0 < r' < r < r", 62 > 0 such that, for 

L=(B~,,-~,) × (w] lwl < 62, w e e } ,  

it is Nc~EC W and LC H. Define K = B r , -  n(WnE), where E = V x {0}. Then 
K is compact, K C B , , . a n d  K ~ Q = ~ .  Take ( a , 0 ) e ( K x  {0})c~N(0). Then 
aCQ, and so (a,O)e(Tx{O})c~(N-S).  From Lemma 4.5, there exist U, 
open, a e U,C U, C H, U, compact with n (UJC B,, such that for every C ®- 
function 0 on H, 

(1) ~ O(S, w) v((3, w), z IN) or--} ~ 0(~, O) v((s, 0), z IN) on 
UanN(w) Uac~N (0) 

as w~0 .  Define 6~ = 1. Now i f ,  ~ K and (a, 0) ¢ N(0), then a 6 , ~  0 and an open 
neighborhood U, of (a, 0) with Uo compact and UoCH exist such that 
N(w)c~ U, = ~ if [wl < 6,. Then for any C~°-function 0 on H, (1) holds also for 

q 

this U..BecauseK x {0} c= U U., o 1 .. . . .  aqinKexistsuchthatK x {0} c__ U u., .  
.eK i =  I 

Define 

6 3 =  Min 6.,, 
i =  1 , . . , , q  

t/ 

v =  U U, ,~Kx(0}.  
i = 1  

Since Lw Ww U contains 

[ (Br-  B,.) × {w I lwl < 62} ] u [ w n  e ] u  [(B.. x {01) - (wc~ e)  ] 

which contains Br x {0}, and since L u  W u  U is open and/~r x {0} is compact, 
6 4 > 0  exists such that 0 < 6 4 < 6 3 ,  O<64<62, andP=Brx{wllwt<64}~_ 

L u  W ~  U. Then, for twl < 64 < 62, 

N(w)n L =  N n L n N ( w )  ~ W n N ( w ) ,  
and so 

(B, x {w})nN(w) C Wu U, lwl < 64. 
q 

Now P c~N ~_ ( U w W)c~ N C U w W, and so the compact set P c~N ~_ W u U u,~. 
i = 1  

Hence a partition of unity {0i}~=o ..... q to this covering of P n N  exists such that 

1. 0~ is of class C ~ on H, 0 ~ 01 =< 1, for i = 0 . . . . .  q. 
2. 0~(3, w) = 0 if (3, w) ~ H - U,, for i = I . . . . .  q. 
3. 0o (3, w) = 0 if (3, w) e H - W. 

q 

4. 0 <  ~ 0~(3, w ) < l  if (3, w)eH.  
i = O  

q 

5. ~ 0,(3, w)=1 if (3, w)ePc'~N. 
i = 0  
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q 

Define 0(3, w) = ~ 0~(3, w). If Iwl < 54, then 
i=1  

f O(s,w)v((3, w),zlN)op 
N(w)nO 

q 

= ~ I O,(s,w)~((3, w),TIN)o~ 
i=1  N(w)mU 

q 

= Z l o,(s, w)v((3, w), ~IN) o~-, 
i=1  N(wIc~Utt~ 

q 

- "  Z I o,(~, w) v((s, o). TIN) o. 
i=1  N ( O ) n U a  i 

q 

= ~., f Od~,O)v((3,0) , 'c lN)ov 
i=1  N(O)n U 

= I O(~,O)v((3 ,0) ,TIN)o v as w ~ 0 .  
N(O)nU 

Hence 55 > 0 exists such that 0 < 65 < 54, 0 < 55 < 51, and 

m ~  v O(3' w) v((3' w)' z l N) % - too)of v O(3, 0) v((3, 0), v t N) o, < 

< -~ for all w with Iwl < 55. 

Now 
N(w)n(B, x (w})= (N(w)n Cr)u(N(w)n(K x {w})-  V) 

for any w e C ,  as n(U,,)CB, for each i. But if (3, w)EN(w)n(B, x { w } ) - U ,  
then 0(3, w) = 0. Thus, if lwl < 65, then 

S f L 0(3, w) v((s, w), T IN) o~-  0(3, 0) v((3, 0), ~1 N) % < -~.  
N (w) o (B,. x {w}) A'(O) n (B,. × {0)) 

And 

0_< 

.~w)n (B,. × {w}) 

00(3, w) v((3, w), TIN) op 

~- I Oo(S,w)v((S,w),TlN)o,,~ 
N(w)c~W 

=< v((3, w), TIN) % < 

N(w) n W  
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if Iwl<~5<Ox. N o w  Oo(8, w)+O(8, w ) = l  for (8, w)~N(w)nH, x{w} and 
Iwl < ~ .  Consequent ly ,  

x lN)  ~ v((s,O),vlN)% 

= N(,~)<..~.×(w)) v ( (8 'w) 'v lN)°p-  mo),~S(n. × (o))V((8'w)'vlN)% < 

< N(w),~(!.× O(8, w)v((8, w),~:lN)vp- I O(8,0)v((8,0),vlN)% + 
(w}) N (o) r, (B, × (o}) 

v((8, w), z IN) % + + N(w)~(~, ~ twO) 00(8, w) 

0) v((8, 0), vlN) % < + N(o)<~(~ × (o)) 00(8, 

8 8 /~ 
< -~- + ~-  + -~- = 8 if [w[ < 55. q.e.d. 

Let  {T1 . . . .  , Tb} be the irreducible branches of  T. F r o m  Lemma 4.4, for 
each 2 = 1 . . . .  , b, there exists a constant  m~ e N such that  

v((8,O),"clN)=m4 if g~J 'c~T4mrc(N-S) ,  

which is almost  everywhere on T4. Thus  
b 

f ,'((S, 0), I N) v, = X I vI(s, O), N) o, 
T r~ Br A = I  T x t~ Br 

b 

= E m4 S Op.  
4=1  T :~ ta Br 

And, f rom L e m m a  4.3, v((], w), z l N) = 1 if (8, w) e N(w) and w * 0. Thus 

S op= v((8,w), lN)op. 
nlN(w))na~ n(N(w))oBr  

Hence L e m m a  4.9 implies 
Theorem 4. t0 .  Let {T 1 . . . . .  Tb} be the irreducible branches of  T. Suppose 

0 < r < R. Then there exist positive integers m 4, 2 = 1 .. . . .  b such that 
b 

I (w , r )~  E ma ~ % as w ~ O .  
4=1 Tac~Br 

§ 5, The f'mal result 

Theorem 5.1. Let V be a complex vector space of dimension n > 0 .  Let (I) 
be a hermitian product on V. Let G be open in V, 0 ~ G. Define B, = {8 e vii31 < r}. 
Assume B R C G, 0 < R < oo. Let M be a pure p-dimensional analytic set in G with 

np 
0 ~ M and 0 < p < n. Define Wp = --~.. Then 

n(0, M ) =  lim 1 
r-~O Wpr2------ ~ _ op 

M nB~ 
is a positive integer. 
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Proof.  From § 3, 
1 

n(O, M ) =  lim J 
r ~ O  W p y 2 p  _ Op 

M c~ Br 

1 
= lira ~ lim I(w, r).  

r -* O W p  r w --, o 

Let T 1 . . . .  , T b be the irreducible branches of T. Take 0 < r < R. From Theorem 
4.10, there exist positive integers m 1 . . . . .  mb such that 

b 

l i m l ( w , r ) =  ~ m~ ~ Vp. 
w-*O 4 = 1  T;~caBr 

From Theorem 2.5, for each 2 = 1 . . . . .  b, 

Wvr2 v v v = m l ,  
T~c~B.  

a positive integer independent of r. Thus 
b 

n(O, M )  = ~, rn~m'~, 
2 = 1  

a positive integer, q.e.d. 

Appendix 
Let M be a pure p-dimensional analytic set in an open neighborhood of 

the origin of an n-dimensional complex vector space V. Suppose 0 e M and 
0 < p < n .  Let S = { # [ #  a permutation of {1, ...,n}}. A basis (vl . . . . .  v,) of V 
is said to be clear if, for every # s S, the basis (v,m , ..., vut.)) is distinguished 
with respect to (M, 0, p) (defined in § 4 C). The purpose of this appendix is 
to prove the existence of a clear basis. The proof is due to W. STOLL. See also 
DE RHAM [ 5 ]. 

Let q = n -  p. Let A q V denote the space of exterior q vectors over V. 
Let P(A ~ V) denote the complex projective space to A ~ V, and 

a : Aq V - {0}--)P(Aq V) 
the residual map. Let 

V~={alA""  ^ a q l a 1 ^ " ' ^ a q + - O ,  a ~ e V ,  v =  I , . . . , q } C A q V  - {0}. 

Let G = a(V~). Then G is a smooth, connected, complex submanifold ofP(A q V), 
the Grassman manifold of q-planes in K 

Let P(V) denote the complex projective space to V, and 

o: v -  {o}-~ P(V) 
the residual map. Take a~ e V, v = 1, ..., q. Define 

E(al  . . . . .  aq)= { z e  Vl  z ^ a l  ^ "" Aaq=O}  

--{~=~ 2,a ,I  2 , e C ,  v =  1, . . . ,q}. 
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Take  ~ e  G. Take  any a 1A "'" Aaq conta ined in V~na- l (~) .  Define 

E(~) = o(E(aa . . . . .  aq)) . 

This is well-defined, and, moreover ,  for ~ a n d / / c o n t a i n e d  in G, E(c0 = E(~) 
if and only if ~ = /L  

Lemma A.I .  Let N be an analytic set in P(V) of dimension p -  1. Let  

A = {c~ ~ GIE(~ )nN  +- 4} .  

Then A is a thin, analytic set in G. 
Proof. F r o m  L e m m a  3 of  STOLL [8], A ~ G. Thus it remains to show 

only that A is analytic. Define T =  Q - I ( N ) u { 0 } .  By Chow's  Theorem, T 
is an analytic set in V of  d imension p, and 

T =  { z  ~ V l  Q , ( z )  = ... = Qk(z)  = 0 }  

where Q~ is a homogeneous  polynomial ,  v = 1, ..., k. Let 

L =  {(al ^ " "  ^aq, z ) l z E T ,  a t ^ ' " ^ a q A z = O }  

= { ( a s  ^ "'" ^ a~ ,  z )  I a l  ^ "'" ^ aq ^ z = 0 ,  Q l ( Z )  . . . .  = Q~(z) = 0 }  _ A ~ V ~  V .  

Then L is analytic, and for any 2s and 22 in C, ( a l ^ " "  Aaq, z ) s L  implies 
(21 (al ^ "'" ^ aq), 22 z) e L. Let L' = n [(A ~ V -  {0}) x ( V -  {0})]. Then 

M = ( a O  Q) (L') ~ G × P(V) ,  

and in fact, M is analytic in G × P(V). Define 

re: G × P ( V ) ~ G ,  

the projection. Then n I M : M ~ G  is proper,  and so n(M) is analytic in G. 
But re(M) = A, for take ~ ~ n(M). There exists z ~ T and a s ̂ . . .  ^ aq ~ A ~ V such 
that  (al ^ "'" ^ a~, z) ~ L' and a(a 1 ̂  ... ^ aq) = ~. Then al ^ "'" ^ aq ^ z = 0, z 4: 0, 
and so Q(z)~E(~)c~Q(T-{0})=E(~)c~N. Thus ~ A .  Conversely, let ~ A .  
There exists z ~ T -  {0} such that tQ(z)~ E(~)c~N. Choose  any a 1 ̂ - . .  ^ a~ ~ V~ 
such that a(al ^ "-" ^ aq) = ~. Then  z ~ E(al . . . . .  aq), and so (as n ." n a~, z) ~ L'. 
And n((aG O) (as ^ "'" ^ aq, z)) = 0~. Thus  ~ ~ ~(M). q.e.d. 

Denote  the set of  bases of  V by 

" °t r =  v,...,v,)~@ V I v ~ ^ . . . ^ v , 4 =  . 
v = l  

Then F is a connected  complex  manifold,  the complement  of an analytic set 
of  codimension 1. 

Theorem A.2. Let M be a pure p-dimensional analytic set in an open neioh- 
borhood of  the origin of  an n-dimensional complex vector space V. Suppose 
0 ~ M and 0 < p < n. Then there exists a thin, analytic set A C F such that 
(v 1 . . . . .  v,) ~ F -  A implies that (v s . . . . .  v,) is a clear basis. 

Proof. Let T denote  the tangent  cone to M at 0. According to Propos i t ion  3.1, 
T is a pure p-dimensional  analyt ic  set in V. Let N = o ( T -  {0})~ Then N is an  
analytic set in P(V) of  dimension p - 1. Let 

a = {~ ~ GIE(~)c~N #: 4 } .  



312 P.R.  TnIE: The Lelong Number of a Point 

F r o m  L e m m a  A.1, A is a t h i n  a n a l y t i c  set in  G. F o r / ~ e S ,  def ine  %:F--+G by  

. . . . .  v . ) )  = ^ " "  ^ • 

T h e n  ~ is h o l o m o r p h i c .  A n d  zu is on to ,  for t ake  ~ e G ,  c x = a ( a l ^ . . "  ^aq) ,  
a i  ^ "" ^ a~ e V~. E x t e n d  (a l  . . . .  , aq) to  a basis  (al  . . . . .  aa, a~+ 1, . . . ,  a,) e F of  V. 
P e r m u t e  (a l ,  . . . ,  an) to  (bl  . . . . .  bn) ~ F such  tha t  a~ = b~,~p+,, v = 1 . . . . .  q. T h e n  
z~,((bl . . . . .  b,)) = a(b~,u,+ 1~ ̂  "'" ^ b~,~,~) = a(a l  ^ "" ^ a~) = ~. Def ine  

= U 

a t h in  a n a l y t i c  set in  F as each  z ~ l ( A )  is t h in  a n d  analy t ic .  N o w  t ake  
(v~ . . . .  , v ~ ) e F - A .  S u p p o s e  tha t  (vl . . . .  , v~) is n o t  a clear  basis. T h e n  there  
exists p e S such  tha t  (v, tl~ . . . . .  v~t,~) is n o t  d i s t i ngu i shed  wi th  respect  to  (M, 0, p), 
tha t  is, 0 is n o t  a n  i so la ted  p o i n t  o f  E n M ,  where  E = E(v~tp+ 17 . . . .  , v,t,~). T h u s  
there  exists  a s e q u e n c e  {z~} such  t h a t  z x ~ 0  as 2 - o o o  a n d  z~.~:O, z x e E n M .  
Th e re  exists a s u b s e q u e n c e  {za~} such  tha t  z~Jlzxj converges ,  say, to t, as 
v ~ oo. T h e n  t is a t a n g e n t  vec to r  to  M a t  0, a n d  t e  T. A n d  z~ e E for all  ,~ impl i e s  
tha t  t e E. Let  ~ = a(v~v+ ~j ^ "" ^ v~,~). T h e n  e(t) e o ( E ) n o ( T -  {0}) = E ( ~ ) n  N.  
T h u s  ~ e A. Bu t  ~ = z~((v~ . . . . .  v,)), a n d  so (v~, . . . ,  v,) e z~ 1 (A) C A, a c o n t r a -  
dici t ion.  C o n s e q u e n t l y ,  every  basis  in  F -  A is clear, q.e.d. 
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