The Lelong Number of a Point of a Complex Analytic Set

PAUL R. THIE*

Contents

Intro	duction																•		•		•	269
§ 1.	Definitions																					270
§2.	The Lelong number	of	ar	ı aı	nal	yti	c c	on	e									•	•			271
§ 3.	The tangent cone.	•				•																281
§4.	A continuity theore	m																				
§4A.	Multiplicity of a ho	lon	10	rph	ic	ma	ıр		·													284
§4B.	Local continuity .																					289
§4C.	Local boundedness													•								298
§4D.	The limit of $I(w, r)$																		•	•		304
§ 5.	The final result					,											÷				•	309
Appe	ndix		•													•						310
Biblic	ography						•						•									312

Introduction

Let V be an n-dimensional complex vector space with a hermitian product. Let M be a pure p-dimensional analytic set in an open set $G \in V$, and suppose that $0 \in M$. Let n(r, M) denote the function of $r \in \mathbf{R}^+$, the set of positive real numbers, defined by dividing the 2p-dimensional area of M intersect the ball of radius r and center 0 by the area of the 2p-dimensional ball of radius r. P. LELONG [3] and W. STOLL [8] have proven that n(r, M) is monotonic increasing in r, and thus the limit as r tends to 0 exists. Let n(0, M) denote this limit. In the case that p = n - 1, STOLL in [6] has shown that n(0, M) is an integer. In fact, he proves that if f is a holomorphic function in a neighborhood of 0 such that the germ of f generates the ideal of function germs vanishing on M at 0, then n(0, M) is simply the zero-multiplicity of f at 0 (defined in §4A). However the proof is in the language of divisors and cannot be extended to an analytic set of arbitrary codimension. In the case of p = 1, n(0, M) can be directly computed as M can be parameterized in a neighborhood of 0. If $\sum_{\lambda=1}^{n} f_{\lambda} \mathfrak{v}_{\lambda}$ is such a parameterization, where $(\mathfrak{v}_1, ..., \mathfrak{v}_n)$ is a base of V and where the f_{λ} 's are holomorphic functions on an open set $U \in \mathbf{C}$, the field of complex numbers, $0 \in U$, and $f_{\lambda}(0) = 0$, then it can be easily shown that n(0, M) is $\min_{1 \le \lambda \le n} \{v(0, 0, f_{\lambda})\}, \text{ where } v(0, 0, f_{\lambda}) \text{ is the zero multiplicity of } f_{\lambda} \text{ at } 0.$ equal to

^{*} Supported in part by The National Science Foundation under grant GP 3988.

The purpose of this paper is to prove that n(0, M) is a positive integer for an analytic set M of arbitrary dimension. The proof is divided into three parts. In the first part, it is proven that n(0, M) is an integer if M is an analytic cone with center 0 (defined in § 2). The second part relates n(0, M) to the limit of the area of a family $\{N(w)\}, w \in \mathbb{C} - \{0\}$ of analytic sets. These sets have the property that they "tend to" T, the tangent cone to M at 0 (§ 3), as w tends to 0. In § 4, a theorem on the continuity of the area is proven. It is shown that the limit of the area of the N(w)'s as w goes to 0 is equal to the product of a positive integer and the area of T. Then this together with the result of § 2 applied to Tyields the final result.

§ 1. Definitions

Let V be a complex vector space of dimension n. Let $(\cdot | \cdot)$ be a hermitian product on V, that is,

- a) $(\mathfrak{z}|\mathfrak{w}) \in \mathbb{C}$ for $\mathfrak{z} \in V$, $\mathfrak{w} \in V$;
- b) $(\mathfrak{z} | \mathfrak{w}) = \overline{(\mathfrak{w} | \mathfrak{z})};$
- c) $(\alpha_1 \mathfrak{z}_1 + \alpha_2 \mathfrak{z}_2 | \mathfrak{w}) = \alpha_1(\mathfrak{z}_1 | \mathfrak{w}) + \alpha_2(\mathfrak{z}_2 | \mathfrak{w})$ for $\alpha_1, \alpha_2 \in \mathbb{C}$
- d) (3|3) > 0 if $3 \neq 0$.

Then $|\mathfrak{z}| = \sqrt{\mathfrak{z}} \frac{1}{\mathfrak{z}}$ defines a norm on V. Let d be the exterior derivative on V. Consider $\mathfrak{z} \mathfrak{z}$ as a function of \mathfrak{z} for fixed a. Define

$$(d_3 \mid \alpha) = d(3 \mid \alpha) , (a \mid d_3) = \overline{(d_3 \mid \alpha)} = d(\alpha \mid \beta) .$$

Then $(d_3|_3)$ and $(3|d_3)$ are differentials on V. Define

Then $d\eta = (i/2) (d_3 | d_3)$.

Define

$$v = d\eta, \ v_p = \frac{1}{p!} \bigwedge_{v=1}^p v.$$

Let M be an analytic set of pure dimension p > 0 in an open subset G of V. The set \dot{M} of simple points of M forms a smooth complex submanifold of dimension p of V. Let L be a subset of M such that $L \cap \dot{M}$ is measurable on M. If χ is an exterior differential form of degree 2p on M such that $\int_{L \cap \dot{M}} \chi$ exists, define

$$\int_{L} \chi = \int_{L \cap \dot{M}} \chi \, .$$

Let $\iota: \dot{M} \to V$ be the injection defined by $\iota(\mathfrak{z}) = \mathfrak{z}$. If ξ is a continuous exterior differential form of degree 2p on V with compact carrier in G, then $\int_{\dot{M} \cap L} \iota^* \xi$ exists ([3], [7]), and is denoted by $\int_{L} \xi$.

If $L \subseteq M$ and $L \cap \dot{M}$ is measurable and if \bar{L} is contained in G and compact, then $\int_{L} v_p$ exists and is non-negative. The integral is positive if $L \cap \dot{M}$ is not a set of measure zero. The integral $\int_{L} v_p$ is the Lebesgue area of $L \cap \dot{M}$.

Define

$$B_r = \{\mathfrak{z} \in V \mid |\mathfrak{z}| < r\}$$
$$M_0^r = M \cap B_r$$
$$W_p = \pi^p / p!$$

Suppose $0 \in M$ and $B_R \subset G$. For 0 < r < R, define

$$0 \leq n(r, M) = \frac{1}{W_p r^{2p}} \int_{M_0^r} v_p.$$

Then n(r, M) is a monotonic increasing function ([3], [8]). The limit

$$n(0, M) = \lim_{r \to +0} n(r, M)$$

exists, and is called the Lelong Number of M at 0. It will be shown that the Lelong Number is always a positive integer.

§ 2. The Lelong number of an analytic cone

Again, let V be an n-dimensional complex vector space with a hermitian product. Let $T \subset V$ be a pure p-dimensional analytic cone with center 0, that is, a pure p-dimensional analytic set in V such that $\mathfrak{z} \in T$ implies $u\mathfrak{z} \in T$ for all $u \in \mathbb{C}$. In this section, it will be shown that n(0, T) is a positive integer.

Define on V

$$\sigma = \frac{i}{4} \left[(3|d_3) - (d_3|3) \right] |3|^{-2} = \frac{\eta}{|3|^2} \quad \text{for} \quad 3 \neq 0.$$

Then

$$d\sigma = \frac{i}{2} \frac{(d_3 | d_3) |_3|^2 - (d_3 |_3) \wedge (3 | d_3)}{|_3|^4}.$$

Define $\omega = d\sigma$, $\omega_p = \frac{1}{p!} \bigwedge_{v=1}^{p} \omega$ on $V - \{0\}$.

Let A be a pure p-dimensional analytic subset of an open subset G of V with p > 0. If L is a subset of A such that $L \cap \dot{A}$ is measurable on \dot{A} and if \bar{L} is compact and contained in $G - \{0\}$, then $\int_{L} \omega_p$ exists and is non-negative. If $L \subseteq A$ and $L \cap \dot{A}$ is measurable and $\int_{L-\{0\}} \omega_p$ exists, define $\int_{L} \omega_p = \int_{L-\{0\}} \omega_p$. Let $i: A \to V$ be the injection. Let ξ be a continuous exterior differential form of degree 2p on V with compact carrier in G. If $\xi = d\tau$, where τ is an exterior differential form of class C^1 and degree 2p - 1 on G, and where τ

19*

has a compact carrier in G, then [3, Theorem 7]

$$\int_A \xi = \int_A d\tau = 0 \, .$$

Define, for any subset L of V,

$$L_r^s = L \cap \{\mathfrak{z} \mid r \leq |\mathfrak{z}| \leq s\}, \quad 0 \leq r < s \leq \infty.$$

The following two propositions are a generalization of results of W. STOLL [8, Propositions 1 and 2].

Proposition 2.1. Let A be a pure p-dimensional analytic set in $G = \{3 | |3| < R\}$ where p > 0 and $0 < R \le \infty$. Let f be a function of class C^1 on G. Suppose that a number r_0 exists such that

1)
$$0 < r_0 < R$$
,
2) $f(\mathfrak{z}) = 0$ for $|\mathfrak{z}| \leq r_0$.
Let q be an integer, $0 \leq q \leq p-1$. Let $b = p-q$. Then
 $p \in [q_1, q_2] \leq q \leq p-1$.

$$\frac{p}{r^{2b}} \int_{A_{5}} f(\mathfrak{z}) \, \upsilon_{p}(\mathfrak{z}) = \frac{b \cdot q \cdot q}{(p-1)!} \int_{A_{5}} f(\mathfrak{z}) \, \upsilon_{q}(\mathfrak{z}) \wedge \omega_{b}(\mathfrak{z}) + \int_{A_{5}} \left[\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}} \right] df \wedge \eta \wedge \upsilon_{p-1} \, . \quad (\upsilon_{0} = 1)$$

Proof. Define

$$\psi = \upsilon_q \wedge \frac{\sigma}{b} \wedge \omega_{b-1} \quad (\omega_0 = 1)$$
$$\chi = \frac{(p-1)!}{b! q!} \frac{1}{r^{2b}} \eta \wedge \upsilon_{p-1}.$$

$$d\psi = v_q \wedge \omega_b, \quad d\chi = \frac{p!}{b!q!} \frac{1}{r^{2b}} v_p,$$

and

$$\begin{aligned} \frac{1}{b} \sigma \wedge \omega_{b-1} &= \left(\frac{i}{2}\right)^{b-1} \frac{1}{b!} \frac{i}{4} \frac{1}{|\mathfrak{z}|^2} \left[(\mathfrak{z}|d\mathfrak{z}) - (d\mathfrak{z}|\mathfrak{z})\right] \wedge \\ &\wedge \left[\frac{(d\mathfrak{z}|d\mathfrak{z})}{|\mathfrak{z}|^2} - \frac{(d\mathfrak{z}|\mathfrak{z}) \wedge (\mathfrak{z}|d\mathfrak{z})}{|\mathfrak{z}|^4}\right]^{b-1} \\ &= \left(\frac{i}{2}\right)^{b-1} \frac{1}{b!} \frac{i}{4} \frac{(\mathfrak{z}|d\mathfrak{z}) - (d\mathfrak{z}|\mathfrak{z})}{|\mathfrak{z}|^2} \wedge \\ &\wedge \left[\frac{(d\mathfrak{z}|d\mathfrak{z})^{b-1}}{|\mathfrak{z}|^{2b-2}} - (b-1) \frac{(d\mathfrak{z}|d\mathfrak{z})^{b-2}}{|\mathfrak{z}|^{2b-4}} \wedge \frac{(d\mathfrak{z}|\mathfrak{z}) \wedge (\mathfrak{z}|d\mathfrak{z})}{|\mathfrak{z}|^4}\right] \\ &= \left(\frac{i}{2}\right)^{b-1} \frac{1}{b!} \frac{i}{4} \frac{(\mathfrak{z}|d\mathfrak{z}) - (d\mathfrak{z}|\mathfrak{z})}{|\mathfrak{z}|^{2b-4}} \wedge (d\mathfrak{z}|\mathfrak{z})^{b-1} \\ &= \frac{1}{b} \eta \wedge \frac{1}{|\mathfrak{z}|^{2b}} v_{b-1}. \end{aligned}$$

Thus

$$\begin{split} \psi &= \upsilon_q \wedge \frac{\eta}{b} \wedge \frac{\upsilon_{b-1}}{|\mathfrak{z}|^{2b}} \\ &= \frac{(p-1)!}{q!b!} \frac{1}{|\mathfrak{z}|^{2b}} \eta \wedge \upsilon_{p-1} , \\ \psi - \chi &= \frac{(p-1)!}{q!b!} \left[\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}} \right] \eta \wedge \upsilon_{p-1} \end{split}$$

Let α be a C^{∞} -function on the real line **R** such that $0 \leq \alpha(x) \leq 1$ for all x and $\alpha(x) = 1$ for $x \leq 0$ and $\alpha(x) = 0$ for $x \geq 1$. Define K by

$$K = \max_{x \in \mathbf{R}} |\alpha'(x)| \, .$$

Take any r in $r_0 < r < R$. Take s in r/2 < s < r. Define t = (s+r)/2. Then t - s = (r-s)/2. Define λ_s by $\lambda_s(x) = \alpha \left(\frac{x-s}{t-s}\right)$. Then

a) $0 \le \lambda_s(x) \le 1$ for all x. b) $\lambda_s(x) = 1$ for all $x \le s$, c) $\lambda_s(x) = 0$ for all $x \ge t$, d) $|\lambda'_s(x)| \le \frac{K}{t-s} = \frac{2K}{r-s}$ for all x, e) $\lambda'_s(x) \ne 0$ implies s < x < t, f) $\lambda_s(x) \rightarrow 1$ as $s \rightarrow r - 0$ if x < r, g) $\lambda'_s(x) \rightarrow 0$ as $s \rightarrow r - 0$ if x < r.

And

$$d\lambda_s(|\mathfrak{z}|) \wedge \eta = \frac{i}{4} \lambda_s'(|\mathfrak{z}|) \frac{(d\mathfrak{z}|\mathfrak{z}) \wedge (\mathfrak{z}|d\mathfrak{z})}{|\mathfrak{z}|}.$$

For $s \leq |\mathfrak{z}| \leq r$,

$$\begin{aligned} |\lambda'_{s}(|\mathfrak{z}|)| \left| \frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}} \right| &\leq \frac{2K}{r-s} \frac{r^{2b} - |\mathfrak{z}|^{2b}}{r^{2b} |\mathfrak{z}|^{2b}} \leq \\ &\leq \frac{2^{2b+1}K}{r^{4b}} \sum_{\mu=0}^{2b-1} r^{\mu} |\mathfrak{z}|^{2b-1-\mu} \leq \\ &\leq \frac{2^{2b+2}Kb}{r^{2b+1}}. \end{aligned}$$

Therefore

$$\int_{A_{5}} f \, d\lambda_{s} \wedge (\psi - \chi) = \left(\frac{(p-1)!}{q! b!}\right) \int_{AF_{0}} f\left(\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}}\right) d\lambda_{s} \wedge \eta \wedge v_{p-1}$$
$$= \frac{(p-1)!}{q! b!} \int_{AF_{0}} f\left(\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}}\right) \frac{i}{4} \lambda_{s}'(|\mathfrak{z}|) \frac{(d\mathfrak{z}|\mathfrak{z}) \wedge (\mathfrak{z}|d\mathfrak{z})}{|\mathfrak{z}|} \wedge v_{p-1}$$
$$\to 0 \quad \text{as} \quad s \to r-0.$$

Moreover

$$\int_{A_5} \lambda_s df \wedge (\psi - \chi) \to \int_{A_5} df \wedge (\psi - \chi) \quad \text{as} \quad s \to r - 0,$$

$$\int_{A_5} \lambda_s f d(\psi - \chi) \to \int f d(\psi - \chi) \quad \text{as} \quad s \to r - 0.$$

Therefore

$$0 = \int_{A_{\delta}} d(f \lambda_{s}(\psi - \chi))$$

= $\int_{A_{\delta}} f d\lambda_{s} \wedge (\psi - \chi) + \int_{A_{\delta}} \lambda_{s} df \wedge (\psi - \chi) + \int_{A_{\delta}} \lambda_{s} f d(\psi - \chi)$

implies that

$$0 = \int_{A_0} df \wedge (\psi - \chi) + \int_{A_0} f d(\psi - \chi),$$

that is,

$$\frac{p!}{b!q!} \frac{1}{r^{2b}} \int_{A_{0}} f v_{p} = \int_{A_{0}} f v_{q} \wedge \omega_{b} + \frac{(p-1)!}{q!b!} \int_{A_{0}} \left(\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}} \right) df \wedge \eta \wedge v_{p-1}.$$
q.e.d.

Proposition 2.2. Let A be an analytic set of pure dimension p > 0 in $G = \{3 \mid |3| < R\}$ where $0 < R \le \infty$. Take r and s such that 0 < r < s < R. Let q be an integer, $0 \le q \le p - 1$. Let b = p - q. Then

$$\frac{b!q!}{p!} \int_{A_b} \upsilon_q \wedge \omega_b = \frac{1}{s^{2b}} \int_{A_b} \upsilon_p - \frac{1}{r^{2b}} \int_{A_b} \upsilon_p \,.$$

Proof. Let α be a C^{∞} -function on **R** such that $0 \leq \alpha(x) \leq 1$ for all x and $\alpha(x) = 1$ for $x \leq 0$ and $\alpha(x) = 0$ for $x \geq 1$. Take 0 < t < r < s < R. Define

$$f(\mathfrak{z}) = \alpha \left(\frac{|\mathfrak{z}| - t}{r - t} \right).$$

The function f is of class C^{∞} and $f(\mathfrak{z}) = 1$ for $|\mathfrak{z}| \leq t$ and $f(\mathfrak{z}) = 0$ for $|\mathfrak{z}| \geq r$. From Proposition 2.1,

$$\frac{b!q!}{(p-1)!} \int_{A_{0}} (1-f) v_{q} \wedge \omega_{b} = \frac{p}{s^{2b}} \int_{A_{0}} (1-f) v_{p} + \int_{A_{0}} \left[\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{s^{2b}} \right] df \wedge \eta \wedge v_{p-1},$$

$$\frac{b!q!}{(p-1)!} \int_{A_{0}} (1-f) v_{q} \wedge \omega_{b} = \frac{p}{r^{2b}} \int_{A_{0}} (1-f) v_{p} + \int_{A_{0}} \left[\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}} \right] df \wedge \eta \wedge v_{p-1}.$$

And

$$\int_{A_0^s} df \wedge \eta \wedge \upsilon_{p-1} = -\int_{A_0^s} f \, d\eta \wedge \upsilon_{p-1} = -p \int_{A_0^s} f \, \upsilon_p$$
$$\int_{A_0^s} df \wedge \eta \wedge \upsilon_{p-1} = -p \int_{A_0^s} f \, \upsilon_p \, .$$

Hence

$$\frac{b!q!}{(p-1)!} \int_{A_{F}} v_{q} \wedge \omega_{b} = \frac{b!q!}{(p-1)!} \int_{A_{F}} (1-f) v_{q} \wedge \omega_{b}$$

$$= \frac{p}{s^{2b}} \int_{A_{5}} (1-f) v_{p} - \frac{p}{r^{2b}} \int_{A_{5}} (1-f) v_{p} + \int_{A_{5}} \frac{1}{|3|^{2b}} df \wedge \eta \wedge v_{p-1} - \int_{A_{F}} \frac{1}{|3|^{2b}} \int_{A_{5}} df \wedge \eta \wedge v_{p-1} + \frac{1}{r^{2b}} \int_{A_{5}} df \wedge \eta \wedge v_{p-1}$$

$$= \frac{p}{s^{2b}} \int_{A_{5}} (1-f) v_{p} - \frac{p}{r^{2b}} \int_{A_{5}} (1-f) v_{p} + 0 + \int_{A_{5}} \frac{1}{s^{2b}} \int_{A_{5}} f v_{p} - \frac{p}{r^{2b}} \int_{A_{5}} f v_{p}$$

$$= \frac{p}{s^{2b}} \int_{A_{5}} v_{p} - \frac{p}{r^{2b}} \int_{A_{5}} f v_{p}$$
q.e.d.

Note that by letting q = 0, Proposition 2.2 gives

$$\int_{A_p^{\sharp}} \omega_p = \frac{1}{s^{2p}} \int_{A_0^{\sharp}} v_p - \frac{1}{r^{2p}} \int_{A_0^{\sharp}} v_p \,.$$

Thus $n(r, A) = \frac{1}{W_p r^{2p}} \int_{A_0^r} v_p$ is monotonic increasing, and so $n(0, A) = \lim_{r \to 0} n(r, A)$ exists.

Assume now that $p \ge 2$. Let q = 1. Then

$$\int_{A_{p}} v \wedge \omega_{p-1} = \frac{p}{s^{2p-2}} \int_{A_{0}} v_{p} - \frac{p}{r^{2p-2}} \int_{A_{0}} v_{p}.$$

Since $\lim_{r \to 0} \frac{1}{r^{2p}} \int_{A_{0}} v_{p}$ exists,
$$\int_{A_{0}} v \wedge \omega_{p-1} = \frac{p}{s^{2p-2}} \int_{A_{0}} v_{p}.$$

In particular, if T is a pure p-dimensional analytic cone with center 0 and $p \ge 2$, then

$$\frac{p}{r^{2p-2}}\int_{T_0}v_p=\int_{T_0}v\wedge\omega_{p-1}.$$

Fubini's Theorem shall now be applied to $\int_{T_0}^{\infty} v \wedge \omega_{p-1}$. A statement of the theorem follows. The theorem in a more general setting is stated and proved by W. STOLL in [6].

Fubini's Theorem. Let N and Q be pure dimensional complex manifolds with dim N = n, dim Q = q < n. Let $\sigma: N \rightarrow Q$ be a holomorphic map and suppose that σ has maximal rank. Define $N_y = \sigma^{-1}(y)$, a complex submanifold of N. Let φ be a differential form of bidegree (q, q) on Q. Let χ be a differential form of bidegree (n - q, n - q) on the measurable set L in N. Suppose that $\chi \wedge \sigma^* \varphi$ is integrable over L. Let $\iota_y: N_y \rightarrow N$ be the injection. Then

$$\int_{L} \chi \wedge \sigma^* \varphi = \int_{Q} \left(\int_{N_y \cap L} \iota_y^* \chi \right) \varphi \,.$$

In order to apply this theorem, the following is needed.

Let $\mathbf{P}(V)$ denote the complex projective space of the vector space V. Let $\varrho: V - \{0\} \rightarrow \mathbf{P}(V)$ be the residual map, which can be uniquely defined by requiring that $\varrho(\mathfrak{z}_1) = \varrho(\mathfrak{z}_2)$ if and only if $\mathfrak{z}_1 = u\mathfrak{z}_2$ for $u \in \mathbf{C} - \{0\}$. One and only one exterior differential form $\ddot{\omega}$ of bidegree (1, 1) exists on $\mathbf{P}(V)$ such that $\varrho^*(\ddot{\omega}) = \omega$. Define

$$\ddot{\omega}_q = \frac{1}{q!} \bigwedge_{\nu=1}^{q} \ddot{\omega}.$$

Then $\varrho^*(\ddot{\omega}_q) = \omega_q$. Let $T \in V$ be a pure *p*-dimensional analytic cone with center 0 and $p \ge 2$.

Define $\varrho(T - \{0\}) = \dot{T}$. Then \dot{T} is a pure (p-1)-dimensional analytic set in $\mathbf{P}(V)$. Define $N = \dot{T} - \{0\}$, a pure *p*-dimensional smooth submanifold of $V - \{0\}$. Define $Q = \varrho(N)$, $\sigma = \varrho \mid N$. Then Q consists of all the simple points of \ddot{T} , and N is a cone, that is, $\mathfrak{z} \in N$, $u \in \mathbf{C} - \{0\}$ implies $u\mathfrak{z} \in N$. Hence $N = \sigma^{-1}(Q)$ $= \varrho^{-1}(Q)$. And Q is a pure (p-1)-dimensional smooth submanifold of $\mathbf{P}(V)$. Let $\iota: N \to V - \{0\}$ and $j: Q \to \mathbf{P}(V)$ be the inclusions. Then

is commutative, and

$$\iota^* \omega_{p-1} = \iota^* \varrho^* (\ddot{\omega}_{p-1}) = \sigma^* j^* (\ddot{\omega}_{p-1}).$$

Lemma 2.3. The map $\sigma: N \rightarrow Q$ defined above has maximal rank.

Proof. Identify V with Cⁿ and denote $\varrho(\mathfrak{z}) = (z_1, \ldots, z_n)$ if $\mathfrak{z} = (z_1, \ldots, z_n) \neq 0$. Let $\mathfrak{a} = (a_1, \ldots, a_n)$ be an arbitrary point of N. Define $a = \sigma(\mathfrak{a}) = (a_1; \ldots; a_n) \in Q$. Then there exists $W' \subset \mathbb{C}^{p-1}$, $0 \in W'$ open, and $\alpha: W' \to \mathbb{P}(V)$ holomorphic such that $\alpha(0) = a, \alpha: W' \to \alpha(W') \subset Q$ topological, $\alpha(W')$ relatively open in Q, and rank_w $\alpha = p - 1$, $w \in W'$. There exists v such that $a_v \neq 0$. Hence, if W' is small enough, $\tilde{\alpha}: W' \to V - \{0\}$ exists such that $\tilde{\alpha}$ is holomorphic and injective, and $\varrho \circ \tilde{\alpha} = \alpha, \tilde{\alpha}(0) = \mathfrak{a}$. Let $\tilde{\alpha}(w) = (\alpha_1(w), \ldots, \alpha_n(w))$ and, by choice of W', $\alpha_v(w) \neq 0$ for $w \in W'$. Define

$$f_{\lambda}(\mathbf{w}) = \frac{\alpha_{\lambda}(\mathbf{w})}{\alpha_{\nu}(\mathbf{w})}, \quad \lambda = 1, ..., \nu - 1, \nu + 1, ..., n.$$

Then $\alpha(\mathfrak{w}) = (\alpha_1(\mathfrak{w}):...:\alpha_n(\mathfrak{w})) = (f_1(\mathfrak{w}):...:f_{\nu-1}(\mathfrak{w}):1:f_{\nu+1}(\mathfrak{w}):...:f(\mathfrak{w})).$ Hence $\operatorname{rank}_{\mathfrak{w}} \frac{\partial (f_1,...,f_{\nu-1},f_{\nu+1},...,f_n)}{\partial (w_1,...,w_{n-1})} = \operatorname{rank}_{\mathfrak{w}} \alpha = p-1$

for $w \in W'$ using the coordinate system

$$\mathbf{y}(z_1:\ldots:z_n) = \left(\frac{z_1}{z_{\nu}},\ldots,\frac{z_{\nu-1}}{z_{\nu}},\frac{z_{\nu+1}}{z_{\nu}},\ldots,\frac{z_n}{z_{\nu}}\right)$$

in $\varrho{}_{\mathfrak{Z}}{}_{\mathfrak{Z}_{\mathfrak{V}}} \neq 0$. Define $\beta: W' \times (\mathbb{C} - {}_{\mathfrak{V}}) \rightarrow V - {}_{\mathfrak{V}}$ by

$$\beta(\mathfrak{w}, u) = \frac{u}{\alpha_{\nu}(\mathfrak{w})} \tilde{\alpha}(\mathfrak{w}) = (u f_1(\mathfrak{w}), \dots, u f_{\nu-1}(\mathfrak{w}), u, u)$$
$$u f_{\nu+1}(\mathfrak{w}), \dots, u f_n(\mathfrak{w})).$$

Then β is holomorphic. If $\beta(\mathfrak{w}_1, u_1) = \beta(\mathfrak{w}_2, u_2)$, then $u_1 = u_2$ and $\alpha(\mathfrak{w}_1) = \varrho(\beta(\mathfrak{w}_1, u_1)) = \varrho(\beta(\mathfrak{w}_2, u_2)) = \alpha(\mathfrak{w}_2)$. Hence $\mathfrak{w}_1 = \mathfrak{w}_2$, and so β is injective. And $\beta(W' \times (\mathbb{C} - \{0\})) = \varrho^{-1}(\alpha(W'))$, for

$$\varrho(\beta(\mathfrak{w}, u)) = \varrho(\tilde{\alpha}(\mathfrak{w})) = \alpha(\mathfrak{w}) \in \alpha(W'), \quad \text{or} \quad \beta(W' \times (\mathbb{C} - \{0\})) \subseteq \varrho^{-1}(\alpha(W')).$$

And if $\mathfrak{z} \in \varrho^{-1}(\alpha(W'))$, then $\varrho(\mathfrak{z}) = \alpha(\mathfrak{w})$ for some $\mathfrak{w} \in W'$ and $\mathfrak{z} = v \tilde{\alpha}(\mathfrak{w})$ for some $v \in \mathbb{C} - \{0\}$. Then $u = v \cdot \alpha_v(\mathfrak{w}) \neq 0$. Hence $\beta(\mathfrak{w}, u) = \frac{u}{\alpha_v(\mathfrak{w})} \tilde{\alpha}(\mathfrak{w}) = v \tilde{\alpha}(\mathfrak{w}) = \mathfrak{z}$, and so $\varrho^{-1}(\alpha(W')) \subseteq \beta(W' \times (\mathbb{C} - \{0\}))$. Thus $\beta \colon W' \times (\mathbb{C} - \{0\}) \to \varrho^{-1}(\alpha(W')) \subset N$ is bijective, holomorphic, and $\varrho^{-1}(\alpha(W')) = \sigma^{-1}(\alpha(W'))$ is open in N and $\beta(0, a_v) = \frac{a_v}{\alpha_v(0)} \tilde{\alpha}(0) = \mathfrak{a}$. Now $\operatorname{rank}_{(\mathfrak{w}, u)} \beta(\mathfrak{w}, u) = \operatorname{rank}_{(\mathfrak{w}, u)} \frac{\partial(u f_1(\mathfrak{w}), \dots, u f_{v-1}(\mathfrak{w}), u, u f_{v+1}(\mathfrak{w}), \dots, u f_n(\mathfrak{w}))}{\partial(w_1, \dots, w_{p-1}, u)}$ $= 1 + \operatorname{rank}_{\mathfrak{w}} \frac{\partial(u f_1(\mathfrak{w}), \dots, u f_{v-1}(\mathfrak{w}), u f_{v+1}(\mathfrak{w}), \dots, u f_n(\mathfrak{w}))}{\partial(w_1, \dots, w_{p-1})}$

$$= p$$
 for $(\mathfrak{w}, u) \in W' \times (\mathbb{C} - \{0\})$.

Thus β gives local coordinates of N at a. And $\sigma \circ \beta(w, u) = \alpha(w)$, or $\alpha^{-1} \circ \sigma \circ \beta(w, u) = w$. Thus if $\tilde{\pi}: W' \times (\mathbb{C} - \{0\}) \to W'$ is the projection, $\operatorname{rank}_{a} \sigma = \operatorname{rank}_{a} \alpha^{-1} \circ \sigma \circ \beta$ = $\operatorname{rank}_{a} \tilde{\pi} = p - 1$. q.e.d.

Then Fubini's Theorem implies

$$\int_{T_0^r} v \wedge \omega_{p-1} = \int_{N \cap B_r} l^* v \wedge l^* \omega_{p-1} = \int_{N \cap B_r} l^* v \wedge l^* \varrho^* (\ddot{\omega}_{p-1})$$

$$= \int_{N \cap B_r} l^* v \wedge \sigma^* (j^* \ddot{\omega}_{p-1})$$

$$= \int_{a \in Q} \left(\int_{\sigma^{-1}(a) \cap B_r} l^* v \right) j^* \ddot{\omega}_{p-1}$$

$$= \int_{a \in T} \left(\int_{\sigma^{-1}(a) \cap B_r} l^* v \right) \ddot{\omega}_{p-1}$$

where $\sigma^{-1}(a) \cap B_r = \{za \mid 0 < |z| < r\}$, a chosen such that $\varrho(a) = \sigma(a) = a$ and |a| = 1. Identify V with \mathbb{C}^n by means of an orthonormal basis. Let $a = (a_1, ..., a_n)$. Define $j_a: \{z \mid 0 < |z| < r\} \rightarrow V - \{0\}$ by $j_a(z) = za$. Then $v = \frac{i}{2} \sum_{v=1}^n dz_v \wedge d\overline{z_v}$, and $j_a^* v = \frac{i}{2} \sum_{v=1}^n a_v \overline{a_v} dz \wedge d\overline{z} = \frac{i}{2} dz \wedge d\overline{z}$. Thus $\int_{\sigma^{-1}(a) \cap B_r} v^* v = \int_{0 < |z| < r} j_a^* v$ $= \int_{0 < |z| < r} \frac{i}{2} dz \wedge d\overline{z} = \pi r^2.$ Hence $\int_{T_0} v \wedge \omega_{p-1} = \pi r^2 \int_{\overline{r}} \overline{\omega}_{p-1},$

and

$$\frac{1}{W_{p}r^{2p}}\int_{T_{0}} \upsilon_{p} = \frac{(p-1)!}{\pi^{p}r^{2}} \frac{p}{r^{2p-2}} \int_{T_{0}} \upsilon_{p}$$
$$= \frac{(p-1)!}{\pi^{p}r^{2}} \int_{T_{0}} \upsilon \wedge \omega_{p-1}$$
$$= \frac{(p-1)!}{\pi^{p-1}} \int_{T_{0}} \dddot{\omega}_{p-1}.$$

Now \ddot{T} is a pure (p-1)-dimensional analytic set in P(V), and so, from Chow's Theorem, \ddot{T} is an algebraic set. From a result of G. DE RHAM, [4],

$$\frac{(p-1)!}{\pi^{p-1}}\int\limits_{T}\ddot{\omega}_{p-1}=m\,,$$

where m, a positive integer, is the degree of the algebraic set T. With the desire do make this paper as self-contained as possible, the fact that

$$\frac{(p-1)!}{\pi^{p-1}}\int\limits_{\vec{\tau}}\ddot{\omega}_{p-1}$$

is a positive integer will also be proven here, by means of a method suggested by W. STOLL.

Proposition 2.4. Let W be an (n + 1)-dimensional complex vector space with a hermitian product. Let $\mathbf{P}(W)$ be the projective space. Let A be an analytic set in $\mathbf{P}(W)$ of pure dimension q > 0. Then

$$\frac{q!}{\pi^q} \int_A \ddot{\omega}_q$$

is a positive integer.

Proof. Since A has only a finite number of branches A_{λ} , $\lambda = 1, ..., k$, and because

$$\frac{q!}{\pi^q} \int\limits_{A} \ddot{\omega}_q = \sum_{\lambda=1}^k \frac{q!}{\pi^q} \int\limits_{A_\lambda} \ddot{\omega}_q$$

it is enough to prove the theorem for A irreducible. The proof is by induction on d = n - q. For d = 0, $A = \mathbf{P}(W)$, and

$$\frac{n!}{\pi^n} \int\limits_{\mathbf{P}(W)} \ddot{\omega}_n = 1 \; .$$

Now assume the proposition true for $n-q \leq d-1$, and let A be an irreducible, q-dimensional analytic set in $\mathbf{P}(W)$, where W is a vector space of dimension n+1, and where $n-q=d \geq 1$. If n=1, q=0 and the proposition is trivial. Thus assume $n \geq 2$. Choose a point $s \in \mathbf{P}(W)$, $s \notin A$. Choose an orthonormal basis of W in such a way that if W is identified with \mathbf{C}^{n+1} and $\mathbf{P}(W)$ with $\mathbf{P}(\mathbf{C}^{n+1}) = \mathbf{P}^n$, and if $\varrho: \mathbf{C}^{n+1} - \{0\} \rightarrow \mathbf{P}^n$ is the residual map, then the point $\mathbf{s} = (1, 0, ..., 0) \in \mathbf{C}^{n+1}$ is in $\varrho^{-1}(s)$. Denote $\varrho(z_0, z_1, ..., z_n) = (z_0: z_1: ...: z_n) \in \mathbf{P}^n$ for $0 \neq 3 = (z_0, ..., z_n) \in \mathbf{C}^{n+1}$. Let $\mathbf{P}^{n-1} = \mathbf{P}(\mathbf{C}^n)$, $\tilde{\varrho}: \mathbf{C}^n - \{0\} \rightarrow \mathbf{P}^{n-1}$ the residual map, $\tilde{\varrho}(z_1, ..., z_n) = (z_1: ...: z_n)$ for $0 \neq (z_1, ..., z_n) \in \mathbf{C}^n$. Define $\pi: \mathbf{P}^n - \{s\} \rightarrow$ $\rightarrow \mathbf{P}^{n-1}$ by $\pi(z_0: z_1: ...: z_n) = (z_1: ...: z_n)$. Let $a \in \mathbf{P}^{n-1}$. Then $\pi^{-1}(a) \cap A$ is analytic in the complex manifold $\pi^{-1}(a)$, and, if it contains an interior point, then $\pi^{-1}(a) \cap A = \pi^{-1}(a)$. But this would imply that $s \in A$, a contradiction. Hence $\pi^{-1}(a) \cap A$ consists of isolated points for every $a \in \mathbf{P}^{n-1}$. Clearly $\pi \mid A$ is a proper map. Hence $\pi(A) = B$ is an irreducible, q-dimensional analytic set in \mathbf{P}^{n-1} . Thus, from the induction assumption,

$$\frac{q!}{\pi^q}\int_B\tilde{\omega}_q$$

is a positive integer, say m_1 , where $\tilde{\omega}_q$ is the volume element in \mathbf{P}^{n-1} associated to the hermitian product $(\mathfrak{z} | \mathfrak{w}) = \sum_{\nu=1}^n z_\nu \overline{w_\nu}$ on \mathbf{C}^n .

Let S(A) be the set of non-simple points of A. Then $\pi(S(A))$ is an analytic set, thin in B. Let $B' = \dot{B} - \pi(S(A))$. Now B irreducible, $\pi(S(A))$ thin, implies that B' is a connected q-dimensional complex manifold. Let $A' = \pi^{-1}(B') \cap A$ $= \pi^{-1}(B') \cap \dot{A}$, a q-dimensional complex manifold. Let $\tau = \pi | A'$. Then $\tau(A') = B'$. Let $N = \{a \in A' | \operatorname{rank}_a \tau < q\}$. Then N is a thin analytic set in A', and τ proper and $\tau^{-1}(b)$ discrete for $b \in B'$ implies that $\tau(N)$ is a thin analytic set in B'. Hence $B'' = B' - \tau(N)$ is connected. Let $A'' = \tau^{-1}(B'') = \pi^{-1}(B'') \cap A'$, and $\sigma = \tau | A''$. Then $\sigma : A'' \to B''$ is proper, and hence σ is an unrestricted or regular covering map of the complex manifold A'' onto the connected complex manifold B''. Therefore the number m_2 of points in $\sigma^{-1}(b)$ for $b \in B''$ is independent of band finite. The map σ is of maximal rank with $\sigma(A'') = B''$. Hence from STOLL [6, Satz 6],

and so,

$$\int_{B''} m_2 \tilde{\omega}_q = \int_{A''} \sigma^* \tilde{\omega}_q ,$$
$$\int_{B} m_2 \tilde{\omega}_q = \int_{A} \pi^* \tilde{\omega}_q .$$

Define the following operators on an n-dimensional complex manifold:

$$\partial = \sum_{\nu=1}^{n} \frac{\partial}{\partial z_{\nu}} dz_{\nu} \qquad \overline{\partial} = \sum_{\nu=1}^{n} \frac{\partial}{\partial \overline{z}_{\nu}} d\overline{z}_{\nu}.$$

Then $d = \partial + \overline{\partial}$.

Define $E_{\lambda} = \{3 \in \mathbb{C}^{n+1} | 3 = (z_0, ..., z_n), z_{\lambda} \neq 0\}$ for $\lambda = 0, 1, ..., n$. Let $U_{\lambda} = \varrho(E_{\lambda})$. Define, for

$$\zeta \in U_{\lambda}, \quad f_{\lambda}(\zeta) = \frac{|\mathfrak{z}|}{|z_{\lambda}|}, \quad g_{\lambda}(\zeta) = \frac{|z_{1}|^{2} + \dots + |z_{n}|^{2}}{|z_{\lambda}|^{2}}$$

where $\mathfrak{z} = (z_0, z_1, ..., z_n) \in \varrho^{-1}(\zeta)$. Note that f_{λ} and g_{λ} are independent of the choice of $\mathfrak{z} \in \varrho^{-1}(\zeta)$. Then, for any λ , $0 \leq \lambda \leq n$, it can be shown that $\ddot{\omega}(\zeta) = i \partial \overline{\partial} \log f_{\lambda}(\zeta)$ for $\zeta \in U_{\lambda}$, and similarly, $\pi^* \tilde{\omega}(\zeta) = (i/2) \partial \overline{\partial} \log g_{\lambda}(\zeta)$ for $\zeta \in U_{\lambda} - \{s\}$. Define, for $\zeta \in \mathbf{P}^n - \{s\}$, $h(\zeta) = \frac{|\mathfrak{z}|^2}{|z_1|^2 + \cdots + |z_n|^2}$, where $\mathfrak{z} = (z_0, ..., z_n) \in \varrho^{-1}(\zeta)$. Let $\theta(\zeta) = (i/2) \partial \overline{\partial} \log h(\zeta)$, $\zeta \in \mathbf{P}^n - \{s\}$. Now on $U_{\lambda} - \{s\}$, for any $0 \leq \lambda \leq n$, $\ddot{\omega} - \pi^* \tilde{\omega} = \frac{i}{2} \partial \overline{\partial} \log f_{\lambda}^2 - \frac{i}{2} \partial \overline{\partial} \log g_{\lambda}$

$$= \frac{i}{2} \partial \overline{\partial} \log \frac{f_{\lambda}^{2}}{g_{\lambda}}$$
$$= \frac{i}{2} \partial \overline{\partial} \log h = \theta.$$

Now $\bigcup_{\lambda=0}^{n} (U_{\lambda} - \{s\}) = \mathbf{P}^{n} - \{s\}$, and so

$$\theta = \ddot{\omega} - \pi^* \tilde{\omega}$$
 on $\mathbf{P}^n - \{s\}$.

Define $\varphi(\zeta) = (i/2) \overline{\partial} \log h(\zeta)$ for $\zeta \in \mathbf{P}^n - \{s\}$. Then $d\varphi = (\partial + \overline{\partial})(\varphi) = \partial \varphi = \theta$, and $\ddot{\omega}^q = (d\varphi + \pi^* \tilde{\omega})^q$

$$=\sum_{\mu=0}^{q} {\binom{q}{\mu}} (d\varphi)^{q-\mu} \wedge (\pi^* \tilde{\omega})^{\mu},$$
$$\ddot{\omega}^{q} - \pi^* \tilde{\omega}^{q} = \sum_{\mu=0}^{q-1} {\binom{q}{\mu}} (d\varphi)^{q-\mu} \wedge (\pi^* \tilde{\omega})^{\mu}.$$

Define

$$\xi = \sum_{\mu=0}^{q-1} {\binom{q}{\mu}} (d\varphi)^{q-\mu-1} \wedge (\pi^* \tilde{\omega})^{\mu} \quad \text{on} \quad \mathbf{P}^n - \{s\}$$

Then $d\xi = 0$ $(d\pi^* \tilde{\omega} = \pi^* d\tilde{\omega} = 0)$, and $\ddot{\omega}^q - \pi^* \tilde{\omega}^q = d\varphi \wedge \xi = d(\varphi \wedge \xi)$. Let $\psi = \frac{\varphi \wedge \xi}{q!}$ on $\mathbf{P}^n - \{s\}$.

Then $\ddot{\omega}_q - \pi^* \tilde{\omega}_q = d\psi$. Hence, from a previously quoted theorem of LELONG [3, Theoreme 7],

$$\int_{A} (\ddot{\omega}_{q} - \pi^{*} \tilde{\omega}_{q}) = \int_{A} d\psi = 0 \quad (s \notin A).$$

Consequently,

$$\frac{\pi^q}{q!}\int\limits_A \ddot{\omega}_q = \frac{\pi^q}{q!}\int\limits_A \pi^* \tilde{\omega}_q = \frac{\pi^q}{q!}\int\limits_B m_2 \tilde{\omega}_q = m_1 m_2, a$$

positive integer.

The results of this section are summarized in the following

Theorem 2.5. Let V be an n-dimensional complex vector space with a hermitian product. Let $T \in V$ be a pure p-dimensional analytic cone with center 0. Suppose p > 0. Then

$$\frac{1}{W_p r^{2p}} \int_{T_{\delta}} v_p$$

is a positive integer independent of r.

Proof. For p = n, the theorem is trivial, and for $2 \le p \le n - 1$, the theorem has already been proven. If p = 1 and T is irreducible, then, for any $0 \ne a \in T$, $T = \{ua | u \in \mathbb{C}\}$, and so $\frac{1}{\pi r^2} \int v = 1$. Thus for p = 1 and T arbitrary, $\frac{1}{\pi r^2} \int v$ equals the number of irreducible branches of T, a finite integer.

§ 3. The tangent cone

Let V be now a fixed n-dimensional complex vector space with a hermitian product. Let M be a pure p-dimensional analytic set in an open subset G of V such that $0 \in M$. Then t is said to be a *tangent vector to* M at 0 if there exists a sequence $\{3_{\lambda}\}, 3_{\lambda} \in M, 3_{\lambda} \neq 0$, such that $3_{\lambda} \to 0$ and $\frac{3_{\lambda}}{|3_{\lambda}|} \to t$ as $\lambda \to \infty$. The set $T = \{ut | u \in \mathbb{C}, t \text{ a tangent vector to } M \text{ at } 0\}$, is called the *tangent cone* to M at 0. It will be shown that T is a pure p-dimensional analytic set in V. This has also recently been proven by H.WHITNEY in [10]. However the proof given here uses a natural geometrical construction which is essential to the remainder of this work.

Define

$$H = \{(\mathfrak{z}, w) | w\mathfrak{z} \in G, \mathfrak{z} \in V, w \in \mathbb{C}\}$$

$$N^* = \{(\mathfrak{z}, w) | w\mathfrak{z} \in M, \mathfrak{z} \in V, w \in \mathbb{C}\} \subset H$$

$$\pi \colon V \oplus \mathbb{C} \to V, \text{ projection}$$

$$\tau \colon V \oplus \mathbb{C} \to \mathbb{C}, \text{ projection}$$

$$E = V \times \{0\} = \tau^{-1}(0)$$

$$N = \overline{(N^* - E)} \cap H$$

$$N(w) = \tau^{-1}(w) \cap N.$$

q.e.d.

Extend the hermitian product on V to a product on $V \oplus \mathbb{C}$ by defining, for (\mathfrak{z}, w) and $(\mathfrak{z}', w') \in V \oplus \mathbb{C}$, $((\mathfrak{z}, w)|(\mathfrak{z}', w')) = (\mathfrak{z}|\mathfrak{z}') + w \overline{w}'$, where (|) is the given hermitian product on V.

Proposition 3.1. N is a pure (p+1)-dimensional analytic set in H, and $\pi(N(0)) = \pi(N \cap E) = T$ is a pure p-dimensional analytic set in V.

Proof. Define $\gamma: V \oplus \mathbb{C} \to V$ by $\gamma(\mathfrak{z}, w) = w\mathfrak{z}$. Then γ is holomorphic, $\gamma^{-1}(G) = H$, and $\gamma^{-1}(M) = N^*$. Hence N^* is analytic in H. Define $\alpha: H - E \to G \times (\mathbb{C} - \{0\})$ by $\alpha(\mathfrak{z}, w) = (\mathfrak{z}, w)$. Then α is biholomorphic, and $\alpha(N^* - E) = M \times (\mathbb{C} - \{0\})$. Hence, for $w \neq 0$,

 $\dim_{(\mathfrak{z},\mathfrak{w})} N^* = \dim_{(\mathfrak{w},\mathfrak{z},\mathfrak{w})} M \times (\mathbb{C} - \{0\}) = 1 + \dim_{\mathfrak{w},\mathfrak{z}} M.$

Therefore *M* pure *p*-dimensional implies that $N^* - E$ is pure (p + 1)-dimensional in $V \times (\mathbb{C} - \{0\})$. Now, from general theory, $H \cap \overline{(N^* - E)} = N$ is analytic in *H*, and, for points in $E \cap N$, *N* can be expressed locally as the union of the irreducible branches of N^* not contained in *E*. Hence *N* is pure (p + 1)-dimensional and $N \cap E = N(0) = N \cap \{(3, w) | w = 0\}$ is *p*-dimensional.

Finally, $\pi(N \cap E) = T$: Since $(0, w) \in N^*$ for any $w, 0 \in \pi(N \cap E)$. Let $zt \in T$, $zt \neq 0$. There exists a sequence $\{3_{\lambda}\}, \ 3_{\lambda} \in M - \{0\}$, such that $3_{\lambda} \to 0$ and $\frac{3_{\lambda}}{|3_{\lambda}|} \to t$ as $\lambda \to \infty$. Then $\left(\frac{z \, 3_{\lambda}}{|3_{\lambda}|}, \frac{|3_{\lambda}|}{z}\right) \in N^* - E$, and $\left(\frac{z \, 3_{\lambda}}{|3_{\lambda}|}, \frac{|3_{\lambda}|}{z}\right) \to (zt, 0)$. Thus $T \subset \pi(N \cap E)$. Conversely, let $3 \in \pi(N \cap E)$ and assume that $3 \neq 0$. There exists a sequence $\{(3_{\lambda}, w_{\lambda})\}, (3_{\lambda}, w_{\lambda}) \in N^* - E$ such that $3_{\lambda} \to 3$, $w_{\lambda} \to 0$, and $3_{\lambda} \neq 0$. Then $3_{\lambda} w_{\lambda} \in M - \{0\}$, and $3_{\lambda} w_{\lambda} \to 0$ as $\lambda \to \infty$. There exists a subsequence of $\{w_{\lambda}\}$, say $\{w_{\lambda_{\nu}}\}$, such that $\frac{w_{\lambda_{\nu}}}{|w_{\lambda_{\nu}}|}$ converges, say $\frac{w_{\lambda_{\nu}}}{|w_{\lambda_{\nu}}|} \to u$, as $v \to \infty$. Let $t = \lim_{\nu \to \infty} \frac{3_{\lambda_{\nu}} w_{\lambda_{\nu}}}{|3_{\lambda_{\nu}} w_{\lambda_{\nu}}|}$. Then $3 = \frac{|3|}{u}$ t $\in T$. Thus $\pi(N \cap E) \subset T$. q.e.d. Define $I(w, r) = \int_{\pi(N(w)) \cap B_r} v_p$ for $0 \le r < \frac{R}{|w|}$, where $B_R \subset G$, and $\pi(N(w)) \cap B_r$ $= \{3 \in V \mid (3, w) \in N(w), |3| < r\}$. Note that $I(w, r)/r^{2p}$ is monotonic increasing in r, and that $n(r, m) = \frac{1}{W_p r^{2p}} I(1, r)$. Define $W = \{w \mid 0 < \mid w \mid \le 1\}$. For $w \in W$ and 0 < r < R, define $g: M_0^r \to \pi(N(w))$

by $g(\mathfrak{z}) = \frac{\mathfrak{z}}{\mathfrak{w}}$. Then $g(M_0^r) = \pi(N(\mathfrak{w})) \cap B_{r/|\mathfrak{w}|}$, and $I\left(\mathfrak{w}, \frac{r}{|\mathfrak{w}|}\right) = \int_{\pi(N(\mathfrak{w})) \cap B_{r/|\mathfrak{w}|}} \mathfrak{v}_p$ $= \int_{M_0^r} g^*(\mathfrak{v}_p)$ $= \int \frac{1}{|\mathfrak{w}|^{2p}} \mathfrak{v}_p = \frac{I(1, r)}{|\mathfrak{w}|^{2p}}.$ Thus $I(1, r) = |w|^{2p} I(w, r/|w|)$, and

$$I(w, s) = \frac{1}{|w|^{2p}} I(1, |w|s), \text{ letting } r = |w|s.$$

For $w, w' \in W$,

$$|w|^{2p} I(w, r/|w|) = I(1, r) = |w'|^{2p} I(w', r/|w'|),$$

$$I\left(w, \frac{r}{|w|}\right) = \left|\frac{w'}{w}\right|^{2p} I\left(w', \frac{r}{|w'|}\right)$$

$$I(w, s) = \left|\frac{w'}{w}\right|^{2p} I\left(w', \frac{s|w|}{|w'|}\right).$$

Define

$$l(w) = \lim_{r \to 0} \frac{I(w, r)}{r^{2p}}$$

=
$$\lim_{r \to 0} \frac{I(1, |w| r)}{|w|^{2p} r^{2p}}$$

=
$$\lim_{s \to 0} \frac{I(1, s)}{s^{2p}} = l(1)$$

for all $w \in W$.

Lemma 3.2. $\frac{I(w, r)}{r^{2p}} \rightarrow l(w)$ uniformly on W as $r \rightarrow 0$.

Proof.

$$0 \leq \frac{I(w, r)}{r^{2p}} - l(w)$$

= $\frac{I(1, r|w|)}{(r|w|)^{2p}} - l(1) \leq \frac{I(1, r)}{r^{2p}} - l(1)$.

Now if |w| = |w'|, then I(w, r) = I(w', r). And if

$$|w| < |w'|, \ I(w, r) = \left|\frac{w'}{w}\right|^{2p} I\left(w', \frac{r|w|}{|w'|}\right)$$
$$= \frac{I(w', r|w|/|w'|)}{(r|w|/|w'|)^{2p}} < I(w', r)$$

Thus $\lim_{w \to 0} I(w, r)$ exists, 0 < r < R. Hence, for $w \in W$,

$$\begin{split} n(r, M) &= \frac{1}{W_p r^{2p}} I(1, r) = \frac{|w|^{2p}}{W_p r^{2p}} I\left(w, \frac{r}{|w|}\right),\\ n(0, M) &= \lim_{r \to 0} \frac{1}{W_p} \frac{I(w, r/|w|)}{(r/|w|)^{2p}} \\ &= \lim_{s \to 0} \frac{I(w, s)}{W_p s^{2p}}. \end{split}$$

q.e.d.

_ /

Thus

$$n(0, M) = \lim_{w \to 0} \lim_{r \to 0} \frac{I(w, r)}{W_p r^{2p}}$$

=
$$\lim_{r \to 0} \lim_{w \to 0} \frac{I(w, r)}{W_p r^{2p}}$$

=
$$\lim_{r \to 0} \frac{1}{W_p r^{2p}} \lim_{w \to 0} I(w, r)$$

In the next section, $\lim_{w\to 0} I(w, r)$ will be related to $\int_{T_0} v_p$, and thus, the results of § 2 can be applied to determine n(0, M).

§ 4. A continuity theorem

A. Multiplicity of a holomorphic map

It is necessary to introduce the concept of multiplicity of a holomorphic map as the multiplicity of $\tau | N$ must be considered in the proof of the continuity of the area. Let X and Y be complex spaces and let $\sigma: X \to Y$ be a holomorphic map. Then σ is said to be *non-degenerate* if the fibers $\sigma^{-1}(\sigma(x))$ consists of isolated points only.

Let X be a normal complex space, Y a complex space, and $\sigma: X \to Y$ a holomorphic, non-degenerate map. Take $a \in X$. Take any open neighborhood U of a such that \overline{U} is compact and such that $\overline{U} \cap \sigma^{-1}(\sigma(a)) = \{a\}$. Such a neighborhood exists. Define

$$\mu_U(x,\sigma) = \# U \cap \sigma^{-1}(\sigma(x)) \quad \text{for} \quad x \in U \,,$$

where #A denotes the number of elements of A for a finite set A, defining #A to be 0 if A is empty and #A to be ∞ if A is infinite. The number $v_U(a, \sigma)$ = $\limsup_{x \to a} \mu_U(x, \sigma)$ is independent of U [9, Lemma 2.1], and is denoted by $v(a, \sigma)$. Note that if $\varrho': X' \to X$ is a biholomorphic map from a normal complex space X', then, for $a' \in X'$, $v(a', \sigma \circ \varrho') = v(\varrho'(a'), \sigma)$.

Let X be now an arbitrary complex space and $\sigma: X \to Y$ be again a holomorphic, non-degenerate map. Let \hat{X} be the normalization of X, and $\varrho: \hat{X} \to X$ the normalization map (see for example S. ABHYANKAR [1]). Then $\sigma \circ \varrho: \hat{X} \to Y$ is a holomorphic, non-degenerate map, as $\varrho^{-1}(a)$ consists of only a finite number of points for each $a \in X$. Define $v(a, \sigma) = \sum_{\hat{a} \in \varrho^{-1}(a)} v(\hat{a}, \sigma \circ \varrho)^{1}$.

Let X be again normal, and $\sigma: X \to Y$ a holomorphic map such that $\sigma^{-1}(\sigma(x))$ is an analytic set of pure dimension q for every $x \in X$. Suppose that X has pure dimension k. Take $a \in X$. Let Γ_a be the set of sets A satisfying the following conditions:

1. An open neighborhood U_A of a exists such that $a \in A \subset U_A$ and such that A is analytic and of pure dimension k - q in U_A .

2. The closure $\overline{U_A}$ is compact.

3. The restriction $\sigma | A$ is non-degenerate.

¹ Notice that the definition of multiplicity if X is normal does not require the fact that X is normal to be meaningful. Thus a multiplicity, not always equal to the one defined above, could be defined without passing to the normalization of X. See Section 4C.

Lemma 4.1. Γ_a as defined above is non-empty.

Proof. There exists an open, connected neighborhood $U \in X$ of a and a proper, holomorphic map $\varphi: U \to D$ where D is an open set in \mathbb{C}^k such that \overline{U} is compact, $\varphi(U) = D$, $\overline{\varphi}(a) = 0$, $\varphi^{-1}(0) = a$, $\varphi^{-1}(z)$ consists of isolated points for all $z \in D$, and, if S is an analytic set in an open set $U_1 \subset U$, then either S consists of isolated points or else there exists a sequence $\{x_n\}$ such that $x_n \in S$ and $x_v \to x_0 \in \overline{U}_1 - U_1$ as $v \to \infty$. Let $\sigma^{-1} \sigma(a) = L$ and $L = \varphi(L \cap U)$, a q-dimensional analytic set in D. There exists an open neighborhood $D' \subset D$ of 0 and a set $A' \subset D'$ analytic in D' and of pure dimension k-q such that $A' \cap L' = \{0\}$. Let $A'' = \varphi^{-1}(A')$, an analytic set of pure dimension k - q in $\varphi^{-1}(D')$, an open neighborhood of a. Choose an open neighborhood Q of a such that $Q \subset \overline{Q} \subset \overline{Q}$ $\subset \varphi^{-1}(D')$. Now it is claimed that there exists an open neighborhood $W \subset Y$ of $\sigma(a)$ such that $x \in (\overline{Q} - Q) \cap A^{"}$ implies that $\sigma(x) \notin W$. For suppose that there exists a sequence $x_v \in (\overline{Q} - Q) \cap A''$ such that $\sigma(x_v) \to \sigma(u), v \to \infty$. Since $(\overline{Q}-Q) \cap A''$ is compact, $\{x_{y}\}$ contains a convergent subsequence. Without loss of generality, assume $x_v \to x_0 \in (\overline{Q} - Q) \cap A''$ as $v \to \infty$. Then $\sigma(x_0) = \sigma(a)$, and so $x_0 \in \sigma^{-1} \sigma(a) \cap U = L \cap U$. Thus $\varphi(x_0) \in L'$. And $x_0 \in A''$ implies $\varphi(x_0) \in A'$. Therefore $\varphi(x_0) \in L' \cap A' = \{0\}$, and so $\varphi(x_0) = 0$. Therefore $x_0 = a \in Q$, a contradiction, and so the claim is established. Choose such a W. Define

$$U_A = Q \cap \sigma^{-1}(W), \quad A = A'' \cap U_A.$$

Then U_A is an open neighborhood in X of a, \overline{U}_A is compact, and A is a pure (k-q)-dimensional analytic set in U_A . Take any $b \in A$. Then $\sigma^{-1}\sigma(b) \cap A$ is an analytic set in U_A . Suppose that there exists a sequence $\{x_\nu\}$ such that $x_\nu \in \sigma^{-1}\sigma(b) \cap A$ and $x_\nu \to x_0 \in \overline{U}_A - U_A$ as $\nu \to \infty$. Then $x_\nu \in A \subset \overline{Q} \cap A''$ implies that $x_0 \in \overline{Q}$ and $x_0 \in A''$. And $x_\nu \in \sigma^{-1}\sigma(b)$ implies $x_0 \in \sigma^{-1}\sigma(b)$, and so $\sigma(x_0) = \sigma(b) \in W$. Thus $x_0 \in \sigma^{-1}(W)$. But $x_0 \notin U_A = Q \cap \sigma^{-1}(W)$, and so $x_0 \notin Q$. Hence $x_0 \in (\overline{Q} - Q) \cap A''$, and so $\sigma(x_0) \notin W$ by the choice of W, a contradiction. Consequently, $\sigma^{-1}\sigma(b) \cap A$ consists of isolated points only, that is, $\sigma | A$ is non-degenerate. q.e.d.

Thus, for $\sigma: X \to Y$ holomorphic, X normal, $\sigma^{-1}(\sigma(x))$ a pure q-dimensional analytic set for $x \in X$, define, for $a \in X$,

$$v(a,\sigma)=\mathop{\rm Min}_{A\in\Gamma_a}v(a,\sigma\,|\,A)\,.$$

Note again that if $\varrho': X' \to X$ is a biholomorphic map, then, for $a' \in X'$, $v(a', \sigma \circ \varrho') = v(a, \sigma)$ where $a = \varrho'(a')$. For if $A' \in \Gamma_{a'}$, then $\varrho'(A') = A \in \Gamma_a$ and $\varrho' \mid A': A' \to A$ is biholomorphic. Thus $v(a', \sigma \circ \varrho' \mid A') = v(a, \sigma \mid A)$ and so $v(a', \sigma \circ \varrho') \ge v(a, \sigma)$. Similarly, if $A \in \Gamma_a$, then $(\varrho')^{-1}(A) \in \Gamma_{a'}$, and so $v(a, \sigma) \le \le (a', \sigma \circ \varrho')$. Hence $v(a, \sigma) = v(a', \sigma \circ \varrho')$.

Finally, let X and Y be arbitrary complex spaces, and let $\sigma: X \to Y$ be a holomorphic map such that $\sigma^{-1}(\sigma(x))$ is a pure q-dimensional analytic set for $x \in X$. Let \hat{X} be the normalization of X and $\varrho: \hat{X} \to X$ the normalization map. Define, for $a \in X$,

$$v(a,\sigma)=\sum_{\hat{a}\in\hat{X}}v(\hat{a},\sigma\circ\varrho)\,.$$

The more common concept of the *b*-multiplicity of a holomorphic function is also needed. Let f be a holomorphic function on an open, connected set L contained in a complex vector space W, and let $a \in L$. Then $f(\mathfrak{z}) = \sum_{\lambda=0}^{\infty} P_{\lambda}(\mathfrak{z}-\mathfrak{a})$, where the series converges uniformly to f in an open neighborhood of \mathfrak{a} . The term P_{λ} is either identically zero or a homogeneous polynomial of degree λ , and the terms P_{λ} are uniquely defined by f. If $f \neq 0$ on L, then the smallest index λ_0 such that $P_{\lambda_0} \neq 0$ is called the zero-multiplicity of f at \mathfrak{a} , and denoted by $v(\mathfrak{a}, 0, f)$. For $b \in \mathbb{C}$, define the *b*-multiplicity of f at \mathfrak{a} , $v(\mathfrak{a}, b, f)$, tobe the zero-multiplicity of the function $f(\mathfrak{z}) - b$ at \mathfrak{a} .

Proposition 4.2. Let $f \equiv 0$ be a holomorphic function on an open, connected set $L \subset \mathbb{C}^m$. Let $\mathfrak{a} \in L$. Then $v(\mathfrak{a}, f) = v(\mathfrak{a}, f(\mathfrak{a}), f)$.

Proof (see STOLL [9], Lemma 2.3). For n=1, the proposition has been proven by W. STOLL [9, Lemma 2.2]. Assume $n \ge 2$. The fiber $f^{-1}(f(\mathfrak{z}))$ is analytic and has pure dimension n-1. In an open neighborhood $U \in L$ of a,

$$f(\mathfrak{z}) = f(\mathfrak{a}) + \sum_{\lambda=q}^{\infty} P_{\lambda}(\mathfrak{z}-\mathfrak{a}),$$

where P_{λ} is a homogeneous polynomial of degree λ or identically zero, and where $P_q \equiv 0$. Take any $A \in \Gamma_a$. Let \hat{A} be the normalization of A, $\varrho: \hat{A} \to A$ the associated map. Let $\hat{a}_1 \in \varrho^{-1}(\mathfrak{a})$. An open neighborhood \hat{U}_1 of \hat{a}_1 and a biholomorphic map $g: L_1 \to \hat{U}_1$ of an open neighborhood L_1 of $0 \in \mathbb{C}$ exists such that $g(0) = \hat{a}_1$ and $\varrho(g(L_1)) = \varrho(\hat{U}_1) \subset U \cap A$. Then $v(0, f \mid A \circ \varrho \circ g) = (\hat{a}_1, f \mid A \circ \varrho)$. But, for $t \in L_1$,

$$f | A \circ \varrho \circ g(t) = f(\varrho(g(0))) + \sum_{\lambda=q}^{\infty} P_{\lambda}(\varrho(g(t)) - \varrho(g(0)))$$
$$= f(\mathfrak{a}) + \sum_{\lambda=q}^{\infty} c_{\lambda} t^{\lambda}.$$

Therefore $v(\hat{a}_1, f | A \circ \varrho) = v(0, f | A \circ \varrho \circ g) \ge q$. Therefore $v(a, f | A) = \sum_{\hat{a} \in \varrho^{-1}(a)} v(\hat{a}, f | A \circ \varrho) \ge q$. Therefore $v(a, f) \ge q$. Take c such that $P_q(c) \ne 0$,

and define $A = \{a + tc | |t| < \varepsilon\}$, a one dimensional analytic set consisting only of normal points. Define g(t) = a + tc. Then

$$f(g(t)) = f(\mathfrak{a}) + \sum_{\lambda=q}^{\infty} P_{\lambda}(\mathfrak{c}) t^{\lambda} \quad (P_{\lambda}(\mathfrak{c}) \neq 0) \,.$$

Hence $A \in \Gamma_a$ if $\varepsilon > 0$ is small enough, and $v(\mathfrak{a}, f | A) = q$. Hence $v(\mathfrak{a}, f) = q$. q.e.d.

Recall now the definition of V, M, N, τ , π , etc. given in the beginning of § 3. Lemma 4.3. Let $(a, b) \in \dot{N}(b)$, where $\dot{N}(b)$ is the set of simple points of the

Lemma 4.3. Let $(a, b) \in N(b)$, where N(b) is the set of simple points of the analytic set N(b). Assume that $b \neq 0$. Then $v(a, b), \tau | N = 1$.

Proof. An open neighborhood U' of $0 \in \mathbb{C}^p$ and $\alpha: U' \to U$ biholomorphic exists where U is relative open in N(b) and $\alpha(0) = (a, b)$. It is $\alpha: U' \to V \oplus \mathbb{C}$ and rank_x $\alpha = p$ for each $x \in U'$. Define $\beta = \pi \circ \alpha$. Then $\alpha(x) = (\beta(x), b)$ and so rank_x $\beta = p$. Take r > 0 such that

$$\{(\mathfrak{z},b) \mid |\mathfrak{z}-\mathfrak{a}| \leq r\} \cap N(b) \subset \mathcal{U}.$$

Define

$$U = \{3 \mid 3 \in V, \mid 3 - a \mid < r\}$$

$$U'' = \alpha^{-1} ((U \times \{b\}) \cap N(b)) = \alpha^{-1} (\pi^{-1}(U) \cap N(b)) \subset U$$

$$W' = \{\lambda \mid |\lambda - | < 1/2, \lambda \in \mathbb{C}\}$$

$$Y = \left\{ (3, w) \mid \left| \frac{w}{b} \mid 3 - a \right| < r, |w - b| < \frac{|b|}{2} \right\}$$

$$\tilde{\alpha} : U'' \times W' \to V \oplus \mathbb{C},$$

defined by $\tilde{\alpha}(x, \lambda) = (\lambda^{-1} \beta(x), \lambda b)$. It will be shown, by means of $\tilde{\alpha}$, that $N \cap Y$ contains only simple points of N. Obviously U'' is open in U' and $0 \in U''$. Take $(x, \lambda) \in U'' \times W'$. Then $\alpha(x) \in N(b), \beta(x) = \pi(\alpha(x)) \in U$, and $\alpha(x) = (\beta(x), b) \in N$ implies $\tilde{\alpha}(x, \lambda) = (\lambda^{-1} \beta(x), \lambda b) \in N$ as $\lambda^{-1} \beta(x) \cdot \lambda b = \beta(x) b \in M$. Now $|\beta(x) - \alpha| < r$ as $\beta(x) \in U$. Hence $\left| \frac{\lambda b}{b} \frac{\beta(x)}{\lambda} - \alpha \right| = |\beta(x) - \alpha| < r$, and $|\lambda b - b| = |b| |\lambda - 1| < |b|/2$.

Hence $\tilde{\alpha}(x, \lambda) \in Y$. Therefore $\tilde{\alpha}: U'' \times W' \to N \cap Y$. Because β is one-one, $\tilde{\alpha}$ is also one-one. Let $x = (x_1, ..., x_p)$. Obviously $\tilde{\alpha}_{x_v}(x, \lambda) = (\lambda^{-1} \beta_{x_v}(x), 0), v = 1, ..., p$, and $\tilde{\alpha}_{\lambda}(x, \lambda) = (-\lambda^2 \beta(x), b)$, and so $\tilde{\alpha}_{x_1}, ..., \tilde{\alpha}_{x_p}, \tilde{\alpha}_{\lambda}$ are linearly independent over **C**. Thus rank $_{(x,\lambda)}\tilde{\alpha}(x, \lambda) = p + 1$. Define now $\hat{\alpha}: N \cap Y \to U'' \times W'$ by

$$\hat{\alpha}(\mathfrak{z},w) = \left(\alpha^{-1}\left(\frac{w\mathfrak{z}}{b},b\right),\frac{w}{b}\right)$$

If $(\mathfrak{z}, w) \in N \cap Y$, $\left| \frac{w\mathfrak{z}}{b} - \mathfrak{a} \right| < r$ and $\left(\frac{w\mathfrak{z}}{b}, b \right) = \left(\frac{\mathfrak{z}}{b/w}, \frac{b}{w} \cdot w \right) \in N(b)$. Thus

 $\left(\frac{w_3}{b}, b\right) \in U$ and so $\hat{\alpha}$ is defined. And $\hat{\alpha}$ is holomorphic. It is $|b^{-1}w - 1| = |b|^{-1} |w - b| < 1/2$, and so $\hat{\alpha}(3, w) \in U'' \times W'$. Now

$$\tilde{\alpha}(\hat{\alpha}(\mathfrak{z},w)) = \tilde{\alpha}\left(\alpha^{-1}\left(\frac{w\mathfrak{z}}{b},b\right),\frac{w}{b}\right)$$
$$= \left(\frac{b}{w}\beta\left(\alpha^{-1}\left(\frac{w\mathfrak{z}}{b},b\right)\right),\frac{w}{b}\cdot b\right)$$
$$= \left(\frac{b}{w}\cdot\frac{w\mathfrak{z}}{b},w\right) = (\mathfrak{z},w).$$

Therefore $\hat{\alpha}$ is surjective, and so, $\tilde{\alpha}$ is bijective. Thus $\tilde{\alpha}^{-1} = \hat{\alpha}$ and $\tilde{\alpha}: U'' \times W' \to N \cap Y$ is biholomorphic. Hence every point of $N \cap Y$ is a simple point, and so, considered as a complex space, $N \cap Y$ is normal. And $\tilde{\alpha}$ biholomorphic implies that $v((a, b), \tau | N) = v((0, 1), \tau | N \circ \tilde{\alpha})$, as $\tilde{\alpha}(0, 1) = (a, b)$. Define $f: U'' \times W' \to \mathbb{C}$ by $f(x, \lambda) = \lambda b$. Then $\tilde{\alpha}(x, \lambda) = (\lambda^{-1}\beta(x), f(x, \lambda))$, and $\tau | N \circ \tilde{\alpha} = f$. But v((0, 1), f) = v((0, 1), b, f), by Proposition 4.2, and v((0, 1), b, f) = 1. Therefore $v((a, b), \tau | N) = v((0, 1), b, f) = 1$.

Let \hat{N} be the normalization of N and $\varrho: \hat{N} \to N$ the normalization map. Let \hat{S} be the set of non-simple or singular points of \hat{N} . Then \hat{S} is an analytic set of dimension less than or equal dim $\hat{N} - 2 = p - 1$, as \hat{N} is normal [1, 45.15]. Let $S = \varrho(\hat{S})$. Then S is an analytic set in N of dimension less than or equal p - 1.

Recall that $T = \pi(N(0))$ was the tangent cone of M at 0. Now T is an algebraic set in V and so T has only finitely many irreducible branches $T_1, ..., T_b$, each branch being an analytic cone with center 0 and dimension p.

Lemma 4.4. For fixed $\lambda, v((\mathfrak{z}, 0), \tau | N)$ is constant on $(\dot{T} \times \{0\}) \cap (T_{\lambda} \times \{0\}) \cap (N - S)$.

Proof. Identify $V \times \{0\} = V$. Now $\dot{T} \cap T_{\lambda}$ is a smooth, connected submanifold of V containing $S \cap \dot{T} \cap T_{\lambda}$, a thin, analytic subset. Consequently $\dot{T} \cap T_{\lambda} \cap \cap (N-S)$ is connected. Thus it is sufficient to prove that $v((\mathfrak{z}, 0), \tau | N)$ is locally constant.

Let $a \in \dot{T} \cap T_{\lambda} \cap (N-S)$. Let $\{\hat{a}_1, ..., \hat{a}_q\} = \varrho^{-1}(a)$. For each i = 1, ..., q, there exist neighborhoods X_i^* of a_i and X_i'' of $0 \in \mathbb{C}^{p+1}$ and a biholomorphic map $\sigma_i: X_i'' \to \hat{X}_i^*$, $\sigma_i(0) = \hat{a}_i$. And there exist neighborhoods $U^* \subset N$ of a and W'' of $0 \in \mathbb{C}^p$ and a biholomorphic map $\alpha: W'' \to \dot{T} \cap T_{\lambda} \cap U^*$, $\alpha(0) = a$. Then there exists pairwise disjoint neighborhoods $\hat{X}_1, ..., \hat{X}_q$ of $\hat{a}_1, ..., \hat{a}_q$ in $\hat{X}_1^*, ..., \hat{X}_q^*$ and analytic sets $Y_1, ..., Y_q$ in a neighborhood U of a in U^* such that $\varrho^{-1}(U) = \bigcup_{i=1}^q \hat{X}_i, U = \bigcup_{i=1}^q Y_i$, and $\varrho(\hat{X}_i) = Y_i$ for each i = 1, ..., q, [1, 46.15]. Define $X_i' = \sigma_i^{-1}(\hat{X}_i) \subset X_i''$, and $\varrho_i = \varrho | \hat{X}_i: \hat{X}_i \to Y_i$, i = 1, ..., q, and

$$W' = \alpha^{-1} (U \cap T \cap T_{\lambda}) \subset W'', \quad W = \alpha(W').$$

Each Y_i is locally irreducible, and so ϱ_i is a topological map [1, 46.10].

Define, for i = 1, ..., q,

$$\begin{aligned} A'_i &= \{ x \in X'_i | \tau \circ \varrho_i \circ \sigma_i(x) = 0 \} \\ &= \sigma_i^{-1} (\varrho_i^{-1}(Y_i \cap W)), \\ \tilde{\sigma}_i &= \varrho_i \circ \sigma_i | A'_i : A'_i \to Y_i \cap W, \end{aligned}$$

a topological, holomorphic map. Now $W \cap Y_i = U \cap T_\lambda \cap \dot{T} \cap Y_i = E \cap Y_i$, where $E = V \times \{0\}$. Thus dim $W \cap Y_i = p$. But $W = U \cap T_\lambda \cap \dot{T}$ is an irreducible analytic set, and $Y_i \cap W$ is analytic in W. Therefore $Y_i \cap W = W$ for each i = 1, ..., q. A diagram:

Now, for any $i, \alpha^{-1} \circ \tilde{\sigma}_i : A'_i \to W'$ is a holomorphic, topological map, and therefore, $\alpha^{-1} \circ \tilde{\sigma}_i$ is biholomorphic outside of a thin analytic set. Hence

$$\tilde{\sigma}_i^{-1} \circ \alpha \colon W' \to A_i'$$

is continuous on W' and holomorphic except on a thin analytic set. Then, by the Riemann Extension Theorem, $\tilde{\sigma}_i^{-1} \circ \alpha$ is holomorphic on W'. Hence $\alpha^{-1} \circ \tilde{\sigma}_i$ is a biholomorphic map, and so, A'_i consists of simple points only. Thus there exists a function f_i holomorphic in a neighborhood $Z'_i \subset X'_i$ of 0 such that

$$A'_i \cap Z'_i = \{x \in Z'_i \mid f_i(x) = 0\}$$

and $v(x, 0, f_i) = 1$ for $x \in A'_i \cap Z'_i$, that is, $\frac{\partial f_i}{\partial x_j}(x) \neq 0$ for $x \in A'_i \cap Z'_i$ and at least one *j*, depending on *x*. Now $A'_i \cap Z'_i = \{x \in Z'_i | \tau \circ \varrho_i \circ \sigma_i(x) = 0\}$, and so, in a neighborhood $Z_i \subset Z'_i$ of 0, $(\tau \circ \varrho_i \circ \sigma_i)^{m_i} = f_i$ for some natural number m_i . Let $W = \bigcap_{i=1}^{q} (W \cap \varrho_i(\sigma_i(Z_i)))$, a neighborhood in $T_\lambda \cap \dot{T} \cap (N-S)$ of a. For $\mathfrak{z} \in W$,

$$\begin{aligned} v(\mathfrak{z},\tau|N) &= \sum_{\mathfrak{z}\in\varrho^{-1}(\mathfrak{z})} v(\mathfrak{z},\tau|N\circ\varrho) \\ &= \sum_{i=1}^{q} v(\varrho_i^{-1}(\mathfrak{z}),\tau|N\circ\varrho_i) \\ &= \sum_{i=1}^{q} v(\sigma_i^{-1}(\varrho_i^{-1}(\mathfrak{z})),\tau|N\circ\varrho_i\circ\sigma_i) \\ &= \sum_{i=1}^{q} v(\sigma_i^{-1}(\varrho_i^{-1}(\mathfrak{z})),f_i^{m_i}) \\ &= \sum_{i=1}^{q} m_i. \end{aligned}$$

B. Local continuity

In this section, it will be shown that almost every point in N(0) has a system of neighborhoods such that, in any one of these neighborhoods, the area of N(w) tends to the area of N(0) modulo $v(\cdot, \tau | N)$ as w tends to zero.

Lemma 4.5. Let $(a, 0) \in (\dot{T} \times \{0\}) \cap (N - S)$. Let $U^* \subseteq V \oplus \mathbb{C}$ be an open neighborhood of (a, 0). Let θ be a real valued \mathbb{C}^{∞} -function on H. Then there exists an open neighborhood $U \subset U^* \cap H$ of (a, 0) such that

$$\int_{U \cap N(w)} \theta(\mathfrak{z}, w) \, v((\mathfrak{z}, w), \tau \mid N) \, v_p \to \int_{U \cap N(0)} \theta(\mathfrak{z}, 0) \, v((\mathfrak{z}, 0), \tau \mid N) \, v_p \quad \text{as} \quad w \to 0 \, .$$

Proof. Let \hat{N} be the normalization of N, and $\varrho: \hat{N} \to N$ the associated map. Let $\{a_1, ..., a_q\} = \varrho^{-1}((a, 0))$. There exists a unique λ such that $a \in \dot{T}_{\lambda}$. As in the proof of Lemma 4.4, there exist pairwise disjoint neighborhoods $\hat{X}_1, ..., \hat{X}_q$ of $\hat{a}_1, ..., \hat{a}_q$ and analytic sets $Y'_1, ..., Y'_q$ in a neighborhood $U \subset U^* \cap$

 $\cap N \subset H$ of (a, 0) such that:

- i) $U \cap E \subseteq \dot{T}_{\lambda} \times \{0\},\$ ii) $\varrho^{-1}(\underline{U}) = \bigcup_{i=1}^{q} \hat{X}_i,$
- iii) $U = \bigcup_{i=1}^{q} Y'_i$,
- iv) $\rho(\hat{X}_i) = Y'_i$ for each i = 1, ..., q,
- v) there exist an open neighborhood X'_i of $0 \in \mathbb{C}^{p+1}$ and $\sigma'_i: X'_i \to \hat{X}_i$ biholomorphic, $\sigma'_i(0) = a_i$, for each i = 1, ..., q.

For each i = 1, ..., q, it has been shown that 0 is a simple point of $A'_i = \{t \in X' | \tau \circ \varrho \circ \sigma'_i(t) = 0\}$. Hence there exist an open neighborhood X_i of $0 \in \mathbb{C}^{p+1}$ and a biholomorphic map $\sigma''_i: X_i \to \sigma''_i(X_i) \subset X'_i$ such that $\sigma''(X_i \cap \{x' \in X_i \mid x_{p+1} = 0\}) = A'_i \cap \sigma''_i(X_i), \ \sigma''_i(0) = 0, \ \text{and} \ X_i \cap \{x' \mid x_{p+1} = 0\} \text{ is}$ connected, where $x' = (x_1, ..., x_p, x_{p+1})$. Define

$$\sigma_i = \varrho \circ \sigma'_i \circ \sigma''_i : X_i \to \sigma(X_i) \subset Y'_i.$$

Then σ_i is holomorphic and topological, $\sigma_i(X_i)$ is open in Y'_i , and $\sigma_i(0) = (a, 0)$. Let $(v_1, ..., v_n)$ be an orthonormal base of V and $v_{n+1} = (0, 1) \in V \oplus \mathbb{C}$. Then

$$\sigma_i(x') = \sum_{\nu=1}^{n+1} \sigma_{\nu}^{(i)}(x') \mathfrak{v}_{\nu}.$$

Let $\eta_i(w) = \{x' \in X_i | \sigma_{n+1}^{(i)}(x') = w\}$. Then $\sigma_i(\eta_i(w)) = N(w) \cap \sigma_i(X_i)$, and $\eta_i(0)$ = $\{x' \in X_i | x_{p+1} = 0\}$. Now there exist an open neighborhood $R_i \subset X_i$ of 0 and g_i , a holomorphic function on R_i , such that

$$\sigma_{n+1}^{(i)}(x') = x_{p+1}^{m_i} g_i(x'), \quad x' \in R_i,$$

with $q_i(x') \neq 0$ for $x' \in R_i$, and where

$$m_i = v(0, 0, \sigma_{n+1}^{(i)})$$
.

Choose $\gamma_i > 0$, $\delta_i > 0$ such that, if

$$Q_{i} = \left\{ (x_{1}, ..., x_{p}) \middle| \sum_{\nu=1}^{p} |x_{\nu}|^{2} < (\gamma_{i}')^{2} \right\}$$
$$Q_{i}' = Q_{i} \times \{x_{p+1} \middle| |x_{p+1}| < \delta_{i}'\},$$

then

 $\overline{Q}'_i \subseteq R_i$.

Hence there exists $0 < \delta_i'' \leq \delta_i'$ such that

$$m_i g_i(x') + x_{p+1} \frac{\partial g_i}{\partial x_{p+1}} (x') \neq 0$$

for $x' \in Q_i \times \{x_{p+1} \mid |x_{p+1}| \leq \delta_i''\}$. Now define $f_i: Q_i' \times \mathbb{C} \to \mathbb{C}$ by $f_i(x', w) = x_{n+1}^{m_i} g_i(x') - w$.

Then $f_i(0, ..., 0, x_{p+1}, 0) = x_{p+1}^{m_i} g(0, ..., 0, x_{p+1}) \neq 0$, and so there exists a Weierstrass polynomial

$$\omega_i(x_{p+1}, x, w) = x_{p+1}^{m_i} + \sum_{v=0}^{m_i-1} a_{i,v}(x, w) x_{p+1}^v$$

where $x = (x_1, ..., x_p)$ and the $a_{i,v}$'s are functions holomorphic in neighborhood

$$\left\{ (x_1, ..., x_p, w) \mid \sum_{\nu=1}^p |x_{\nu}|^2 < (\gamma_i'')^2, \quad |w| < \varepsilon_i' \right\}$$

of $(0,0) \in \mathbb{C}^p \oplus \mathbb{C}$ with $0 < \gamma''_i < \gamma'_i$, $0 < \varepsilon'_i$ and a function e_i holomorphic on

$$\left\{ (x_1, \dots, x_{p+1}, w) | \sum_{v=1}^p |x_v|^2 < (\gamma_i'')^2, \quad |x_{p+1}| < \delta_i, \quad |w| < \varepsilon_i' \right\} = L_i,$$

with $0 < \delta_i \leq \delta''_i$, such that

$$f_i = e_i \omega_i, \quad e_i \neq 0 \quad \text{on} \quad L_i.$$

For $x = (x_1, ..., x_p)$, define $|x| = \left(\sum_{v=1}^p |x_v|^2\right)^{1/2}$. Then there exist γ_i , ε_i in $0 < \gamma_i < \gamma''_i$, $0 < \varepsilon_i < \varepsilon'_i$, such that $\omega_i(x_{p+1}, x, w) = 0$, $|x| < \gamma_i$, $|w| < \varepsilon_i$ imply $|x_{p+1}| < \delta_i$. Define $P_i = \{x \mid |x| < \gamma_i\}$

$$P'_{i} = P_{i} \times \{x_{p+1} \mid |x_{p+1}| < \delta_{i}\}$$

Then

1. $\sigma_i: P'_i \to Y'_i$ is holomorphic, $\sigma_i: P'_i \to \sigma_i(P'_i)$ is topological and $\sigma_i(P'_i)$ is open in $Y'_i, \sigma_i(0) = (a, 0),$

en in Y'_i , $\sigma_i(0) = (\mathfrak{a}, 0)$, 2. $x' \in P'_i$ implies $m_i g_i(x') + x_{p+1} \frac{\partial g_i}{\partial x_{p+1}} (x') \neq 0$,

3. $x \in P_i$, $|w| < \varepsilon_i$, $x' = (x, x_{p+1})$, $\omega(x_{p+1}, x, w) = 0$ imply $x' \in P'_i$. Recall that in the proof of Lemma 4.4 it was shown that $Y'_i \cap E = Y'_j \cap E$

for any $1 \leq i, j \leq q$, where $E = V \times \{0\}$. Thus $D = \bigcap_{i=1}^{q} \sigma_i(P_i) \cap E$ is an open neighborhood in N(0) of \mathfrak{a} , as $\sigma_i(P_i)$ is open in Y_i . Take ξ such that if $\Omega = \{\mathfrak{a} + \mathfrak{z} | \mathfrak{z} \in V, |\mathfrak{z}| < \xi\}$, then $(\Omega \times \{0\}) \cap N(0) \subseteq \overline{(\Omega \times \{0\})} \cap N(0) \subset D$. Take $\xi > 0, \zeta \leq \min_{i=1}^{q} \varepsilon_i$ and such that

1.
$$(\Omega \times \{w \in \mathbb{C} | 0 \leq |w| \leq \zeta\}) \cap N \subseteq \bigcup_{i=1}^{q} Y'_i \subset \mathcal{U},$$

2. $(\Omega \times \{w \in \mathbb{C} \mid 0 \leq |w| \leq \zeta\}) \cap Y'_i \leq \sigma_i(P'_i), \quad i = 1, ..., q$. There exists an open set $U \subset H$ such that $(a, 0) \in U \subset U^*$ and

$$(\Omega \times \{w \in \mathbb{C} \mid 0 \leq |w| < \zeta\}) \cap N = U \cap N.$$

Define $Y_i = U \cap Y'_i$, i = 1, ..., q. Then $N \cap U = \bigcup_{i=1}^{q} Y_i$. From Lemma 4.3, $v((3, w), \tau | N) = 1$ for $(3, w) \in \dot{N}(w)$, $w \neq 0$, and so $Y_i \cap Y_j \cap \dot{N}(w) = \Phi$ for any $i \neq j, 1 \leq i, j \leq q$, and $w \neq 0$. Now $N(0) \cap U = Y_i \cap N(0)$ for any i = 1, ..., q, and for $(3, 0) \in N(0) \cap U$,

$$\begin{aligned}
v((\mathfrak{z}, 0), \tau | N) &= \sum_{i=1}^{q} v(\sigma_i^{-1}(\mathfrak{z}, 0), \tau | N \circ \sigma_i) \\
&= \sum_{i=1}^{q} v(\sigma_i^{-1}(\mathfrak{z}, 0), 0, \sigma_{n+1}^{(i)}) \\
&= \sum_{i=1}^{q} m_i.
\end{aligned}$$

Assume for the moment that

$$\int_{Y_i \cap N(w)} \theta(\mathfrak{z}, w) \, \upsilon_p \to m_i \int_{Y_i \cap N(0)} \theta(\mathfrak{z}, 0) \, \upsilon_p \quad \text{as} \quad w \to 0$$

for each i = 1, ..., q. Then, as $w \rightarrow 0$,

$$\int_{N(w)\cap U} v((\mathfrak{z}, w), \tau | N) \theta(\mathfrak{z}, w) \upsilon_{p}(\mathfrak{z}, w)$$

$$= \sum_{i=1}^{q} \int_{Y_{i}\cap N(w)}^{\bullet} \theta \upsilon_{p} \rightarrow \sum_{i=1}^{q} m_{i} \int_{Y_{i}\cap N(0)}^{\bullet} \theta \upsilon_{p}$$

$$= \sum_{i=1}^{q} m_{i} \int_{U\cap N(0)}^{\bullet} \theta \upsilon_{p}$$

$$= \int_{U\cap N(0)}^{q} v((\mathfrak{z}, 0), \tau | N) \theta(\mathfrak{z}, 0) \upsilon_{p}(\mathfrak{z}, 0) .$$

Thus all that remains is to prove that for any i,

$$1 \leq i \leq q, \int_{Y_i \cap N(w)} \theta v_p \to m_i \int_{Y_i \cap N(0)} \theta v_p \text{ as } w \to 0.$$

Let i be fixed, $1 \leq i \leq q$. The index i shall henceforth be omitted. Thus, for example, $\sigma = \sum_{\nu=1}^{n+1} \sigma_{\nu} \mathfrak{v}_{\nu} = \sum_{\nu=1}^{n+1} \sigma_{\nu}^{(i)} \mathfrak{v}_{\nu}$. Define, for $x \in P$,

$$\Lambda_0(x) = \theta(\sigma(x, 0)) \sum_{1 \le v_1 < \ldots < v_p \le n} \left| \frac{\partial(\sigma_{v_1}, \ldots, \sigma_{v_p})}{\partial(x_1, \ldots, x_p)} \right|_{(x, 0)}^2$$

Take w in $0 < |w| < \zeta$ and $x \in P$. Then

$$\omega(x_{p+1}, x, w) = \prod_{\mu=1}^{m} (x_{p+1} - x_{p+1}^{\mu}(x, w))$$

where $|x_{p+1}^{\mu}(x, w)| < \delta$, that is, $(x, x_{p+1}^{\mu}(x, w)) \in P'$. Hence

$$\eta(w) \cap P' = \{x' \in P' | \sigma_{n+1}(x') = w\} \\ = \{(x, x_{p+1}^{\mu}(x, w)) | x \in P, 1 \le \mu \le m\}.$$

as
$$\omega(x_{p+1}, x, w) \ e(x', w) = \sigma_{n+1}(x') - w, \ e(x', w) \neq 0.$$
 Now $\omega(x', w) \ e(x', w) = f(x', w) = x_{p+1}^m g(x') - w, \text{ and } \frac{\partial f}{\partial x_{p+1}}(x', w) = x_{p+1}^{m-1} \left(mg(x') + x_{p+1} \frac{\partial g}{\partial x_{p+1}}(x') \right).$

Let $z_{\mu} = (x, x_{p+1}^{\mu}(x, w), w)$. Then $w \neq 0$ implies $x_{p+1}^{\mu}(x, w) \neq 0$ for any $x \in P$. Thus $\frac{\partial f}{\partial x_{p+1}}(z_{\mu}) \neq 0$. But $\frac{\partial f}{\partial x_{p+1}}(z_{\mu}) = \omega(z_{\mu}) \frac{\partial e}{\partial x_{p+1}}(z_{\mu}) + e(z_{\mu}) \frac{\partial \omega}{\partial x_{p+1}}(z_{\mu})$ $= e(z_{\mu}) \frac{\partial \omega}{\partial x_{p+1}}(z_{\mu})$. Hence $\frac{\partial \omega}{\partial x_{p+1}}(z_{\mu}) \neq 0$, and so the $x_{p+1}^{\mu}(x, w), \mu = 1, ..., m$, are distinct for any $0 < |w| < \zeta$ and $x \in P$. Now, keep w in $0 < |w| < \zeta$ fixed. Then

$$\omega(x_{p+1}, x, w) = \prod_{\mu=1}^{m} (x_{p+1} - x_{p+1}^{\mu}(x, w)),$$

where $x_{p+1}^{\mu}(x, w) \neq x_{p+1}^{\nu}(x, w)$ if $\mu \neq \nu$ for all $x \in P$, and so $\frac{\partial \omega}{\partial x_{p+1}}(x_{p+1}, x, w) \neq 0$ for all $x_{p+1} = x_{p+1}^{\mu}(x, w)$ and $x \in P$. Hence

$$\omega(x_{p+1}, x, w) = \prod_{\mu=1}^{m} (x_{p+1} - h_{\mu}(x, w)),$$

where $h_{\mu}(x, w)$ is a well-defined, holomorphic function of $x \in P$, with $h_{\mu}(x, w) \neq h_{\nu}(x, w)$ if $\mu \neq \nu$. Define

$$\begin{split} \Lambda_{w}(x) &= \sum_{\mu=1}^{m} \left(\theta \big(\sigma(x, h_{\mu}(x, w)) \big) \right) \times \\ \times \left(\sum_{1 \leq v_{1} < \cdots < v_{p} \leq n} \left| \frac{\partial \big(\sigma_{v_{1}}(x, h_{\mu}(x, w)), \dots, \sigma_{v_{p}}(x, h_{\mu}(x, w)) \big)}{\partial (x_{1}, \dots, x_{p})} \right|_{x}^{2} \right). \end{split}$$

It is now claimed that $\Lambda_w(x) \to m \Lambda_0(x)$ as $w \to 0$ uniformly on *P*. There exists a constant *K* such that |g(x')| > K for all $x' \in \overline{P}'$. Take $\alpha > 0$. Define $d(\alpha) = \min(K \alpha^m, \zeta)$. Take *w* in $0 < |w| < d(\alpha)$. For any $x \in P$,

 $h_{\mu}^{m}(x, w) g(x, h_{\mu}(x, w)) - w = 0$,

and so $|h_{\mu}(x, w)| < \left(\frac{d(\alpha)}{K}\right)^{1/m} \leq \alpha$. A constant $\kappa > 0$ exists such that, for all $x' \in \overline{P}'$,

$$\left|\frac{\partial g}{\partial x_t}(x')\right| < \kappa, \quad t = 1, \dots, p+1.$$

For w fixed, $0 < |w| < d\left(\frac{mK}{2\kappa}\right)$,

$$|h_{\mu}(x,w)| < m K/2\kappa, \quad x \in P$$

And from $h_{\mu}^{m}(x, w) g(x, h_{\mu}(x, w)) - w = 0$,

$$0 = m h_{\mu}^{m-1}(x, w) g(x, h_{\mu}(x, w)) \frac{\partial h_{\mu}(x, w)}{\partial x_{t}} + h_{\mu}^{m}(x, w) \left(\frac{\partial g}{\partial x_{t}}(x, h_{\mu}(x, w)) + \frac{\partial g}{\partial x_{p+1}}(x, h_{\mu}(x, w)) \frac{\partial h_{\mu}}{\partial x_{t}}(x, w) \right).$$

Since $h_{\mu}(x, w) \neq 0$,

$$0 = mg \frac{\partial h_{\mu}}{\partial x_{t}} + h_{\mu} \left(\frac{\partial g}{\partial x_{t}} + \frac{\partial g}{\partial x_{p+1}} \frac{\partial h_{\mu}}{\partial x_{t}} \right),$$

$$\frac{\partial h_{\mu}}{\partial x_{t}} \left(mg + h_{\mu} \frac{\partial g}{\partial x_{p+1}} \right) = -h_{\mu} \frac{\partial g}{\partial x_{t}}.$$

Now

$$\left|mg+h_{\mu}\frac{\partial g}{\partial x_{p+1}}\right| \geq |mg|-\left|h_{\mu}\frac{\partial g}{\partial x_{p+1}}\right| \geq mK-\frac{mK}{2\kappa}\cdot\kappa=\frac{mK}{2},$$

and so

$$\left|\frac{\partial h_{\mu}}{\partial x_{t}}\right| \leq \frac{2}{mK} \left|\frac{\partial g}{\partial x_{t}}\right| |h_{\mu}| \leq \frac{2\kappa}{mK} |h_{\mu}|$$

for $t = 1, ..., p, \mu = 1, ..., m$. Thus define $d_1(\alpha) = \min\left(d(\alpha), d\left(\frac{mK}{2\kappa}\right), d\left(\frac{mK}{2\kappa}\alpha\right)\right)$. Then, for $x \in P, 0 < |w| < d_1(\alpha), t = 1, ..., p, \mu = 1, ..., m$, it is

$$|h_{\mu}(x,w)| < \alpha$$
 and $\left| \frac{\partial h_{\mu}}{\partial x_t}(x,w) \right| < \alpha$.

Now there exists a constant c_0 such that

$$\left|\frac{\partial \sigma_{v}}{\partial x_{t}}(x')\right| < c_{0} \quad \text{for} \quad x' \in \overline{P'}, \quad v = 1, ..., n,$$
$$t = 1, ..., p + 1.$$

And for any $\alpha > 0$, there exists $\Delta_0(\alpha)$ such that for all

$$\frac{1 \le v \le n, \quad 1 \le t \le p+1,}{\frac{\partial \sigma_v}{\partial x_t}(x, x_{p+1}) - \frac{\partial \sigma_v}{\partial x_t}(x, 0)} < \alpha$$

if $x \in P$ and $|x_{p+1}| \leq \Delta_0(\alpha)$. Also, there exists a constant c_1 such that $|\theta(\sigma(x'))| < c_1$ for all $x' \in P'$,

and for any $\alpha > 0$, there exists $\Delta_1(\alpha)$ such that

$$|\theta(\sigma(x, x_{p+1})) - \theta(\sigma(x, 0))| < \alpha \text{ for } x \in \overline{P} \text{ and } |x_{p+1}| \leq \Delta_1(\alpha).$$

For every $\beta > 0$, there exists $\Delta(\beta) > 0$ such that, if

$$A = \begin{pmatrix} a_{11} \dots a_{1p} \\ a_{p1} \dots a_{pp} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} \dots b_{1p} \\ b_{p1} \dots b_{pp} \end{pmatrix}$$

with $|a_{ij}| \leq 2c_0, |b_{ij}| \leq 2c_0, |a_{ij} - b_{ij}| \leq \Delta(\beta)$ for $1 \leq i, j \leq p$, then $||\det A|^2 - |\det B|^2| < \beta$.

Moreover there exists a constant c_2 such that

$$|\det A|^2 < c_2$$
 if $|a_{ij}| < 2c_0$.

Now take any $\beta > 0$. Take $\alpha = \min\left(1, \frac{\Delta(\beta)}{1+c_0}\right)$. Take $d_2(\beta) = \min(d_1(\alpha), d_1(\Delta_0(\alpha)), d_1(\Delta_1(\alpha)))$. Take any w in $0 < |w| < d_2(\beta)$ and any $x \in P$. Take μ in $1 \le \mu \le m$. Then

$$|h_{\mu}(x, w)| \leq \min(\alpha, \Delta_0(\alpha), \Delta_1(\alpha))$$

and

$$\frac{\partial h_{\mu}}{\partial x_{t}}(x,w) \leq \min(\alpha, \Delta_{0}(\alpha), \Delta_{1}(\alpha)), \quad t = 1, ..., p.$$

And for $1 \leq v \leq n$, $1 \leq t \leq p$,

$$\left|\frac{\partial \sigma_{v}}{\partial x_{t}}(x, h_{\mu}(x, w)) - \frac{\partial \sigma_{v}}{\partial x_{t}}(x, 0)\right| < \alpha$$

Hence

$$\begin{aligned} \left| \frac{\partial}{\partial x_{t}} \left(\sigma_{v}(x, h_{\mu}(x, w)) \right) - \frac{\partial \sigma_{v}}{\partial x_{t}} (x, 0) \right| \\ &= \left| \frac{\partial \sigma_{v}}{\partial x_{t}} (x, h_{\mu}(x, w)) - \frac{\partial \sigma_{v}}{\partial x_{t}} (x, 0) + \right. \\ &+ \frac{\partial \sigma_{v}}{\partial x_{p+1}} (x, h_{\mu}(x, w)) \frac{\partial h_{\mu}}{\partial x_{t}} (x, w) \right| \\ &\leq \alpha + c_{0} \alpha = \alpha (1 + c) \leq \Delta(\beta) \,. \end{aligned}$$

For $1 \leq v_1 < \dots < v_p \leq n$, define

$$A^{\mu}_{w,v_{1},...,v_{p}}(x) = \frac{\partial (\sigma_{v_{1}}(x, h_{\mu}(x, w)), ..., \sigma_{v_{p}}(x, h_{\mu}(x, w))}{\partial (x_{1}, ..., x_{p})}$$
$$A_{v_{1},...,v_{p}}(x) = \frac{\partial (\sigma_{v_{1}}(x, 0), ..., \sigma_{v_{p}}(x, 0))}{\partial (x_{1}, ..., x_{p})}$$

Then $||A_{w,v_1,...,v_p}^{\mu}(x)|^2 - |A_{v_1,...,v_p}(x)|^2| < \beta$, and $|A_{v_1,...,v_p}(x)|^2 \le c_2$. Now $|\theta(\sigma(x, h_{\mu}(x, w))) - \theta(\sigma(x, 0))| < \beta$. Hence

$$\begin{aligned} |A_{w}(x) - mA_{0}(x)| \\ &= \left| \sum_{\mu=1}^{m} \left\{ \theta(\sigma(x, h_{\mu}(x, w))) \sum_{1 \leq v_{1} < \cdots < v_{p} \leq n} |A_{w, v_{1}, \dots, v_{p}}^{\mu}(x)|^{2} \right\} - \\ &- \sum_{\mu=1}^{m} \left\{ \theta(\sigma(x, 0)) \sum_{1 \leq v_{1} < \cdots < v_{p} \leq n} |A_{v_{1}, \dots, v_{p}}(x)|^{2} \right\} \right| \\ &\leq \sum_{\mu=1}^{m} \left| \theta(\sigma(x, h_{\mu}(x, w))) \right| \sum_{1 \leq v_{1} < \cdots < v_{p} \leq n} |A_{w, v_{1}, \dots, v_{p}}^{\mu}(x)|^{2} - |A_{v_{1}, \dots, v_{p}}(x)|^{2} + \\ &+ \sum_{\mu=1}^{m} \left| \theta(\sigma(x, h_{\mu}(x, w))) - \theta(\sigma(x, 0)) \right| \sum_{1 \leq v_{1} < \cdots < v_{p} \leq n} |A_{v_{1}, \dots, v_{p}}^{\mu}(x)|^{2} \leq \\ &\leq mc_{1} n^{p} \beta + mc_{2} n^{p} \beta = c_{3} \beta \end{aligned}$$

where $c_3 = m(c_1 + c_2)n^P$ is independent of β , x, w. Thus $\Lambda_w(x) \to m \Lambda_0(x)$ as $w \to 0$ uniformly on P.

Now let W be any open set in P. Define $W' = W \times \{x_{p+1} \mid |x_{p+1}| < \delta\}$. Then $\sigma: W \times \{0\} \rightarrow \sigma(W') \cap N(0)$ is topological and holomorphic, and so

$$\int_{\sigma(W') \cap N(0)} \theta(\mathfrak{z}, 0) v_p = \int_{W} \theta(\sigma(\mathbf{x}, 0)) \left(\frac{i}{2}\right)^p \times \\ \times \sum_{1 \leq v_1 < \cdots < v_p \leq n+1} \left| \frac{\partial(\sigma_{v_1}, \dots, \sigma_{v_p})}{\partial(x_1, \dots, x_p)} \right|^2 dx_1 \wedge d\overline{x}_1 \wedge \cdots \wedge dx_p \wedge d\overline{x}_p \\ = \int_{W} \theta(\sigma(\mathbf{x}, 0)) \left(\frac{i}{2}\right)^p \times \\ \times \sum_{1 \leq v_1 < \cdots < v_p \leq n} \left| \frac{\partial(\sigma_{v_1}(\mathbf{x}, 0), \dots, \sigma_{v_p}(\mathbf{x}, 0))}{\partial(x_1, \dots, x_p)} \right|^2 dx_1 \wedge d\overline{x}_1 \wedge \cdots \wedge dx_p \wedge d\overline{x}_p \\ = \int_{W} \Lambda_0(\mathbf{x}) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \cdots \wedge dx_p \wedge d\overline{x}_p.$$

Take w fixed, $0 < |w| < \zeta$. Then

$$\sigma(\eta(w) \cap W') = \sigma(W') \cap N(w) .$$

Let $\iota_w : \eta(w) \cap W' \to P'$ be the inclusion. Then $\sigma \circ \iota_w : \eta(w) \cap W' \to \sigma(W') \cap N(w)$ is topological and holomorphic, and so

$$\int_{\sigma(W') \cap N(w)} \theta(\mathfrak{z}, w) v_p$$

$$= \int_{\eta(w) \cap W'} \theta(\sigma(x')) \left(\frac{i}{2}\right)^p \sum_{1 \leq v_1 < \cdots < v_p \leq n} d\sigma_{v_1} \wedge d\overline{\sigma_{v_1}} \wedge \cdots \wedge d\sigma_{v_p} \wedge d\overline{\sigma_{v_p}}.$$

Define $h'_{\mu}: W \to h'_{\mu}(W) \subset \eta(w) \cap W'$ by $h'_{\mu}(x) = (x, h_{\mu}(x, w))$ for $\mu = 1, ..., m$. Then h'_{μ} is biholomorphic, and

$$\eta(w) \cap W' = \bigcup_{\mu=1}^{m} h'_{\mu}(W), \quad h'_{\mu}(W) \cap h'_{\nu}(W) = \Phi, \quad \mu \neq \nu.$$

Thus

đ

$$\int_{(W') \cap N(w)} \theta(\mathfrak{z}, w) v_p = \sum_{\mu=1}^{m} \int_{W} \theta(\sigma(x, h_{\mu}(x, w))) \times \\ \times \sum_{1 \leq v_1 < \cdots < v_p \leq n} \left| \frac{\partial(\sigma_{v_1}(x, h_{\mu}(x, w)), \dots, \sigma_{v_p}(x, h_{\mu}(x, w)))}{\partial(x_1, \dots, x_p)} \right|^2 \times \\ \times \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \cdots \wedge dx_p \wedge d\overline{x}_p \\ = \int_{W} \Lambda_w(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \cdots \wedge dx_p \wedge d\overline{x}_p.$$

Hence

$$\int_{\sigma(W') \cap N(w)} \theta \, v_p \to m \int_{\sigma(W') \cap N(0)} \theta \, v_p \,, \quad w \to 0 \,.$$

Define

$$\psi: \mathbb{C}^{p+1} \to \mathbb{C}^p, \quad \psi(x_1, ..., x_{p+1}) = (x_1, ..., x_p)$$
$$W_0 = \psi(\sigma^{-1}(Y \cap E)) \subset \overline{W}_0 \subset P.$$

Take any open set $W \,\subset P$ such that $W \,\subset \, \overline{W} \,\subset W_0$. Define as before $W' = W \times \{x_{p+1} \in \mathbb{C} \mid |x_{p+1}| < \delta\}$. It shall be shown that there exists $\alpha > 0$ such that for $|w| < \alpha$, $\sigma(W') \cap N(w) \subset Y \cap N(w)$. For assume that there exists a sequence $\{(\mathfrak{z}_v, w_v)\}$ such that $w_v \to 0$ as $v \to \infty$ and $(\mathfrak{z}_v, w_v) \in \sigma(W') \cap N(w_v)$, $(\mathfrak{z}_v, w_v) \notin Y \cap N(w_v)$. Then $\{\sigma^{-1}(\mathfrak{z}_v, w_v)\} \subset \overline{W'}$, and so there exists a convergent subsequence, which will also be denoted by $\{\sigma^{-1}(\mathfrak{z}_v, w_v)\}$. Let $\sigma^{-1}(\mathfrak{z}_v, w_v) \to \rightarrow (x, x_{p+1}) \subset \overline{W'}$ as $v \to \infty$, where $\psi(x, x_{p+1}) = x$. Then $w_v \to 0$ implies $x_{p+1} = 0$. Now $(x, 0) \in \overline{W'}$, and so $x \in \overline{W} \subset W_0$. Therefore $(x, 0) \in \sigma^{-1}(Y)$ open, and so, for v large enough, $\sigma^{-1}(\mathfrak{z}_v, w_v) \in \sigma^{-1}(Y)$, that is, $(\mathfrak{z}_v, w_v) \in Y$, a contradiction.

Hence there exists $\alpha > 0$ such that for $|w| < \alpha$, $\sigma(W') \cap N(w) \in Y \cap N(w)$. Thus

$$\int_{\sigma(W') \cap N(w)} \theta v_p \leq \int_{Y \cap N(w)} \theta v_p, \quad |w| < \alpha$$

Now

$$\int_{\sigma(W') \cap N(w)} \theta \, v_p \to m \int_{\sigma(W') \cap N(0)} \theta \, v_p \quad \text{as} \quad w \to 0 \,,$$

and

$$\int_{\sigma(W')\cap N(0)} \theta v_p = \int_{W} \Lambda_0(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \cdots \wedge dx_p \wedge d\overline{x}_p.$$

Thus for any open set $W \subset \overline{W} \subset W_0$,

$$m\int_{W} \Lambda_0(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \dots \wedge dx_p \wedge d\overline{x}_p \leq \liminf_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \wedge d\overline{x}_p \leq \lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p dx_p \wedge d\overline{x}_p \wedge d\overline{x$$

Therefore,

$$m \int_{Y \cap N(0)} \theta v_p = m \int_{W_0} \Lambda_0(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \dots \wedge dx_p \wedge d\overline{x}_p \leq \liminf_{w \to 0} \int_{Y \cap N(w)} \theta v_p.$$

Now define, for $0 < s < \zeta$,

$$F(s) = V \times \{ w \in \mathbb{C} \mid |w| < s \},$$

$$W(s) = \psi(\sigma^{-1}(Y \cap F(s))),$$

$$W'(s) = W(s) \times \{ x_{p+1} \mid |x_{p+1}| < \delta \}.$$

Then W(s) is open in P, and

$$Y \cap F(s) \subset \sigma(W'(s)) \cap F(s)$$

as

$$\sigma^{-1}(Y \cap F(s)) \subset W'(s) \, .$$

Therefore, for |w| < s,

$$\int_{Y \cap N(w)} \theta \, v_p \leq \int_{\sigma(W'(s)) \cap N(w)} \theta \, v_p \, .$$

But as $w \rightarrow 0$,

$$\int_{\sigma(W'(s)) \cap N(w)} \theta v_p \to m \int_{\sigma(W'(s)) \cap N(0)} \theta v_p$$

$$= m \int_{W(s)} \Lambda_0(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \cdots \wedge dx_p \wedge d\overline{x}_p.$$

Hence, for any $0 < s < \zeta$,

$$\limsup_{w\to 0} \int_{Y \cap N(w)} \theta v_p \leq m \int_{W(s)} \Lambda_0(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \cdots \wedge dx_p \wedge d\overline{x}_p.$$

Now if 0 < s' < s, then $W(s') \in W(s)$, and

$$\bigcap_{0 < s < \zeta} W(s) = W_0 \, .$$

Thus

$$\limsup_{w \to 0} \int_{Y \cap N(w)} \theta v_p \leq m \int_{W_0} \Lambda_0(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \dots \wedge dx_p \wedge d\overline{x}_p = m \int_{Y \cap N(0)} \theta v_p.$$

Consequently,

$$m \int_{Y \cap N(0)} \theta v_p \leq \liminf_{w \to 0} \int_{Y \cap N(w)} \theta v_p \leq \limsup_{w \to 0} \int_{Y \cap N(w)} \theta v_p \leq m \int_{Y \cap N(0)} \theta v_p ,$$

and so

$$\lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p = m \int_{Y \cap N(0)} \theta v_p. \qquad \text{q.e.d.}$$

C. Local boundedness

In this section it will be shown that for every point of N(0), there exists a neighborhood such that for any ball in this neighborhood, the product of $v(\cdot, \tau | N)$ and the area of N(w) intersect the ball is bounded by a constant times the radius of the ball to the power 2p, the constant independent of w for |w| sufficiently small. This result essentially has been proven by W.STOLL in §2 of [9]. However in [9], the normalization of a complex space is not considered when the multiplicity of a holomorphic map is defined. Thus the two definitions of multiplicity must be related. Here the symbol \tilde{v} will be used to denote the multiplicity of a map in the sense of [9]. The definition of \tilde{v} , along with the definitions of a distinguished base and a distinguished polycylinder, will be given here for the convenience of the reader.

Let X and Y be complex spaces and $\sigma: X \to Y$ a holomorphic, non-degenerate map. Take $a \in X$. Take any open neighborhood U of a such that U is compact and such that $\overline{U} \cap \sigma^{-1}(\sigma(a)) = \{a\}$. Define

$$\tilde{v}(a,\sigma) = \limsup_{x \to a} \mu_U(x,\sigma)$$

where $\mu_U(x, \sigma)$ is as defined in §4 A.

Now let $\sigma: X \to Y$ be a holomorphic map such that $\sigma^{-1}(\sigma(x))$ is an analytic set of pure dimension q for every $x \in X$. Suppose that X has pure dimension k. Take $a \in X$ and let Γ_a be as in §4 A. Define

$$\tilde{v}(a,\sigma) = \mathop{\mathrm{Min}}_{A\in\Gamma_a} \tilde{v}(a,\sigma\mid A)$$
.

Thus \tilde{v} is defined.

Let D be an open subset of an m-dimensional complex vector space W. Let a be a point of an analytic subset A of D. A base $C = (c_1, ..., c_m)$ of W is said to be distinguished with respect to (A, a, k) if and only if the intersection

298

299

 $F \cap A$ of A with $F = \left\{ a + \sum_{v=k+1}^{m} z_v c_v \right\}$ contains a as an isolated point. And U is said to be a distinguished polycylinder with respect to (A, C, a, k) if and only if

- 1. It is $1 \le k < m$.
- 2. Numbers $\varepsilon_v > 0$ exist such that

$$U = \left\{ \mathfrak{a} + \sum_{\nu=1}^{m} z_{\nu} \mathfrak{c}_{\nu} \mid |z_{\nu}| < \varepsilon_{\nu} \quad \text{for} \quad \nu = 1, ..., m \right\} \subseteq \overline{U} \subseteq D.$$

3. Define

$$Y = \left\{ \mathfrak{a} + \sum_{\nu=1}^{k} z_{\nu} \mathfrak{c}_{\nu} \mid |z_{\nu}| < \varepsilon_{\nu} \quad \text{for} \quad \nu = 1, ..., k \right\}$$

and $\sigma: U \to Y$ the projection given by

$$\tau\left(\mathfrak{a}+\sum_{\nu=1}^{m}z_{\nu}\mathfrak{c}_{\nu}\right)=\mathfrak{a}+\sum_{\nu=1}^{k}z_{\nu}\mathfrak{c}_{\nu}.$$

Define

$$X_{\mathfrak{y}} = \sigma^{-1}(\mathfrak{y}) = \left\{ \mathfrak{y} + \sum_{\nu=k+1}^{m} z_{\nu} \mathfrak{c}_{\nu} \mid |z_{\nu}| < \varepsilon_{\nu} \quad \text{for} \quad \nu = k+1, ..., m \right\} \quad \text{for} \quad \mathfrak{y} \in Y.$$

Then

$$A \cap \overline{X}_{y} = A \cap X_{y}$$
 for all $y \in Y$

and

$$A \cap \overline{X}_{\mathfrak{a}} = \{\mathfrak{a}\}$$

is required.

Lemma 4.6. Let $a \in N(0)$. Let \hat{N} be the normalization of N and $\varrho: \hat{N} \to N$ the associated map. Let $\{a_1, ..., a_q\} = \varrho^{-1}(a)$. Let $\hat{X}_1, ..., \hat{X}_q$ be pairwise disjoint neighborhoods of $a_1, ..., a_q$ and $X_1, ..., X_q$ analytic sets in a neighborhood $X \in N$ of a, such that $\varrho^{-1}(X) = \bigcup_{i=1}^{q} \hat{X}_i, X = \bigcup_{i=1}^{q} X_i$, and $\varrho(\hat{X}_i) = X_i$ for each i=1,...,q, and such that $X \in K \cap N$ for some compact set $K \in V \oplus \mathbb{C}$. Let $C = (c_1, ..., c_n)$ be a base of V, and let $c = (0, 1) \in V \oplus \mathbb{C}$. Let $C' = (c_1, ..., c_n, c_n)$ $c_{p+1}, ..., c_n$), a base of $V \oplus \mathbb{C}$. Suppose that

$$U = \left\{ \mathfrak{a} + \sum_{\nu=1}^{n} z_{\nu} \mathfrak{c}_{\nu} + w \mathfrak{c} \mid |z_{\nu}| < \varepsilon_{\nu}, \quad \nu = 1, ..., n, |w| < \varepsilon_{n+1} \right\}$$

is a distinguished polycylinder with respect to (N, C', a, p+1) and to (N(0), C, a, p). Suppose $U \cap N \subset X$. Suppose that η in $0 < \eta < 1$ exists such that $N(0) \cap \overline{U - U_{\eta}} = \Phi$, where

$$U_{\eta} = \left\{ a + \sum_{\nu=1}^{n} z_{\nu} c_{\nu} + w c \mid |z_{\nu}| < \varepsilon_{\nu}, \ \nu = 1, ..., p, \ |w| < \eta \varepsilon_{n+1}, \\ |z_{\nu}| < \eta \varepsilon_{\nu}, \ \nu = p+1, ..., n \right\}.$$
Define $\tilde{\pi}: U \to \tilde{\pi}(U) = Y'$ by

Define $\tilde{\pi}: U \to \tilde{\pi}(U) = Y'$ by

$$\tilde{\pi}\left(\mathfrak{a}+\sum_{\nu=1}^{n}z_{\nu}\mathfrak{c}_{\nu}+w\mathfrak{c}\right)=\mathfrak{a}+\sum_{\nu=1}^{p}z_{\nu}\mathfrak{c}_{\nu}.$$

For $\eta \in Y'$, define

$$L(\mathfrak{y},w)=U\cap N(w)\cap \tilde{\pi}^{-1}(\mathfrak{y}).$$

Then there exist constants $\delta > 0$, $\kappa > 0$ such that

$$\sum_{(\mathfrak{z},w)\in L(\mathfrak{y},w)} v((\mathfrak{z},w),\tau \mid N) < \kappa \quad for \quad |w| < \delta.$$

Proof. Define $L_i(\mathfrak{y}, w) = L(\mathfrak{y}, w) \cap X_i$ for i = 1, ..., q. Now $\tau | X_i$ is not constant on any irreducible branch of X_i , that is, no $N(w) \cap X_i$ contains an irreducible branch of X_i . Hence there exist constants κ_i and δ_i such that if $|w| < \delta_i$, then

$$\sum_{(\mathfrak{z},w)\in L(\mathfrak{y},w)} \tilde{v}(\mathfrak{z},w), \tau | X_i) < \kappa_i \quad \text{for each} \quad i=1, \ldots, q.$$

The proof of this is contained in the proof of Lemma 2.6 of [9]. Compare

Define $\varrho_i = \varrho | \hat{X}_i : \hat{X}_i \to X_i, i = 1, ..., q$. There exists a constant l such that $\# \varrho^{-1}(x) < l$ for all $x \in X$. It will be shown that $v(\hat{z}, \tau \circ \varrho_i) < l\tilde{v}((z, w), \tau | X_i)$ for any $\hat{z} \in \hat{X}_i$ such that $\varrho_i(\hat{z}) = (3, w)$.

Let *i* be fixed. Take $b \in \hat{X}_i$. It is claimed first that $v(b, \tau \circ \varrho_i) \leq \tilde{v}(b, \tau \circ \varrho_i)$. Take any $A \in \Gamma_b$. Then *A* is a pure 1-dimensional analytic set in a neighborhood of *b*. Let $\{A_1, ..., A_i\}$ be representatives in a neighborhood of *b* of the irreducible components of the germ of *A* at *b*. Then $A_1 \in \Gamma_b$ and $\tilde{v}(b, \tau \circ \varrho_i | A_1) \leq \tilde{v}(b, \tau \circ \varrho_i | A)$. Let \hat{A}_1 be the normalization of A_1 and $\hat{\varrho}$ the associated map. Now \hat{A}_1 is pure 1-dimensional, and so, consists only of simple points. Hence, A_1 irreducible at *b* implies $\hat{\varrho}: \hat{A}_1 \to A_1$ is topological in a neighborhood $\hat{Z} \subset \hat{A}_1$ of $\hat{b} = \hat{\varrho}^{-1}(b)$. Choose an open neighborhood \hat{D} of \hat{b} such that the closure of \hat{D} is compact and contained in \hat{Z} , and such that $\hat{D} \cap (\tau \circ \varrho_i \circ \hat{\varrho})^{-1} (\tau \circ \varrho_i \circ \hat{\varrho}(\hat{b})) = \{\hat{b}\}$. Let $D = \hat{\varrho}(\hat{D})$. Then $D \subset A_1$ is an open neighborhood in A_1 of b, \overline{D} is compact, and $D \cap (\tau \circ \varrho_i | A_1)^{-1} (\tau \circ \varrho_i | A_1(b)) = \{b\}$. Since $\hat{\varrho}$ is topological on \hat{D} , for any $\hat{z} \in \hat{D}$ with $\hat{\varrho}(\hat{z}) = z$, $\# \hat{D} \cap (\tau \circ \varrho_i \circ \hat{\varrho})^{-1} (\tau \circ \varrho_i \circ \hat{\varrho}(\hat{z})) = \# D \cap (\tau \circ \varrho_i | A_1)^{-1} \circ$ $\circ (\tau \circ \varrho_i)(z)$. Hence $\tilde{v}(\hat{b}, \tau \circ \varrho_i \circ \hat{\varrho}) = \tilde{v}(b, \tau \circ \varrho_i | A_1)$. Since \hat{A}_1 is a normal, pure 1-dimensional analytic space,

$$v(\hat{b}, \tau \circ \varrho_i \circ \hat{\varrho}) = \tilde{v}(\hat{b}, \tau \circ \varrho_i \circ \hat{\varrho}).$$

Since $\hat{\varrho}^{-1}(b) = \hat{b}$,

$$\mathbf{v}(b, \tau \circ \varrho_i | A_1) = \mathbf{v}(\hat{b}, \tau \circ \varrho_i \circ \hat{\varrho}) \,.$$

Since $A_1 \in \Gamma_b$,

$$v(b, \tau \circ \varrho_i) \leq \tilde{v}(b, \tau \circ \varrho_i | A_1).$$

Hence $v(b, \tau \circ \varrho_i) \leq \tilde{v}(b, \tau \circ \varrho_i | A)$ for any $A \in \Gamma_b$. Therefore $v(b, \tau \circ \varrho_i) \leq \tilde{v}(b, \tau \circ \varrho_i)$.

Now let $\varrho_i(b) = b \in X_i$. It is claimed that $\tilde{v}(b, \tau \circ \varrho_i) < l\tilde{v}(b, \tau \mid X_i)$. Take $B \in \Gamma_b$, considering b as a point in the analytic space X_i . Then there exists an open neighborhood $U_B \subset X_i$ of b such that $b \in B \subset U_B$, B is a pure 1-dimensional analytic set in U_B , \overline{U}_B is compact, and $\tau \mid B$ is non-degenerate. Let $\varrho_i^{-1}(b)$ $= \{b_1, ..., b_i\}$, with $b_1 = b$. There exist pairwise disjoint neighborhoods $Y_1, ..., Y_i$ in X_i of $b_1, ..., b_i$ such that $\varrho_i(Y_j) \subset U_B, j = 1, ..., t$. Let $\hat{B} = \varrho_i^{-1}(B) \cap Y_1$, $U_{\hat{B}} = \varrho_i^{-1}(U_B) \cap Y_1$. Then $U_{\hat{B}}$ is an open neighborhood of b, and \hat{B} is a pure 1-dimensional analytic set in $U_{\hat{B}}$. And $\overline{U}_{\hat{B}} \subseteq \varrho_i^{-1}(\overline{U}_B) \cap \overline{Y}_1$ is compact as ϱ_i is proper. And $\tau \mid B$ non-degenerate implies $\tau \circ \varrho_i \mid \hat{B}$ non-degenerate as the fibers $\varrho_i^{-1}(x)$ consist of isolated points for $x \in X_i$. Thus $\hat{B} \in \Gamma_b$. Take now $W \subset B$, an open neighborhood in B of b such that \overline{W} is compact, $b \in W \subset \overline{W} \subset B$, and $\overline{W} \cap \{(\tau \mid B)^{-1}(\tau(b))\} = \{b\}$. Then

$$\tilde{v}(\mathfrak{b},\tau|B) = \limsup_{\mathfrak{x}\to\mathfrak{b},\mathfrak{x}\in B} \# W \cap (\tau|B)^{-1} (\tau(\mathfrak{x})).$$

Define $\hat{W} = \varrho_i^{-1}(W) \cap \hat{B}$. Then \hat{W} is an open neighborhood in \hat{B} of b, $\overline{\hat{W}}$ is compact, and $\widehat{\hat{W}} \cap (\tau \circ \varrho_i | \hat{B})^{-1}$ $(\tau \circ \varrho_i(b)) = \{b\}$. Thus

$$\tilde{v}(b,\tau\circ\varrho_i|\hat{B}) = \limsup_{z\to b,z\in\hat{B}} \#\hat{W}\cap(\tau\circ\varrho_i|\hat{B})^{-1}(\tau\circ\varrho_i(z)).$$

But

$$\# \tilde{W} \cap (\tau \circ \varrho_i | \tilde{B})^{-1} (\tau \circ \varrho_i(z)) < l \# W \cap (\tau | B)^{-1} (\tau \circ \varrho_i(z))$$

for all $z \in \hat{B}$. Thus

$$\widetilde{v}(b, \tau \circ \varrho_i | \hat{B}) < l \, \widetilde{v}(b, \tau | B)$$
.

Choose $B \in \Gamma_b$ such that $\tilde{v}(b, \tau | X_i) = \tilde{v}(b, \tau | B)$. The existence of $\hat{B} \in \Gamma_b$ such that $\tilde{v}(b, \tau \circ \rho_i | \hat{B}) < l \tilde{v}(b, \tau | B)$

implies

$$\tilde{v}(b, \tau \circ \varrho_i) < l \tilde{v}(b, \tau | X_i).$$

Combining these two results,

$$v(b, \tau \circ \varrho_i) < l \, \tilde{v}(b, \tau | X_i) \, .$$

Consequently, for w such that $|w| < \delta = \min_{i=1,\dots,q} \delta_i$,

$$\sum_{(\mathfrak{z},w)\in L(\mathfrak{y},w)} v((\mathfrak{z},w),\tau|N) = \sum_{(\mathfrak{z},w)\in L(\mathfrak{y},w)} \sum_{\hat{z}\in\varrho^{-1}(\mathfrak{z},w)} v(\hat{z},\tau\circ\varrho) = \frac{q}{i=1} \sum_{(\mathfrak{z},w)\in L_{i}(\mathfrak{y},w)} \sum_{\hat{z}\in\varrho^{-1}(\mathfrak{z},w)} (v(\hat{z},\tau\circ\varrho_{i}) < \\ < \sum_{i=1}^{q} \sum_{(\mathfrak{z},w)\in L_{i}(\mathfrak{y},w)} \sum_{\hat{z}\in\varrho^{-1}(\mathfrak{z},w)} l \tilde{v}((\mathfrak{z},w),\tau|X_{i}) < \\ < \sum_{i=1}^{q} \sum_{(\mathfrak{z},w)\in L_{i}(\mathfrak{y},w)} l^{2} \tilde{v}((\mathfrak{z},w),\tau|X_{i}) < \\ < l^{2} \sum_{i=1}^{q} \kappa_{i} = \kappa.$$
 q.e.d.

21 Math. Ann. 172

Lemma 4.7. Let $a \in N(0)$. For d > 0, define $B'_d(a) = \{(\mathfrak{z}, w) | |\mathfrak{z} - a|^2 + |w|^2 < d^2\}$. Then there exist constants d > 0, $\kappa > 0$, $\delta > 0$ such that for every $\gamma > 0$ and for any ball B' of radius γ with $B' \subset B'_d(a)$,

$$\int_{\Omega \cap N(w)} v((\mathfrak{z}, w), \tau \mid N) v_p < \kappa \gamma^{2p}$$

for all w with $|w| < \delta$.

B

Proof. Let \hat{N} be the normalization, $\varrho: \hat{N} \to N$ the normalization map, and $\{a_1, ..., a_q\} = \varrho^{-1}(\mathfrak{a})$. Then there exist pairwise disjoint neighborhoods $\hat{X}_1, ..., \hat{X}_q$ of $a_1, ..., a_q$ and analytic sets $X_1, ..., X_q$ in a neighborhood $X \subset N$ of a such that $\varrho^{-1}(X) = \bigcup_{i=1}^{q} \hat{X}_i, X = \bigcup_{i=1}^{q} X_i, \varrho(\hat{X}_i) = X_i$ for each i = 1, ..., q, and $X \subset K \cap N$ where K is a compact set in $V \oplus \mathbb{C}$. And it will be proven in the appendix of this paper that there exists a basis $C = (c_1, ..., c_n)$ of V such that $C_{\mu} = (c_{\mu(1)}, ..., c_{\mu(n)})$ is distinguished with respect to (T, \mathfrak{a}, p) for each permutation μ of $\{1, ..., n\}$. Define $\mathfrak{c} = (0, 1) \in V \oplus \mathbb{C}$. Define $C'_{\mu} = (c_{\mu(1)}, ..., c_{\mu(p+1)}, ..., c_{\mu(n)})$, a basis of $V \oplus \mathbb{C}$. Identify $V = V \times \{0\}$. Then a is an isolated point of

$$T \cap \left\{ \mathfrak{a} + \sum_{\nu = p+1}^{n} z_{\nu} \mathfrak{c}_{\mu(\nu)} | z_{\nu} \in \mathbf{C} \right\}$$

implies that a is an isolated point of

$$N(0) \cap \left\{ \mathfrak{a} + \sum_{\nu=p+1}^{n} z_{\nu} \mathfrak{c}_{\mu(\nu)} + w \ \mathfrak{c} \mid z_{\nu} \in \mathbb{C}, \ w \in \mathbb{C} \right\}$$

and

$$N \cap \left\{ \mathfrak{a} + \sum_{\nu = p+1}^{n} z_{\nu} \mathfrak{c}_{\mu(\nu)} \mid z_{\nu} \in \mathbf{C} \right\}$$

Hence C'_{μ} is distinguished with respect to (N, a, p+1) and with respect to (N(0), a, p). Hence a polycylinder U_{μ} distinguished with respect to $(N, C'_{\mu}, a, p+1)$ and $(N(0), C'_{\mu}, a, p)$ exists such that $U_{\mu} \cap N \subset X$. It can be chosen such that η in $0 < \eta < 1$ exists such that if

$$U_{\mu,\eta} = \left\{ \mathfrak{a} + \sum_{\nu=1}^{n} z_{\mu(\nu)} \, \mathfrak{c}_{\mu(\nu)} + w \, \mathfrak{c} \, \big| \, |z_{\mu(\nu)}| < \varepsilon_{\nu}^{(\mu)}, \, \nu = 1, \, \dots, p \, ; \, |z_{\mu(\nu)}| < \eta \, \varepsilon_{\nu}^{(\mu)}, \\ \nu = p + 1, \, \dots, n \, ; \, |w| < \eta \, \varepsilon_{n+1}^{(\mu)} \right\},$$

then $\overline{U_{\mu} - U_{\mu,\eta}} \cap N(0) = \Phi$. Define

$$\begin{split} \tilde{\pi}_{\mu} \left(\mathfrak{a} + \sum_{\nu=1}^{n} z_{\nu} \mathfrak{c}_{\nu} + w \mathfrak{c} \right) &= \mathfrak{a} + \sum_{\nu=1}^{p} z_{\mu(\nu)} \mathfrak{c}_{\mu(\nu)}, \\ \tilde{\pi}_{\mu}(U_{\mu}) &= Y'_{\mu}, \\ L_{\mu}(\mathfrak{y}, w) &= U_{\mu} \cap N(w) \cap \tilde{\pi}_{\mu}^{-1}(\mathfrak{y}) \quad \text{for} \quad \mathfrak{y} \in Y'_{\mu}. \end{split}$$

According to Lemma 4.6, $\kappa_{\mu} > 0$ and $\delta_{\mu} > 0$ exist such that

$$\sum_{(\mathfrak{z},w)\in L_{\mu}(\mathfrak{y},w)}v((\mathfrak{z},w),\tau\,|\,N)<\kappa_{\mu}$$

if $|w| < \delta_{\mu}$ and $\mathfrak{n} \in Y'_{\mu}$. Define $\kappa' = \operatorname{Max} \{\kappa_{\mu} | \mu \text{ is a permutation of } \{1, ..., n\}\},$ $\delta = \operatorname{Min} \{\delta_{\mu} | \mu \text{ is a permutation of } \{1, ..., n\}\}.$ Take d > 0 such that $\overline{B'_{d}(\mathfrak{a})} \subset \bigcap_{(\mu)} U_{\mu}$. Define on $V \oplus \mathbb{C}$, for $\mathfrak{z} = \sum_{\nu=1}^{n} z_{\nu} \mathfrak{c}_{\nu}$,

$$\chi(\mathfrak{z}) = \frac{i}{2} \sum_{\nu=1}^{n} dz_{\nu} \wedge dz_{\nu}$$
$$\chi_{p} = \frac{1}{p!} \chi^{p} .$$

A constant l > 0 exists such that

$$\iota_w^* \upsilon_p \leq l \, \iota_w^* \, \chi_p$$

on $\overline{B'_d(\mathfrak{a})} \cap N(w)$, where $\iota_w: N(w) \to V \oplus \mathbb{C}$ is the inclusion map for each w. Take $\gamma > 0$ and let

$$B' = \{(\mathfrak{z}, w) \mid |\mathfrak{z} - \mathfrak{b}|^2 + |w - b|^2 < \gamma^2\} \subset B'_d(\mathfrak{a}).$$

Take w in $|w| < \delta$. Then

$$J(w) = \int_{B' \cap N(w)} v((\mathfrak{z}, w), \tau | N) v_p \leq l \int_{B' \cap N(w)} v((\mathfrak{z}, w), \tau | N) \iota_w^*(\chi_p)$$

= $l \sum_{1 \leq v_1 < \cdots < v_p \leq n} \int_{B' \cap N(w)} v((\mathfrak{z}, w), \tau | N) \left(\frac{i}{2}\right)^p dz_{v_1} \wedge d\overline{z}_{v_1} \wedge \cdots \wedge dz_{v_p} \wedge d\overline{z}_{v_p}$
= $l \sum_{1 \leq v_1 < \cdots < v_p \leq n} \int_{\overline{\pi}_{\mu}(B' \cap N(w))} (\mathfrak{z}, w) \in L_{\mu}(\mathfrak{g}, w) \cap B} v((\mathfrak{z}, w), \tau | N) \left(\frac{i}{2}\right)^p \times dz_{v_1} \wedge d\overline{z}_{v_1} \wedge \cdots \wedge dz_{v_p} \wedge d\overline{z}_{v_p}$

where the permutation is defined uniquely with respect to the $v_1, ..., v_p$ by requiring that

$$\mu(1) = v_1, \ldots, \mu(p) = v_p, \quad \mu(p+1) < \cdots < \mu(n).$$

Now define

$$\langle \mathfrak{z} | \mathfrak{z}' \rangle = \sum_{\nu=1}^{n} z_{\nu} \overline{z'_{\nu}} \quad \text{for} \quad \mathfrak{z} = \sum_{\nu=1}^{n} z_{\nu} \mathfrak{c}_{\nu}, \quad \mathfrak{z}' = \sum_{\nu=1}^{n} z'_{\nu} \mathfrak{c}_{\nu}.$$

Then $||\mathfrak{z}|| = [\langle \mathfrak{z} | \mathfrak{z} \rangle]^{1/2}$ is another norm on V. A constant A > 0 exists such that $A|\mathfrak{z}| \le ||\mathfrak{z}|| \le A^{-1}|\mathfrak{z}|$ for all $\mathfrak{z} \in V$.

Define $B'' = \{(\mathfrak{z}, w) \mid ||\mathfrak{z} - \mathfrak{b}|| < \gamma/A, |w - b| < \gamma\}$. If $(\mathfrak{z}, w) \in B'$, then $|\mathfrak{z} - \mathfrak{b}| < \gamma$ and $|w - b| < \gamma$. Hence $A ||\mathfrak{z} - \mathfrak{b}|| < \gamma$, and so $(\mathfrak{z}, w) \in B''$. Thus

$$\tilde{\pi}_{\mu}(B') \subseteq \tilde{\pi}_{\mu}(B'' \cap U_{\mu}) \subseteq \\ \subseteq \left\{ \mathfrak{e}_{\mu} + \sum_{\nu=1}^{p} z_{\nu} \mathfrak{e}_{\mu(\nu)} \, \left| \sum_{\nu=1}^{p} |z_{\nu}|^{2} \leq \left(\frac{\gamma}{A}\right)^{2} \right\}$$

with
$$e_{\mu} = \sum_{\nu=1}^{p} b_{\mu(\nu)} c_{\mu(\nu)} + \sum_{\nu=p+1}^{n} a_{\mu(\nu)} c_{\mu(\nu)}$$
 where
 $a = \sum_{\nu=1}^{n} a_{\nu} c_{\nu} + 0c, \quad b = \sum_{\nu=1}^{n} b_{\nu} c_{\nu} + 0c.$

Hence

$$J(w) \leq l \sum_{1 \leq v_1 < \cdots < v_p \leq n} \int_{\tilde{\pi}_{\mu}(B')} \sum_{(\mathfrak{z},w) \in L_{\mu}(\mathfrak{y},w)} v((\mathfrak{z},w),\tau \mid N) \left(\frac{i}{2}\right)^p \times dz_{v_1} \wedge d\bar{z}_{v_1} \wedge \cdots \wedge dz_{v_p} \wedge d\bar{z}_{v_p} \leq \\ \leq l\kappa' n! \frac{\pi^{2p}}{p!} \left(\frac{\gamma}{A}\right)^{2p} = \kappa \gamma^{2p}$$

if $|w| < \delta$, where

$$\kappa = l\kappa' \frac{n!}{p!} \left(\frac{\pi}{A}\right)^{2p}$$

is independent of γ . q.e.d.

D. The limit of I(w, r)

In this section, the two local results of sections 4 B and 4 C are used to compute $\lim_{w\to 0} \int_{\pi(N(w))\cap B_r} v((3, 1))$ § 4 A will yield $\lim_{w\to 0} \int_{\pi(N(w))\cap B_r} f(N(w)) = 0$ $v((3, w), \tau | N) v_p$. This limit along with the results of

Recall $\pi: V \oplus \mathbb{C} \to V$, the projection

$$B_r = \{\mathfrak{z} \in V \mid |\mathfrak{z}| < r\}$$

$$\pi(N(w)) \cap B_r = \{\mathfrak{z} \mid (\mathfrak{z}, w) \in N(w), \quad \mathfrak{z} \in B_r\}$$

$$I(w, r) = \int_{\pi(N(w) \cap B_r} v_p$$

$$\pi(N(0)) = T.$$

And $S = \varrho(\hat{S})$, where \hat{S} was the set of singular points of the normalization \hat{N} of N and $\rho: \hat{N} \to N$ the normalization map. Define

$$Q = [\overline{B}_r \cap (T - \dot{T})] \cup [\overline{B}_r \cap \pi(S \cap N(0))] \cup [(\overline{B}_r - B_r) \cap T].$$

The s-dimensional Hausdorff outer measure in \mathbb{R}^m is needed. Let $L \in \mathbb{R}^m$. Define $\Omega_k = \{B(t) | B(t) \text{ a ball of radius } t < 1/k\}, d^s(B(t)) = W'_s t^s, W'_s = \text{the volume of the unit ball in } \mathbb{R}^s$,

$$\begin{split} \Omega_k(L) &= \left\{ \{B_i\}_{i \in \mathbb{N}} | B_i \in \Omega_k, \ \bigcup_{i=1}^{\infty} B_i \supset L \right\} \\ \lambda_k(L) &= \inf \left\{ \sum_{i=1}^{\infty} d^{s}(B_i) | \{B_i\}_{i \in \mathbb{N}} \in \Omega_k(L) \right\} \\ \mu_s(L) &= \lim_{k \to \infty} \lambda_k(L) \,. \end{split}$$

304

This limit exists, and is called the *s*-dimensional Hausdorff outer measure of L. Note that $\mu_s(L) = 0$ implies that for $\varepsilon > 0$, there exists $k_0(\varepsilon)$ such that $\lambda_k(L) \leq \leq W'_s \varepsilon/2$ for $k > k_0(\varepsilon)$. Hence for any $k > k_0$, there exists $\{B_i\}_{i \in \mathbb{N}} \in \Omega_k(L)$ such that, if the ball B_i is of radius $t_i < 1/k$, then

$$\sum_{i=1}^{\infty} d^s(B_i) = \sum_{i=1}^{\infty} W'_s t_i^s < \varepsilon W'_s,$$

that is,

$$\bigcup_{i=1}^{\infty} B_i \supseteq L \quad \text{and} \quad \sum_{i=1}^{\infty} t_i^s < \varepsilon \,.$$

Identify $V = \mathbb{R}^{2n}$. Now the sets $T - \dot{T}$ and $\pi(S \cap N(0))$ lie thin and analytic in V, and so they may be expressed as the finite union of manifolds, each manifold of dimension less than or equal 2p-2. Hence $\mu_{2p}(\overline{B}_r \cap (T - \dot{T})) = 0$ $= \mu_{2p}(\overline{B}_r \cap \pi(S \cap N(0)))$ (see for example HUREWICZ and WALLMAN, [2]). Also, if A is a real analytic set in an open set of \mathbb{R}^m , and if A is without interior points, then A is a set of measure zero. This can be easily shown by induction on m with the use of Fubini's Theorem. Now $\dot{T} \cap (\overline{B}_r - B_r)$ is a real analytic set in \dot{T} . Suppose that a is an interior point of $\dot{T} \cap (\overline{B}_r - B_r)$ with respect to \dot{T} . Then there exists an orthogonal coordinate system $(v_1, ..., v_n)$ of V and a biholomorphic map

$$\gamma: U \rightarrow \dot{T}$$

of an open set $U \in \mathbf{C}^p$ such that

$$\mathfrak{a} \in \gamma(U) \subset (\overline{B}_r - B_r) \cap \dot{T},$$

$$\gamma(z_1, \dots, z_p) = \sum_{\nu=1}^p z_{\nu} \mathfrak{v}_{\nu} + \sum_{\nu=p+1}^n f_{\nu}(z) \mathfrak{v}_{\nu},$$

where $z = (z_1, ..., z_p)$ and $f_{p+1}, ..., f_n$ are holomorphic on U. Then for $z \in U$,

$$r^{2} = |\gamma(z)|^{2} = \sum_{\nu=1}^{p} |z_{\nu}|^{2} + \sum_{\nu=p+1}^{n} |f_{\nu}(z)|^{2}.$$

For any λ , $1 \leq \lambda \leq p$,

$$0 = \frac{\partial}{\partial z_{\lambda}} |\gamma(z)|^{2} = \overline{z}_{\lambda} + \sum_{\nu=p+1}^{n} \frac{\partial f_{\nu}(z)}{\partial z_{\lambda}} \overline{f_{\nu}(z)},$$

$$0 = \frac{\partial}{\partial \overline{z}_{\lambda}} \frac{\partial}{\partial z_{\lambda}} |\gamma(z)|^{2} = 1 + \sum_{\nu=p+1}^{n} \left| \frac{\partial f_{\nu}(z)}{\partial z_{\lambda}} \right|^{2} \ge 1,$$

a contradiction. Thus $\dot{T} \cap (\bar{B}_r - B_r)$ is without interior points in \dot{T} , and so has measure zero in \dot{T} . Since T is the union of \dot{T} and a finite number of manifolds of dimension less than 2p, it follows that $\mu_{2r}(T \cap (\bar{B}_r - B_r)) = 0$. Thus $\mu_{2r}(Q) = 0$.

of dimension less than 2p, it follows that $\mu_{2p}(T \cap (\overline{B}_r - B_r)) = 0$. Thus $\mu_{2p}(Q) = 0$. Lemma 4.8. Given any $\varepsilon > 0$, then $\delta = \delta(\varepsilon) > 0$ and an open set $W = W(\varepsilon) \subset H$ exist such that $Q \times \{0\} \subset W$ and

$$\int_{N(w) \cap W} v((\mathfrak{z}, w), \tau | N) v_p < \varepsilon \quad \text{if} \quad |w| < \delta.$$

Proof. Take $a \in Q$. Then, according to Lemma 4.7, $d_a > 0$, $\delta_a > 0$, κ_a exist such that if

$$B'_{d_{\mathfrak{a}}}(\mathfrak{a}) = \{(\mathfrak{z}, w) \mid |\mathfrak{z} - \mathfrak{a}|^2 + |w|^2 < d_{\mathfrak{a}}^2\},\$$

and if $B' \in B'_{d_0}(a)$ is a ball of radius γ , then

$$\int_{\mathcal{B}' \cap N(w)} v((\mathfrak{z}, w), \tau \mid N) v_p < \kappa_a \gamma^{2p}$$

for all w with $|w| < \delta_a$. Then $Q \times \{0\} \subseteq \bigcup_{a \in Q} B'_{\frac{1}{2}d_a}(a)$, and so a_1, \ldots, a_q in Q exist such that

$$Q \times \{0\} \subseteq \bigcup_{j=1}^{q} B'_{\frac{1}{2}d_j}(\mathfrak{a}_j), \text{ where } d_j = d_{\mathfrak{a}_j}.$$

Define $d_{q+1} > 0$ to be the distance between $\overline{H} - H$ and $Q \times \{0\}$, and

$$d = \underset{j=1,...,q,q+1}{\operatorname{Min}} d_j, \quad \delta = \underset{j=1,...,q}{\operatorname{Min}} \delta_{\alpha_j},$$
$$\kappa = \underset{j=1,...,q}{\operatorname{Max}} \kappa_{\alpha_j}.$$

Let B' be any ball of radius $\gamma < d/4$ and $B' \cap (Q \times \{0\}) \neq \Phi$. Then $(b, 0) \in B' \cap Q$ $\cap B'_{i+d_i}(a_i)$ for some index j exists. Take $(\mathfrak{z}, w) \in B'$. Then

$$[|_{3} - a_{j}|^{2} + |w|^{2}]^{1/2} = |(_{3}, w) - (a_{j}, 0)| \le |(_{3}, w) - (b, 0)| + |(b, 0) - (a_{j}, 0)| \le \le 2\gamma + \frac{1}{2} d_{j} < d_{j}.$$

Hence $\overline{B'} \subseteq B'_{+}(a_{j})$ and so, for all $|w| < \delta$.

Hence $B \subseteq B_{d_i}(a_j)$, and so, for all |W| < 0,

π

$$\int_{\mathcal{B}' \cap N(w)} v((\mathfrak{z}, w), \tau | N) \upsilon_p < \kappa \gamma^{2p}.$$

Now $\mu_{2p}(Q \times \{0\}) = 0$ in \mathbb{R}^{2n+2} . Thus there exists $\{B'_i\}_{i \in \mathbb{N}}$ such that $B'_i \in H$ is an open ball of radius $\gamma_i < d/4$, and such that

$$W = \bigcup_{i=1}^{\infty} B'_i \supset Q \times \{0\}, \quad \sum_{i=1}^{\infty} \gamma_i^{2p} < \frac{\varepsilon}{\kappa}$$

It can be assumed that $B'_i \cap (Q \times \{0\}) \neq \Phi$, $i \in \mathbb{N}$. Hence $\int_{B'_i \cap N(w)} v((\mathfrak{z}, w), \tau | N) \times \mathcal{D}(w)$ $\times v_p < \kappa \gamma_i^{2p}$ for $|w| < \delta$. Hence

$$\int_{W \cap N(w)} v((\mathfrak{z}, w), \tau \mid N) v_p < \varepsilon$$

for $|w| < \delta$, where $W \in H$ is an open neighborhood of $Q \times \{0\}$. q.e.d. Lemma 4.9.

$$\int_{(N(w) \cap B_r} \nu((\mathfrak{z}, w), \tau | N) \upsilon_p \to \int_{T \cap B_r} ((\mathfrak{z}, 0), \tau | N) \upsilon_p$$

as $w \rightarrow 0$.

Proof. Take $\varepsilon > 0$. From Lemma 4.8, there exist $W = W(\varepsilon)$ open, $\delta_1 = \delta_1(\varepsilon) > 0$ such that $Q \times \{0\} \subseteq W \subseteq H$ and, for $|w| < \delta_1$,

$$\int_{N(w)\cap W} v((\mathfrak{z},w),\tau|N) \,\upsilon_p < \frac{\varepsilon}{3}.$$

Now $T \cap (\overline{B}_r - B_r)$ is compact and contained in $Q \in W$ open. Hence there exist 0 < r' < r < r'', $\delta_2 > 0$ such that, for

$$L = (B_{r''} - \overline{B}_{r'}) \times \{w \mid |w| < \delta_2, w \in \mathbb{C}\},\$$

it is $N \cap \overline{L} \subset W$ and $\overline{L} \subset H$. Define $K = \overline{B}_{r'} - \pi(W \cap E)$, where $E = V \times \{0\}$. Then K is compact, $K \subset B_r$, and $K \cap Q = \Phi$. Take $(a, 0) \in (K \times \{0\}) \cap N(0)$. Then $a \notin Q$, and so $(a, 0) \in (\dot{T} \times \{0\}) \cap (N - S)$. From Lemma 4.5, there exist U_a open, $a \in U_a \subset \overline{U_a} \subset H$, $\overline{U_a}$ compact with $\pi(\overline{U_a}) \subset B_r$, such that for every C^{∞} -function θ on H,

(1)
$$\int_{U_{\mathfrak{a}} \cap N(w)} \theta(\mathfrak{z}, w) v((\mathfrak{z}, w), \tau | N) v_{p} \to \int_{U_{\mathfrak{a}} \cap N(0)} \theta(\mathfrak{z}, 0) v((\mathfrak{z}, 0), \tau | N) v_{p}$$

as $w \to 0$. Define $\delta_a = 1$. Now if $a \in K$ and $(a, 0) \notin N(0)$, then a $\delta_a > 0$ and an open neighborhood U_a of (a, 0) with \overline{U}_a compact and $\overline{U}_a \subset H$ exist such that $N(w) \cap U_a = \Phi$ if $|w| < \delta_a$. Then for any C^{∞} -function θ on H, (1) holds also for

this $U_{\mathfrak{a}}$. Because $K \times \{0\} \subseteq \bigcup_{\mathfrak{a} \in K} U_{\mathfrak{a}}, \mathfrak{a}_1, \dots, \mathfrak{a}_q$ in K exist such that $K \times \{0\} \subseteq \bigcup_{i=1}^q U_{\mathfrak{a}_i}$.

Define

$$\delta_3 = \min_{i=1,...,q} \delta_{\alpha_i},$$
$$U = \bigcup_{i=1}^{q} U_{\alpha_i} \ge K \times \{0\}.$$

Since $L \cup W \cup U$ contains

$$[(\overline{B}_r - \overline{B}_{r'}) \times \{w \mid |w| < \delta_2\}] \cup [W \cap E] \cup [(\overline{B}_{r'} \times \{0\}) - (W \cap E)]$$

which contains $\overline{B}_r \times \{0\}$, and since $L \cup W \cup U$ is open and $\overline{B}_r \times \{0\}$ is compact, $\delta_4 > 0$ exists such that $0 < \delta_4 < \delta_3$, $0 < \delta_4 < \delta_2$, and $P = \overline{B}_r \times \{w | |w| < \delta_4\} \subseteq \subseteq L \cup W \cup U$. Then, for $|w| < \delta_4 < \delta_2$,

$$N(w) \cap L = N \cap L \cap N(w) \subseteq W \cap N(w),$$

and so

$$(\overline{B}_r \times \{w\}) \cap N(w) \subseteq W \cup U, \quad |w| < \delta_4.$$

Now $P \cap N \subseteq (U \cup W) \cap N \subset U \cup W$, and so the compact set $P \cap N \subseteq W \cup \bigcup_{i=1}^{\infty} U_{\alpha_i}$.

Hence a partition of unity $\{\theta_i\}_{i=0,\dots,q}$ to this covering of $P \cap N$ exists such that

- 1. θ_i is of class C^{∞} on H, $0 \leq \theta_i \leq 1$, for i = 0, ..., q. 2. $\theta_i(\mathfrak{z}, w) = 0$ if $(\mathfrak{z}, w) \in H - U_{\mathfrak{a}_i}$ for i = 1, ..., q. 3. $\theta_0(\mathfrak{z}, w) = 0$ if $(\mathfrak{z}, w) \in H - W$. 4. $0 \leq \sum_{i=0}^{q} \theta_i(\mathfrak{z}, w) \leq 1$ if $(\mathfrak{z}, w) \in H$.
- 5. $\sum_{i=0}^{q} \theta_i(\mathfrak{z}, w) = 1$ if $(\mathfrak{z}, w) \in P \cap N$.

Define
$$\theta(\mathfrak{z}, w) = \sum_{i=1}^{q} \theta_i(\mathfrak{z}, w)$$
. If $|w| < \delta_4$, then

$$\int_{N(w) \cap U} \theta(\mathfrak{z}, w) v((\mathfrak{z}, w), \tau | N) v_p$$

$$= \sum_{i=1}^{q} \int_{N(w) \cap U_{\mathfrak{z}_i}} \theta_i(\mathfrak{z}, w) v((\mathfrak{z}, w), \tau | N) v_p$$

$$= \sum_{i=1}^{q} \int_{N(w) \cap U_{\mathfrak{z}_i}} \theta_i(\mathfrak{z}, w) v((\mathfrak{z}, w), \tau | N) v_p \rightarrow$$

$$\rightarrow \sum_{i=1}^{q} \int_{N(0) \cap U_{\mathfrak{z}_i}} \theta_i(\mathfrak{z}, w) v((\mathfrak{z}, 0), \tau | N) v_p$$

$$= \sum_{i=1}^{q} \int_{N(0) \cap U} \theta_i(\mathfrak{z}, 0) v((\mathfrak{z}, 0), \tau | N) v_p$$

Hence $\delta_5 > 0$ exists such that $0 < \delta_5 < \delta_4$, $0 < \delta_5 < \delta_1$, and

$$\left| \int_{N(w) \cap U} \theta(\mathfrak{z}, w) \, v((\mathfrak{z}, w), \tau \mid N) \, v_p - \int_{N(0) \cap U} \theta(\mathfrak{z}, 0) \, v((\mathfrak{z}, 0), \tau \mid N) \, v_p \right| < \frac{\varepsilon}{3} \quad \text{for all } w \text{ with } |w| < \delta_5 \, .$$

Now

$$N(w) \cap (\overline{B}_r \times \{w\}) = (N(w) \cap U) \cup (N(w) \cap (\overline{B}_r \times \{w\}) - U)$$

for any $w \in \mathbb{C}$, as $\pi(\overline{U}_{a_i}) \subset B_r$ for each *i*. But if $(\mathfrak{z}, w) \in N(w) \cap (\overline{B}_r \times \{w\}) - U$, then $\theta(\mathfrak{z}, w) = 0$. Thus, if $|w| < \delta_5$, then

$$\left|\int_{N(w)\cap(\mathcal{B}_r\times\{w\})}\theta(\mathfrak{z},w)\,\nu(\mathfrak{z},w),\,\tau\,|\,N)\,\upsilon_p-\int_{N(0)\cap(\mathcal{B}_r\times\{0\})}\theta(\mathfrak{z},0)\,\nu(\mathfrak{z},0),\,\tau\,|\,N)\,\upsilon_p\right|<\frac{\varepsilon}{3}.$$

And

$$0 \leq \int_{N(w) \cap \{\overline{B}_r \times \{w\}\}} \theta_0(\mathfrak{z}, w) \, v((\mathfrak{z}, w), \tau \mid N) \, v_p \leq$$
$$\leq \int_{N(w) \cap W} \theta_0(\mathfrak{z}, w) \, v((\mathfrak{z}, w), \tau \mid N) \, v_p \leq$$
$$\leq \int_{N(w) \cap W} v((\mathfrak{z}, w), \tau \mid N) \, v_p < \frac{\varepsilon}{3}$$

if $|w| < \delta_5 < \delta_1$. Now $\theta_0(\mathfrak{z}, w) + \theta(\mathfrak{z}, w) = 1$ for $(\mathfrak{z}, w) \in N(w) \cap \overline{B}_r \times \{w\}$ and $|w| < \delta_5$. Consequently,

$$\begin{aligned} \left| \int_{\pi(N(w)) \cap B_{r}} \nu((\mathfrak{z}, w), \tau | N) \upsilon_{p} - \int_{T \cap B_{r}} \nu((\mathfrak{z}, 0), \tau | N) \upsilon_{p} \right| \\ &= \left| \int_{N(w) \cap (\overline{B}_{r} \times \{w\})} \nu((\mathfrak{z}, w), \tau | N) \upsilon_{p} - \int_{N(0) \cap (\overline{B}_{r} \times \{0\})} \nu((\mathfrak{z}, w), \tau | N) \upsilon_{p} \right| \\ &\leq \left| \int_{N(w) \cap (\overline{B}_{r} \times \{w\})} \theta(\mathfrak{z}, w) \nu((\mathfrak{z}, w), \tau | N) \upsilon_{p} - \int_{N(0) \cap (\overline{B}_{r} \times \{0\})} \theta(\mathfrak{z}, 0) \nu((\mathfrak{z}, 0), \tau | N) \upsilon_{p} \right| \\ &+ \left| \int_{N(w) \cap (\overline{B}_{r} \times \{w\})} \theta_{0}(\mathfrak{z}, w) \nu((\mathfrak{z}, w), \tau | N) \upsilon_{p} \right| \\ &+ \left| \int_{N(0) \cap (\overline{B}_{r} \times \{0\})} \theta_{0}(\mathfrak{z}, 0) \nu((\mathfrak{z}, 0), \tau | N) \upsilon_{p} \right| \\ &+ \left| \int_{N(0) \cap (\overline{B}_{r} \times \{0\})} \theta_{0}(\mathfrak{z}, 0) \nu((\mathfrak{z}, 0), \tau | N) \upsilon_{p} \right| \\ &\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \quad \text{if} \quad |w| < \delta_{5} \,. \end{aligned}$$

Let $\{T_1, ..., T_b\}$ be the irreducible branches of T. From Lemma 4.4, for each $\lambda = 1, ..., b$, there exists a constant $m_{\lambda} \in \mathbb{N}$ such that

$$v((\mathfrak{z},0),\tau|N)=m_{\lambda}$$
 if $\mathfrak{z}\in T\cap T_{\lambda}\cap\pi(N-S)$,

which is almost everywhere on T_{λ} . Thus

$$\int_{T \cap B_r} v((\mathfrak{z}, 0), \tau | N) \upsilon_p = \sum_{\lambda=1}^b \int_{T_\lambda \cap B_r} v((\mathfrak{z}, 0), \tau | N) \upsilon_p$$
$$= \sum_{\lambda=1}^b m_\lambda \int_{T_\lambda \cap B_r} \upsilon_p.$$

And, from Lemma 4.3, $v((3, w), \tau | N) = 1$ if $(3, w) \in \dot{N}(w)$ and $w \neq 0$. Thus

$$I(w, r) = \int_{\pi(N(w)) \cap B_r} \upsilon_p = \int_{\pi(N(w)) \cap B_r} \upsilon((\mathfrak{z}, w), \tau | N) \upsilon_p.$$

Hence Lemma 4.9 implies

Theorem 4.10. Let $\{T_1, ..., T_b\}$ be the irreducible branches of T. Suppose 0 < r < R. Then there exist positive integers m_{λ} , $\lambda = 1, ..., b$ such that

$$I(w, r) \rightarrow \sum_{\lambda=1}^{v} m_{\lambda} \int_{T_{\lambda} \cap B_{r}} v_{p} \text{ as } w \rightarrow 0.$$

§ 5. The final result

Theorem 5.1. Let V be a complex vector space of dimension n > 0. Let (|) be a hermitian product on V. Let G be open in V, $0 \in G$. Define $B_r = \{3 \in V | |3| < r\}$. Assume $B_R \subset G$, $0 < R \leq \infty$. Let M be a pure p-dimensional analytic set in G with

$$0 \in M \text{ and } 0 . Then
$$n(0, M) = \lim_{r \to 0} \frac{1}{W_p r^{2p}} \int_{M \cap B_r} v_p$$$$

is a positive integer.

Proof. From § 3,

$$n(0, M) = \lim_{r \to 0} \frac{1}{W_p r^{2p}} \int_{M \cap B_r} \upsilon_p$$
$$= \lim_{r \to 0} \frac{1}{W_p r^{2p}} \lim_{w \to 0} I(w, r)$$

Let $T_1, ..., T_b$ be the irreducible branches of T. Take 0 < r < R. From Theorem 4.10, there exist positive integers $m_1, ..., m_b$ such that

$$\lim_{w\to 0} I(w,r) = \sum_{\lambda=1}^{b} m_{\lambda} \int_{T_{\lambda} \cap B_{r}} v_{p}.$$

From Theorem 2.5, for each $\lambda = 1, ..., b$,

$$\frac{1}{W_p r^{2p}} \int_{T_{\lambda} \cap B_r} v_p = m'_{\lambda},$$

a positive integer independent of r. Thus

$$n(0, M) = \sum_{\lambda=1}^{b} m_{\lambda} m'_{\lambda},$$

a positive integer. q.e.d.

Appendix

Let *M* be a pure *p*-dimensional analytic set in an open neighborhood of the origin of an *n*-dimensional complex vector space *V*. Suppose $0 \in M$ and $0 . Let <math>S = \{\mu | \mu \text{ a permutation of } \{1, ..., n\}\}$. A basis $(v_1, ..., v_n)$ of *V* is said to be *clear* if, for every $\mu \in S$, the basis $(v_{\mu(1)}, ..., v_{\mu(n)})$ is distinguished with respect to (M, 0, p) (defined in §4 C). The purpose of this appendix is to prove the existence of a clear basis. The proof is due to W. STOLL. See also DE RHAM [5].

Let q = n - p. Let $\Lambda^q V$ denote the space of exterior q vectors over V. Let $\mathbf{P}(\Lambda^q V)$ denote the complex projective space to $\Lambda^q V$, and

$$\sigma: \Lambda^q V - \{0\} \to \mathbf{P}(\Lambda^q V)$$

the residual map. Let

$$V'_{q} = \{a_{1} \wedge \dots \wedge a_{q} \mid a_{1} \wedge \dots \wedge a_{q} \neq 0, a_{v} \in V, v = 1, \dots, q\} \subset \Lambda^{q} V - \{0\}$$

Let $G = \sigma(V'_q)$. Then G is a smooth, connected, complex submanifold of $\mathbf{P}(\Lambda^q V)$, the Grassman manifold of q-planes in V.

Let $\mathbf{P}(V)$ denote the complex projective space to V, and

$$\varrho: V - \{0\} \to \mathbf{P}(V)$$

the residual map. Take $a_v \in V$, v = 1, ..., q. Define

$$E(a_1, \dots, a_q) = \{ z \in V \mid z \land a_1 \land \dots \land a_q = 0 \}$$
$$= \left\{ \sum_{\nu=1}^q \lambda_\nu a_\nu \mid \lambda_\nu \in \mathbf{C}, \ \nu = 1, \dots, q \right\}.$$

Take $\alpha \in G$. Take any $a_1 \wedge \cdots \wedge a_q$ contained in $V'_q \cap \sigma^{-1}(\alpha)$. Define

$$E(\alpha) = \varrho(E(a_1, ..., a_q)).$$

This is well-defined, and, moreover, for α and β contained in G, $E(\alpha) = E(\beta)$ if and only if $\alpha = \beta$.

Lemma A.1. Let N be an analytic set in $\mathbf{P}(V)$ of dimension p-1. Let

$$A = \{ \alpha \in G \,|\, E(\alpha) \cap N \neq \Phi \} \,.$$

Then A is a thin, analytic set in G.

Proof. From Lemma 3 of STOLL [8], $A \neq G$. Thus it remains to show only that A is analytic. Define $T = \rho^{-1}(N) \cup \{0\}$. By Chow's Theorem, T is an analytic set in V of dimension p, and

$$T = \{ z \in V \mid Q_1(z) = \dots = Q_k(z) = 0 \}$$

where Q_v is a homogeneous polynomial, v = 1, ..., k. Let

$$L = \{(a_1 \wedge \dots \wedge a_q, z) \mid z \in T, \ a_1 \wedge \dots \wedge a_q \wedge z = 0\}$$

= $\{(a_1 \wedge \dots \wedge a_q, z) \mid a_1 \wedge \dots \wedge a_q \wedge z = 0, \ Q_1(z) = \dots = Q_k(z) = 0\} \subseteq \Lambda^q V \oplus V.$

Then L is analytic, and for any λ_1 and λ_2 in C, $(a_1 \wedge \cdots \wedge a_q, z) \in L$ implies $(\lambda_1(a_1 \wedge \cdots \wedge a_q), \lambda_2 z) \in L$. Let $L' = \bigcap [(\Lambda^q V - \{0\}) \times (V - \{0\})]$. Then

$$M = (\sigma \oplus \varrho) (L') \subseteq G \times \mathbf{P}(V),$$

and in fact, M is analytic in $G \times \mathbf{P}(V)$. Define

$$\pi: G \times \mathbf{P}(V) \to G,$$

the projection. Then $\pi | M : M \to G$ is proper, and so $\pi(M)$ is analytic in G. But $\pi(M) = A$, for take $\alpha \in \pi(M)$. There exists $z \in T$ and $a_1 \wedge \cdots \wedge a_q \in A^q V$ such that $(a_1 \wedge \cdots \wedge a_q, z) \in L'$ and $\sigma(a_1 \wedge \cdots \wedge a_q) = \alpha$. Then $a_1 \wedge \cdots \wedge a_q \wedge z = 0, z \neq 0$, and so $\varrho(z) \in E(\alpha) \cap \varrho(T - \{0\}) = E(\alpha) \cap N$. Thus $\alpha \in A$. Conversely, let $\alpha \in A$. There exists $z \in T - \{0\}$ such that $|\varrho(z) \in E(\alpha) \cap N$. Choose any $a_1 \wedge \cdots \wedge a_q \in V'_q$ such that $\sigma(a_1 \wedge \cdots \wedge a_q) = \alpha$. Then $z \in E(a_1, \ldots, a_q)$, and so $(a_1 \wedge \cdots \wedge a_q, z) \in L'$. And $\pi((\sigma \oplus \varrho) (a_1 \wedge \cdots \wedge a_q, z)) = \alpha$. Thus $\alpha \in \pi(M)$. q.e.d.

Denote the set of bases of V by

$$\Gamma = \left\{ (v_1, \ldots, v_n) \in \bigoplus_{v=1}^n V | v_1 \wedge \cdots \wedge v_n \neq 0 \right\}.$$

Then Γ is a connected complex manifold, the complement of an analytic set of codimension 1.

Theorem A.2. Let M be a pure p-dimensional analytic set in an open neighborhood of the origin of an n-dimensional complex vector space V. Suppose $0 \in M$ and $0 . Then there exists a thin, analytic set <math>\Delta \subset \Gamma$ such that $(v_1, ..., v_n) \in \Gamma - \Delta$ implies that $(v_1, ..., v_n)$ is a clear basis.

Proof. Let T denote the tangent cone to M at 0. According to Proposition 3.1, T is a pure p-dimensional analytic set in V. Let $N = \varrho(T - \{0\})$. Then N is an analytic set in $\mathbf{P}(V)$ of dimension p - 1. Let

$$A = \{ \alpha \in G \,|\, E(\alpha) \cap N \neq \Phi \} \,.$$

From Lemma A.1, A is a thin analytic set in G. For $\mu \in S$, define $\tau_{\mu}: \Gamma \to G$ by

$$\tau_{\mu}((v_1, \ldots, v_n)) = \sigma(v_{\mu(p+1)} \wedge \cdots \wedge v_{\mu(n)}).$$

Then τ_{μ} is holomorphic. And τ_{μ} is onto, for take $\alpha \in G$, $\alpha = \sigma(a_1 \wedge \cdots \wedge a_q)$, $a_1 \wedge \cdots \wedge a_q \in V'_q$. Extend (a_1, \dots, a_q) to a basis $(a_1, \dots, a_q, a_{q+1}, \dots, a_n) \in \Gamma$ of V. Permute (a_1, \dots, a_n) to $(b_1, \dots, b_n) \in \Gamma$ such that $a_v = b_{\mu(p+v)}, v = 1, \dots, q$. Then $\tau_{\mu}((b_1, \dots, b_n)) = \sigma(b_{\mu(p+1)} \wedge \cdots \wedge b_{\mu(n)}) = \sigma(a_1 \wedge \cdots \wedge a_q) = \alpha$. Define

$$\Delta = \bigcup_{\mu \in S} \tau_{\mu}^{-1}(A),$$

a thin analytic set in Γ as each $\tau_{\mu}^{-1}(A)$ is thin and analytic. Now take $(v_1, ..., v_n) \in \Gamma - \Delta$. Suppose that $(v_1, ..., v_n)$ is not a clear basis. Then there exists $\mu \in S$ such that $(v_{\mu(1)}, ..., v_{\mu(n)})$ is not distinguished with respect to (M, 0, p), that is, 0 is not an isolated point of $E \cap M$, where $E = E(v_{\mu(p+1)}, ..., v_{\mu(n)})$. Thus there exists a sequence $\{z_{\lambda}\}$ such that $z_{\lambda} \to 0$ as $\lambda \to \infty$ and $z_{\lambda} \neq 0$, $z_{\lambda} \in E \cap M$. There exists a subsequence $\{z_{\lambda_{\lambda}}\}$ such that $z_{\lambda} / |z_{\lambda_{\lambda}}|$ converges, say, to t, as $v \to \infty$. Then t is a tangent vector to M at 0, and $t \in T$. And $z_{\lambda} \in E$ for all λ implies that $t \in E$. Let $\alpha = \sigma(v_{\mu(p+1)} \wedge \cdots \wedge v_{\mu(n)})$. Then $\varrho(t) \in \varrho(E) \cap \varrho(T - \{0\}) = E(\alpha) \cap N$. Thus $\alpha \in A$. But $\alpha = \tau_{\mu}((v_1, ..., v_n))$, and so $(v_1, ..., v_n) \in \tau_{\mu}^{-1}(A) \subset A$, a contradicition. Consequently, every basis in $\Gamma - \Delta$ is clear. q.e.d.

Bibliography

- 1. ABHYANKAR, S.: Local analytic geometry. New York: Academic Press 1964.
- 2. HUREWICZ, W., and H. WALLMAN: Dimension theory. Princeton, New Jersey: Princeton University Press 1948.
- LELONG, P.: Intégration sur un ensemble analytique complexe. Bull. Soc. Math. France 85, 239-262 (1957).
- DE RHAM, G.: Currents in an analytic complex manifold. Seminars on Analytic Functions, vol. 1, pp. 54—64. Princeton, New Jersey: Institute for Advanced Study 1957.
- On the area of complex manifolds. Seminar on Several Complex Variables, Institute for Advanced Study 1957–1958 (unpublished).
- STOLL, W.: Mehrfache Integrale auf komplexen Mannigfaltigkeiten. Math. Z. 57, 116–154 (1952).
- Einige Bemerkungen zur Fortsetzbarkeit analytischer Mengen. Math. Z. 60, 287-304 (1954).
- 8. The growth of the area of a transcendental analytic set of dimension one. Math. Z. 81, 76—98 (1963).
- 9. The growth of the area of a transcendental analytic set. I. Math. Ann. 156, 47-78 (1964).
- 10. WHITNEY, H.: Tangents to an analytic variety. Ann. Math. (2), 81, 496-549 (1965).

Professor PAUL R. THIE Department of Mathematics, Boston College Chestnut Hill 67, Mass.

(Received October 10, 1965)