The Lelong Number of a Point of a Complex Analytic Set

PAUL R. THIE*

Contents

Introduction

Let V be an *n*-dimensional complex vector space with a hermitian product. Let M be a pure p-dimensional analytic set in an open set $G \subset V$, and suppose that $0 \in M$. Let $n(r, M)$ denote the function of $r \in \mathbb{R}^+$, the set of positive real numbers, defined by dividing the 2p-dimensional area of M intersect the ball of radius r and center 0 by the area of the 2p-dimensional ball of radius r . P. LELONG [3] and W. STOLL [8] have proven that $n(r, M)$ is monotonic increasing in r, and thus the limit as r tends to 0 exists. Let $n(0, M)$ denote this limit. In the case that $p=n-1$, STOLL in [6] has shown that $n(0, M)$ is an integer. In fact, he proves that if f is a holomorphic function in a neighborhood of 0 such that the germ of f generates the ideal of function germs vanishing on M at 0, then $n(0, M)$ is simply the zero-multiplicity of f at 0 (defined in §4A). However the proof is in the language of divisors and cannot be extended to an analytic set of arbitrary codimension. In the case of $p = 1$, $n(0, M)$ can be directly computed as M can be parameterized in a neighborhood of 0. If $\sum f_{\lambda}$ \mathfrak{v}_{λ} is such a parameterization, where $(\mathfrak{v}_1, ..., \mathfrak{v}_n)$ is a base of V and where $\lambda = 1$ the f_{λ} 's are holomorphic functions on an open set $U \subset \mathbb{C}$, the field of complex numbers, $0 \in U$, and $f_{\lambda}(0) = 0$, then it can be easily shown that $n(0, M)$ is equal to $\min_{1 \leq \lambda \leq n} {\{v(0, 0, f_\lambda)\}, \text{ where } v(0, 0, f_\lambda) \text{ is the zero multiplicity of } f_\lambda \text{ at } 0.}$

^{*} Supported in part by The National Science Foundation under grant GP 3988.

The purpose of this paper is to prove that $n(0, M)$ is a positive integer for an analytic set M of arbitrary dimension. The proof is divided into three parts. In the first part, it is proven that $n(0, M)$ is an integer if M is an analytic cone with center 0 (defined in § 2). The second part relates $n(0, M)$ to the limit of the area of a family $\{N(w)\}\,$, $w \in \mathbb{C} - \{0\}$ of analytic sets. These sets have the property that they "tend to" T, the tangent cone to M at 0×3), as w tends to 0. In § 4, a theorem on the continuity of the area is proven. It is shown that the limit of the area of the $N(w)$'s as w goes to 0 is equal to the product of a positive integer and the area of T. Then this together with the result of $\S 2$ applied to T yields the final result.

§ 1. Definitions

Let V be a complex vector space of dimension n. Let $(\cdot | \cdot)$ be a hermitian product on V , that is,

a) $(a|w) \in C$ for $a \in V$, $w \in V$;

b)
$$
(3 \mid w) = \overline{(w \mid 3)}
$$

- c) $(\alpha_1 \beta_1 + \alpha_2 \beta_2 | \mathbf{w}) = \alpha_1(\beta_1 | \mathbf{w}) + \alpha_2(\beta_2 | \mathbf{w})$ for $\alpha_1, \alpha_2 \in \mathbf{C}$
- d) $(a|3) > 0$ if $3 \ne 0$.

Then $|3| = \sqrt{3|3}$ defines a norm on V. Let d be the exterior derivative on V. Consider $(3 | a)$ as a function of 3 for fixed a. Define

$$
(d_3 | \mathfrak{a}) = d(\mathfrak{z} | \mathfrak{a}),
$$

\n
$$
(a | d_3) = (d_3 | \mathfrak{a}) = d(\mathfrak{a} | \mathfrak{z}).
$$

Then $(d_3|_3)$ and $(3|d_3)$ are differentials on V. Define

$$
(d_3|d_3) = d(3|d_3) = -d(d_3|3),
$$

\n
$$
\eta = (i/4) \left[(3|d_3) - (d_3|3) \right].
$$

Then $d\eta = (i/2) (d_3/d_3)$.

Define

$$
v=d\eta,\,\,v_p=\frac{1}{p!}\bigwedge_{\nu=1}^p v.
$$

Let M be an analytic set of pure dimension $p > 0$ in an open subset G of V. The set \dot{M} of simple points of M forms a smooth complex submanifold of dimension p of V. Let L be a subset of M such that $L \cap \dot{M}$ is measurable on M. If χ is an exterior differential form of degree 2p on M such that $\int \chi$ exists, define $L \cap M$

$$
\int\limits_L \chi = \int\limits_{L \cap \dot{M}} \chi \, .
$$

Let $\iota: \dot{M} \to V$ be the injection defined by $\iota(3) = 3$. If ξ is a continuous exterior differential form of degree $2p$ on V with compact carrier in G , then $\int u^* \xi$ exists ([3], [7]), and is denoted by $\int \xi$.

If $L \subseteq M$ and $L \cap \dot{M}$ is measurable and if \bar{L} is contained in G and compact, then $\int v_p$ exists and is non-negative. The integral is positive if $L \cap M$ is not i. a set of measure zero. The integral $\{v_p\}$ is the Lebesgue area of $L \cap M$.

Define
\n
$$
B_r = \{ \mathfrak{z} \in V \mid |\mathfrak{z}| < r \}
$$
\n
$$
M'_0 = M \cap B_r
$$
\n
$$
W_p = \pi^p / p!
$$

L

Suppose $0 \in M$ and $B_R \subset G$. For $0 < r < R$, define

$$
0 \leqq n(r, M) = \frac{1}{W_p r^{2p}} \int_{M_0^r} v_p.
$$

Then $n(r, M)$ is a monotonic increasing function ([3], [8]). The limit

$$
n(0, M) = \lim_{r \to +0} n(r, M)
$$

exists, and is called the *Lelon9 Number of M at O.* It will be shown that the Lelong Number is always a positive integer.

§ 2. The Lelong number of an analytic cone

Again, let V be an *n*-dimensional complex vector space with a hermitian product. Let $T \subset V$ be a pure p-dimensional *analytic cone* with center 0, that is, a pure p-dimensional analytic set in V such that $a \in T$ implies $u_a \in T$ for all $u \in \mathbb{C}$. In this section, it will be shown that $n(0, T)$ is a positive integer.

Define on V

$$
\sigma = \frac{i}{4} \left[(3|d_3) - (d_3|_3) \right] |a|^{-2} = \frac{\eta}{|a|^2} \text{ for } a \neq 0.
$$

Then

$$
d\sigma = \frac{i}{2} \frac{(d_3|d_3)|_3|^2 - (d_3|_3) \wedge (3|d_3)}{|_3|^4}.
$$

Define $\omega = d\sigma$, $\omega_p = \frac{1}{p!} \int_{r=1}^{p} \omega \text{ on } V - \{0\}.$

Let A be a pure p-dimensional analytic subset of an open subset G of V with $p > 0$. If L is a subset of A such that $L \cap A$ is measurable on A and if \overline{L} is compact and contained in $G - \{0\}$, then $\int \omega_p$ exists and is non-negative. compact and contained in $G - \{0\}$, then $\int_{L} \omega_p$ exists and is non-negative. If $L \subseteq A$ and $L \cap A$ is measurable and $\int_{L^-(0)} \omega_p$ exists, define $\int_{L} \omega_p = \int_{L^-(0)} \omega_p$ Let $\iota: A \to V$ be the injection. Let ζ be a continuous exterior differential form of degree 2p on V with compact carrier in G. If $\xi = d\tau$, where τ is an exterior differential form of class C^1 and degree $2p-1$ on G, and where τ

has a compact carrier in G, then [3, Theorem 7]

$$
\int_A \xi = \int_A d\tau = 0.
$$

Define, for any subset L of V ,

$$
L_r^s = L \cap \{ \mathfrak{z} \mid r \leq |\mathfrak{z}| \leq s \}, \quad 0 \leq r < s \leq \infty.
$$

The following two propositions are a generalization of results of W. STOLL [8, Propositions 1 and 2].

Proposition 2.1. Let A be a pure p-dimensional analytic set in $G = \{3 \mid |3| < R\}$ where $p > 0$ and $0 < R \leq \infty$. Let f be a function of class C^1 on G. Suppose that *a number r o exists such that*

1)
$$
0 < r_0 < R
$$
,
\n2) $f(\mathfrak{z}) = 0$ for $|\mathfrak{z}| \le r_0$.
\nLet q be an integer, $0 \le q \le p - 1$. Let $b = p - q$. Then

$$
\frac{p}{r^{2b}} \int_{A_0^c} f(\mathfrak{z}) v_p(\mathfrak{z}) = \frac{b! q!}{(p-1)!} \int_{A_0^c} f(\mathfrak{z}) v_q(\mathfrak{z}) \wedge \omega_b(\mathfrak{z}) +
$$

+
$$
\int_{A_0^c} \left[\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}} \right] d f \wedge \eta \wedge v_{p-1} . \quad (v_0 = 1)
$$

Proof. Define

$$
\psi = v_q \wedge \frac{\sigma}{b} \wedge \omega_{b-1} \quad (\omega_0 = 1)
$$

$$
\chi = \frac{(p-1)!}{b!q!} \frac{1}{r^{2b}} \eta \wedge v_{p-1}.
$$

Then

$$
d\psi = v_q \wedge \omega_b, \quad d\chi = \frac{p!}{b!q!} \frac{1}{r^{2b}} v_p,
$$

and

$$
\frac{1}{b} \sigma \wedge \omega_{b-1} = \left(\frac{i}{2}\right)^{b-1} \frac{1}{b!} \frac{i}{4} \frac{1}{|3|^2} \left[(3|d_3) - (d_3|3) \right] \wedge
$$

$$
\wedge \left[\frac{(d_3|d_3)}{|3|^2} - \frac{(d_3|3) \wedge (3|d_3)}{|3|^4} \right]^{b-1}
$$

$$
= \left(\frac{i}{2}\right)^{b-1} \frac{1}{b!} \frac{i}{4} \frac{(3|d_3) - (d_3|3)}{|3|^2} \wedge
$$

$$
\wedge \left[\frac{(d_3|d_3)^{b-1}}{|3|^{2b-2}} - (b-1) \frac{(d_3|d_3)^{b-2}}{|3|^{2b-4}} \wedge \frac{(d_3|3) \wedge (3|d_3)}{|3|^4} \right]
$$

$$
= \left(\frac{i}{2}\right)^{b-1} \frac{1}{b!} \frac{i}{4} \frac{(3|d_3) - (d_3|3)}{|3|^{2b}} \wedge (d_3|d_3)^{b-1}
$$

$$
= \frac{1}{b} \eta \wedge \frac{1}{|3|^{2b}} v_{b-1}.
$$

Thus

$$
\psi = v_q \wedge \frac{\eta}{b} \wedge \frac{v_{b-1}}{|3|^{2b}}
$$

=
$$
\frac{(p-1)!}{q!b!} \frac{1}{|3|^{2b}} \eta \wedge v_{p-1},
$$

$$
\psi - \chi = \frac{(p-1)!}{q!b!} \left[\frac{1}{|3|^{2b}} - \frac{1}{r^{2b}} \right] \eta \wedge v_{p-1}.
$$

Let α be a C^{∞} -function on the real line **R** such that $0 \leq \alpha(x) \leq 1$ for all x and $\alpha(x) = 1$ for $x \le 0$ and $\alpha(x) = 0$ for $x \ge 1$. Define K by

$$
K=\max_{x\in\mathbf{R}}|\alpha'(x)|.
$$

Take any r in $r_0 < r < R$. Take s in $r/2 < s < r$. Define $t = (s+r)/2$. Then $t-s = (r-s)/2$. Define λ_s by $\lambda_s(x) = \alpha \left(\frac{x-s}{t-s}\right)$. Then

a) $0 \leq \lambda_s(x) \leq 1$ for all x. b) $\lambda_s(x) = 1$ for all $x \leq s$, c) $\lambda_s(x) = 0$ for all $x \ge t$, d) $|\lambda'_s(x)| \le \frac{K}{t-s} = \frac{2K}{r-s}$ for all x, e) $\lambda'_{s}(x) \neq 0$ implies $s < x < t$, f) $\lambda_s(x) \rightarrow 1$ as $s \rightarrow r-0$ if $x < r$ g) $\lambda'_s(x) \rightarrow 0$ as $s \rightarrow r-0$ if $x < r$

And

$$
d\lambda_s(\vert\mathfrak{z}\vert)\wedge\eta=\frac{i}{4}\lambda_s'(\vert\mathfrak{z}\vert)\frac{(d\mathfrak{z}\vert\,\mathfrak{z})\wedge(\mathfrak{z}\,\vert\,d\mathfrak{z})}{\vert\mathfrak{z}\vert}.
$$

For $s \le |3| \le r$,

$$
|\lambda'_{s}(|\mathfrak{z}|)| \left| \frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}} \right| \leq \frac{2K}{r-s} \frac{r^{2b} - |\mathfrak{z}|^{2b}}{r^{2b} |\mathfrak{z}|^{2b}} \leq
$$

$$
\leq \frac{2^{2b+1} K^{2b-1}}{r^{4b}} \sum_{\mu=0}^{2b-1} r^{\mu} |\mathfrak{z}|^{2b-1-\mu} \leq
$$

$$
\leq \frac{2^{2b+2} Kb}{r^{2b+1}}.
$$

Therefore

$$
\int_{45} f d\lambda_s \wedge (\psi - \chi) = \left(\frac{(p-1)!}{q!b!} \right) \int_{4F_0} f \left(\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}} \right) d\lambda_s \wedge \eta \wedge v_{p-1}
$$
\n
$$
= \frac{(p-1)!}{q!b!} \int_{4F_0} f \left(\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}} \right) \frac{i}{4} \lambda'_s (|\mathfrak{z}|) \frac{(d\mathfrak{z}| \mathfrak{z}) \wedge (\mathfrak{z}| d\mathfrak{z})}{|\mathfrak{z}|} \wedge v_{p-1}
$$
\n
$$
\to 0 \quad \text{as} \quad s \to r - 0 \, .
$$

Moreover

$$
\int_{A_5} \lambda_s \, d f \wedge (\psi - \chi) \to \int_{A_5} d f \wedge (\psi - \chi) \quad \text{as} \quad s \to r - 0,
$$

$$
\int_{A_5} \lambda_s \, f \, d (\psi - \chi) \to \int f \, d (\psi - \chi) \quad \text{as} \quad s \to r - 0.
$$

Therefore

$$
0 = \int_{A_0} d(f \lambda_s(\psi - \chi))
$$

= $\int_{A_0} f d\lambda_s \wedge (\psi - \chi) + \int_{A_0} \lambda_s df \wedge (\psi - \chi) + \int_{A_0} \lambda_s f d(\psi - \chi)$

implies that

$$
0=\int\limits_{A_0} df \wedge (\psi-\chi)+\int\limits_{A_0} f d(\psi-\chi)\,,
$$

that is,

$$
\frac{p!}{b!q!} \frac{1}{r^{2b}} \int_{A_0} f v_p = \int_{A_0} f v_q \wedge \omega_b + \frac{(p-1)!}{q!b!} \int_{A_0} \left(\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}}\right) df \wedge \eta \wedge v_{p-1}.
$$
q.e.d.

Proposition 2.2. Let A be an analytic set of pure dimension $p > 0$ in $G = \{3 \mid |3| < R\}$ where $0 < R \leq \infty$. Take r and s such that $0 < r < s < R$. Let q *be an integer,* $0 \leq q \leq p - 1$. Let $b = p - q$. Then

$$
\frac{b!q!}{p!} \int\limits_{A\beta} v_q \wedge \omega_b = \frac{1}{s^{2b}} \int\limits_{A\delta} v_p - \frac{1}{r^{2b}} \int\limits_{A\delta} v_p \, .
$$

Proof. Let α be a C^{∞}-function on **R** such that $0 \leq \alpha(x) \leq 1$ for all x and $\alpha(x) = 1$ for $x \leq 0$ and $\alpha(x) = 0$ for $x \geq 1$. Take $0 < t < r < s < R$. Define

$$
f(\mathfrak{z}) = \alpha \left(\frac{|\mathfrak{z}| - t}{r - t} \right).
$$

The function f is of class C^{∞} and $f(3)=1$ for $|3| \leq t$ and $f(3)=0$ for $|3| \geq r$. From Proposition 2.1,

$$
\frac{b!q!}{(p-1)!} \int_{A_0^c} (1-f) v_q \wedge \omega_b = \frac{p}{s^{2b}} \int_{A_0^c} (1-f) v_p + \int_{A_0^c} \left[\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{s^{2b}} \right] df \wedge \eta \wedge v_{p-1},
$$

$$
\frac{b!q!}{(p-1)!} \int_{A_0^c} (1-f) v_q \wedge \omega_b = \frac{p}{r^{2b}} \int_{A_0^c} (1-f) v_p + \int_{A_0^c} \left[\frac{1}{|\mathfrak{z}|^{2b}} - \frac{1}{r^{2b}} \right] df \wedge \eta \wedge v_{p-1}.
$$

And

$$
\int_{A_0^*} df \wedge \eta \wedge v_{p-1} = - \int_{A_0^*} f d\eta \wedge v_{p-1} = - p \int_{A_0^*} f v_p
$$

$$
\int_{A_0^*} df \wedge \eta \wedge v_{p-1} = - p \int_{A_0^*} f v_p.
$$

Hence
\n
$$
\frac{b!q!}{(p-1)!} \int_{A\beta} v_q \wedge \omega_b = \frac{b!q!}{(p-1)!} \int_{A\beta} (1-f) v_q \wedge \omega_b
$$
\n
$$
= \frac{p}{s^{2b}} \int_{A\delta} (1-f) v_p - \frac{p}{r^{2b}} \int_{A\delta} (1-f) v_p +
$$
\n
$$
+ \int_{A\beta} \frac{1}{|3|^{2b}} df \wedge \eta \wedge v_{p-1} -
$$
\n
$$
- \frac{1}{s^{2b}} \int_{A\delta} df \wedge \eta \wedge v_{p-1} + \frac{1}{r^{2b}} \int_{A\delta} df \wedge \eta \wedge v_{p-1}
$$
\n
$$
= \frac{p}{s^{2b}} \int_{A\delta} (1-f) v_p - \frac{p}{r^{2b}} \int_{A\delta} (1-f) v_p + 0 +
$$
\n
$$
+ \frac{p}{s^{2b}} \int_{A\delta} f v_p - \frac{p}{r^{2b}} \int_{A\delta} f v_p
$$
\n
$$
= \frac{p}{s^{2b}} \int_{A\delta} v_p - \frac{p}{r^{2b}} \int_{A\delta} v_p
$$
\nq.e.d.

Note that by letting $q = 0$, Proposition 2.2 gives

$$
\int_{A_{\beta}^{\epsilon}} \omega_p = \frac{1}{s^{2p}} \int_{A_{\delta}^{\epsilon}} v_p - \frac{1}{r^{2p}} \int_{A_{\delta}^{\epsilon}} v_p.
$$

Thus $n(r, A) = \frac{1}{W} \int_{R} v_p$ is monotonic increasing, and so $n(0, A) = \lim_{h \to 0} n(r, A)$ exists, \sim

Assume now that $p \ge 2$. Let $q = 1$. Then

$$
\int_{A\beta} v \wedge \omega_{p-1} = \frac{p}{s^{2p-2}} \int_{A_0^z} v_p - \frac{p}{r^{2p-2}} \int_{A_0^z} v_p.
$$

Since $\lim_{r \to 0} \frac{1}{r^{2p}} \int_{A_0^c} v_p$ exists,

$$
\int_{A_0^z} v \wedge \omega_{p-1} = \frac{p}{s^{2p-2}} \int_{A_0^z} v_p.
$$

In particular, if T is a pure p-dimensional analytic cone with center 0 and $p \ge 2$, then

$$
\frac{p}{r^{2p-2}}\int\limits_{T_0} v_p = \int\limits_{T_0} v \wedge \omega_{p-1} .
$$

Fubini's Theorem shall now be applied to $\int_{T_x} v \wedge \omega_{p-1}$. A statement of the theorem follows. The theorem in a more general setting is stated and proved by W. STOLL in [6].

Fubini's Theorem. *Let N and Q be pure dimensional complex manifolds with* $\dim N = n$, $\dim Q = q < n$. Let $\sigma : N \to Q$ be a holomorphic map and suppose *that* σ *has maximal rank. Define* $N_y = \sigma^{-1}(y)$, *a complex submanifold of N.* Let φ be a differential form of bidegree (q, q) on Q. Let χ be a differential form *of bidegree* $(n - q, n - q)$ *on the measurable set L in N. Suppose that* $\gamma \wedge \sigma^* \varphi$ *is integrable over L. Let* $\iota_v: N_v \to N$ *be the injection. Then*

$$
\int\limits_{L} \chi \wedge \sigma^* \varphi = \int\limits_{Q} \left(\int\limits_{N_{\mathcal{Y}} \cap L} l_{\mathcal{Y}}^* \chi \right) \varphi.
$$

In order to apply this theorem, the following is needed.

Let $P(V)$ denote the complex projective space of the vector space V. Let $\rho: V - \{0\} \rightarrow P(V)$ be the residual map, which can be uniquely defined by requiring that $\varrho(3_1) = \varrho(3_2)$ if and only if $3_1 = u_{3_2}$ for $u \in \mathbb{C} - \{0\}$. One and only one exterior differential form $\ddot{\omega}$ of bidegree (1, 1) exists on $P(V)$ such that $\varrho^*(\ddot{\omega}) = \omega$. Define

$$
\ddot{\omega}_q = \frac{1}{q!} \underset{v=1}{\overset{q}{\wedge}} \ddot{\omega}.
$$

Then $\varrho^*(\ddot{\omega}_q) = \omega_q$. Let $T \subset V$ be a pure *p*-dimensional analytic cone with center 0 and $p \geq 2$.

Define $\rho(T-\{0\})=$ *T*. Then *T* is a pure $(p-1)$ -dimensional analytic set in $P(V)$. Define $N = \dot{T} - \{0\}$, a pure p-dimensional smooth submanifold of $V - \{0\}$. Define $Q = \varrho(N)$, $\sigma = \varrho/N$. Then Q consists of all the simple points of T, and N is a cone, that is, $3 \in N$, $u \in C - \{0\}$ implies $u_3 \in N$. Hence $N = \sigma^{-1}(Q)$ $= \rho^{-1}(Q)$. And Q is a pure $(p-1)$ -dimensional smooth submanifold of $P(V)$. Let $i: N \rightarrow V - \{0\}$ and $j: Q \rightarrow P(V)$ be the inclusions. Then

$$
\begin{array}{ccc}\nN & \stackrel{\perp}{\longrightarrow} & V - \{0\} \\
\downarrow^{\sigma} & & \downarrow^{\epsilon} \\
Q & \stackrel{\perp}{\longrightarrow} & \mathbf{P}(V)\n\end{array}
$$

is commutative, and

$$
i^* \omega_{p-1} = i^* \varrho^* (\ddot{\omega}_{p-1}) = \sigma^* j^* (\ddot{\omega}_{p-1}).
$$

Lemma 2.3. *The map* $\sigma: N \rightarrow Q$ *defined above has maximal rank.*

Proof. Identify V with Cⁿ and denote $\varrho(3) = (z_1 : ... : z_n)$ if $3 = (z_1, ..., z_n) \neq 0$. Let $a = (a_1, ..., a_n)$ be an arbitrary point of N. Define $a = \sigma(a) = (a_1, ..., a_n) \in Q$. Then there exists $W' \subset \mathbb{C}^{p-1}$, $0 \in W'$ open, and $\alpha: W' \to \mathbb{P}(V)$ holomorphic such that $\alpha(0) = a$, $\alpha : W' \to \alpha(W') \subset Q$ topological, $\alpha(W')$ relatively open in Q, and rank_m $\alpha = p - 1$, $\omega \in W'$. There exists v such that $a_n \neq 0$. Hence, if *W'* is small enough, $\tilde{\alpha}: W' \to V - \{0\}$ exists such that $\tilde{\alpha}$ is holomorphic and injective, and $\rho \circ \tilde{\alpha} = \alpha$, $\tilde{\alpha}(0) = \alpha$. Let $\tilde{\alpha}(w) = (\alpha_1(w), ..., \alpha_n(w))$ and, by choice of *W'*, $\alpha_n(w) \neq 0$ for $w \in W'$. Define

$$
f_{\lambda}(\mathbf{w}) = \frac{\alpha_{\lambda}(\mathbf{w})}{\alpha_{\nu}(\mathbf{w})}, \quad \lambda = 1, ..., \nu - 1, \nu + 1, ..., n.
$$

Then $\alpha(\mathfrak{w}) = (\alpha_1(\mathfrak{w}) : ... : \alpha_n(\mathfrak{w})) = (f_1(\mathfrak{w}) : ... : f_{\mathfrak{v}-1}(\mathfrak{w}) : 1 : f_{\mathfrak{v}+1}(\mathfrak{w}) : ... : f(\mathfrak{w})).$ Hence $rank_{\mathbf{w}} \frac{\partial (f_1, ..., f_{\nu-1}, f_{\nu+1}, ..., f_n)}{\partial (w_1, ..., w_{\nu-1})} = rank_{\mathbf{w}} \alpha = p - 1$

for $w \in W'$ using the coordinate system

$$
\gamma(z_1:...:z_n) = \left(\frac{z_1}{z_v},...,\frac{z_{v-1}}{z_v},\frac{z_{v+1}}{z_v},...,\frac{z_n}{z_v}\right)
$$

in $\varrho \{3 | 3_v + 0\}$. Define $\beta: W' \times (C - \{0\}) \to V - \{0\}$ by

$$
\beta(\mathfrak{w}, u) = \frac{u}{\alpha_{v}(\mathfrak{w})} \tilde{\alpha}(\mathfrak{w}) = (u f_{1}(\mathfrak{w}), ..., u f_{v-1}(\mathfrak{w}), u , u f_{v+1}(\mathfrak{w}), ..., u f_{n}(\mathfrak{w})).
$$

Then β is holomorphic. If $\beta(\omega_1, u_1) = \beta(\omega_2, u_2)$, then $u_1 = u_2$ and $\alpha(\omega_1)$ $= \varrho(\beta(\mathfrak{w}_1, u_1)) = \varrho(\beta(\mathfrak{w}_2, u_2)) = \alpha(\mathfrak{w}_2)$. Hence $\mathfrak{w}_1 = \mathfrak{w}_2$, and so β is injective. And $\beta(W' \times (C - \{0\})) = \rho^{-1}(\alpha(W'))$, for

$$
\varrho(\beta(\mathfrak{w},u)) = \varrho(\tilde{\alpha}(\mathfrak{w})) = \alpha(\mathfrak{w}) \in \alpha(W'), \quad \text{or} \quad \beta(W' \times (C - \{0\})) \subseteq \varrho^{-1}(\alpha(W')).
$$

And if $\alpha \in \varrho^{-1}(\alpha(W'))$, then $\varrho(\alpha) = \alpha(w)$ for some $w \in W'$ and $\alpha = v \tilde{\alpha}(w)$ for some $v \in \mathbb{C} - \{0\}$. Then $u = v \cdot \alpha_v(\mathfrak{w}) + 0$. Hence $\beta(\mathfrak{w}, u) = \frac{u}{\alpha_v(\mathfrak{w})} \tilde{\alpha}(\mathfrak{w}) = v \tilde{\alpha}(\mathfrak{w}) = \mathfrak{z}$, and so $\varrho^{-1}(\alpha(W')) \subseteq \beta(W' \times (C - \{0\}))$. Thus $\beta: W' \times (C - \{0\}) \rightarrow \varrho^{-1}(\alpha(W')) \subset N$ is bijective, holomorphic, and $\varrho^{-1}(\alpha(W'))=\sigma^{-1}(\alpha(W'))$ is open in N and $\beta(0, a_v) = \frac{a_v}{\alpha_0(0)} \tilde{\alpha}(0) = \alpha$. Now $\partial (u f_1(\mathfrak{w}), ..., u f_{\nu-1}(\mathfrak{w}), u, u f_{\nu+1}(\mathfrak{w}), ..., u f_n(\mathfrak{w}))$ rank_(w, u) ρ (w, u) = rank_(w, u) $\frac{d(u, v)}{d(u, v)}$ *a (w) u) u*) $= 1 + \text{rank} \frac{C(u f_1(\omega), ..., u f_{v-1}(\omega), u f_{v+1}(\omega), ..., u f_n(\omega))}{\sum_{i=1}^n (u_i - u_i)}$ $\mathcal{O}(W_1, ..., W_p$ -

$$
= p \quad \text{for} \quad (\mathfrak{w}, u) \in W' \times (\mathbb{C} - \{0\}).
$$

Thus β gives local coordinates of N at a. And $\sigma \circ \beta(w, u) = \alpha(w)$, or $\alpha^{-1} \circ \sigma \circ \beta(w, u) = w$. Thus if $\tilde{\pi}: W' \times (C - \{0\}) \to W'$ is the projection, rank, $\sigma = \text{rank}_{a} \alpha^{-1} \circ \sigma \circ \beta$ $=$ rank, $\tilde{\pi} = p - 1.$ q.e.d.

Then Fubini's Theorem implies

$$
\int_{T_0} v \wedge \omega_{p-1} = \int_{N \cap B_r} i^* v \wedge i^* \omega_{p-1} = \int_{N \cap B_r} i^* v \wedge i^* \varrho^* (\omega_{p-1})
$$
\n
$$
= \int_{N \cap B_r} i^* v \wedge \sigma^* (j^* \omega_{p-1})
$$
\n
$$
= \int_{a \in \mathcal{Q}} \left(\int_{\sigma^{-1}(a) \cap B_r} i^* v \right) j^* \omega_{p-1}
$$
\n
$$
= \int_{a \in \mathcal{Q}} \left(\int_{\sigma^{-1}(a) \cap B_r} i^* v \right) \omega_{p-1}
$$
\n
$$
= \int_{a \in T} \left(\int_{\sigma^{-1}(a) \cap B_r} i^* v \right) \omega_{p-1}
$$

where $\sigma^{-1}(a) \cap B_r = \{z \alpha \mid 0 < |z| < r\}$, a chosen such that $\rho(a) = \sigma(a) = a$ and $|a| = 1$. Identify V with Cⁿ by means of an orthonormal basis. Let $a = (a_1, ..., a_n)$. Define j_a : {z|0 < |z| < r} $\rightarrow V -$ {0} by $j_a(z) = z$ a. Then $v = \frac{i}{2} \sum_{n=1}^{\infty} dz_n \wedge d\overline{z_n}$ and $j_a^* v = \frac{i}{2} \sum_{n=1}^n a_n \overline{a_n} dz \wedge d\overline{z} = \frac{i}{2} dz \wedge d\overline{z}$. Thus *f 1, O=* $\int_{\sigma^{-1}(a)\cap B_r} i^* v = \int_{0<|z|$ **Hence** $=$ $\int \frac{\pi}{2} dz \wedge dz = \pi r^2$. $0 < |z| < r$ $\int_{T_0} v \wedge \omega_{p-1} = \pi r^2 \int_T \ddot{\omega}_{p-1}$,

and

$$
\frac{1}{W_p r^{2p}} \int_{T_0} v_p = \frac{(p-1)!}{\pi^p r^2} \frac{p}{r^{2p-2}} \int_{T_0} v_p
$$

$$
= \frac{(p-1)!}{\pi^p r^2} \int_{T_0} v \wedge \omega_{p-1}
$$

$$
= \frac{(p-1)!}{\pi^{p-1}} \int_{T_0} \omega_{p-1}.
$$

Now \ddot{T} is a pure (p-1)-dimensional analytic set in P(V), and so, from Chow's Theorem, \ddot{T} is an algebraic set. From a result of G. DE RHAM, [4],

$$
\frac{(p-1)!}{\pi^{p-1}}\int\limits_T\ddot{\omega}_{p-1}=m\,,
$$

where m , a positive integer, is the degree of the algebraic set T . With the desire do make this paper as self-contained as possible, the fact that

$$
\frac{(p-1)!}{\pi^{p-1}}\int\limits_{T}\tilde{\omega}_{p-1}
$$

is a positive integer will also be proven here, by means of a method suggested by W. STOLL.

Proposition 2.4. *Let W be an (n + 1)-dimensional complex vector space with a hermitian product. Let* P(W) *be the projective space. Let A be an analytic set in* $P(W)$ *of pure dimension* $q > 0$ *. Then*

$$
\frac{q!}{\pi^q} \int\limits_A \ddot{\omega}_q
$$

iS a positive integer.

Proof. Since A has only a finite number of branches A_1 , $\lambda = 1, ..., k$, and because

$$
\frac{q!}{\pi^q} \int\limits_A \tilde{\omega}_q = \sum_{\lambda=1}^k \frac{q!}{\pi^q} \int\limits_{A_\lambda} \tilde{\omega}_q
$$

it is enough to prove the theorem for A irreducible. The proof is by induction on $d = n - q$. For $d = 0$, $A = P(W)$, and

$$
\frac{n!}{\pi^n} \int\limits_{\mathbf{P}(W)} \ddot{\omega}_n = 1 \ .
$$

Now assume the proposition true for $n - q \leq d - 1$, and let A be an irreducible, q-dimensional analytic set in $P(W)$, where W is a vector space of dimension $n+1$, and where $n-q=d \ge 1$. If $n=1$, $q=0$ and the proposition is trivial. Thus assume $n \ge 2$. Choose a point $s \in P(W)$, $s \notin A$. Choose an orthonormal basis of W in such a way that if W is identified with C^{n+1} and $P(W)$ with $P(C^{n+1})=P^n$, and if $\varrho: C^{n+1}-\{0\} \to P^n$ is the residual map, then the point $=(1, 0, \ldots, 0) \in \mathbb{C}^{n+1}$ is in $\varrho^{-1}(s)$. Denote $\varrho(z_0, z_1, \ldots, z_n) = (z_0, z_1, \ldots, z_n) \in \mathbb{P}^n$ for $0 + 3 = (z_0, ..., z_n) \in \mathbb{C}^{n+1}$. Let $\mathbb{P}^{n-1} = \mathbb{P}(\mathbb{C}^n)$, $\tilde{\varrho}: \mathbb{C}^n \setminus \{0\} \to \mathbb{P}^{n-1}$ the residual map, $\tilde{\varrho}(z_1, ..., z_n) = (z_1 : ... : z_n)$ for $0 \neq (z_1, ..., z_n) \in \mathbb{C}^n$. Define $\pi : \mathbb{P}^n - \{s\}$. $\rightarrow P^{n-1}$ by $\pi(z_0:z_1:\ldots:z_n)=(z_1:\ldots:z_n)$. Let $a \in P^{n-1}$. Then $\pi^{-1}(a) \cap A$ is analytic in the complex manifold $\pi^{-1}(\alpha)$, and, if it contains an interior point, then $\pi^{-1}(a) \cap A = \pi^{-1}(a)$. But this would imply that $s \in A$, a contradiction. Hence $\pi^{-1}(a) \cap A$ consists of isolated points for every $a \in \mathbb{P}^{n-1}$. Clearly $\pi | A$ is a proper map. Hence $\pi(A) = B$ is an irreducible, q-dimensional analytic set in \mathbf{P}^{n-1} . Thus, from the induction assumption,

$$
\frac{q!}{\pi^q}\int\limits_B\tilde{\omega}_q
$$

is a positive integer, say m_1 , where $\tilde{\omega}_q$ is the volume element in \mathbf{P}^{n-1} associated to the hermitian product $\left(\frac{1}{3} | \mathbf{w}\right) = \sum_{\mathbf{w}} z_{\mathbf{w}} \overline{w}_{\mathbf{w}}$ on \mathbf{C}^n . $v=1$

Let $S(A)$ be the set of non-simple points of A. Then $\pi(S(A))$ is an analytic set, thin in B. Let $B' = \dot{B} - \pi(S(A))$. Now B irreducible, $\pi(S(A))$ thin, implies that B' is a connected q-dimensional complex manifold. Let $A' = \pi^{-1}(B') \cap A$ $=\pi^{-1}(B') \cap \dot{A}$, a q-dimensional complex manifold. Let $\tau = \pi | A'$. Then $\tau(A') = B'$. Let $N = {a \in A' | rank_a \tau < q}$. Then N is a thin analytic set in A', and τ proper and $\tau^{-1}(b)$ discrete for $b \in B'$ implies that $\tau(N)$ is a thin analytic set in B'. Hence $B'' = B' - \tau(N)$ is connected. Let $A'' = \tau^{-1}(B'') = \pi^{-1}(B'') \cap A'$, and $\sigma = \tau | A''|$. Then $\sigma : A'' \rightarrow B''$ is proper, and hence σ is an unrestricted or regular covering map of the complex manifold A'' onto the connected complex manifold *B"*. Therefore the number m_2 of points in $\sigma^{-1}(b)$ for $b \in B''$ is independent of *b* and finite. The map σ is of maximal rank with $\sigma(A'') = B''$. Hence from STOLL

[6, Satz 6],

and so,

$$
\int_{B'} m_2 \omega_q = \int_{A'} \sigma^* \omega_q,
$$

$$
\int_{B} m_2 \tilde{\omega}_q = \int_{A} \pi^* \tilde{\omega}_q.
$$

Define the following operators on an *n*-dimensional complex manifold:

$$
\partial = \sum_{\nu=1}^n \frac{\partial}{\partial z_{\nu}} dz_{\nu} \qquad \overline{\partial} = \sum_{\nu=1}^n \frac{\partial}{\partial \overline{z}_{\nu}} d\overline{z}_{\nu}.
$$

Then $d = \partial + \overline{\partial}$.

Define $E_{\lambda} = \{3 \in \mathbb{C}^{n+1} | 3 = (z_0, ..., z_n), z_{\lambda} \neq 0\}$ for $\lambda = 0, 1, ..., n$. Let $U_{\lambda} = \varrho(E_{\lambda})$. Define, for

$$
\zeta \in U_{\lambda}, \quad f_{\lambda}(\zeta) = \frac{|\mathfrak{z}|}{|z_{\lambda}|}, \quad g_{\lambda}(\zeta) = \frac{|z_{1}|^{2} + \dots + |z_{n}|^{2}}{|z_{\lambda}|^{2}}
$$

where $3 = (z_0, z_1, ..., z_n) \in \varrho^{-1}(\zeta)$. Note that f_λ and g_λ are independent of the choice of $\mathfrak{z} \in \varrho^{-1}(\zeta)$. Then, for any λ , $0 \leq \lambda \leq n$, it can be shown that $\ddot{\omega}(\zeta)$ = $i \partial \overline{\partial} \log f_{\lambda}(\zeta)$ for $\zeta \in U_{\lambda}$, and similarly, $\pi^* \widetilde{\omega}(\zeta) = (i/2) \partial \overline{\partial} \log g_{\lambda}(\zeta)$ for $\zeta \in U_{\lambda} - \{s\}$. Define, for $\zeta \in \mathbf{P}^n - \{s\}$, $h(\zeta) = \frac{|\zeta|^2}{|z_1|^2 + \cdots + |z_n|^2}$, where $\zeta = (z_0, \ldots, z_n) \in \varrho^{-1}(\zeta)$. Let $\theta(\zeta) = (i/2) \partial \overline{\partial} \log h(\zeta), \ \zeta \in \mathbf{P}^n - \{s\}.$ Now on $U_{\lambda} - \{s\},$ for any $0 \le \lambda \le n$, $\ddot{\omega} - \pi^* \tilde{\omega} = \frac{i}{c} \partial \overline{\partial} \log f_1^2 - \frac{i}{c} \partial \overline{\partial} \log g_{\lambda}$

$$
\omega - \pi^* \omega = \frac{1}{2} \theta \theta \log f \hat{z} - \frac{1}{2} \theta \theta \log \theta
$$

$$
= \frac{i}{2} \theta \overline{\theta} \log \frac{f_x^2}{g_x}
$$

$$
= \frac{i}{2} \theta \overline{\theta} \log h = \theta.
$$

Now $(U_2 - \{s\}) = Pⁿ - \{s\}$, and so $\lambda = 0$

$$
\theta = \ddot{\omega} - \pi^* \tilde{\omega} \quad \text{on} \quad \mathbf{P}^n - \{s\} \, .
$$

Define $\varphi(\zeta) = (i/2) \overline{\partial} \log h(\zeta)$ for $\zeta \in \mathbf{P}^n - \{s\}$. Then $d\varphi = (\partial + \overline{\partial})(\varphi) = \partial \varphi = \theta$, and $\ddot{\omega}^q = (d\omega + \pi^* \tilde{\omega})^q$

$$
= \sum_{\mu=0}^{4} {q \choose \mu} (d\varphi)^{q-\mu} \wedge (\pi^* \tilde{\omega})^{\mu},
$$

$$
\ddot{\omega}^q - \pi^* \tilde{\omega}^q = \sum_{\mu=0}^{q-1} {q \choose \mu} (d\varphi)^{q-\mu} \wedge (\pi^* \tilde{\omega})^{\mu}.
$$

Define

$$
\xi = \sum_{\mu=0}^{q-1} {q \choose \mu} (d\varphi)^{q-\mu-1} \wedge (\pi^* \tilde{\omega})^{\mu} \quad \text{on} \quad \mathbf{P}^n - \{s\}
$$

Then $d\zeta = 0$ $(d\pi^* \tilde{\omega} = \pi^* d\tilde{\omega} = 0)$, and $\ddot{\omega}^4 - \pi^* \tilde{\omega}^4 = d\varphi \wedge \zeta = d(\varphi \wedge \zeta)$. Let @^~ $\psi = \frac{1}{a!}$ on $P^n - \{s\}.$

Then $\ddot{\omega}_q - \pi^* \ddot{\omega}_q = d\psi$. Hence, from a previously quoted theorem of LELONG [3, Theoreme 7],

$$
\int_{A} (\ddot{\omega}_q - \pi^* \tilde{\omega}_q) = \int_{A} d\psi = 0 \quad (s \notin A).
$$

Consequently,

$$
\frac{\pi^q}{q!} \int\limits_A \ddot{\omega}_q = \frac{\pi^q}{q!} \int\limits_A \pi^* \tilde{\omega}_q = \frac{\pi^q}{q!} \int\limits_B m_2 \tilde{\omega}_q = m_1 m_2, a
$$

positive integer, q.e.d.

The results of this section are summarized in the following

Theorem 2.5. *Let V be an n-dimensional complex vector space with a hermitian product. Let* $T \subset V$ *be a pure p-dimensional analytic cone with center* 0. *Suppose p > O. Then*

$$
\frac{1}{W_p r^{2p}} \int_{T_0} v_p
$$

is a positive integer independent of r.

Proof. For $p = n$, the theorem is trivial, and for $2 \leq p \leq n - 1$, the theorem has already been proven. If $p = 1$ and T is irreducible, then, for any $0 + \alpha \in T$, T $=\{ua \mid u \in \mathbb{C}\}\$, and so $\frac{1}{\pi r^2} \int v = 1$. Thus for $p = 1$ and T arbitrary, $\frac{1}{\pi r^2} \int v$. T_0^r and the set of equals the number of irreducible branches of T , a finite integer. $q.e.d.$

§ 3. **The tangent cone**

Let V be now a fixed *n*-dimensional complex vector space with a hermitian product. Let M be a pure p-dimensional analytic set in an open subset G of V such that $0 \in M$. Then t is said to be a *tangent vector to* M at 0 if there exists a sequence $\{3_\lambda\}$, $3_\lambda \in M$, $3_\lambda \neq 0$, such that $3_\lambda \rightarrow 0$ and $\frac{3_\lambda}{\vert 3_\lambda\vert} \rightarrow t$ as $\lambda \rightarrow \infty$. The set $T = \{u t | u \in \mathbb{C}, t \text{ a tangent vector to } M \text{ at } 0\}$, is called the *tangent cone to M at 0.* It will be shown that T is a pure p-dimensional analytic set in V . This has also recently been proven by H. WHITNEY in [10]. However the proof given here uses a natural geometrical construction which is essential to the remainder of this work.

Define

$$
H = \{(3, w) | w_3 \in G, 3 \in V, w \in \mathbb{C}\}
$$

\n
$$
N^* = \{(3, w) | w_3 \in M, 3 \in V, w \in \mathbb{C}\} \subset H
$$

\n
$$
\pi: V \oplus \mathbb{C} \to V, \text{ projection}
$$

\n
$$
\tau: V \oplus \mathbb{C} \to \mathbb{C}, \text{ projection}
$$

\n
$$
E = V \times \{0\} = \tau^{-1}(0)
$$

\n
$$
N = (N^* - E) \cap H
$$

\n
$$
N(w) = \tau^{-1}(w) \cap N.
$$

Extend the hermitian product on V to a product on $V \oplus C$ by defining, for $(3, w)$ and $(3', w') \in V \oplus \mathbb{C}$, $((3, w) | (3', w')) = (3|3') + w\overline{w}$, where (1) is the given hermitian product on V.

Proposition 3.t. *N is a pure (p + 1)-dimensional analytic set in H, and* $\pi(N(0)) = \pi(N \cap E) = T$ is a pure p-dimensional analytic set in V.

Proof. Define $\gamma: V \oplus \mathbb{C} \to V$ by $\gamma(3, w) = w_3$. Then γ is holomorphic, $\gamma^{-1}(G) = H$, and $\gamma^{-1}(M) = N^*$. Hence N^* is analytic in H. Define $\alpha : H - E \rightarrow$ $\rightarrow G \times (C - \{0\})$ by $\alpha(3, w) = (3w, w)$. Then α is biholomorphic, and $\alpha(N^* - E)$ $= M \times (C - \{0\})$. Hence, for $w \neq 0$,

$$
\dim_{(a,\,w)} N^* = \dim_{(w_a,\,w)} M \times (C - \{0\}) = 1 + \dim_{w_a} M \; .
$$

Therefore M pure p-dimensional implies that $N^* - E$ is pure $(p + 1)$ -dimensional in $V \times (C - \{0\})$. Now, from general theory, $H \cap (\overline{N^* - E}) = N$ is analytic in H, and, for points in $E \cap N$, N can be expressed locally as the union of the irreducible branches of N^* not contained in E. Hence N is pure $(p+1)$ dimensional and $N \cap E = N(0) = N \cap \{(3, w) | w = 0\}$ is p-dimensional.

Finally, $\pi(N \cap E) = T$: Since $(0, w) \in N^*$ for any $w, 0 \in \pi(N \cap E)$. Let $zt \in T$, $z t + 0$. There exists a sequence $\{\mathfrak{z}_{\lambda}\}\,$, $\mathfrak{z}_{\lambda} \in M - \{0\}$, such that $\mathfrak{z}_{\lambda} \rightarrow 0$ and $\frac{3\lambda}{|\lambda_1|} \to t$ as $\lambda \to \infty$. Then $\left(\frac{z3\lambda}{|\lambda_1|}, \frac{|\lambda_2|}{z}\right) \in N^* - E$, and $\left(\frac{z3\lambda}{|\lambda_1|}, \frac{|\lambda_2|}{z}\right) \to (z\,t, 0)$. Thus $T \subset \pi(N \cap E)$. Conversely, let $3 \in \pi(N \cap E)$ and assume that $3 \neq 0$. There exists a sequence $\{(3_\lambda, w_\lambda)\}, (3_\lambda, w_\lambda) \in N^* - E$ such that $3_\lambda \rightarrow 3$, $w_\lambda \rightarrow 0$, and $3\lambda + 0$. Then $3\lambda w_{\lambda} \in M - \{0\}$, and $3\lambda w_{\lambda} \to 0$ as $\lambda \to \infty$. There exists a subsequence of $\{w_{\lambda}\}\$, say $\{w_{\lambda}\}\$, such that $\frac{w_{\lambda}}{w_{\lambda}}\}$ converges, say $\frac{w_{\lambda}}{w_{\lambda}}\to u$, as $v\to\infty$. Let $|w_{\lambda}$ $t = \lim_{\nu \to \infty} \frac{\partial \lambda_{\nu} W_{\lambda_{\nu}}}{|\lambda_{\nu}, w_{\nu}|}$. Then $\lambda = \frac{|\lambda|}{u} t \in T$. Thus $\pi(N \cap E) \subset T$. q.e.d. Define $I(w, r) = \int v_p$ for $0 \le r < \frac{R}{|w|}$, where $B_R \subset G$, and $\pi(N(w)) \cap B_r$ $\kappa(N(w)) \cap B_r$
= {3 $\in V | (3, w) \in N(w)$, |3| < r}. Note that $I(w, r)/r^{2p}$ is monotonic increasing in *r*, and that $n(r, m) = \frac{1}{W_r r^{2p}} I(1, r)$. Define $W = \{w | 0 < |w| \leq 1\}$. For $w \in W$ and $0 < r < R$, define $g : M'_0 \to \pi(N(w))$

by $g(3) = \frac{3}{w}$. Then $g(M'_0) = \pi(N(w)) \cap B_{r/|w|}$, and $I\left(w, \frac{r}{|w|}\right) = \int w_p$ $\pi(N(w)) \cap B_{r/|w|}$ \mathbf{r} . \mathbf{r}

$$
= \int_{M_0^r} g^*(v_p) dx
$$

=
$$
\int_{M_0^r} \frac{1}{|w|^{2p}} v_p = \frac{I(1, r)}{|w|^{2p}}.
$$

Thus $I(1, r) = |w|^{2p} I(w, r/|w|)$, and

$$
I(w, s) = \frac{1}{|w|^{2p}} I(1, |w|s), \text{ letting } r = |w|s.
$$

For $w, w' \in W$,

$$
|w|^{2p} I(w, r/|w|) = I(1, r) = |w'|^{2p} I(w', r/|w'|),
$$

$$
I\left(w, \frac{r}{|w|}\right) = \left|\frac{w'}{w}\right|^{2p} I\left(w', \frac{r}{|w'|}\right)
$$

$$
I(w, s) = \left|\frac{w'}{w}\right|^{2p} I\left(w', \frac{s|w|}{|w'|}\right).
$$

Define

$$
l(w) = \lim_{r \to 0} \frac{I(w, r)}{r^{2p}}
$$

=
$$
\lim_{r \to 0} \frac{I(1, |w|r)}{|w|^{2p} r^{2p}}
$$

=
$$
\lim_{s \to 0} \frac{I(1, s)}{s^{2p}} = I(1)
$$

for all $w \in W$.

Lemma 3.2. $\frac{I(w, r)}{r}$ $\frac{p^2}{r^{2p}} \rightarrow l(w)$ uniformly on W as $r \rightarrow 0$.

Proof.

$$
0 \leqq \frac{I(w,r)}{r^{2p}} - l(w)
$$

=
$$
\frac{I(1,r|w|)}{(r|w|)^{2p}} - l(1) \leqq \frac{I(1,r)}{r^{2p}} - l(1).
$$

Now if $|w| = |w'|$, then $I(w, r) = I(w', r)$. And if

$$
|w| < |w'|, I(w,r) = \left|\frac{w'}{w}\right|^{2p} I\left(w', \frac{r|w|}{|w'|}\right)
$$

=
$$
\frac{I(w', r|w|/|w'|)}{(r|w|/|w'|)^{2p}} < I(w', r).
$$

Thus $\lim_{w\to 0} I(w, r)$ exists, $0 < r < R$. Hence, for $w \in W$,

$$
n(r, M) = \frac{1}{W_p r^{2p}} I(1, r) = \frac{|w|^{2p}}{W_p r^{2p}} I(w, \frac{r}{|w|})
$$

$$
n(0, M) = \lim_{r \to 0} \frac{1}{W_p} \frac{I(w, r/|w|)}{(r/|w|)^{2p}}
$$

$$
= \lim_{s \to 0} \frac{I(w, s)}{W_p s^{2p}}.
$$

q.e.d.

 \sim

Thus

$$
n(0, M) = \lim_{w \to 0} \lim_{r \to 0} \frac{I(w, r)}{W_p r^{2p}}
$$

=
$$
\lim_{r \to 0} \lim_{w \to 0} \frac{I(w, r)}{W_p r^{2p}}
$$

=
$$
\lim_{r \to 0} \frac{1}{W_p r^{2p}} \lim_{w \to 0} I(w, r).
$$

In the next section, $\lim_{w\to 0} I(w, r)$ will be related to $\int_{T_0} v_p$, and thus, the results of § 2 can be applied to determine $n(0, M)$.

§ 4. A continuity theorem

A. Multiplicity of a holomorphic map

It is necessary to introduce the concept of multiplicity of a holomorphic map as the multiplicity of τ/N must be considered in the proof of the continuity of the area. Let X and Y be complex spaces and let $\sigma: X \to Y$ be a holomorphic map. Then σ is said to be *non-degenerate* if the fibers $\sigma^{-1}(\sigma(x))$ consists of isolated points only.

Let X be a normal complex space, Y a complex space, and $\sigma: X \to Y$ a holomorphic, non-degenerate map. Take $a \in X$. Take any open neighborhood U of a such that \overline{U} is compact and such that $\overline{U} \cap \sigma^{-1}(\sigma(a)) = \{a\}$. Such a neighborhood exists. Define

$$
\mu_U(x,\sigma) = \# U \cap \sigma^{-1}(\sigma(x)) \quad \text{for} \quad x \in U,
$$

where $\#A$ denotes the number of elements of A for a finite set A, defining $A \neq A$ to be 0 if A is empty and $A \neq A$ to be ∞ if A is infinite. The number $v_n(a, \sigma)$ = $\limsup \mu_U(x, \sigma)$ is independent of U [9, Lemma 2.1], and is denoted by $v(a, \sigma)$. Note that if $\rho' : X' \to X$ is a biholomorphic map from a normal complex space X', then, for $a' \in X'$, $v(a', \sigma \circ \rho') = v(\rho'(a'), \sigma)$.

Let X be now an arbitrary complex space and $\sigma: X \to Y$ be again a holomorphic, non-degenerate map. Let \hat{X} be the normalization of X, and $\rho : \hat{X} \to X$ the normalization map (see for example S. ABHYANKAR [1]). Then $\sigma \circ \rho : \hat{X} \to Y$ is a holomorphic, non-degenerate map, as $\varrho^{-1}(a)$ consists of only a finite number of points for each $a \in X$. Define $v(a, \sigma) = \sum_{a \in \rho^{-1}(a)} v(a, \sigma \circ \rho)^1$.

Let X be again normal, and $\sigma: X \to Y$ a holomorphic map such that $\sigma^{-1}(\sigma(x))$ is an analytic set of pure dimension q for every $x \in X$. Suppose that X has pure dimension k. Take $a \in X$. Let Γ_a be the set of sets A satisfying the following conditions:

1. An open neighborhood U_A of a exists such that $a \in A \subset U_A$ and such that A *is analytic and of pure dimension* $k - q$ *in* U_A *.*

2. The closure $\overline{U_A}$ is compact.

3. The restriction a lA *is non-degenerate.*

¹ Notice that the definition of multiplicity if X is normal does not require the fact that X is normal to be meaningful. Thus a multiplicity, not always equal to the one defined above, could be defined without passing to the normalization of X. See Section 4C.

Lemma 4.t. *F, as defined above is non-empty.*

Proof. There exists an open, connected neighborhood $U \subset X$ of a and a proper, holomorphic map $\varphi: U \to D$ where D is an open set in C^k such that \overline{U} is compact, $\varphi(U) = D$, $\varphi(a) = 0$, $\varphi^{-1}(0) = a$, $\varphi^{-1}(z)$ consists of isolated points for all $z \in D$, and, if S is an analytic set in an open set $U_1 \subset U$, then either S consists of isolated points or else there exists a sequence $\{x_{y}\}\$ such that $x_{y} \in S$ and $x_v \rightarrow x_0 \in \overline{U}_1 - \overline{U}_1$ as $v \rightarrow \infty$. Let $\sigma^{-1} \sigma(a) = L$ and $L' = \phi(L \cap U)$, a q-dimensional analytic set in D. There exists an open neighborhood $D' \subset D$ of 0 and a set $A' \subset D'$ analytic in D' and of pure dimension $k - q$ such that $A' \cap L' = \{0\}$. Let $A'' = \varphi^{-1}(A')$, an analytic set of pure dimension $k-q$ in $\varphi^{-1}(D')$, an open neighborhood of a. Choose an open neighborhood Q of a such that $Q \subset \overline{Q} \subset$ $\subset \varphi^{-1}(D')$. Now it is claimed that there exists an open neighborhood $W \subset Y$ of $\sigma(a)$ such that $x \in (\overline{Q} - Q) \cap A''$ implies that $\sigma(x) \notin W$. For suppose that there exists a sequence $x_y \in (\overline{Q} - Q) \cap A''$ such that $\sigma(x_y) \to \sigma(a), \quad v \to \infty$. Since $(\overline{O}-O) \cap A''$ is compact, $\{x_{\nu}\}$ contains a convergent subsequence. Without loss of generality, assume $x_v \to x_0 \in (Q-Q) \cap A''$ as $v \to \infty$. Then $\sigma(x_0) = \sigma(a)$, and so $x_0 \in \sigma^{-1}$ $\sigma(a) \cap U = L \cap U$. Thus $\varphi(x_0) \in L'$. And $x_0 \in A''$ implies $\varphi(x_0) \in A'$. Therefore $\varphi(x_0) \in L' \cap A' = \{0\}$, and so $\varphi(x_0) = 0$. Therefore $x_0 = a \in Q$, a contradiction, and so the claim is established. Choose such a W. Define

$$
U_A = Q \cap \sigma^{-1}(W), \quad A = A'' \cap U_A.
$$

Then U_A is an open neighborhood in X of a, \overline{U}_A is compact, and A is a pure $(k-q)$ -dimensional analytic set in U_A . Take any $b \in A$. Then $\sigma^{-1}\sigma(b) \cap A$ is an analytic set in $U₄$. Suppose that there exists a sequence $\{x_n\}$ such that $x_y \in \sigma^{-1} \sigma(b) \cap A$ and $x_y \to x_0 \in \overline{U}_A - U_A$ as $v \to \infty$. Then $x_y \in A \subset \overline{Q} \cap A''$ implies that $x_0 \in Q$ and $x_0 \in A''$. And $x_v \in \sigma^{-1} \sigma(b)$ implies $x_0 \in \sigma^{-1} \sigma(b)$, and so $\sigma(x_0) = \sigma(b) \in W$. Thus $x_0 \in \sigma^{-1}(W)$. But $x_0 \notin U_A = Q \cap \sigma^{-1}(W)$, and so $x_0 \notin Q$. Hence $x_0 \in (\overline{Q} - Q) \cap A''$, and so $\sigma(x_0) \notin W$ by the choice of W, a contradiction. Consequently, $\sigma^{-1}\sigma(b)\cap A$ consists of isolated points only, that is, $\sigma|A$ is non-degenerate, q.e.d.

Thus, for $\sigma: X \to Y$ holomorphic, X normal, $\sigma^{-1}(\sigma(x))$ a pure q-dimensional analytic set for $x \in X$, define, for $a \in X$,

$$
v(a,\sigma)=\min_{A\in\Gamma_a}v(a,\sigma\,|\,A)\,.
$$

Note again that if $\varrho' : X' \to X$ is a biholomorphic map, then, for $a' \in X'$, $v(a', \sigma \circ \rho') = v(a, \sigma)$ where $a = \rho'(a')$. For if $A' \in \Gamma_{a'}$, then $\rho'(A') = A \in \Gamma_a$ and $\varrho' | A': A' \to A$ is biholomorphic. Thus $v(a', \sigma \circ \varrho' | A') = v(a, \sigma | A)$ and so $v(a',\sigma \circ \varrho') \ge v(a,\sigma)$. Similarly, if $A \in \Gamma_a$, then $(\varrho')^{-1}(A) \in \Gamma_{a'}$, and so $v(a,\sigma) \le v(a,\sigma)$. $\leq (a', \sigma \circ \rho')$. Hence $v(a, \sigma) = v(a', \sigma \circ \rho')$.

Finally, let X and Y be arbitrary complex spaces, and let $\sigma: X \to Y$ be a holomorphic map such that $\sigma^{-1}(\sigma(x))$ is a pure q-dimensional analytic set for $x \in X$. Let \hat{X} be the normalization of X and $\varrho: \hat{X} \to X$ the normalization map. Define, for $a \in X$,

$$
v(a,\sigma)=\sum_{\hat{a}\in\hat{X}}v(\hat{a},\sigma\circ\varrho).
$$

The more common concept of the *b*-multiplicity of a holomorphic function is also needed. Let f be a holomorphic function on an open, connected set L contained in a complex vector space W, and let $a \in L$. Then $f(3) = \sum P_{\lambda}(3-\alpha)$, where the series converges uniformly to f in an open $\lambda=0$ neighborhood of a. The term P_{λ} is either identically zero or a homogeneous polynomial of degree λ , and the terms P_{λ} are uniquely defined by f. If $f \neq 0$ on L, then the smallest index λ_0 such that $P_{\lambda_0} \neq 0$ is called the *zero-multiplicity of f at* a, and denoted by $v(a, 0, f)$. For $b \in C$, define the *b-multiplicity of f at* a, $v(a, b, f)$, to be the zero-multiplicity of the function $f(3) - b$ at a.

Proposition 4.2. Let $f \neq 0$ be a holomorphic function on an open, connected *set* $L \subset \mathbb{C}^m$. Let $a \in L$. Then $v(a, f) = v(a, f(a), f)$.

Proof (see STOLL [9], Lemma 2.3). For $n = 1$, the proposition has been proven by W. STOLL [9, Lemma 2.2]. Assume $n \ge 2$. The fiber $f^{-1}(f(\alpha))$ is analytic and has pure dimension $n-1$. In an open neighborhood $U \subset L$ of a,

$$
f(\mathfrak{z})=f(\mathfrak{a})+\sum_{\lambda=q}^{\infty}P_{\lambda}(\mathfrak{z}-\mathfrak{a}),
$$

where P_{λ} is a homogeneous polynomial of degree λ or identically zero, and where $P_a \neq 0$. Take any $A \in \Gamma_a$. Let A be the normalization of A, $\varrho: A \to A$ the associated map. Let $\hat{a}_1 \in \varrho^{-1}$ (a). An open neighborhood U_1 of \hat{a}_1 and a biholomorphic map $g: L_1 \rightarrow \hat{U}_1$ of an open neighborhood L_1 of $0 \in \mathbb{C}$ exists such that $g(0) = \hat{a}_1$ and $g(g(L_1)) = g(\hat{U}_1)C \hat{U} \cap A$. Then $v(0, f | A \circ \varrho \circ g) = (\hat{a}_1, f | A \circ \varrho)$. But, for $t \in L_1$,

$$
f|A \circ \varrho \circ g(t) = f(\varrho(g(0))) + \sum_{\lambda = q}^{\infty} P_{\lambda}(\varrho(g(t)) - \varrho(g(0)))
$$

= $f(\alpha) + \sum_{\lambda = q}^{\infty} c_{\lambda} t^{\lambda}$.

Therefore $v(\hat{a}_1, f | A \circ \varrho) = v(0, f | A \circ \varrho \circ g) \geq q$. Therefore $v(\mathfrak{a}, f | A)$ $=\sum_{a\in e^{-1}(a)} v(a, f | A \circ \varrho) \geq q$. Therefore $v(a, f) \geq q$. Take c such that $P_q(c) \neq 0$,

and define $A = \{a + tc \mid |t| < \varepsilon\}$, a one dimensional analytic set consisting only of normal points. Define $g(t) = a + t c$. Then

$$
f(g(t)) = f(\alpha) + \sum_{\lambda = q}^{\infty} P_{\lambda}(t) t^{\lambda} \quad (P_{\lambda}(t) \neq 0).
$$

Hence $A \in \Gamma_a$ if $\varepsilon > 0$ is small enough, and $v(a, f | A) = q$. Hence $v(a, f) = q$. q.e.d.

Recall now the definition of V, M, N, τ , π , etc. given in the beginning of § 3. **Lemma 4.3.** *Let* $(a, b) \in \dot{N}(b)$, where $\dot{N}(b)$ is the set of simple points of the

analytic set N(b). Assume that b \neq 0. *Then* $v(a, b), \tau(N) = 1$.

Proof. An open neighborhood U' of $0 \in \mathbb{C}^p$ and $\alpha: U' \to U$ biholomorphic exists where U is relative open in $N(b)$ and $\alpha(0)=(a, b)$. It is $\alpha: U' \rightarrow V \oplus C$ and rank_x $\alpha = p$ for each $x \in U'$. Define $\beta = \pi \circ \alpha$. Then $\alpha(x) = (\beta(x), b)$ and so rank_x $\beta = p$. Take $r > 0$ such that

$$
\{(3,b)\,|\,|3-a|\leq r\}\cap N(b)\subset U.
$$

Define

$$
U = \{ \mathfrak{z} \mid \mathfrak{z} \in V, \, |\mathfrak{z} - \mathfrak{a}| < r \}
$$
\n
$$
U'' = \alpha^{-1} \left((U \times \{b\}) \cap N(b) \right) = \alpha^{-1} \left(\pi^{-1} (U) \cap N(b) \right) \subset U'
$$
\n
$$
W' = \{ \lambda \mid |\lambda - | < 1/2, \, \lambda \in \mathbb{C} \}
$$
\n
$$
Y = \{ \left(\mathfrak{z}, w \right) \mid \left| \frac{w}{b} \mathfrak{z} - \mathfrak{a} \right| < r, \, |w - b| < \frac{|b|}{2} \}
$$
\n
$$
\tilde{\alpha} : U'' \times W' \to V \oplus \mathbb{C},
$$

defined by $\tilde{\alpha}(x, \lambda) = (\lambda^{-1} \beta(x), \lambda b)$. It will be shown, by means of $\tilde{\alpha}$, that $N \cap Y$ contains only simple points of N. Obviously U'' is open in U' and $0 \in U''$. Take(x, λ) $\in U'' \times W'$. Then $\alpha(x) \in N(b)$, $\beta(x) = \pi(\alpha(x)) \in U$, and $\alpha(x) = (\beta(x), b) \in N$ implies $\tilde{\alpha}(x, \lambda) = (\lambda^{-1}\beta(x), \lambda b) \in N$ as $\lambda^{-1}\beta(x) \cdot \lambda b = \beta(x) b \in M$. Now $|\beta(x) - \alpha| < r$ $\text{as}\beta(x) \in U.$ Hence $\left|\frac{\lambda b}{b} \frac{\beta(x)}{\lambda} - a\right| = |\beta(x) - a| < r, \text{and} |\lambda b - b| = |b| |\lambda - 1| < |b|/2.$

Hence $\tilde{\alpha}(x, \lambda) \in Y$. Therefore $\tilde{\alpha}: U'' \times W' \to N \cap Y$. Because β is one-one, $\tilde{\alpha}$ is also one-one. Let $x = (x_1, ..., x_p)$. Obviously $\tilde{\alpha}_{x_v}(x, \lambda) = (\lambda^{-1} \beta_{x_v}(x), 0), v = 1, ..., p$, and $\tilde{\alpha}_{\lambda}(x, \lambda) = (-\lambda^2 \beta(x), b)$, and so $\tilde{\alpha}_{x_1}, \ldots, \tilde{\alpha}_{x_n}, \tilde{\alpha}_{\lambda}$ are linearly independent over C. Thus rank $_{(x, \lambda)}\tilde{\alpha}(x, \lambda) = p + 1$. Define now $\hat{\alpha}: N \cap Y \to U'' \times W'$ by

$$
\hat{\alpha}(3, w) = \left(x^{-1}\left(\frac{w_3}{b}, b\right), \frac{w}{b}\right)
$$

If $(\mathfrak{z}, w) \in N \cap Y$, $\left|\frac{w\mathfrak{z}}{b} - \mathfrak{a}\right| < r$ and $\left(\frac{w\mathfrak{z}}{b}, b\right) = \left(\frac{\mathfrak{z}}{b/w}, \frac{b}{w} \cdot w\right) \in N(b)$. Thus

 $(\frac{w_3}{b}, b) \in U$ and so $\hat{\alpha}$ is defined. And $\hat{\alpha}$ is holomorphic. It is $|b^{-1}w-1|$ $= |b|^{-1} |w - b| < 1/2$, and so $\hat{\alpha}(3, w) \in U'' \times W'$. Now

$$
\tilde{\alpha}(\hat{\alpha}(3, w)) = \tilde{\alpha}\left(\alpha^{-1}\left(\frac{w_3}{b}, b\right), \frac{w}{b}\right)
$$

$$
= \left(\frac{b}{w} \beta\left(\alpha^{-1}\left(\frac{w_3}{b}, b\right)\right), \frac{w}{b} \cdot b\right)
$$

$$
= \left(\frac{b}{w} \cdot \frac{w_3}{b}, w\right) = (3, w).
$$

Therefore $\hat{\alpha}$ is surjective, and so, $\tilde{\alpha}$ is bijective. Thus $\tilde{\alpha}^{-1} = \hat{\alpha}$ and $\tilde{\alpha}$: U'' × $\times W' \rightarrow N \cap Y$ is biholomorphic. Hence every point of $N \cap Y$ is a simple point, and so, considered as a complex space, $N \cap Y$ is normal. And $\tilde{\alpha}$ biholomorphic implies that $v((a, b), \tau | N) = v((0, 1), \tau | N \circ \tilde{\alpha})$, as $\tilde{\alpha}(0, 1) = (a, b)$. Define $f : U'' \times$ $x \colon W' \to \mathbb{C}$ by $f(x, \lambda) = \lambda b$. Then $\tilde{\alpha}(x, \lambda) = (\lambda^{-1} \beta(x), f(x, \lambda))$, and $\tau | N \circ \tilde{\alpha} = f$. But $v((0, 1), f) = v((0, 1), b, f)$, by Proposition 4.2, and $v((0, 1), b, f) = 1$. Therefore $v((a, b), \tau | N) = v((0, 1), b, f) = 1.$ q.e.d.

Let \hat{N} be the normalization of N and $\rho: \hat{N} \rightarrow N$ the normalization map. Let \hat{S} be the set of non-simple or singular points of \hat{N} . Then \hat{S} is an analytic set of dimension less than or equal dim $\hat{N}-2 = p-1$, as \hat{N} is normal [1, 45.15]. $20*$

Let $S = \rho(\hat{S})$. Then S is an analytic set in N of dimension less than or equal $p - 1$.

Recall that $T = \pi(N(0))$ was the tangent cone of M at 0. Now T is an algebraic set in V and so T has only finitely many irreducible branches $T_1, ..., T_b$, each branch being an analytic cone with center 0 and dimension p.

Lemma 4.4. *For fixed* λ *,v*((3, 0), τ |*N*) *is constant on* $(\dot{T} \times \{0\}) \cap (T_{\lambda} \times \{0\}) \cap$ \cap $(N-S)$.

Proof. Identify $V \times \{0\} = V$. Now $\hat{T} \cap T_{\lambda}$ is a smooth, connected submanifold of V containing $S \cap T_1$, a thin, analytic subset. Consequently $\hat{T} \cap T_1 \cap T_2$ \cap (N – S) is connected. Thus it is sufficient to prove that $v((3, 0), \tau|N)$ is locally constant.

Let $a \in T \cap T_{\lambda} \cap (N-S)$. Let $\{\hat{a}_1, ..., \hat{a}_q\} = \varrho^{-1}(a)$. For each $i = 1, ..., q$, there exist neighborhoods X_i^* of a_i and X_i'' of $0 \in \mathbb{C}^{p+1}$ and a biholomorphic map $\sigma_i: X_i'' \to \hat{X}_i^*$, $\sigma_i(0) = \hat{a_i}$. And there exist neighborhoods $U^* \subset N$ of a and *W"* of $0 \in \mathbb{C}^p$ and a biholomorphic map $\alpha : W'' \to \mathring{T} \cap T_{\lambda} \cap U^*$, $\alpha(0) = \alpha$. Then there exists pairwise disjoint neighborhoods $X_1, ..., X_q$ of $\hat{a}_1, ..., \hat{a}_q$ in $X_1^*,..., X_q^*$ and analytic sets $Y_1,..., Y_q$ in a neighborhood U of a in U^* such q q that $\varrho^{-1}(U) = \bigcup_{i=1}^{\infty} X_i$, $U = \bigcup_{i=1}^{\infty} Y_i$, and $\varrho(X_i) = Y_i$ for each $i = 1, ..., q$, [1,46.15]. Define $X'_i = \sigma_i^{-1}(\hat{X}_i) \subset X''_i$, and $\varrho_i = \varrho | \hat{X}_i : \hat{X}_i \to Y_i$, $i = 1, ..., q$, and

$$
W' = \alpha^{-1}(U \cap T \cap T_\lambda) \subset W'', \quad W = \alpha(W').
$$

Each Y_i is locally irreducible, and so ϱ_i is a topological map [1, 46.10].

Define, for $i = 1, ..., q$,

$$
A'_{i} = \{x \in X'_{i} | \tau \circ \varrho_{i} \circ \sigma_{i}(x) = 0\}
$$

= $\sigma_{i}^{-1}(\varrho_{i}^{-1}(Y_{i} \cap \mathcal{Y})),$
 $\tilde{\sigma}_{i} = \varrho_{i} \circ \sigma_{i} | A'_{i} : A'_{i} \to Y_{i} \cap \mathcal{Y} ,$

a topological, holomorphic map. Now $W \cap Y_i = U \cap T_i \cap T \cap Y_i = E \cap Y_i$, where $E = V \times \{0\}$. Thus dim $W \cap Y_i = p$. But $W = U \cap T_i \cap T$ is an irreducible analytic set, and $Y_i \cap W$ is analytic in W. Therefore $Y_i \cap W = W$ for each $i = 1, ..., q$. A diagram:

Now, for any $i, \alpha^{-1} \circ \tilde{\sigma}_i: A_i' \to W'$ is a holomorphic, topological map, and therefore, $\alpha^{-1} \circ \tilde{\sigma}_i$ is biholomorphic outside of a thin analytic set. Hence

$$
\tilde{\sigma}_i^{-1} \circ \alpha : W' \to A_i'
$$

is continuous on W' and holomorphic except on a thin analytic set. Then, by the Riemann Extension Theorem, $\tilde{\sigma}_i^{-1} \circ \alpha$ is holomorphic on W'. Hence $\alpha^{-1} \circ \tilde{\sigma}_i$ is a biholomorphic map, and so, A'_i consists of simple points only. Thus there exists a function f_i holomorphic in a neighborhood $Z'_{i} \subset X'_{i}$ of 0 such that

$$
A'_i \cap Z'_i = \{x \in Z'_i | f_i(x) = 0\}
$$

and $v(x, 0, f_i) = 1$ for $x \in A'_i \cap Z'_i$, that is, $\frac{\partial f_i}{\partial x_j}(x) \neq 0$ for $x \in A'_i \cap Z'_i$ and at least one j, depending on x. Now $A'_i \cap Z'_i = \{x \in Z'_i | \tau \circ \varrho_i \circ \sigma_i(x) = 0\}$, and so, in a neighborhood $Z_i \subset Z'_i$ of 0, $(\tau \circ \varrho_i \circ \sigma_i)^{m_i} = f_i$ for some natural number m_i . q Let $W = \bigcap (W \cap \varrho_i(\sigma_i(Z_i))\big)$, a neighborhood in $T_A \cap T \cap (N-S)$ of a. For $\chi \in W$, $i=1$

$$
v(\mathfrak{z}, \tau | N) = \sum_{\hat{z} \in \varrho^{-1}(\mathfrak{z})} v(\hat{\mathfrak{z}}, \tau | N \circ \varrho)
$$

=
$$
\sum_{i=1}^{q} v(\varrho_{i}^{-1}(\mathfrak{z}), \tau | N \circ \varrho_{i})
$$

=
$$
\sum_{i=1}^{q} v(\sigma_{i}^{-1}(\varrho_{i}^{-1}(\mathfrak{z})), \tau | N \circ \varrho_{i} \circ \sigma_{i})
$$

=
$$
\sum_{i=1}^{q} v(\sigma_{i}^{-1}(\varrho_{i}^{-1}(\mathfrak{z})), f_{i}^{m_{i}})
$$

=
$$
\sum_{i=1}^{q} m_{i}.
$$
q.e.d.

B. Local continuity

In this section, it will be shown that almost every point in $N(0)$ has a system of neighborhoods such that, in any one of these neighborhoods, the area of $N(w)$ tends to the area of $N(0)$ modulo $v(\cdot, \tau|N)$ as w tends to zero.

Lemma 4.5. *Let* $(a, 0) \in (\dot{T} \times \{0\}) \cap (N - S)$. *Let* $U^* \subseteq V \oplus C$ *be an open neighborhood of (a, 0). Let* θ *be a real valued C^{* ∞ *}-function on H. Then there exists an open neighborhood* $U \subset U^* \cap H$ *of* (a,0) *such that*

$$
\int\limits_{U \cap N(w)} \theta(\mathfrak{z},w) \nu((\mathfrak{z},w),\tau|N) \, v_p \to \int\limits_{U \cap N(0)} \theta(\mathfrak{z},0) \nu((\mathfrak{z},0),\tau|N) \, v_p \quad \text{as} \quad w \to 0 \, .
$$

Proof. Let \hat{N} be the normalization of N, and $\rho: \hat{N} \rightarrow N$ the associated map. Let $\{a_1, ..., a_q\} = \varrho^{-1}((\alpha, 0))$. There exists a unique λ such that $\alpha \in T_{\lambda}$. As in the proof of Lemma 4.4, there exist pairwise disjoint neighborhoods $X_1, ..., X_q$ of $\hat{a}_1, ..., \hat{a}_q$ and analytic sets $Y'_1, ..., Y'_q$ in a neighborhood $U \subset U^* \cap Y'$ $\cap N \subset H$ of (a, 0) such that:

- i) $U \cap E \subseteq T$ ₂ × {0}, q ii) $Q^{-1}(Q) = \bigcup_{i=1}^{\infty} X_i,$
- iii) $U = \bigcup^{q} Y_i$,
- *i=1*
- iv) $\rho(X_i) = Y_i'$ for each $i = 1, ..., q$,
- v) there exist an open neighborhood X'_i of $0 \in \mathbb{C}^{p+1}$ and σ'_i : $X'_i \rightarrow \hat{X}_i$ biholomorphic, $\sigma_i'(0) = a_i$, for each $i = 1, ..., q$.

For each $i=1, ..., q$, it has been shown that 0 is a simple point of $A'_i = \{t \in X' | \tau \circ \varrho \circ \sigma'_i(t) = 0\}$. Hence there exist an open neighborhood X_i of $0 \in \mathbb{C}^{p+1}$ and a biholomorphic map $\sigma''_i : X_i \to \sigma''_i(X_i) \subset X'_i$ such that $\sigma''(X_i \cap \{x' \in X_i | x_{p+1} = 0\}) = A'_i \cap \sigma''_i(X_i), \sigma''_i(0) = 0$, and $X_i \cap \{x' | x_{p+1} = 0\}$ is connected, where $x' = (x_1, \ldots, x_p, x_{p+1})$. Define

$$
\sigma_i = \varrho \circ \sigma'_i \circ \sigma''_i : X_i \to \sigma(X_i) \subset Y'_i.
$$

Then σ_i is holomorphic and topological, $\sigma_i(X_i)$ is open in Y'_i , and $\sigma_i(0) = (\alpha, 0)$. Let $(v_1, ..., v_n)$ be an orthonormal base of V and $v_{n+1} = (0, 1) \in V \oplus \mathbb{C}$. Then

$$
\sigma_i(x') = \sum_{\nu=1}^{n+1} \sigma_{\nu}^{(i)}(x') \mathfrak{v}_{\nu}.
$$

Let $\eta_i(w) = \{x' \in X_i | \sigma_{n+1}^{(i)}(x') = w\}$. Then $\sigma_i(\eta_i(w)) = N(w) \cap \sigma_i(X_i)$, and $\eta_i(0)$ $=\{x' \in X_i | x_{p+1}=0\}$. Now there exist an open neighborhood $R_i \subset X_i$ of 0 and g_i , a holomorphic function on R_i , such that

$$
\sigma_{n+1}^{(i)}(x') = x_{p+1}^{m_i} g_i(x'), \quad x' \in R_i,
$$

with $q_i(x') \neq 0$ for $x' \in R_i$, and where

$$
m_i = v(0, 0, \sigma_{n+1}^{(i)})\,.
$$

Choose $\gamma'_i>0$, $\delta'_i>0$ such that, if

$$
Q_i = \left\{ (x_1, ..., x_p) \middle| \sum_{v=1}^p |x_v|^2 < (\gamma_i)^2 \right\}
$$

$$
Q_i' = Q_i \times \left\{ x_{p+1} \middle| |x_{p+1}| < \delta_i' \right\},
$$

then $\overline{Q_i'} \subseteq R_i$.

Hence there exists $0 < \delta_i'' \leq \delta_i'$ such that

$$
m_i g_i(x') + x_{p+1} \frac{\partial g_i}{\partial x_{p+1}}(x') + 0
$$

for $x' \in Q_i \times \{x_{p+1} \mid |x_{p+1}| \leq \delta_i''\}$. Now define $f_i: Q_i' \times C \rightarrow C$ by $f_i(x', w) = x_{n+1}^{m_i} g_i(x') - w$.

Then $f_1(0, ..., 0, x_{p+1}, 0) = x_{p+1}^{m_i} g(0, ..., 0, x_{p+1}) \neq 0$, and so there exists a Weierstrass polynomial

$$
\omega_i(x_{p+1}, x, w) = x_{p+1}^{m_1} + \sum_{v=0}^{m_1-1} a_{i, v}(x, w) x_{p+1}^v
$$

where $x = (x_1, ..., x_p)$ and the $a_{i,y}$'s are functions holomorphic in neighborhood

$$
\left\{ (x_1, ..., x_p, w) \mid \sum_{\nu=1}^p |x_{\nu}|^2 < (\gamma_i^{\nu})^2, \quad |w| < \varepsilon_i^{\nu} \right\}
$$

of $(0, 0) \in \mathbb{C}^p \oplus \mathbb{C}$ with $0 < \gamma_i^{\prime\prime} < \gamma_i^{\prime}$, $0 < \varepsilon_i^{\prime}$ and a function e_i holomorphic on

$$
\left\{ (x_1, ..., x_{p+1}, w) | \sum_{v=1}^p |x_v|^2 < (\gamma_i'')^2, \quad |x_{p+1}| < \delta_i, \quad |w| < \varepsilon_i' \right\} = L_i,
$$

with $0 < \delta_i \leq \delta_i''$, such that

$$
f_i = e_i \omega_i, \quad e_i \neq 0 \quad \text{on} \quad L_i \, .
$$

For $x=(x_1,...,x_n)$, define $|x| = \left(\sum |x_i|^2\right)$. Then there exist y_i , ε_i in $0 < \gamma_i < \gamma''_i, \ \ 0 < \varepsilon_i < \varepsilon'_i, \ \ \text{such that} \ \begin{array}{c} \sqrt{v} = 1 \\ \omega_i(x_{p+1}, x, w) = 0, \ \ |x| < \gamma_i, \ \ |w| < \varepsilon_i \ \ \text{imply} \end{array}$ $|x_{p+1}| < \delta_i$. Define $P_i = \{x \mid |x| < y_i\}$

$$
P'_{i} = P_{i} \times \{x_{p+1} \mid |x_{p+1}| < \delta_{i}\}.
$$

Then

1. $\sigma_i: P'_i \to Y'_i$ is holomorphic, $\sigma_i: P'_i \to \sigma_i(P'_i)$ is topological and $\sigma_i(P'_i)$ is open in Y_i , $\sigma_i(0) = (a, 0)$, a_i

2. $x \in P_i$ implies $m_i g_i(x') + x_{p+1} \frac{\partial f_i}{\partial x_i}$

3. $x \in P_i$, $|w| < \varepsilon_i$, $x' = (x, x_{p+1}), \omega(x_{p+1}, x, w) = 0$ imply $x' \in P'_i$.

Recall that in the proof of Lemma 4.4 it was shown that $Y_i' \cap E = Y_j' \cap E$ q for any $1 \leq i, j \leq q$, where $E = V \times \{0\}$. Thus $D = \{ \mid \sigma_i(P_i) \cap E \text{ is an open} \}$ i=1 neighborhood in N(0) of a, as $\sigma_i(P'_i)$ is open in Y'_i . Take ξ such that if $\Omega = {\alpha + 3 | \beta \in V, |\beta| < \xi}, \text{ then } (\Omega \times \{0\}) \cap N(0) \subseteq \overline{(\Omega \times \{0\})} \cap N(0) \subset D.$ Take $\zeta > 0, \, \zeta \leq \min_{i=1}^{\infty} \varepsilon_i$ and such that

1.
$$
(\Omega \times \{w \in \mathbb{C} | 0 \le |w| \le \zeta\}) \cap N \subseteq \bigcup_{i=1}^{q} Y_i' \subset U
$$
,

2. $(\Omega \times \{w \in \mathbb{C} \mid 0 \leq |w| \leq \zeta\}) \cap Y'_i \subseteq \sigma_i(P'_i), \quad i = 1, ..., q$. There exists an open set $U \subset H$ such that $(a, 0) \in U \subset U^*$ and

$$
(\Omega \times \{w \in \mathbb{C} \mid 0 \leq |w| < \zeta\}) \cap N = U \cap N \, .
$$

q Define $Y_i = U \cap Y'_i$, $i=1, ..., q$. Then $N \cap U = \bigcup_{i=1}^{n} Y_i$. From Lemma 4.3, $v((3, w), \tau | N) = 1$ for $(3, w) \in \dot{N}(w)$, $w \neq 0$, and so $Y_i \cap Y_j \cap \dot{N}(w) = \Phi$ for any $i + j$, $1 \le i, j \le q$, and $w + 0$. Now $N(0) \cap U = Y_i \cap N(0)$ for any $i = 1, ..., q$, and for $(3, 0) \in N(0) \cap U$,

$$
v((3, 0), \tau | N) = \sum_{i=1}^{q} v(\sigma_i^{-1}(3, 0), \tau | N \circ \sigma_i)
$$

=
$$
\sum_{i=1}^{q} v(\sigma_i^{-1}(3, 0), 0, \sigma_{n+1}^{(i)})
$$

=
$$
\sum_{i=1}^{q} m_i.
$$

Assume for the moment that

$$
\int_{Y \cap N(w)} \theta(\mathfrak{z}, w) \, v_p \to m_i \int_{Y \cap N(0)} \theta(\mathfrak{z}, 0) \, v_p \quad \text{as} \quad w \to 0
$$

for each $i = 1, ..., q$. Then, as $w \rightarrow 0$,

$$
\int_{N(w)\cap U} v((3, w), \tau | N) \theta(3, w) v_p(3, w)
$$
\n
$$
= \sum_{i=1}^{q} \int_{Y_i \cap N(w)}^{\bullet} \theta v_p \to \sum_{i=1}^{q} m_i \int_{Y_i \cap N(0)}^{\bullet} \theta v_p
$$
\n
$$
= \sum_{i=1}^{q} m_i \int_{U \cap N(0)}^{\bullet} \theta v_p
$$
\n
$$
= \int_{U \cap N(0)}^{\bullet} v((3, 0), \tau | N) \theta(3, 0) v_p(3, 0).
$$

Thus all that remains is to prove that for any *i*,

$$
1 \leq i \leq q, \int_{Y_i \cap N(w)} \theta v_p \to m_i \int_{Y_i \cap N(0)} \theta v_p \text{ as } w \to 0.
$$

Let *i* be fixed, $1 \leq i \leq q$. The index *i* shall henceforth be omitted. Thus, n+l n+l for example, $\sigma = \sum \sigma_{\nu} \mathfrak{v}_{\nu} = \sum \sigma_{\nu}^{\alpha} \mathfrak{v}_{\nu}$. Define, for $x \in P$, $v=1$ $v=1$

$$
\Lambda_0(x) = \theta(\sigma(x, 0)) \sum_{1 \leq \nu_1 < \dots < \nu_p \leq n} \left| \frac{\partial(\sigma_{\nu_1}, \dots, \sigma_{\nu_p})}{\partial(x_1, \dots, x_p)} \right|^2_{(x, 0)}
$$

Take w in $0 < |w| < \zeta$ and $x \in P$. Then

$$
\omega(x_{p+1}, x, w) = \prod_{\mu=1}^{m} (x_{p+1} - x_{p+1}^{\mu}(x, w))
$$

where $|x_{p+1}^u(x, w)| < \delta$, that is, $(x, x_{p+1}^u(x, w)) \in P'$. Hence

$$
\eta(w) \cap P' = \{x' \in P' | \sigma_{n+1}(x') = w\} \\
= \{(x, x_{p+1}^{\mu}(x, w)) | x \in P, 1 \leq \mu \leq m\}.
$$

as
$$
\omega(x_{p+1}, x, w) e(x', w) = \sigma_{n+1}(x') - w, e(x', w) \neq 0
$$
. Now $\omega(x', w) e(x', w)$
= $f(x', w) = x_{p+1}^m g(x') - w$, and $\frac{\partial f}{\partial x_{p+1}}(x', w) = x_{p+1}^{m-1} (mg(x') + x_{p+1} \frac{\partial g}{\partial x_{p+1}}(x'))$.

Let $z_{\mu} = (x, x_{p+1}^{\mu}(x, w), w).$ Thus $\frac{\partial}{\partial x}$ $(z_{\mu}) \neq 0$. But $=e(z_\mu) \frac{\partial \omega}{\partial x}(z_\mu).$ Then $w \neq 0$ implies $x_{n+1}^{\mu}(x, w) \neq 0$ for any $x \in P$. $\frac{\partial f}{\partial y}$ (z_u) = $\omega(z_\mu)$ $\frac{\partial e}{\partial x}$ (z_u) + $e(z_\mu)$ $\frac{\partial w}{\partial y}$ (z_u) σx_{p+1} σx_{p+1} σx_{p+1}

Hence $\frac{a}{2}$ (z_a) + 0, and so the $x_{n+1}^{\mu}(x, w)$, $\mu = 1, ..., m$, are distinct for σx_{p+1} any $0 < |w| < \zeta$ and $x \in P$. Now, keep w in $0 < |w| < \zeta$ fixed. Then

$$
\omega(x_{p+1}, x, w) = \prod_{\mu=1}^{m} (x_{p+1} - x_{p+1}^{\mu}(x, w)),
$$

where $x_{p+1}^{\mu}(x, w) \neq x_{p+1}^{\nu}(x, w)$ if $\mu \neq \nu$ for all $x \in P$, and so $\frac{\partial \omega}{\partial x}(x_{p+1}, x, w) \neq 0$ for all $x_{n+1} = x_{n+1}^{\mu}(x, w)$ and $x \in P$. Hence

$$
\omega(x_{p+1}, x, w) = \prod_{\mu=1}^{m} (x_{p+1} - h_{\mu}(x, w)),
$$

where $h_{\mu}(x, w)$ is a well-defined, holomorphic function of $x \in P$, with $h_{\mu}(x, w)$ + $+h_v(x, w)$ if $\mu + v$. Define

$$
\Lambda_{w}(x) = \sum_{\mu=1}^{m} \left(\theta(\sigma(x, h_{\mu}(x, w))) \right) \times
$$

$$
\times \left(\sum_{1 \leq v_{1} < \dots < v_{p} \leq n} \left| \frac{\partial (\sigma_{v_{1}}(x, h_{\mu}(x, w)), \dots, \sigma_{v_{p}}(x, h_{\mu}(x, w)))}{\partial (x_{1}, \dots, x_{p})} \right|_{x}^{2} \right).
$$

It is now claimed that $A_w(x) \to mA_0(x)$ as $w \to 0$ uniformly on P. There exists a constant K such that $|g(x')| > K$ for all $x' \in \overline{P}'$. Take $\alpha > 0$. Define $d(\alpha) = \min(K \alpha^m, \zeta)$. Take w in $0 < |w| < d(\alpha)$. For any $x \in P$,

 $h_{\mu}^{m}(x, w) g(x, h_{\mu}(x, w)) - w = 0$,

and so $|h_\mu(x, w)| < \left(\frac{d(\alpha)}{K}\right)^{1/m} \leq \alpha$. A constant $\kappa > 0$ exists such that, for all $x' \in \overline{P}'$,

$$
\left|\frac{\partial g}{\partial x_t}(x)\right| < \kappa \,, \quad t = 1, \ldots, p+1 \,.
$$

For w fixed, $0 < |w| < d \left(\frac{mK}{2\kappa} \right)$,

$$
|h_{\mu}(x,w)| < m K/2\kappa \,, \quad x \in P.
$$

And from $h_{\mu}^{m}(x, w) g(x, h_{\mu}(x, w)) - w = 0$,

$$
0 = m h_{\mu}^{m-1}(x, w) g(x, h_{\mu}(x, w)) \frac{\partial h_{\mu}(x, w)}{\partial x_{t}} + + h_{\mu}^{m}(x, w) \left(\frac{\partial g}{\partial x_{t}} (x, h_{\mu}(x, w)) + \frac{\partial g}{\partial x_{p+1}} (x, h_{\mu}(x, w)) \frac{\partial h_{\mu}}{\partial x_{t}} (x, w) \right).
$$

Since $h_{\mu}(x, w) + 0$,

$$
0 = mg \frac{\partial h_{\mu}}{\partial x_{t}} + h_{\mu} \left(\frac{\partial g}{\partial x_{t}} + \frac{\partial g}{\partial x_{p+1}} \frac{\partial h_{\mu}}{\partial x_{t}} \right),
$$

$$
\frac{\partial h_{\mu}}{\partial x_{t}} \left(mg + h_{\mu} \frac{\partial g}{\partial x_{p+1}} \right) = -h_{\mu} \frac{\partial g}{\partial x_{t}}.
$$

Now

$$
\left| mg + h_{\mu} \frac{\partial g}{\partial x_{p+1}} \right| \geq |mg| - \left| h_{\mu} \frac{\partial g}{\partial x_{p+1}} \right| \geq mK - \frac{mK}{2\kappa} \cdot \kappa = \frac{mK}{2},
$$

and so

$$
\left|\frac{\partial h_{\mu}}{\partial x_{t}}\right| \leq \frac{2}{mK} \left|\frac{\partial g}{\partial x_{t}}\right| |h_{\mu}| \leq \frac{2\kappa}{mK} |h_{\mu}|
$$

for $t = 1, ..., p, \mu = 1, ..., m$. Thus define $d_1(\alpha) = \min\left(d(\alpha), d\left(\frac{mK}{2m}\right), d\left(\frac{mK}{2m}\alpha\right)\right)$. Then, for $x \in P$, $0 < |w| < d_1(\alpha)$, $t = 1, ..., p$, $\mu = 1, ..., m$, it is

$$
|h_{\mu}(x,w)| < \alpha \quad \text{and} \quad \left|\frac{\partial h_{\mu}}{\partial x_{t}}(x,w)\right| < \alpha.
$$

Now there exists a constant c_0 such that

$$
\left|\frac{\partial \sigma_{v}}{\partial x_{t}}(x')\right| < c_{0} \quad \text{for} \quad x' \in \overline{P}', \quad v = 1, ..., n \,,
$$
\n
$$
t = 1, ..., p + 1 \,.
$$

And for any $\alpha > 0$, there exists $\Delta_0(\alpha)$ such that for all

$$
1 \le v \le n, \quad 1 \le t \le p+1,
$$

$$
\frac{\partial \sigma_v}{\partial x_t}(x, x_{p+1}) - \frac{\partial \sigma_v}{\partial x_t}(x, 0) < \alpha
$$

if $x \in P$ and $|x_{p+1}| \leq \Lambda_0(\alpha)$. Also, there exists a constant c_1 such that $|\theta(\sigma(x'))| < c_1$ for all $x' \in P'$,

and for any $\alpha > 0$, there exists $\Delta_1(\alpha)$ such that

$$
\left|\theta(\sigma(x,x_{p+1}))-\theta(\sigma(x,0))\right|<\alpha\quad\text{for}\quad x\in\overline{P}\quad\text{and}\quad |x_{p+1}|\leq\Delta_1(\alpha)\,.
$$

For every $\beta > 0$, there exists $\Delta(\beta) > 0$ such that, if

$$
A = \begin{pmatrix} a_{11} \dots a_{1p} \\ a_{p1} \dots a_{pp} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} \dots b_{1p} \\ b_{p1} \dots b_{pp} \end{pmatrix}
$$

with $|a_{ij}| \leq 2c_0$, $|b_{ij}| \leq 2c_0$, $|a_{ij}-b_{ij}| \leq \Delta(\beta)$ for $1 \leq i, j \leq p$, then $\left|\frac{d\det A|^2 - |\det B|^2\right| < \beta}$.

Moreover there exists a constant c_2 such that

$$
|\det A|^2 < c_2 \quad \text{if} \quad |a_{ij}| < 2c_0 \, .
$$

Now take any $\beta > 0$. Take $\alpha = \min \left(1, \frac{\Delta(\beta)}{1 + c_0}\right)$. Take $d_2(\beta) = \min(d_1(\alpha))$, $d_1(A_0(\alpha)), d_1(A_1(\alpha))$. Take any w in $0 < |w| < d_2(\beta)$ and any $x \in P$. Take μ in $1\leq \mu \leq m$. Then

$$
|h_{\mu}(x, w)| \leq \min(\alpha, \Delta_0(\alpha), \quad \Delta_1(\alpha))
$$

and

$$
\left|\frac{\partial h_\mu}{\partial x_t}(x,w)\right| \leq \min(\alpha, \Delta_0(\alpha), \Delta_1(\alpha)), \quad t = 1, ..., p.
$$

And for $1 \le v \le n$, $1 \le t \le p$,

$$
\left|\frac{\partial \sigma_{\mathbf{v}}}{\partial x_t}(x, h_{\mu}(x, w)) - \frac{\partial \sigma_{\mathbf{v}}}{\partial x_t}(x, 0)\right| < \alpha.
$$

Hence

$$
\begin{aligned}\n\left| \frac{\partial}{\partial x_i} \left(\sigma_v(x, h_\mu(x, w)) \right) - \frac{\partial \sigma_v}{\partial x_i}(x, 0) \right| \\
&= \left| \frac{\partial \sigma_v}{\partial x_i}(x, h_\mu(x, w)) - \frac{\partial \sigma_v}{\partial x_i}(x, 0) + \right. \\
&\left. + \frac{\partial \sigma_v}{\partial x_{p+1}} (x, h_\mu(x, w)) \frac{\partial h_\mu}{\partial x_i}(x, w) \right| \leq \\
&\leq \alpha + c_0 \alpha = \alpha (1 + c) \leq \Delta(\beta).\n\end{aligned}
$$

For $1 \leq v_1 < \cdots < v_p \leq n$, define

$$
A_{w,\nu_1,\ldots,\nu_p}^{\mu}(x) = \frac{\partial(\sigma_{\nu_1}(x, h_{\mu}(x, w)), \ldots, \sigma_{\nu_p}(x, h_{\mu}(x, w)))}{\partial(x_1, \ldots, x_p)}
$$

$$
A_{\nu_1,\ldots,\nu_p}(x) = \frac{\partial(\sigma_{\nu_1}(x, 0), \ldots, \sigma_{\nu_p}(x, 0))}{\partial(x_1, \ldots, x_p)}
$$

Then $||A_{w, v_1, ..., v_p}^{\mu}(x)|^2 - |A_{v_1, ..., v_p}(x)|^2| < \beta$, and $|A_{v_1, ..., v_p}(x)|^2 \le c_2$. Now $|\theta(\sigma(x, h_\mu(x, w))) - \theta(\sigma(x, 0))| < \beta$. Hence $|A_1(x) - m A_2(x)|$

$$
|A_{w}(x) - m A_{0}(x)|
$$
\n
$$
= \left| \sum_{\mu=1}^{m} \left\{ \theta(\sigma(x, h_{\mu}(x, w))) \sum_{1 \leq v_{1} < \dots < v_{p} \leq n} |A_{w, v_{1},..., v_{p}}^{\mu}(x)|^{2} \right\} - \sum_{\mu=1}^{m} \left\{ \theta(\sigma(x, 0)) \sum_{1 \leq v_{1} < \dots < v_{p} \leq n} |A_{v_{1},..., v_{p}}(x)|^{2} \right\} \right|
$$
\n
$$
\leq \sum_{\mu=1}^{m} |\theta(\sigma(x, h_{\mu}(x, w)))| \sum_{1 \leq v_{1} < \dots < v_{p} \leq n} |A_{w, v_{1},..., v_{p}}^{\mu}(x)|^{2} - |A_{v_{1},..., v_{p}}(x)|^{2} | + \sum_{\mu=1}^{m} |\theta(\sigma(x, h_{\mu}(x, w))) - \theta(\sigma(x, 0))| \sum_{1 \leq v_{1} < \dots < v_{p} \leq n} |A_{v_{1},..., v_{p}}(x)|^{2} \leq \sum_{1 \leq v_{1} < \dots < v_{p} \leq n} |A_{v_{1},...,v_{p}}(x)|^{2} \leq
$$

where $c_3 = m(c_1 + c_2)n^P$ is independent of β , x, w. Thus $\Lambda_w(x) \to m \Lambda_0(x)$ as $w \rightarrow 0$ uniformly on *P*.

Now let \tilde{W} be any open set in *P*. Define $W' = W \times \{x_{p+1} | |x_{p+1}| < \delta\}$.
Then $\sigma: W \times \{0\} \to \sigma(W') \cap N(0)$ is topological and holomorphic, and so

$$
\int_{\sigma(W') \cap N(0)} \theta(3,0) v_p = \int_{W} \theta(\sigma(x,0)) \left(\frac{i}{2}\right)^p \times
$$
\n
$$
\times \sum_{1 \leq v_1 < \dots < v_p \leq n+1} \left| \frac{\partial(\sigma_{v_1}, ..., \sigma_{v_p})}{\partial(x_1, ..., x_p)} \right|^2 dx_1 \wedge d\overline{x}_1 \wedge \dots \wedge dx_p \wedge d\overline{x}_p
$$
\n
$$
= \int_{W} \theta(\sigma(x,0)) \left(\frac{i}{2}\right)^p \times
$$
\n
$$
\times \sum_{1 \leq v_1 < \dots < v_p \leq n} \left| \frac{\partial(\sigma_{v_1}(x,0), ..., \sigma_{v_p}(x,0))}{\partial(x_1, ..., x_p)} \right|^2 dx_1 \wedge d\overline{x}_1 \wedge \dots \wedge dx_p \wedge d\overline{x}_p
$$
\n
$$
= \int_{W} A_0(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \dots \wedge dx_p \wedge d\overline{x}_p.
$$

Take w fixed, $0 < |w| < \zeta$. Then

$$
\sigma(\eta(w)\cap W')=\sigma(W')\cap N(w).
$$

Let $\iota_w : \eta(w) \cap W' \to P'$ be the inclusion. Then $\sigma \circ \iota_w : \eta(w) \cap W' \to \sigma(W') \cap N(w)$ is topological and holomorphic, and so

$$
\int_{\sigma(W') \cap N(w)} \theta(\mathfrak{z}, w) \, v_p
$$
\n
$$
= \int_{\eta(w) \cap W'} \theta(\sigma(x')) \left(\frac{i}{2}\right)^p \sum_{1 \leq v_1 < \cdots < v_p \leq n} d\sigma_{v_1} \wedge d\overline{\sigma_{v_1}} \wedge \cdots \wedge d\sigma_{v_p} \wedge d\overline{\sigma_{v_p}}.
$$

Define $h'_\mu: W \to h'_\mu(W) \subset \eta(w) \cap W'$ by $h'_\mu(x) = (x, h_\mu(x, w))$ for $\mu = 1, ..., m$. Then h'_μ is biholomorphic, and

$$
\eta(w)\cap W'=\bigcup_{\mu=1}^m h'_\mu(W),\quad h'_\mu(W)\cap h'_\nu(W)=\Phi,\quad \mu=\nu.
$$

Thus

$$
\int_{\sigma(W') \cap N(w)} \theta(\mathfrak{z}, w) \, v_p = \sum_{\mu=1}^m \int_W \theta(\sigma(x, h_{\mu}(x, w))) \times
$$
\n
$$
\times \sum_{1 \leq v_1 < \dots < v_p \leq n} \left| \frac{\partial(\sigma_{v_1}(x, h_{\mu}(x, w)), \dots, \sigma_{v_p}(x, h_{\mu}(x, w)))}{\partial(x_1, \dots, x_p)} \right|^2 \times
$$
\n
$$
\times \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \dots \wedge dx_p \wedge d\overline{x}_p
$$
\n
$$
= \int_W A_w(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \dots \wedge dx_p \wedge d\overline{x}_p.
$$

Hence

$$
\int\limits_{\sigma(W')\cap N(w)} \theta\ v_p\to m\int\limits_{\sigma(W')\cap N(0)} \theta\ v_p\ ,\quad w\to 0\ .
$$

Define

$$
\psi: \mathbb{C}^{p+1} \to \mathbb{C}^p, \quad \psi(x_1, ..., x_{p+1}) = (x_1, ..., x_p)
$$

$$
W_0 = \psi(\sigma^{-1}(Y \cap E)) \subset \overline{W}_0 \subset P.
$$

Take any open set $W \subset P$ such that $W \subset \overline{W} \subset W_0$. Define as before $W' = W \times \{x_{p+1} \in \mathbb{C} | |x_{p+1}| < \delta\}$. It shall be shown that there exists $\alpha > 0$ such that for $|w| < \alpha$, $\sigma(W') \cap N(w) \subset Y \cap N(w)$. For assume that there exists a sequence $\{(3_v, w_v)\}$ such that $w_v \to 0$ as $v \to \infty$ and $(3_v, w_v) \in \sigma(W') \cap N(w_v)$, $(3_v, w_v) \notin Y \cap N(w_v)$. Then $\{\sigma^{-1}(3_v, w_v)\} \subset W'$, and so there exists a convergent subsequence, which will also be denoted by $\{\sigma^{-1}(\mathfrak{z}_v, w_v)\}\)$. Let $\sigma^{-1}(\mathfrak{z}_v, w_v) \rightarrow$ $(x, x_{p+1}) \in W'$ as $v \to \infty$, where $\psi(x, x_{p+1}) = x$. Then $w_v \to 0$ implies $x_{p+1} = 0$. Now $(x,0) \in W'$, and so $x \in W \subset W_0$. Therefore $(x,0) \in \sigma^{-1}(Y)$ open, and so, for v large enough, $\sigma^{-1}(3_v, w_v) \in \sigma^{-1}(Y)$, that is, $(3_v, w_v) \in Y$, a contradiction.

Hence there exists $\alpha > 0$ such that for $|w| < \alpha$, $\sigma(W') \cap N(w) \subset Y \cap N(w)$. Thus

$$
\int_{\sigma(W') \cap N(w)} \theta \, v_p \leq \int_{Y \cap N(w)} \theta \, v_p, \quad |w| < \alpha \, .
$$

Now

$$
\int_{\sigma(W') \cap N(w)} \theta \, v_p \to m \int_{\sigma(W') \cap N(0)} \theta \, v_p \quad \text{as} \quad w \to 0,
$$

and

$$
\int_{\sigma(W') \cap N(0)} \theta \, v_p = \int_W \Lambda_0(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \cdots \wedge dx_p \wedge d\overline{x}_p.
$$

Thus for any open set $W \subset \overline{W} \subset W_0$,

$$
m\int\limits_W A_0(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \cdots \wedge dx_p \wedge d\overline{x}_p \leq \liminf\limits_{w\to 0} \int\limits_{Y \cap N(w)} \theta \, v_p \, .
$$

Therefore,

$$
m \int_{Y \cap N(0)} \theta v_p = m \int_{W_0} A_0(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \dots \wedge dx_p \wedge d\overline{x}_p \leq \liminf_{w \to 0} \int_{Y \cap N(w)} \theta v_p.
$$

Now define, for $0 < s < \zeta$,

$$
F(s) = V \times \{ w \in \mathbb{C} \mid |w| < s \},
$$
\n
$$
W(s) = \psi(\sigma^{-1}(Y \cap F(s))),
$$
\n
$$
W'(s) = W(s) \times \{ x_{p+1} \mid |x_{p+1}| < \delta \}.
$$

Then $W(s)$ is open in P , and

$$
Y\cap F(s)\subset \sigma(W'(s))\cap F(s)
$$

as

$$
\sigma^{-1}(Y\cap F(s))\subset W'(s).
$$

Therefore, for $|w| < s$,

$$
\int_{Y \cap N(w)} \theta \, v_p \leq \int_{\sigma(W'(s)) \cap N(w)} \theta \, v_p \, .
$$

But as $w \rightarrow 0$,

$$
\int_{\sigma(W'(s)) \cap N(w)} \theta \, v_p \to m \int_{\sigma(W'(s)) \cap N(0)} \theta \, v_p
$$

$$
= m \int_{W(s)} A_0(x) \left(\frac{i}{2}\right)^p dx_1 \wedge d\overline{x}_1 \wedge \cdots \wedge dx_p \wedge d\overline{x}_p.
$$

Hence, for any $0 < s < \zeta$,

$$
\limsup_{w\to 0}\int_{Y\cap N(w)}\theta\,v_p\leq m\int_{W(s)}\Lambda_0(x)\left(\frac{i}{2}\right)^p dx_1\wedge d\overline{x}_1\wedge\cdots\wedge dx_p\wedge d\overline{x}_p.
$$

Now if $0 < s' < s$, then $W(s') \subset W(s)$, and

$$
\bigcap_{0 < s < \zeta} W(s) = W_0 \; .
$$

Thus

$$
\limsup_{w\to 0}\int\limits_{Y\cap N(w)}\theta\,v_p\leqq m\int\limits_{W_0}A_0(x)\left(\frac{i}{2}\right)^p dx_1\wedge d\overline{x}_1\wedge\cdots\wedge dx_p\wedge d\overline{x}_p=m\int\limits_{Y\cap N(0)}\theta\,v_p.
$$

Consequently,

$$
m \underset{Y \cap N(0)}{\int} \theta v_p \leq \liminf_{w \to 0} \underset{Y \cap N(w)}{\int} \theta v_p \leq \limsup_{w \to 0} \underset{Y \cap N(w)}{\int} \theta v_p \leq m \underset{Y \cap N(0)}{\int} \theta v_p,
$$

and so

$$
\lim_{w \to 0} \int_{Y \cap N(w)} \theta v_p = m \int_{Y \cap N(0)} \theta v_p.
$$
 q.e.d.

C. Local boundedness

In this section it will be shown that for every point of $N(0)$, there exists a neighborhood such that for any ball in this neighborhood, the product of $v(\cdot, \tau|N)$ and the area of $N(w)$ intersect the ball is bounded by a constant times the radius of the ball to the power $2p$, the constant independent of w for $|w|$ sufficiently small. This result essentially has been proven by W. STOLL in \S 2 of [9]. However in [9], the normalization of a complex space is not considered when the multiplicity of a holomorphic map is defined. Thus the two definitions of multiplicity must be related. Here the symbol \tilde{v} will be used to denote the multiplicity of a map in the sense of [9]. The definition of \tilde{v} , along with the definitions of a distinguished base and a distinguished polycylinder, will be given here for the convenience of the reader.

Let X and Y be complex spaces and $\sigma: X \to Y$ a holomorphic, non-degenerate map. Take $a \in X$. Take any open neighborhood U of a such that U is compact and such that $\overline{U}\cap \sigma^{-1}(\sigma(a))= \{a\}$. Define

$$
\tilde{v}(a,\sigma)=\limsup_{x\to a}\mu_U(x,\sigma)
$$

where $\mu_U(x, \sigma)$ is as defined in § 4 A.

Now let $\sigma: X \to Y$ be a holomorphic map such that $\sigma^{-1} (\sigma(x))$ is an analytic set of pure dimension q for every $x \in X$. Suppose that X has pure dimension k. Take $a \in X$ and let Γ_a be as in § 4 A. Define

$$
\tilde{v}(a,\sigma)=\min_{A\in\Gamma_a}\tilde{v}(a,\sigma\mid A).
$$

Thus \tilde{v} is defined.

Let D be an open subset of an *m*-dimensional complex vector space W . Let a be a point of an analytic subset A of D. A base $C = (c_1, ..., c_m)$ of W is said to be *distinguished with respect to* (A, a, k) if and only if the intersection

 $F \cap A$ of A with $F = \{a + \sum z, c \}$ contains a as an isolated point. And U *v=k+ 1* is said to be a *distinguished polycylinder with respect to (A, C, a, k)* if and only if

- 1. It is $1 \leq k < m$.
- 2. Numbers $\varepsilon_v > 0$ exist such that

$$
U = \left\{ \alpha + \sum_{\nu=1}^m z_\nu c_\nu \, | \, |z_\nu| < \varepsilon, \quad \text{for} \quad \nu = 1, \ldots, m \right\} \subseteq \overline{U} \subseteq D \; .
$$

3. Define

$$
Y = \left\{ \alpha + \sum_{v=1}^{k} z_v c_v \, | \, |z_v| < \varepsilon_v \quad \text{for} \quad v = 1, \dots, k \right\}
$$

and $\sigma: U \rightarrow Y$ the projection given by

$$
\sigma\left(\alpha+\sum_{\nu=1}^m z_\nu c_\nu\right)=\alpha+\sum_{\nu=1}^k z_\nu c_\nu.
$$

Define

$$
X_{\mathfrak{y}} = \sigma^{-1}(\mathfrak{y}) = \left\{ \mathfrak{y} + \sum_{\mathfrak{y} = k+1}^{m} z_{\mathfrak{y}} \mathfrak{c}_{\mathfrak{y}} \, | \, |z_{\mathfrak{y}}| < \varepsilon_{\mathfrak{y}} \quad \text{for} \quad \mathfrak{y} = k+1, \, ..., \, m \right\} \quad \text{for} \quad \mathfrak{y} \in Y \, .
$$

Then

$$
A \cap \overline{X}_p = A \cap X_p \quad \text{for all} \quad y \in Y
$$

and

$$
A \cap \overline{X}_a = \{a\}
$$

is required.

Lemma 4.6. *Let* $a \in N(0)$. Let N be the normalization of N and $\rho: N \rightarrow N$ the associated map. Let $\{a_1, ..., a_q\} = \varrho^{-1}(\alpha)$. Let $X_1, ..., X_q$ be pairwise dis*joint neighborhoods of a*₁, ..., a_q and X_1 , ..., X_q analytic sets in a neighborhood q $X \subset N$ of a, such that $\varrho^{-1}(X) = \bigcup X_i, X = \bigcup X_i$, and $\varrho(X_i) = X_i$ for each $i=1$ $i=1$ $i=1,...,q$, and such that $X \subset K \cap N$ for some compact set $K \subset V \oplus \mathbb{C}$. Let $C=(c_1, ..., c_n)$ *be a base of V, and let* $c=(0, 1) \in V \oplus \mathbb{C}$. Let $C'=(c_1, ..., c_p, c,$ $c_{p+1},..., c_n$, *a base of V* \oplus **C**. Suppose that

$$
U = \left\{ \alpha + \sum_{\nu=1}^{n} z_{\nu} c_{\nu} + w c \mid |z_{\nu}| < \varepsilon_{\nu}, \quad \nu = 1, ..., n, |w| < \varepsilon_{n+1} \right\}
$$

is a distinguished polycylinder with respect to $(N, C', a, p + 1)$ *and to* $(N(0), C, a, p)$ *. Suppose U* \cap *N* \subset *X*. *Suppose that n* in 0 < *n* < 1 exists such that $N(0) \cap \overline{U-U_n} = \Phi$, *where*

$$
U_{\eta} = \left\{ \alpha + \sum_{\nu=1}^{n} z_{\nu} c_{\nu} + w c \mid |z_{\nu}| < \varepsilon_{\nu}, \ \nu = 1, ..., p, \ |w| < \eta \varepsilon_{n+1}, \right\}
$$

$$
|z_{\nu}| < \eta \varepsilon_{\nu}, \ \nu = p + 1, ..., n \right\}.
$$

 $Define~\tilde{\pi}: U \rightarrow \tilde{\pi}(U) = Y'$ by \Box

$$
\tilde{\pi}\left(\alpha+\sum_{\nu=1}^nz_{\nu}c_{\nu}+w\mathfrak{c}\right)=\alpha+\sum_{\nu=1}^pz_{\nu}c_{\nu}.
$$

For $\mathfrak{y} \in Y'$ *, define*

$$
L(\mathfrak{y},w)=U\cap N(w)\cap \tilde{\pi}^{-1}(\mathfrak{y}).
$$

Then there exist constants $\delta > 0$, $\kappa > 0$ *such that*

$$
\sum_{(\mathfrak{z},w)\in L(\mathfrak{y},w)} v((\mathfrak{z},w),\tau\mid N)<\kappa \quad \text{for} \quad |w|<\delta.
$$

Proof. Define $L_i(0, w) = L(0, w) \cap X_i$ for $i = 1, ..., q$. Now $\tau | X_i$ is not constant on any irreducible branch of X_i , that is, no $N(w) \cap X_i$ contains an irreducible branch of X_i . Hence there exist constants κ_i and δ_i such that if $|w| < \delta_i$, then

$$
\sum_{(a,\,w)\in L(\mathfrak{v},\,w)} \tilde{\nu}((a,\,w),\,\tau\,|\,X_i) < \kappa_i \quad \text{for each} \quad i=1,\,\ldots,\,q \;.
$$

The proof of this is contained in the proof of Lemma 2.6 of [9]. Compare

There
$$
V \oplus C
$$
 C' X_i H $p+1$ a U n f
\nHere $V \oplus C$ C' X_i H $p+1$ a U $n+1$ τ
\n η U_{η} \tilde{Y} $N(w)$ $L(\mathfrak{v}, w)$
\n η U_{η} Y' $N(w) \cap X_i$ $L_i(\mathfrak{y}, w)$

Define $\varrho_i = \varrho \mid \hat{X}_i : \hat{X}_i \to X_i$, $i = 1, ..., q$. There exists a constant l such that $\# \varrho^{-1}(x) < l$ for all $x \in X$. It will be shown that $v(\hat{z}, \tau \circ \varrho) < l\tilde{v}((z, w), \tau | X_i)$ for any $\hat{z} \in \hat{X}_i$ such that $\rho_i(\hat{z}) = (3, w)$.

Let *i* be fixed. Take $b \in \hat{X_i}$. It is claimed first that $v(b, \tau \circ \rho_i) \leq \tilde{v}(b, \tau \circ \rho_i)$. Take any $A \in \Gamma_b$. Then A is a pure 1-dimensional analytic set in a neighborhood of b. Let $\{A_1, ..., A_t\}$ be representatives in a neighborhood of b of the irreducible components of the germ of A at b. Then $A_1 \in \Gamma_b$ and $\tilde{v}(b, \tau \circ \rho_i | A_1) \leq \tilde{v}(b, \tau \circ \rho_i | A)$. Let \hat{A}_1 be the normalization of A_1 and $\hat{\varrho}$ the associated map. Now \hat{A}_1 is pure 1-dimensional, and so, consists only of simple points. Hence, A_1 irreducible at b implies $\hat{\varrho} : A_1 \to A_1$ is topological in a neighborhood $\hat{Z} \subset \hat{A}_1$ of $\hat{b} = \hat{\varrho}^{-1}(b)$. Choose an open neighborhood \tilde{D} of \hat{b} such that the closure of \hat{D} is compact and contained in \tilde{Z} , and such that $\tilde{D} \cap (\tau \circ \varrho_i \circ \hat{\varrho})^{-1} (\tau \circ \varrho_i \circ \hat{\varrho}(\hat{b})) = {\hat{b}}$. Let $D = \hat{\varrho}(\hat{D})$. Then $D \subset A_1$ is an open neighborhood in A_1 of b, \overline{D} is compact, and $D \cap (\tau \circ \varrho_i|A_1)^{-1}$ $(\tau \circ \varrho_i|A_1(b)) = \{b\}$. Since $\hat{\varrho}$ is topological on \hat{D} , for any $\hat{z} \in \hat{D}$ with $\hat{\varrho}(\hat{z})=z$, $\hat{\psi} \hat{D} \cap (\tau \circ \varrho_i \circ \hat{\varrho})^{-1}$ $(\tau \circ \varrho_i \circ \hat{\varrho}(\hat{z})) = \hat{\psi} \hat{D} \cap (\tau \circ \varrho_i | A_1)^{-1}$. φ ($\tau \circ \varrho_i$)(z). Hence $\tilde{\nu}(\hat{b}, \tau \circ \varrho_i \circ \hat{\varrho}) = \tilde{\nu}(b, \tau \circ \varrho_i | A_1)$. Since \hat{A}_1 is a normal, pure 1-dimensional analytic space,

$$
v(\hat{b},\tau\circ\varrho_i\circ\hat{\varrho})=\tilde{v}(\hat{b},\tau\circ\varrho_i\circ\hat{\varrho}).
$$

Since $\hat{\varrho}^{-1}(b) = \hat{b}$,

$$
v(b, \tau \circ \varrho_i | A_1) = v(\tilde{b}, \tau \circ \varrho_i \circ \hat{\varrho}).
$$

Since $A_1 \in \Gamma_b$,

$$
v(b, \tau \circ \varrho_i) \leq \tilde{v}(b, \tau \circ \varrho_i | A_1).
$$

Hence $v(b, \tau \circ \varrho_i) \leq \tilde{v}(b, \tau \circ \varrho_i | A)$ for any $A \in \Gamma_b$. Therefore $v(b, \tau \circ \rho_i) \leq \tilde{v}(b, \tau \circ \rho_i)$.

Now let $\rho_i(b) = b \in X_i$. It is claimed that $\tilde{v}(b, \tau \circ \rho_j) < l\tilde{v}(b, \tau | X_i)$. Take $B \in \Gamma_b$, considering b as a point in the analytic space X_i . Then there exists an open neighborhood $U_{\mathbf{R}} \subset X_i$ of b such that $\mathbf{b} \in B \subset U_{\mathbf{R}}$, B is a pure 1-dimensional analytic set in U_B , U_B is compact, and $\tau|B$ is non-degenerate. Let $\varrho_i^{-1}(b)$ $=$ { b_1 ,..., b_t }, with $b_1 = b$. There exist pairwise disjoint neighborhoods $Y_1, ..., Y_t$ in X_i of $b_1, ..., b_t$ such that $\varrho_i(Y_i) \subset U_B$, $j = 1, ..., t$. Let $B = \varrho_i^{-1}(B) \cap Y_1$, $U_{\hat{B}} = \varrho_i^{-1}(U_B) \cap Y_1$. Then $U_{\hat{B}}$ is an open neighborhood of b, and B is a pure 1-dimensional analytic set in $U_{\hat{B}}$. And $U_{\hat{B}} \subseteq \varrho_i^{-1}(U_{\hat{B}}) \cap Y_1$ is compact as ϱ_i is proper. And τ/B non-degenerate implies $\tau \circ \varrho_i/B$ non-degenerate as the fibers $Q_i^{-1}(x)$ consist of isolated points for $x \in X_i$. Thus $B \in \Gamma_b$. Take now $W \subset B$, an open neighborhood in B of b such that W is compact, $b \in W \subset W \subset B$, and $\vec{W} \cap \{(\tau | B)^{-1} (\tau(b))\} = \{b\}.$ Then

$$
\tilde{v}(b,\tau|B)=\limsup_{x\to b,\,x\in B}\#W\cap(\tau|B)^{-1}\left(\tau(x)\right).
$$

Define $W = \rho_i^{-1}(W) \cap B$. Then W is an open neighborhood in B of b, W is compact, and $W \cap (\tau \circ \varrho_i | B)^{-1}$ $(\tau \circ \varrho_i(b)) = \{b\}$. Thus

$$
\tilde{v}(b,\tau\circ\varrho_i|\hat{B})=\limsup_{z\to b,z\in\hat{B}}\# \hat{W}\cap(\tau\circ\varrho_i|\hat{B})^{-1}\left(\tau\circ\varrho_i(z)\right).
$$

But

$$
\# \widehat{W} \cap (\tau \circ \varrho_i | \widehat{B})^{-1} (\tau \circ \varrho_i(z)) < l \# \widehat{W} \cap (\tau | B)^{-1} (\tau \circ \varrho_i(z))
$$

for all $z \in \hat{B}$. Thus

$$
\tilde{v}(b,\tau\circ\varrho_i|\tilde{B})
$$

Choose $B \in \Gamma_b$ such that $\tilde{v}(b, \tau | X_i) = \tilde{v}(b, \tau | B)$. The existence of $\hat{B} \in \Gamma_b$ such that $\tilde{v}(b, \tau \circ \rho_i | \hat{B}) < l \tilde{v}(b, \tau | B)$

implies

$$
\tilde{v}(b, \tau \circ \varrho_i) < l \; \tilde{v}(b, \tau | X_i).
$$

Combining these two results,

$$
v(b, \tau \circ \varrho_i) < l \tilde{v}(b, \tau | X_i).
$$

Consequently, for w such that $|w| < \delta = \min_{i=1,\dots,q} \delta_i$,

$$
\sum_{(\mathfrak{z},w)\in L(\mathfrak{y},w)} \nu((\mathfrak{z},w),\tau|N)
$$
\n
$$
= \sum_{(\mathfrak{z},w)\in L(\mathfrak{y},w)} \sum_{\hat{z}\in e^{-1}(\mathfrak{z},w)} \nu(\hat{z},\tau\circ\varrho)
$$
\n
$$
= \sum_{i=1}^{q} \sum_{(\mathfrak{z},w)\in L_{i}(\mathfrak{y},w)} \sum_{\hat{z}\in e^{-1}(\mathfrak{z},w)} (\nu(\hat{z},\tau\circ\varrho_{i}) \n< \sum_{i=1}^{q} \sum_{(\mathfrak{z},w)\in L_{i}(\mathfrak{y},w)} \sum_{\hat{z}\in e^{-1}(\mathfrak{z},w)} l \tilde{\nu}((\mathfrak{z},w),\tau|X_{i}) \n< \sum_{i=1}^{q} \sum_{(\mathfrak{z},w)\in L_{i}(\mathfrak{y},w)} l^{2} \tilde{\nu}((\mathfrak{z},w),\tau|X_{i}) \n< l^{2} \sum_{i=1}^{q} \kappa_{i} = \kappa.
$$
\nq.e.d. q.e.d.

Lemma 4.7. *Let* $\alpha \in N(0)$ *. For* $d > 0$ *, define* $B'_d(\alpha) = \{(3, w) | |3 - \alpha|^2 + |w|^2 < d^2\}$ *. Then there exist constants* $d > 0$ *,* $\kappa > 0$ *,* $\delta > 0$ *such that for every* $\gamma > 0$ *and for any ball B' of radius y with B'* \subset *B'_d*(*a*),

$$
\int_{\langle \cap N(w) \rangle} \nu((3, w), \tau | N) v_p < \kappa \gamma^{2p}
$$

for all w with $|w| < \delta$ *.*

B' c~N(w)

Proof. Let N be the normalization, $\rho: N \rightarrow N$ the normalization map, and ${a_1, ..., a_q} = \varrho^{-1}(\mathfrak{a})$. Then there exist pairwise disjoint neighborhoods $X_1, ..., X_q$ of $a_1, ..., a_q$ and analytic sets $X_1, ..., X_q$ in a neighborhood $X \subset N$ of a such q q that $\varrho^{-1}(X) = \bigcup X_i, X = \bigcup X_i, \varrho(X_i) = X_i$ for each $i = 1, ..., q$, and $X \subset K \cap N$ $i=1$ $i=1$ where K is a compact set in $V \oplus C$. And it will be proven in the appendix of this paper that there exists a basis $C = (c_1, ..., c_n)$ of V such that $C_{\mu} = (c_{\mu(1)}, ..., c_{\mu(n)})$ is distinguished with respect to (T, α, p) for each permutation μ of $\{1, ..., n\}$. Define $c = (0, 1) \in V \oplus C$. Define $C'_u = (c_{u(1)}, \ldots, c_{u(p)}, c, c_{u(p+1)}, \ldots, c_{u(n)})$, a basis of $V \oplus \mathbb{C}$. Identify $V = V \times \{0\}$. Then a is an isolated point of

$$
T \cap \left\{ \alpha + \sum_{\nu = p+1}^{n} z_{\nu} \mathfrak{c}_{\mu(\nu)} | z_{\nu} \in \mathbb{C} \right\}
$$

implies that a is an isolated point of

$$
N(0) \cap \left\{ \alpha + \sum_{\nu=p+1}^{n} z_{\nu} \mathfrak{c}_{\mu(\nu)} + w \mathfrak{c} \mid z_{\nu} \in \mathbf{C}, \ w \in \mathbf{C} \right\}
$$

and

$$
N \cap \left\{ \alpha + \sum_{\nu = p+1}^{n} z_{\nu} c_{\mu(\nu)} \mid z_{\nu} \in \mathbf{C} \right\}.
$$

Hence C_u is distinguished with respect to $(N, \alpha, p+1)$ and with respect to $(N(0), \alpha, p)$. Hence a polycylinder U_u distinguished with respect to $(N, C_u, \alpha, p+1)$ and $(N(0), C'_\mu, \alpha, p)$ exists such that $U_\mu \cap N \subset X$. It can be chosen such that η in $0 < \eta < 1$ exists such that if

$$
U_{\mu,\eta} = \left\{ \alpha + \sum_{\nu=1}^{n} z_{\mu(\nu)} c_{\mu(\nu)} + w c \mid |z_{\mu(\nu)}| < \varepsilon_{\nu}^{(\mu)}, \quad \nu = 1, ..., p; \ |z_{\mu(\nu)}| < \eta \varepsilon_{\nu}^{(\mu)},
$$

$$
\nu = p + 1, ..., n; \ |w| < \eta \varepsilon_{n+1}^{(\mu)} \right\},
$$

then $\overline{U_{\mu}-U_{\mu,\eta}}\cap N(0)=\Phi$. Define

$$
\tilde{\pi}_{\mu}\left(\mathfrak{a}+\sum_{\nu=1}^{n}z_{\nu}c_{\nu}+w c\right)=\mathfrak{a}+\sum_{\nu=1}^{p}z_{\mu(\nu)}c_{\mu(\nu)},
$$

$$
\tilde{\pi}_{\mu}(U_{\mu})=Y'_{\mu},
$$

$$
L_{\mu}(\mathfrak{y},w)=U_{\mu}\cap N(w)\cap\tilde{\pi}_{\mu}^{-1}(\mathfrak{y})\quad\text{for}\quad\mathfrak{y}\in Y'_{\mu}.
$$

According to Lemma 4.6, $\kappa_{\mu} > 0$ and $\delta_{\mu} > 0$ exist such that

$$
\sum_{(\mathfrak{z},w)\in L_{\mu}(\mathfrak{y},w)}\nu((\mathfrak{z},w),\tau\,|\,N)<\kappa_{\mu}
$$

if
$$
|w| < \delta_{\mu}
$$
 and $\eta \in Y_{\mu}'$. Define
\n
$$
\kappa' = \text{Max } \{\kappa_{\mu} | \mu \text{ is a permutation of } \{1, ..., n\} \},
$$
\n
$$
\delta = \text{Min } \{\delta_{\mu} | \mu \text{ is a permutation of } \{1, ..., n\} \}.
$$
\nTake $d > 0$ such that $\overline{R(\alpha)} \in \bigcap U$. Define on $V \oplus C$, for $a = \sum_{\mu}^{n} \delta_{\mu} \leq \delta$.

Take $d>0$ such that $\overline{B_d'(\mathfrak{a})} \subset \bigcap_{(\mu)} U_{\mu}$. Define on $V \oplus \mathbb{C}$, for $\mathfrak{z} = \sum_{\nu=1}^n z_{\nu} \mathfrak{c}_{\nu}$, (*u*) $y = 1$ **,** $\chi(3) = \frac{i}{2} \sum_{r=1}^{n} dz_r \wedge dz_r$ $v=1$ $\chi_p = \frac{1}{n!} \chi^p$.

A constant $l > 0$ exists such that

$$
\iota_w^* \; \upsilon_p \leqq l \; \iota_w^* \, \chi_p
$$

on $\overline{B_d(\mathfrak{a})} \cap N(w)$, where $\iota_w : N(w) \to V \oplus \mathbb{C}$ is the inclusion map for each w. Take $\gamma > 0$ and let

$$
B' = \{(3, w) | |3 - b|^2 + |w - b|^2 < \gamma^2\} \subset B'_d(\mathfrak{a})\,.
$$

Take w in $|w| < \delta$. Then

$$
J(w) = \int_{B' \cap N(w)} v((3, w), \tau | N) v_p \leq l \int_{B' \cap N(w)} v((3, w), \tau | N) i_w^*(\chi_p)
$$

\n
$$
= l \sum_{1 \leq v_1 < \dots < v_p \leq n} \int_{B' \cap N(w)} v((3, w), \tau | N) \left(\frac{i}{2}\right)^p dz_{v_1} \wedge d\bar{z}_{v_1} \wedge \dots \wedge dz_{v_p} \wedge d\bar{z}_{v_p}
$$

\n
$$
= l \sum_{1 \leq v_1 < \dots < v_p \leq n} \int_{\tilde{\pi}_{\mu}(B' \cap N(w))} \sum_{(3, w) \in L_{\mu}(0, w) \cap B} v((3, w), \tau | N) \left(\frac{i}{2}\right)^p \times
$$

\n
$$
\times dz_{v_1} \wedge d\bar{z}_{v_1} \wedge \dots \wedge dz_{v_p} \wedge d\bar{z}_{v_p}
$$

where the permutation is defined uniquely with respect to the $v_1, ..., v_p$ by requiring that

$$
\mu(1) = v_1, ..., \mu(p) = v_p, \quad \mu(p+1) < \cdots < \mu(n).
$$

Now define

$$
\langle \mathfrak{z} | \mathfrak{z}' \rangle = \sum_{v=1}^{n} z_v \overline{z}'_v \text{ for } \mathfrak{z} = \sum_{v=1}^{n} z_v c_v, \mathfrak{z}' = \sum_{v=1}^{n} z'_v c_v.
$$

Then $||3|| = [\langle 3||3 \rangle]^{1/2}$ is another norm on V. A constant $A > 0$ exists such that $A|3| \leq ||3|| \leq A^{-1}|3|$ for all $3 \in V$.

Define $B'' = \{(3, w) \mid ||3 - b|| < \gamma/A, |w - b| < \gamma\}$. If $(3, w) \in B'$, then $|3 - b| < \gamma$ and $|w - b| < \gamma$. Hence $A \|_3 - b \| < \gamma$, and so $(3, w) \in B''$. Thus

$$
\pi_{\mu}(B') \subseteq \pi_{\mu}(B'' \cap U_{\mu}) \subseteq
$$

$$
\subseteq \left\{ e_{\mu} + \sum_{\nu=1}^{p} z_{\nu} \epsilon_{\mu(\nu)} \left| \sum_{\nu=1}^{p} |z_{\nu}|^{2} \leq \left(\frac{\gamma}{A} \right)^{2} \right| \right\}
$$

~,,(B') ~_ ~,,(B" c~ U,,) ~_

with
$$
e_{\mu} = \sum_{\nu=1}^{p} b_{\mu(\nu)} c_{\mu(\nu)} + \sum_{\nu=p+1}^{n} a_{\mu(\nu)} c_{\mu(\nu)}
$$
 where

$$
a = \sum_{\nu=1}^{n} a_{\nu} c_{\nu} + 0c, \quad b = \sum_{\nu=1}^{n} b_{\nu} c_{\nu} + 0c.
$$

Hence

$$
J(w) \leq l \sum_{1 \leq v_1 < \dots < v_p \leq n} \int_{\tilde{\pi}_{\mu}(B')} \sum_{(a,w) \in L_{\mu}(v,w)} \nu((a,w), \tau | N) \left(\frac{i}{2}\right)^p \times \\ \times dz_{v_1} \wedge d\bar{z}_{v_1} \wedge \dots \wedge dz_{v_p} \wedge d\bar{z}_{v_p} \leq \\ \leq l \kappa' n! \frac{\pi^{2p}}{p!} \left(\frac{\gamma}{A}\right)^{2p} = \kappa \gamma^{2p}
$$

if $|w| < \delta$, where

$$
\kappa = l\kappa' \frac{n!}{p!} \left(\frac{\pi}{A}\right)^{2p}
$$

is independent of γ . q.e.d.

D. The limit of I(w, r)

In this section, the two local results of sections 4 B and 4 C are used to compute lim $y((3, w), \tau|N) v_p$. This limit along with the results of

 \oint 4A will yield $\lim_{w\to 0}$ $\lim_{n(N(w))\to B_r}$ v_p . Recall $\pi: V \oplus \mathbb{C} \to V$, the projection

$$
B_r = \{3 \in V \mid |3| < r\}
$$
\n
$$
\pi(N(w)) \cap B_r = \{3 \mid (3, w) \in N(w), 3 \in B_r\}
$$
\n
$$
I(w, r) = \int_{\pi(N(w) \cap B_r} v_p
$$
\n
$$
\pi(N(0)) = T.
$$

And $S = \varrho(\hat{S})$, where \hat{S} was the set of singular points of the normalization \hat{N} of N and $\rho: \hat{N} \to N$ the normalization map. Define

$$
Q = [\overline{B}_r \cap (T - \dot{T})] \cup [\overline{B}_r \cap \pi(S \cap N(0))] \cup [(\overline{B}_r - B_r) \cap T].
$$

The s-dimensional Hausdorff outer measure in \mathbb{R}^m is needed. Let $L \subset \mathbb{R}^m$. Define $\Omega_k = \{B(t) | B(t) \text{ a ball of radius } t < 1/k\}, d^s(B(t)) = W'_s t^s, W'_s = \text{ the volume }$ of the unit ball in \mathbb{R}^s ,

$$
\Omega_{k}(L) = \left\{ \{B_{i}\}_{i \in \mathbb{N}} | B_{i} \in \Omega_{k}, \bigcup_{i=1}^{\infty} B_{i} \supset L \right\}
$$

$$
\lambda_{k}(L) = \inf \left\{ \sum_{i=1}^{\infty} d^{s}(B_{i}) | \{B_{i}\}_{i \in \mathbb{N}} \in \Omega_{k}(L) \right\}
$$

$$
\mu_{s}(L) = \lim_{k \to \infty} \lambda_{k}(L).
$$

This limit exists, and is called the *s-dimensional Hausdorff outer measure* of L. Note that $\mu_s(L) = 0$ implies that for $\epsilon > 0$, there exists $k_0(\epsilon)$ such that $\lambda_k(L) \leq$ $\leq W'_s \varepsilon/2$ for $k > k_0(\varepsilon)$. Hence for any $k > k_0$, there exists ${B_i}_{i\in\mathbb{N}} \in \Omega_k(L)$ such that, if the ball B_i is of radius $t_i < 1/k$, then

$$
\sum_{i=1}^{\infty} d^s(B_i) = \sum_{i=1}^{\infty} W'_s t_i^s < \varepsilon W'_s,
$$

that is,

$$
\bigcup_{i=1}^{\infty} B_i \supseteqneq L \quad \text{and} \quad \sum_{i=1}^{\infty} t_i^s < \varepsilon \, .
$$

Identify $V = \mathbb{R}^{2n}$. Now the sets $T - \dot{T}$ and $\pi(S \cap N(0))$ lie thin and analytic in V , and so they may be expressed as the finite union of manifolds, each manifold of dimension less than or equal $2p-2$. Hence $\mu_{2p}(\mathcal{B}_r \cap (T-T))=0$ $=\mu_{2p}(\overline{B}_r\cap \pi(S\cap N(0)))$ (see for example HUREWICZ and WALLMAN, [2]). Also, if A is a real analytic set in an open set of \mathbb{R}^m , and if A is without interior points, then A is a set of measure zero. This can be easily shown by induction on m with the use of Fubini's Theorem. Now $T \cap (B_r - B)$ is a real analytic set in T. Suppose that a is an interior point of $T \cap (B_r - B_r)$ with respect to *T*. Then there exists an orthogonal coordinate system $(v_1, ..., v_n)$ of V and a biholomorphic map

$$
\gamma\colon U\,{\to}\,\dot{T}
$$

of an open set $U \subset \mathbb{C}^p$ such that

$$
\alpha \in \gamma(U) \subset (\overline{B}_r - B_r) \cap \dot{T},
$$

$$
\gamma(z_1, ..., z_p) = \sum_{v=1}^p z_v v_v + \sum_{v=p+1}^n f_v(z) v_v,
$$

where $z = (z_1, ..., z_p)$ and $f_{p+1},...,f_n$ are holomorphic on U. Then for $z \in U$,

$$
r^{2} = |\gamma(z)|^{2} = \sum_{\nu=1}^{p} |z_{\nu}|^{2} + \sum_{\nu=p+1}^{n} |f_{\nu}(z)|^{2}.
$$

For any λ , $1 \leq \lambda \leq p$,

$$
0 = \frac{\partial}{\partial z_{\lambda}} |\gamma(z)|^2 = \overline{z}_{\lambda} + \sum_{\nu = p+1}^{n} \frac{\partial f_{\nu}(z)}{\partial z_{\lambda}} \overline{f_{\nu}(z)},
$$

$$
0 = \frac{\partial}{\partial \overline{z}_{\lambda}} \frac{\partial}{\partial z_{\lambda}} |\gamma(z)|^2 = 1 + \sum_{\nu = p+1}^{n} \left| \frac{\partial f_{\nu}(z)}{\partial z_{\lambda}} \right|^2 \ge 1,
$$

a contradiction. Thus $\hat{T} \cap (\bar{B}_r - B_r)$ is without interior points in \hat{T} , and so has measure zero in \dot{T} . Since T is the union of \dot{T} and a finite number of manifolds of dimension less than 2p, it follows that $\mu_{2n}(T \cap (B, -B)$) = 0. Thus $\mu_{2n}(Q)=0$.

Lemma 4.8. *Given any* $\varepsilon > 0$ *, then* $\delta = \delta(\varepsilon) > 0$ *and an open set* $W = W(\varepsilon) \subset H$ *exist such that* $Q \times \{0\} \subset W$ *and*

$$
\int_{N(w)\cap W} \nu((3, w), \tau | N) v_p < \varepsilon \quad \text{if} \quad |w| < \delta.
$$

Proof. Take $a \in Q$. Then, according to Lemma 4.7, $d_a > 0$, $\delta_a > 0$, κ_a exist such that if

$$
B'_{d_{\mathfrak{a}}}(\mathfrak{a}) = \{ (\mathfrak{z}, w) \mid |\mathfrak{z} - \mathfrak{a}|^2 + |w|^2 < d_{\mathfrak{a}}^2 \},
$$

and if $B' \subset B'_{d_n}(a)$ is a ball of radius γ , then

$$
\int_{B' \cap N(w)} \nu((3, w), \tau | N) v_p < \kappa_\alpha \gamma^{2p}
$$

for all w with $|w| < \delta_a$. Then $Q \times \{0\} \subseteq \bigcup_{\alpha \in Q} B'_{\frac{1}{2}d_\alpha}(\alpha)$, and so $\alpha_1, \ldots, \alpha_q$ in Q exist such that

$$
Q \times \{0\} \subseteq \bigcup_{j=1}^{q} B'_{\pm d_j}(\alpha_j), \text{ where } d_j = d_{\alpha_j}.
$$

Define $d_{q+1} > 0$ to be the distance between $\overline{H} - H$ and $Q \times \{0\}$, and

$$
d = \begin{array}{ll}\n\text{Min} & d_j, \quad \delta = \text{Min} \ \delta_{\mathfrak{a}_j}, \\
\kappa = \text{Max} \ \kappa_{\mathfrak{a}_j} \\
\kappa = \text{Max} \ \kappa_{\mathfrak{a}_j} \\
\kappa = \text{max} \ \kappa_{\mathfrak{a}_j}.\n\end{array}
$$

Let B' be any ball of radius $\gamma < d/4$ and $B' \cap (Q \times \{0\}) + \Phi$. Then $(b, 0) \in B' \cap$ $\cap B'_{4d}(\alpha)$ for some index j exists. Take $(3, w) \in B'$. Then

$$
[|3 - \mathfrak{a}_j|^2 + |w|^2]^{1/2} = |(3, w) - (\mathfrak{a}_j, 0)| \le |(3, w) - (b, 0)| + |(b, 0) - (\mathfrak{a}_j, 0)| \le
$$

Hence $\overline{B} \subseteq B'$. (a.) and so, for all $|w| < \delta$.

$$
\leq 2\gamma + \frac{1}{2}d_j < d_j.
$$

 r ence $B \geq B_{d_i}(a_j)$, and so, for all $|w| < \delta$,

$$
\int_{B' \cap N(w)} \nu((\mathfrak{z}, w), \tau | N) v_p < \kappa \gamma^{2p}.
$$

Now $\mu_{2p}(Q \times \{0\})=0$ in \mathbb{R}^{2n+2} . Thus there exists $\{B_i'\}_{i\in \mathbb{N}}$ such that $B_i' \subset H$ is an open ball of radius $\gamma_i < d/4$, and such that

$$
W = \bigcup_{i=1}^{\infty} B'_i \supset Q \times \{0\} , \quad \sum_{i=1}^{\infty} \gamma_i^{2p} < \frac{\varepsilon}{\kappa}
$$

It can be assumed that $B'_i \cap (Q \times \{0\}) \neq \Phi$, $i \in \mathbb{N}$. Hence $\int_{B'_i \cap N(w)} v((3, w), \tau | N) \times$ $\times v_p < \kappa \gamma_i^{2p}$ for $|w| < \delta$. Hence

$$
\int_{W \cap N(w)} \nu((3, w), \tau | N) v_p < \varepsilon
$$

for $|w| < \delta$, where $W \subset H$ is an open neighborhood of $Q \times \{0\}$. q.e.d. **Lemma 4.9.**

$$
\int_{\pi(N(w)\cap B_r} v((3, w), \tau | N) v_p \to \int_{T\cap B_r} ((3, 0), \tau | N) v_p
$$

 $as w\rightarrow 0.$

Proof. Take $\varepsilon > 0$. From Lemma 4.8, there exist $W = W(\varepsilon)$ open, $\delta_1 = \delta_1(\varepsilon) > 0$ such that $Q \times \{0\} \subseteq W \subseteq H$ and, for $|w| < \delta_1$,

$$
\int_{N(w)\cap W} \nu((3, w), \tau | N) v_p < \frac{\varepsilon}{3}.
$$

Now $T \cap (\overline{B}_r - B_r)$ is compact and contained in $Q \subset W$ open. Hence there exist $0 < r' < r < r''$, $\delta_2 > 0$ such that, for

$$
L = (B_{r''} - \overline{B}_{r'}) \times \{w \mid |w| < \delta_2, \ w \in \mathbb{C}\},
$$

it is $N \cap \overline{L} \subset W$ and $\overline{L} \subset H$. Define $K = \overline{B}_{r'} - \pi(W \cap E)$, where $E = V \times \{0\}$. Then K is compact, $K \subset B_r$, and $K \cap Q = \Phi$. Take $(a, 0) \in (K \times \{0\}) \cap N(0)$. Then $a \notin Q$, and so $(a, 0) \in (T \times \{0\}) \cap (N - S)$. From Lemma 4.5, there exist U_a open, $a \in U_a \subset U_a \subset H$, U_a compact with $\pi(U_a) \subset B_r$, such that for every C^{∞} function θ on H ,

(1)
$$
\int_{U_{\mathfrak{a}} \cap N(w)} \theta(\mathfrak{z}, w) \nu((\mathfrak{z}, w), \tau | N) \nu_p \to \int_{U_{\mathfrak{a}} \cap N(0)} \theta(\mathfrak{z}, 0) \nu((\mathfrak{z}, 0), \tau | N) \nu_p
$$

as $w \to 0$. Define $\delta_a = 1$. Now if $a \in K$ and $(a, 0) \notin N(0)$, then a $\delta_a > 0$ and an open neighborhood U_a of (a, 0) with U_a compact and $U_a \subset H$ exist such that $N(w) \cap U_a = \Phi$ if $|w| < \delta_a$. Then for any C^{∞} -function θ on H , (1) holds also for

this U_a . Because $K \times \{0\} \subseteq \cup U_a$, $a_1, ..., a_a$ in K exist such that $K \times \{0\} \subseteq \cup U_{a_i}$. $a \in K$ i= 1

Define

$$
\delta_3 = \min_{i=1,\dots,q} \delta_{\alpha_i},
$$

$$
U = \bigcup_{i=1}^q U_{\alpha_i} \supseteq K \times \{0\}.
$$

Since $L \cup W \cup U$ contains

$$
[(\overline{B}_r - \overline{B}_r) \times \{w \mid |w| < \delta_2\}] \cup [W \cap E] \cup [(\overline{B}_r \times \{0\}) - (W \cap E)]
$$

which contains $\overline{B}_r \times \{0\}$, and since $L \cup W \cup U$ is open and $\overline{B}_r \times \{0\}$ is compact, $\delta_4 > 0$ exists such that $0 < \delta_4 < \delta_3$, $0 < \delta_4 < \delta_2$, and $P = \overline{B}_r \times \{w | |w| < \delta_4\} \subseteq$ $\subseteq L \cup W \cup U$. Then, for $|w| < \delta_4 < \delta_2$,

$$
N(w) \cap L = N \cap L \cap N(w) \subseteq W \cap N(w) ,
$$

and so

$$
(\overline{B}_r \times \{w\}) \cap N(w) \subseteq W \cup U \,, \quad |w| < \delta_4 \,.
$$

q Now $P \cap N \subseteq (U \cup W) \cap N \subset U \cup W$, and so the compact set $P \cap N \subseteq W \cup \cup U_{\alpha}$. Hence a partition of unity $\{\theta_i\}_{i=0,\dots,q}$ to this covering of $P \cap N$ exists such that

- 1. θ_i is of class C^{∞} on $H, 0 \leq \theta_i \leq 1$, for $i = 0, ..., q$. 2. $\theta_i(3, w) = 0$ if $(3, w) \in H - U_a$, for $i = 1, ..., q$.
- 3. $\theta_0(3, w) = 0$ if $(3, w) \in H W$.
- 4. $0 \leq \sum \theta_i(3, w) \leq 1$ if $(3, w) \in H$. i=O
- q 5. $\sum \theta_i(3, w) = 1$ if $(3, w) \in P \cap N$. $i=0$

Define
$$
\theta(\mathfrak{z}, w) = \sum_{i=1}^{q} \theta_i(\mathfrak{z}, w)
$$
. If $|w| < \delta_4$, then
\n
$$
\int_{N(w) \cap U} \theta(\mathfrak{z}, w) v((\mathfrak{z}, w), \tau | N) v_p
$$
\n
$$
= \sum_{i=1}^{q} \int_{N(w) \cap U} \theta_i(\mathfrak{z}, w) v((\mathfrak{z}, w), \tau | N) v_p
$$
\n
$$
= \sum_{i=1}^{q} \int_{N(w) \cap U_{\alpha_i}} \theta_i(\mathfrak{z}, w) v((\mathfrak{z}, w), \tau | N) v_p \rightarrow
$$
\n
$$
\rightarrow \sum_{i=1}^{q} \int_{N(0) \cap U_{\alpha_i}} \theta_i(\mathfrak{z}, w) v((\mathfrak{z}, 0), \tau | N) v_p
$$
\n
$$
= \sum_{i=1}^{q} \int_{N(0) \cap U} \theta_i(\mathfrak{z}, 0) v((\mathfrak{z}, 0), \tau | N) v_p
$$
\n
$$
= \int_{N(0) \cap U} \theta(\mathfrak{z}, 0) v((\mathfrak{z}, 0), \tau | N) v_p \text{ as } w \rightarrow 0.
$$

Hence $\delta_5 > 0$ exists such that $0 < \delta_5 < \delta_4$, $0 < \delta_5 < \delta_1$, and

$$
\left|\int_{N(w)\cap U}\theta(\mathfrak{z},w)\,\nu(\mathfrak{z},w),\,\tau\,|\,N\right)\,\upsilon_{p}-\int_{N(0)\cap U}\theta(\mathfrak{z},0)\,\nu(\mathfrak{z},0),\,\tau\,|\,N\big)\,\upsilon_{p}\right|<\frac{\varepsilon}{3}\quad\text{for all}\,\,w\,\,\text{with}\,\,|w|<\delta_{5}\,.
$$

Now

$$
N(w) \cap (\overline{B}_r \times \{w\}) = (N(w) \cap U) \cup (N(w) \cap (\overline{B}_r \times \{w\}) - U)
$$

for any $w \in \mathbb{C}$ **, as** $\pi(U_{a}) \subset B_r$ **for each i. But if** $\{3, w\} \in N(w) \cap (B_r \times \{w\}) - U_r$ then $\theta(3, w) = 0$. Thus, if $|w| < \delta_5$, then

$$
\left|\int_{N(w)\cap (B_r\times\{w\})}\theta(\mathfrak{z},w)\,\nu((\mathfrak{z},w),\,\tau\,|\,N)\,v_p-\int_{N(0)\cap (B_r\times\{0\})}\theta(\mathfrak{z},0)\,\nu((\mathfrak{z},0),\,\tau\,|\,N)\,v_p\right|<\frac{\varepsilon}{3}\,.
$$

And

$$
0 \leq \int_{N(w) \cap (B_r \times \{w\})} \theta_0(\mathfrak{z}, w) \nu((\mathfrak{z}, w), \tau | N) \nu_p \leq
$$

$$
\leq \int_{N(w) \cap W} \theta_0(\mathfrak{z}, w) \nu((\mathfrak{z}, w), \tau | N) \nu_p \leq
$$

$$
\leq \int_{N(w) \cap W} \nu((\mathfrak{z}, w), \tau | N) \nu_p < \frac{\varepsilon}{3}
$$

if $|w| < \delta_5 < \delta_1$. Now $\theta_0(3, w) + \theta(3, w) = 1$ for $(3, w) \in N(w) \cap \overline{B}_r \times \{w\}$ and $|w| < \delta_5$. Consequently, $\tau(N) v_p - \int \nu((3,0), \tau(N) v_p)$ *= N(,~)<..~.×(w)) v((8'w)'vlN)°p- mo),~S(n. × (o))V((8'w)'vlN)% <* $\leq \bigcup_{N(w) \sim (B_r \times (w))} \theta(3, w) \nu((3, w), \tau \mid N) \nu_p - \bigcup_{N(0) \sim (B_r \times (0))} \theta(3, 0) \nu((3, 0), \tau \mid N) \nu_p \big| +$ $v(\theta_0, \theta) = \int_{N(w) \cap (\overline{B} \times (w))} \theta_0(3, w) v((3, w), \tau | N) v_p$ $+ \bigcup_{N(0) \in \{ \mathcal{B} \times (0) \}} \theta_0(3,0) \nu((3,0), \tau(N) \nu_p \big)$ $\langle \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \text{if} \quad |w| < \delta_5.$ q.e.d.

Let $\{T_1, ..., T_b\}$ be the irreducible branches of T. From Lemma 4.4, for each $\lambda = 1, ..., b$, there exists a constant $m_{\lambda} \in \mathbb{N}$ such that

 $v((3,0), \tau|N) = m_1$ if $3 \in \dot{T} \cap T_1 \cap \pi(N-S)$,

which is almost everywhere on T_{λ} . Thus

$$
\int_{T \cap B_r} v((3,0), \tau | N) v_p = \sum_{\lambda=1}^{b} \int_{T_{\lambda} \cap B_r} v((3,0), \tau | N) v_p
$$

=
$$
\sum_{\lambda=1}^{b} m_{\lambda} \int_{T_{\lambda} \cap B_r} v_p.
$$

And, from Lemma 4.3, $v((3, w), \tau | N) = 1$ if $(3, w) \in N(w)$ and $w \ne 0$. Thus

$$
I(w,r)=\int\limits_{\pi(N(w))\cap B_r}v_p=\int\limits_{\pi(N(w))\cap B_r}v((3,w),\tau|N)v_p.
$$

Hence Lemma 4.9 implies

Theorem 4.10. *Let* $\{T_1, ..., T_b\}$ *be the irreducible branches of T. Suppose* $0 < r < R$. Then there exist positive integers m_{λ} , $\lambda = 1, ..., b$ such that

$$
I(w, r) \to \sum_{\lambda=1}^{b} m_{\lambda} \int_{T_{\lambda} \cap B_r} v_p \text{ as } w \to 0.
$$

§ 5, The f'mal **result**

Theorem 5.1. Let V be a complex vector space of dimension $n > 0$. Let (|) *be a hermitian product on V. Let G be open in V,* $0 \in G$ *. Define B_r = {* $3 \in V$ *||* $3| < r$ *}.* Assume $B_R \subset G$, $0 < R \leq \infty$. Let M be a pure p-dimensional analytic set in G with

$$
0 \in M \text{ and } 0 < p < n. \text{ Define } W_p = \frac{\pi^p}{p!}. \text{ Then}
$$
\n
$$
n(0, M) = \lim_{r \to 0} \frac{1}{W_p r^{2p}} \int_{M \cap B_r} v_p
$$

is a positive integer.

Proof. From § 3,

$$
n(0, M) = \lim_{r \to 0} \frac{1}{W_p r^{2p}} \int_{M \cap B_r} v_p
$$

=
$$
\lim_{r \to 0} \frac{1}{W_p r^{2p}} \lim_{w \to 0} I(w, r).
$$

Let $T_1, ..., T_b$ be the irreducible branches of T. Take $0 < r < R$. From Theorem 4.10, there exist positive integers $m_1, ..., m_b$ such that

$$
\lim_{w\to 0} I(w,r) = \sum_{\lambda=1}^b m_{\lambda} \int_{T_{\lambda} \cap B_r} v_p.
$$

From Theorem 2.5, for each $\lambda = 1, ..., b$,

$$
\frac{1}{W_p r^{2p}} \int_{T_A \cap B_r} v_p = m'_\lambda,
$$

a positive integer independent of r. Thus

$$
n(0, M) = \sum_{\lambda=1}^b m_\lambda m'_\lambda,
$$

a positive integer, q.e.d.

Appendix

Let M be a pure p-dimensional analytic set in an open neighborhood of the origin of an *n*-dimensional complex vector space V. Suppose $0 \in M$ and $0 < p < n$. Let $S = \{ \mu | \mu \text{ a permutation of } \{1, ..., n \} \}$. A basis $(v_1, ..., v_n)$ of V is said to be *clear* if, for every $\mu \in S$, the basis $(v_{n+1}, ..., v_{n+m})$ is distinguished with respect to $(M, 0, p)$ (defined in §4 C). The purpose of this appendix is to prove the existence of a clear basis. The proof is due to W. STOLL. See also DE RHAM [5].

Let $q = n-p$. Let A^qV denote the space of exterior q vectors over V. Let $P(A^q V)$ denote the complex projective space to $A^q V$, and

 σ : $A^qV - \{0\} \rightarrow P(A^qV)$

the residual map. Let

 $V'_{a} = \{a_1 \wedge \cdots \wedge a_{a} | a_1 \wedge \cdots \wedge a_{a} \neq 0, a_{v} \in V, v = 1, ..., q\} \subset A^qV - \{0\}.$

Let $G = \sigma(V'_a)$. Then G is a smooth, connected, complex submanifold of $P(A^q V)$, the *Grassman manifold* of q-planes in K

Let $P(V)$ denote the complex projective space to V, and

$$
\varrho\colon V-\{0\}\to\mathbf{P}(V)
$$

the residual map. Take $a_v \in V$, $v = 1, ..., q$. Define

$$
E(a_1, ..., a_q) = \{z \in V \mid z \wedge a_1 \wedge \cdots \wedge a_q = 0\}
$$

=
$$
\left\{\sum_{v=1}^q \lambda_v a_v \mid \lambda_v \in \mathbb{C}, v = 1, ..., q\right\}.
$$

Take $\alpha \in G$. Take any $a_1 \wedge \cdots \wedge a_n$ contained in $V'_n \cap \sigma^{-1}(\alpha)$. Define

$$
E(\alpha) = \varrho(E(a_1, ..., a_q)).
$$

This is well-defined, and, moreover, for α and β contained in G, $E(\alpha) = E(\beta)$ if and only if $\alpha = \beta$.

Lemma A.1. Let N be an analytic set in $P(V)$ of dimension $p-1$. Let

$$
A = \{ \alpha \in G \, | \, E(\alpha) \cap N + \Phi \} \, .
$$

Then A is a thin, analytic set in G.

Proof. From Lemma 3 of STOLL [8], $A + G$. Thus it remains to show only that A is analytic. Define $T = \rho^{-1}(N) \cup \{0\}$. By Chow's Theorem, T is an analytic set in V of dimension p , and

$$
T = \{ z \in V \mid Q_1(z) = \dots = Q_k(z) = 0 \}
$$

where Q_v is a homogeneous polynomial, $v = 1, ..., k$. Let

$$
L = \{(a_1 \wedge \cdots \wedge a_q, z) \mid z \in T, a_1 \wedge \cdots \wedge a_q \wedge z = 0\}
$$

=
$$
\{(a_1 \wedge \cdots \wedge a_q, z) \mid a_1 \wedge \cdots \wedge a_q \wedge z = 0, Q_1(z) = \cdots = Q_k(z) = 0\} \subseteq \Lambda^q V \oplus V.
$$

Then L is analytic, and for any λ_1 and λ_2 in C, $(a_1 \wedge \cdots \wedge a_n, z) \in L$ implies $(\lambda_1 (a_1 \wedge \cdots \wedge a_g), \lambda_2 z) \in L$. Let $L = \cap [(A^q V - \{0\}) \times (V - \{0\})]$. Then

$$
M = (\sigma \oplus \varrho)(L') \subseteq G \times \mathbf{P}(V),
$$

and in fact, M is analytic in $G \times P(V)$. Define

$$
\pi: G \times \mathbf{P}(V) \to G,
$$

the projection. Then $\pi | M : M \rightarrow G$ is proper, and so $\pi(M)$ is analytic in G. But $\pi(M) = A$, for take $\alpha \in \pi(M)$. There exists $z \in T$ and $a_1 \wedge \cdots \wedge a_n \in A^q V$ such that $(a_1 \wedge \cdots \wedge a_g, z) \in L'$ and $\sigma(a_1 \wedge \cdots \wedge a_g) = \alpha$. Then $a_1 \wedge \cdots \wedge a_g \wedge z = 0, z \neq 0$, and so $\rho(z) \in E(\alpha) \cap \rho(T-\{0\}) = E(\alpha) \cap N$. Thus $\alpha \in A$. Conversely, let $\alpha \in A$. There exists $z \in T - \{0\}$ such that $\varphi(z) \in E(\alpha) \cap N$. Choose any $a_1 \wedge \cdots \wedge a_q \in V'_q$ such that $\sigma(a_1 \wedge \cdots \wedge a_q) = \alpha$. Then $z \in E(a_1, ..., a_q)$, and so $(a_1 \wedge \cdots \wedge a_q, z) \in L'$. And $\pi((\sigma \oplus \rho)(a_1 \wedge \cdots \wedge a_n, z)) = \alpha$. Thus $\alpha \in \pi(M)$. q.e.d.

Denote the set of bases of V by

$$
\Gamma = \left\{ (v_1, ..., v_n) \in \bigoplus_{v=1}^n V \mid v_1 \wedge \dots \wedge v_n \neq 0 \right\}.
$$

Then Γ is a connected complex manifold, the complement of an analytic set of codimension 1.

Theorem A.2. Let M be a pure p-dimensional analytic set in an open neigh*borhood of the origin of an n-dimensional complex vector space V. Suppose* $0 \in M$ and $0 < p < n$. Then there exists a thin, analytic set $\Delta \subset \Gamma$ such that $(v_1, ..., v_n) \in \Gamma - \Delta$ implies that $(v_1, ..., v_n)$ is a clear basis.

Proof. Let T denote the tangent cone to M at 0. According to Proposition 3.1, T is a pure p-dimensional analytic set in V. Let $N = \rho(T - \{0\})$. Then N is an analytic set in $P(V)$ of dimension $p-1$. Let

$$
A = \{ \alpha \in G \, | \, E(\alpha) \cap N \neq \Phi \} \, .
$$

From Lemma A.1, A is a thin analytic set in G. For $\mu \in S$, define $\tau_{\mu}: \Gamma \to G$ by

$$
\tau_{\mu}((v_1, \ldots, v_n)) = \sigma(v_{\mu(p+1)} \wedge \cdots \wedge v_{\mu(n)})\,.
$$

Then τ_n is holomorphic. And τ_u is onto, for take $\alpha \in G$, $\alpha = \sigma(a_1 \wedge \cdots \wedge a_n)$, $a_1 \wedge \cdots \wedge a_q \in V'_q$. Extend $(a_1, ..., a_q)$ to a basis $(a_1, ..., a_q, a_{q+1}, ..., a_n) \in \Gamma$ of \dot{V} . Permute $(a_1, ..., a_n)$ to $(b_1, ..., b_n) \in \Gamma$ such that $a_v = b_{\mu(p+v)}, v = 1, ..., q$. Then $\tau_u((b_1, \ldots, b_n)) = \sigma(b_{u(p+1)} \wedge \cdots \wedge b_{u(n)}) = \sigma(a_1 \wedge \cdots \wedge a_n) = \alpha$. Define

$$
\varDelta=\bigcup_{\mu\in S}\tau_{\mu}^{-1}(A)\,,
$$

a thin analytic set in Γ as each $\tau_u^{-1}(A)$ is thin and analytic. Now take $(v_1, ..., v_n) \in \Gamma - \Delta$. Suppose that $(v_1, ..., v_n)$ is not a clear basis. Then there exists $\mu \in S$ such that $(v_{\mu(1)}, ..., v_{\mu(n)})$ is not distinguished with respect to $(M, 0, p)$, that is, 0 is not an isolated point of $E \cap M$, where $E = E(v_{\mu(p+1)}, ..., v_{\mu(n)})$. Thus there exists a sequence $\{z_{\lambda}\}\$ such that $z_{\lambda}\rightarrow 0$ as $\lambda \rightarrow \infty$ and $z_{\lambda} \neq 0$, $z_{\lambda} \in E \cap M$. There exists a subsequence $\{z_{i}\}\$ such that $z_{i}/|z_{i}|$ converges, say, to t, as $v \to \infty$. Then t is a tangent vector to M at 0, and $t \in T$. And $z_{\lambda} \in E$ for all λ implies that $t \in E$. Let $\alpha = \sigma(v_{u(p+1)} \wedge \cdots \wedge v_{u(n)})$. Then $\varrho(t) \in \varrho(E) \cap \varrho(T-\{0\}) = E(\alpha) \cap N$. Thus $\alpha \in A$. But $\alpha = \tau_{\alpha}((v_1, ..., v_n))$, and so $(v_1, ..., v_n) \in \tau_{\alpha}^{-1}(A) \subset A$, a contradicition. Consequently, every basis in $\Gamma - \Delta$ is clear, q.e.d.

Bibliography

- 1. ABHYANKAR, S.: Local analytic geometry. New York: Academic Press 1964.
- 2. HUREWlCZ, W., and H. WALLMAN: Dimension theory. Princeton, New Jersey: Princeton University Press 1948.
- 3. LELONG, P.: Intégration sur un ensemble analytique complexe. Bull. Soc. Math. France 85, 239-262 (1957).
- 4. DE RrtAM, G.: Currents in an analytic complex manifold. Seminars on Analytic Functions, vol. 1, pp. 54—64. Princeton, New Jersey: Institute for Advanced Study 1957.
- 5. On the area of complex manifolds. Seminar on Several Complex Variables, Institute for Advanced Study 1957--1958 (unpublished).
- 6. SrOLL, W. : Mehrfache Integrale auf komplexen Mannigfaltigkeiten. Math. Z. 57, 116--154 (1952).
- 7. -- Einige Bemerkungen zur Fortsetzbarkeit analytischer Mengen. Math. Z. 60, 287---304 (1954).
- 8. -- The growth of the area of a transcendental analytic set of dimension one. Math. Z . 81, 76-598 (1963).
- 9. $-$ The growth of the area of a transcendental analytic set. I. Math. Ann. 156 , $47-78$ (1964).
- 10. WHITNEY, H.: Tangents to an analytic variety. Ann. Math. (2) , 8t, 496-549 (1965).

Professor PAUL R. THIE Department of Mathematics, Boston College Chestnut Hill 67, Mass.

(Received October 10, 1965)