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Introduction

Let V be an n-dimensional complex vector space with a hermitian product.
Let M be a pure p-dimensional analytic set in an open set G C V, and suppose
that 0 M. Let n(r, M) denote the function of re R”, the set of positive real
numbers, defined by dividing the 2p-dimensional area of M intersect the ball
of radius r and center 0 by the area of the 2p-dimensional ball of radius r.
P. LELONG [3] and W. StoLL [8] have proven that n(r, M) is monotonic
increasing in r, and thus the limit as r tends to 0 exists. Let n(0, M) denote this
limit. In the case that p=n—1, StoLL in [6] has shown that »(0, M) is an
integer. In fact, he proves that if f is a holomorphic function in a neighborhood
of 0 such that the germ of f generates the ideal of function germs vanishing on
M at 0, then n(0, M) is simply the zero-multiplicity of f at 0 (defined in §4A).
However the proof is in the language of divisors and cannot be extended to
an analytic set of arbitrary codimension. In the case of p=1, n(0, M) can be
directly computed as M can be parameterized in a neighborhood of 0. If

n
Y. fiv, is such a parameterization, where (v,, ..., »,) is a base of ¥ and where
A=1

the f,’s are holomorphic functions on an open set U C C, the field of complex
numbers, 0 e U, and f,(0)=0, then it can be easily shown that n(0, M) is
equal to 1rsnalg {»(0,0, £,)}, where v(0,0, f,) is the zero multiplicity of f, at 0.
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270 P. R. THIE:

The purpose of this paper is to prove that n(0, M) is a positive integer for
an analytic set M of arbitrary dimension. The proof is divided into three
parts. In the first part, it is proven that n(0, M) is an integer if M is an analytic
cone with center 0 (defined in § 2). The second part relates n(0, M) to the limit
of the area of a family {N(w)}, we C— {0} of analytic sets. These sets have the
property that they “tend to” T, the tangent cone to M at 0 (§ 3), as w tends to 0.
In §4, a theorem on the continuity of the area is proven. It is shown that the
limit of the area of the N(w)’s as w goes to 0 is equal to the product of a positive
integer and the area of T. Then this together with the result of § 2 applied to T
yields the final result.

§ 1. Definitions

Let ¥ be a complex vector space of dimension n. Let (-|') be a hermitian
product on V¥, that is,

a) GlmeC for 3eV, weV;

b) (3/w)={wT3);

) (331 + %232 [w)=0a,(3; |w) +0,(3,|w) for a;,a,€C
d) 313>0 if 3=+0.

Then {3] =}/(3|3) defines a norm on V. Let d be the exterior derivative
on V. Consider (3}a) as a function of 3 for fixed a. Define

(d3l0)=d@|a),
(a|d3)={d3[a)=d(al3).

Then (d3|3) and (3|d3) are differentials on V. Define

(d3ld3)=d@ld3)= —d(d3]3),
n=_(i/4) [31d3)—(d3]3)].
Then dn = (i/2) (d3|d3).
Define

1 r
v=dn, v,= 2T ARR
Let M be an analytic set of pure dimension p > 0 in an open subset G of V.
The set M of simple points of M forms a smooth complex submanifold of
dimension p of V. Let L be a subset of M such that Ln M is measurable on M.
If x is an exterior differential form of degree 2p on M such that | y exists,
define LoM
fx= 1§ x.
L LM
Let 1: M-V be the injection defined by 1(3)=3. If £ is a continuous ex-
terior differential form of degree 2p on V with compact carrier in G, then
§ ¢ exists ([3], [7)), and is denoted by | ¢.
L

MnL



The Lelong Number of a Point 21

If LS M and LM is measurable and if L is contained in G and compact,
then (v, exists and is non-negative. The integral is positive if LnM is not
L

a set of measure zero. The integral | v, is the Lebesgue area of L M.
L

Define
B,={3¢eV|i<r}
My=MnB,

W,=n?/p!
Suppose 0 e M and By CG. For 0 <r <R, define

1
O§n(r,M)= W j. Up.

Mg

Then n{r, M) is a monotonic increasing function ({3 ], [8]}. The limit

n(0, M) = rl_iglo n(r, M)

exists, and is called the Lelong Number of M at 0. It will be shown that the
Lelong Number is always a positive integer.

§ 2. The Lelong number of an analytic cone

Again, let ¥ be an n-dimensional complex vector space with a hermitian
product. Let TCV be a pure p-dimensional analytic cone with center 0, that
is, a pure p-dimensional analytic set in V such that 3 e T implies u3 e T for all
u € C. In this section, it will be shown that n(0, T) is a positive integer.

Define on V

o= [61d)~@sI1l > = 7 for 3+0.

Then

do = i (dalda)lalz—(dala)A(alda)

o= 5 Y

2 I3l

1 »
Define w=do, Wp=— A won V—-{0}.

p.v=1

Let A be a pure p-dimensional analytic subset of an open subset G of V
with p> 0. If Lis a subset of 4 such that Ln A is measurable on 4 and if Lis
compact and contained in G — {0}, then jw exists and is non-negative.

If LA and L0 4 is measurable and | w exists, define f w,= | o,
L~-{0} L-{0}
Let 1: A—V be the injection. Let ¢ be a continuous exterxor differential
form of degree 2p on V with compact carrier in G. If & =dz, where 7 is an
exterior differential form of class C! and degree 2p—~1 on G, and where
19*



272 P.R. THIE:

has a compact carrier in G, then [3, Theorem 7]
fé¢=[dr=0
A A

Define, for any subset L of V,
=Ln{zlr=hlss}, 0Sr<s=oo.

The following two propositions are a generalization of results of W.SToLL
[8, Propositions 1 and 2].

Proposition 2.1. Let A be a pure p-dimensional analytic set in G = {3 3| <R}
where p>0 and 0 <R < 00. Let f be a function of class C on G. Suppose that
a number ry exists such that

1) O<ry <R,

2) f@)=0 for [3[=r,.
Let q be an integer 05q=Zp—1.Letb=p—gq. Then

q!
Lo [ 100,0= 25 [ 16 0@ A0+
45 45
{ 1
+ H‘;g;‘zf"ﬁ}df"”“’v-l' (vg=1)
45
Proof. Define
G
W=Uq/\*b“/\wb-1 (wo=1)
(-1 1
TS
Then -
P
) dy=v, A0y dy= b‘qf s 55 Up>
an

1 b-1 1 i
soromi=(3) 577 e 16149- @l

d3ldy)  @d313)AGldy 7"
ol 312 al® ]
=(i)””‘ii(5lds)—(dala)A

2/ bl 4 ME

d3ld3)’! d3ld32 d
A[( ?!Pbﬁzz —(b——l)( i”llzf’L A 3Ia')3/|\4(a| a)]

i Y1 d3)—(d
=(‘j;j) b__(al a; }zgata) (d31d3P-*

1 i
=-—g?}/\'{3~ﬁ;05-1.
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Thus
=0, AL Aot
q b B|2b
-1 1
T am
-1 1 1
W*X‘—‘W W—”;é? HBAUp. g

Let o be a C®-function on the real line R such that 0 < a(x) £ 1 for all x and
a(x)=1 for x£0 and a(x)=0 for x = 1. Define K by

K= ¥§X jo (o)t

Take any r in ro<r<R. Take s in r/2<s<r. Define t=(s+r)2. Then
t—s=(r—s)/2. Define i, by A{x)=« (: —3 ) Then

a) 041 forall x.
b) A,(x)=1 for all x<s,
¢) Adx)=0 forall x>¢,

Q) s = 2K

t—s r—s
e) Ay(x)=+0 implies s<x <1,
f) A(x)>1 as s»>r—-0 if x<r,
g) Afx)»0ass—r—0if x<r.

-5

for all x,

And (@313 AGld)
i A
A3 A = — ()~ L 8198)
4 I3l
Forsglil=r,
1 1 2K r¥—3%
’ R e
R e S L

22b+1 K 2b~-1

s a5 rI?Ti e
r o=
22b+2Kb
ST
Therefore
p-1! 1 1
S.fdlsl\(w—X)=( q!b! )ﬁf(ialn “—?i,‘)d/ls/\ﬂ/\!)p_l
45 ar,
SN YA W RPN RO
= T g'b! Sf BZ 4As(|‘a‘|) il AV, y

,
4x,

-0 as s—-r—0.
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Moreover
fAddf aw—y)—= fdfatp—y) as s—r—0,
A A5
[Afdp—p- [fdw—x) as s—r—0.
A5

Therefore

0= [d(fAp—2)
A

= [ fdiAp—0)+ [Adf =2+ [ A fdy—2
A5 A Aj

implies that
0= {df alp—0+ [ fdy—1),
As A5

pl 1 ~—1)v
W;l_b §f0p= jqu/\w,, 3121’ — 7'2b df/\f[/\l)

A5 4 Af

[=3]

g.ed.

Proposition 2.2. Let A be an analytic set of pure dimension p>0 in
G={3Hal < R} where 0<R < 0. Take r and s such that 0 <r<s<R. Let g
be an integer, 0<qg<p—1. Let b=p—q. Then

blg! 1 i
P! Ve N Oy =" | YT 736 Up-
Af A§ Ap

Proof. Let o be a C*-function on R such that 0 S a(x)<1 for all x and
a{x)=1 for x <0 and a{x)=0 for x= 1. Take 0 <t <r<s<R. Define

r=a(B25).

t

The function f is of class C* and f(3)=1 for 3/ £t and f(3)=0 for |3/ =r.
From Proposition 2.1,

blq! 1 1

“(__’:tli)_! §(1-f)~vq/\a),,m~s—-g;; S(l—f)vp+ S[—I%F;-—-gﬂ,—]df/\n/\vp_l
A§ A3 A

blq! 1 1

=D S(l N, /\(0=-—%S(1 f)v+s[~[?—,'—23———;2—,;]df/\m\vp_l.
A5 o A7

And

fdfannv,_y=—[fdgav,_;=—p|fv,
45 4 4

fdfannv,_y=~p{ fo,.
45 A5
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Hence blal b
Iq! _blgl
——(p—l)! §v AWy = (p i ~&(1 A LN

Af At

- L Ja-no,- s fa=ro

A3 A5

1
-+ S WdeﬂADp_l~

AR

1
ngf’\"/‘”p—l‘*‘;‘z’zf 5 df nnpnv,_,

43 45

S(I—f)v 5(1 — o, +0+
A3 Ay
+Tgfu gb Sfup

43 45

g.ed.

Note that by letting g =0, Proposition 2.2 gives

1 1
Cl)p=‘s—‘2‘;§!}p—ﬁ Up.

As 43 Ap

Thus n(r, A)= v, is monotonic increasing, and so n(0, 4) = ]iﬁlﬁl;l) n(r, A)

1
W, rt? S
. Ap
€X1sts,
Assume now that p=2. Let g=1. Then

p 14
S”Awp—l‘szp-z bp= 35—z | Up-

Ag A5 Ay

. .1 .
Since &1_{% = S v, exists,
% p
guxxwl,-l-—- T Sup.
A3 A3
In particular, if T'is a pure p-dimensional analytic cone with center 0 and p 2 2,

then
p -
rzp_z Up—— DAwp—l

(PR
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Fubini’s Theorem shall now be applied to [vAw,_,. A statement of
T3
the theorem follows. The theorem in a more general setting is stated and proved
by W.STOLL in [6].

Fubini’s Theorem. Let N and Q be pure dimensional complex manifolds with
dimN =n, dimQ=qg<n. Let 6:N—>Q be a holomorphic map and suppose
that ¢ has maximal rank. Define N,=0"'(y), a complex submanifold of N.
Let @ be a differential form of bidegree (q,q) on Q. Let x be a differential form
of bidegree (n—q,n— q) on the measurable set L in N. Suppose that y nc* ¢
is integrable over L. Let 1,: N,— N be the injection. Then

[xneto={( [ #1)o.
L Q \NynL

In order to apply this theorem, the following is needed.

Let P(V) denote the complex projective space of the vector space V. Let
¢:V—{0}-P(V) be the residual map, which can be uniquely defined by
requiring that ¢(3,) = ¢(3,) if and only if 3, =u3, for u € C — {0}. One and only
one exterior differential form & of bidegree (1, 1) exists on P(V) such that
0*(&) = w. Define ) 1 4

Then g*(@,)=w, Let TCV be a pure p-dimensional analytic cone with
center O and p= 2.

Define o(T - {0})= T. Then T is a pure (p — 1)-dimensional analytic set
in P(V). Define N=T— {0}, a pure p-dimensional smooth submanifold of
V —{0}. Define Q= ¢(N), 0 =¢|N. Then Q consists of all the simple points
of T,and N isa cone, thatis,3€ N,ue C — {0} implicsuze N.Hence N =0~ !(Q)
=g~ '(Q). And Q is a pure (p — 1)-dimensional smooth submanifold of P(V).
Let 1: N>V — {0} and j: Q—P(¥) be the inclusions. Then

N = v —{0}
g L PV

is commutative, and
0,y = 1% Q@) 1) = 0" [*(dp- 1)

Lemma 2.3. The map o: N — Q defined above has maximal rank.

Proof. Identify V with C" and denote ¢(3)=(z,:...:2,) if 3=(z4, ..., 2,) +0.
Let a={a,, ..., a,) be an arbitrary point of N. Define a=o0(a)=(a,:...:a,) € Q.
Then there exists W’ C C?~ !, 0e W’ open, and a: W’ — P(V) holomorphic such
that a(0)=a, a: W' - a(W')C @ topological, a(W’) relatively open in Q, and
rank,o=p— 1, we W’. There exists v such that a,+0. Hence, if W’ is small
enough, &: W’'— V — {0} exists such that & is holomorphic and injective, and
g°d=a, &0)=a. Let &(w)=(x,(w), ..., a,(w)) and, by choice of W’, a,(w)+0
for we W'. Define

- a;(w) _
[i(w)= (@)’ A=1,..,v—-1Lv+1,...,n.
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Then a(w) = (o, (w):...;0,(w)) = (fy(w):...:f4_(w):1:f, 4 (w):...: f(w)).
Hence 6(f13“"fv~1’fv+1’""fn)

owy, .. Wy y)

rank =rank,o=p—1

for w e W’ using the coordinate system
gy (FL Bt B _ZL)
Yzt iz = <Zv R
in ¢{3!3,#* 0}. Define ﬁ:W’ x (C—{0})—V -~ {0} by

( ) a(m)z(ufi(m)’ "'7ufv~1(m)’u
ufv+ l(m), --'7ufn(m))'

Then B is holomorphic. If B(w,,u,)=f(w,,u,), then u, =u, and a(w,)
= g(B(w, uy)) = o(B(w,, u,)) = a{w,). Hence w, =w,, and so f is injective.
And B’ x (C — {0}) = ¢~ (&(W")), for
o(B(w, u)) = o(&(w)) = a(w) e a(W’), or PBW' x(C—{0}))Se "W).
And if 3€ ¢ H{x(W")), then ¢(3) = x(w) for some w e W’ and 3= v &(w) for some
veC—{0}. Then u=v-a(w)+0. Hence f{w,u}= . !;m)
andso ¢~ H(a(W")) S B(W’ x (C— {0})). Thus B: W’ x (C — v{O})——» o Ha(W))CN
is bijective, holomorphic and ¢~ Ha(W'))=0"*(a(W") is open in N and
B©,a,)= &0) = a. Now
a(ufl(m)) LRRT? ufv l(m) U, ufv+1(m)’ ey ufn(m))
a(wia ey p 1 u)
a(ufl(m)’ ARRE] ufv—l(m)’ ufv+1(m)’ vy ufn(m))
oWy, ..., Wy 1)
=p for (wuyeW x(C-{0}}.
Thus B gives local coordinates of N ata. And - B(w,u) = a(w), or a ™ =6 f(w,u) = w.
Thus if #: W’ x (C—{0})— W’ is the projection, rank,c =rank,a 'ogof
=rank ff=p—1. ged.
Then Fubini’s Theorem implies

B(w, u)=

&(w)=v&(w)=3,

(0)

=1+ rank,

ijwp-d— _( *oAar*w 1= I I*UA'*Q*(J)I,-I)

NnB, NnB,
= [ *oAc*(*d,-y)
erBr
=L (g, e
aEQ (@) B,

.\ o
1 v) Bpq

.\ o
1 v) My

aEQ (a ia)n B,

act (a‘ Y(@nB,



278 P. R. THE:

where 6~ Y(a)nB,={za|0<|z] <r}, a chosen such that g(a)=o{a)=a and
la] == 1. Identify V with C" by means of an orthonormal basis. Let a =(a;, ..., a,)-

n

Define j,: {z]0 <|z| <r} — V = {0} by j,(z) = za. Then v = % Y dz,ndZ;and
v 1

o= 2z Y avfl-:dZ/\df=~—l—dZ/\df.
2 = 2

Thus
j *o= S j¥v
o~ 1(a)nB, o<izj<r
i = 2
= —dzAdZ=mnr".
2
O <lzl<r
Hence
_ 2 o
forw,_y=nr?[d, ,
T ¥
and

1 =1 p
Wper Up == Py g2 Up

3 T3
p—1!
= ﬂ:I,r2 D/\wp._1
T3
-D!{.
=Dt S B,
nP

Now Tis a pure (p— 1)-dimensional analytic set in P(V), and so, from
Chow’s Theorem, T is an algebraic set. From a result of G. DE RHaMm, {4],

UETIN PR

P!

T
where m, a positive integer, is the degree of the algebraic set T. With the desire
do make this paper as self-contained as possible, the fact that
-n .
t

is a positive integer will also be proven here, by means of a method suggested
by W.SroLL.

Proposition 2.4. Let W be an (n + 1)-dimensional complex vector space with
a hermitian product. Let P(W) be the projective space. Let A be an analytic set
in P(W) of pure dimension q > 0. Then

1
4 fw
n‘!
A

is a positive integer.
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Proof. Since A4 has only a finite number of branches 4;, A=1, ..., k, and

because
k 1
q! g ) q! S )
V@, = —\ @
i 4 ,é, 7 4

A Aa

it is enough to prove the theorem for A4 irreducible. The proof is by induction
ond=n—gq. For d=0, A=P(W), and

i
z S @,=1.

nn

P(W)

Now assume the proposition true for n —g <d — 1, and let 4 be an irreducible,
g-dimensional analytic set in P(W), where W is a vector space of dimension
n+1, and where n—g=dz=1. If n=1, ¢=0 and the proposition is trivial.
Thus assume n = 2. Choose a point se P(W), s¢ A. Choose an orthonormal
basis of W in such a way that if W is identified with C**! and P(W) with
P(C*"*1)=P", and if ¢:C"*! — {0} —»P" is the residual map, then the point
5=(1,0,...,0)e C"** is in ¢~ !(s). Denote g(zq, 21, ..., 2,) =(2¢:2;:...:2,) € P"
for 0%+3=(z0,...,2)€ C"*!. Let P* ! =P(C"), §:C"— {0} »>P"~ ! the residual
map, #(zy,....2)=(zy:...:2,) for O%(z,,...,z,)eC". Define n:P"— {s}—
—P" ! by n(ze:zy:...:z)=(2,:...:2,). Let aeP" ! Then n Y(@)nA is
analytic in the complex manifold =~ *(a), and, if it contains an interior point,
then n~*(@)nA=n""(a). But this would imply that se 4, a contradiction.
Hence =~ (@) A consists of isolated points for every ae P"~ 1. Clearly n| 4 is
a proper map. Hence n{4)= B is an irreducible, g-dimensional analytic set
in P"~ !, Thus, from the induction assumption,

q! [ .
) “
B
is a positive integer, say m,, where @, is the volume element in P*~! associated
n

to the hermitian product (3|w)= ) z,w, on C".

v=1

Let S (A4) be the set of non-simple points of 4. Then n(S(A)) is an analytic
set, thin in B. Let B'=B—n(S(4)). Now B irreducible, n(S(4)) thin, implies
that B’ is a connected g-dimensional complex manifold. Let A'=7n""(B)n4
=n"1(B) A, a g-dimensional complex manifold. Let t =n|4". Thent(4") = B'.
Let N={ae A'|rank,7 < q}. Then N is a thin analytic set in 4’, and t proper
and t71(b) discrete for be B’ implies that t(N) is a thin analytic set in B".
Hence B"=B —1(N) is connected. Let A"=1"1(B")=n"'(B")nA’, and
o=1|A". Then ¢: A" — B" is proper, and hence ¢ is an unrestricted or regular
covering map of the complex manifold 4" onto the connected complex manifold
B". Therefore the number m, of points in ¢~ *(b) for b € B” is independent of b
and finite. The map o is of maximal rank with ¢(4”) = B". Hence from STOLL
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[6, Satz 6],

fmya,= {o*a,,
and so, i 47
j my @, = .[ ¥ @,
B A
Define the following operators on an n-dimensional complex manifold
0 = o 0
3 6= z, .
_ = azv d Y vgl 62‘, Y
Then d=0+0.

DefineE, = {3 C"*|3=1(z2y, ..., 2.2, +0}ori=0,1,...,nLetU, = g(E,).

Define, for n Zi2 + - +]z,2
(eU, frl)=-2, g@)=-2tl T Tl
‘Z;_l IZ}.’

where 3=1(2,, 2y, ..., 2,) € 0~ (). Note that f, and g, are independent of the

choice of 3e ¢~ 1(¢). Then, for any 4, 0L A<n, it can be shown that &({)

=iddlog f,({{)for{ e U, andsimilarly, n* &() = (i/2) 80 logg,({Yfor {e U, —{s}.
2

Define, for { € P"——- {s}, k()= G _f’_i' Py where 3=(zo, ..., z,) € 0~ 1({).

Let 6((}=(i/2) 00 logh({}, {eP"— {s}. Now on U;—{s}, for any 0Zi<n,

@ —n* @ 6510gf,1—~6610gg,1

fi
0log =2
& [*F)
—~6510gh 6.

Now U (U,~{s}) =P"— {s}, and so

]

- ~|~. v =

(9]

O=d—n*® on P"—{s}.
Define ¢({) = (i/2) 8 logh({) for { e P*— {s}. Then do = (8 + 0)(¢) = =6, and
&= (do + n* @)

3 (2) worrnear,

q~1

M —m*ei= Y (z)(dgo)“";\(n*dj)“.
=0
Define g

g-1
¢='2 (1) dorrtawar o P-s)
u=0
Then dé=0 (drn*d=n*d®=0), and *—a*@*=doré=d(@a). Let

;!5 on P"— {s}.
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Then @&, —n* @, =dy. Hence, from a previously quoted theorem of
LeLonG [3, Theoreme 7},

[@,—m*d)= [dp=0 (s¢A).
A A

Consequently,
. e~ .

i S Pe= T 5 “’«=1;TS 2 B = MMz @

4 4 B
positive integer. q.ed.
The results of this section are summarized in the following

Theorem 2.5. Let V be an n-dimensional complex vector space with a her-
mitian product. Let TCV be a pure p-dimensional analytic cone with center 0.
Suppose p> 0. Then

1 j‘ v
W,r?r J P
Lrs
is a positive integer independent of r.
Proof. For p=n, the theorem is trivial, and for 2 < p<n— 1, the theorem
has already been proven. If p = 1 and Tis irreducible, then, for anyO+ae T, T

1
= {uajueC}, and so TS v=1. Thus for p=1 and Tarbntrary, ! j‘v

T"
equals the number of irreducible branches of T, a finite integer. q.e d.

§ 3. The tangent cone

Let V be now a fixed n-dimensional complex vector space with a her-
mitian product. Let M be a pure p-dimensional analytic set in an open subset G
of ¥V such that 0 e M. Then 1 is said to be a tangent vector to M at 0 if there

exists a sequence {3,}, 3,€ M, 3,+0, such that 3,-0 and ﬁ —t as A— o0.
).
The set T={utlueC, t a tangent vector to M at 0},is called the tangent cone

to M at 0. It will be shown that T is a pure p-dimensional analytic set in V.
This has also recently been proven by H WriTNEY in [10]. However the proof
given here uses a natural geometrical construction which is essential to the
remainder of this work.
Define
H={3 w)iw3eG,3eV,weC}
N*={(3,w)lwzeM,3eV,weC}CH
n: V@®C-V, projection
1: V@ C-C, projection
E=V x {0} =1"1(0)

=(N*~"E)nH
Nw)=1"(w)nN.
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Extend the hermitian product on V to a product on V@ C by defining, for
(3 w) and (3,w)eVOC, (3, W), w))=(GI3)+ww, where (|) is the given
hermitian product on V.

Proposition 3.1. N is a pure (p+ 1)-dimensional analytic set in H, and
n{N(0))=n(NnE)=T is a pure p-dimensional analytic set in V.

Proof. Define y:V@®C—-V by y3,w)=w3. Then y is holomorphic,
y~YG)=H, and y~ }(M)= N*. Hence N* is analytic in H. Define a: H— E—
~ G x (C— {0}) by a3, wy=(3w, w). Then « is biholomorphic, and a(N* —E)
=M x (C— {0}). Hence, for w0,

dim(a’w)N* == dim(wa,w)M X (C — {0}) = 1 + dimwaM .

Therefore M pure p-dimensional implies that N* — E is pure (p + 1)-dimen-
sional in V x (C — {0}). Now, from general theory, HN(N* —E)= N is ana-
lytic in H, and, for points in ENnN, N can be expressed locally as the union of
the irreducible branches of N* not contained in E, Hence N is pure (p+1)-
dimensional and N E = N(0) = N {(3, w)|w =0} is p-dimensional.

Finally, n(N nE)= T: Since (0, w) € N* for any w,0 € t{(NNE). Let zte T,
zt+0. There exists a sequence {3;}, 3,€ M — {0}, such that 3,—0 and
3t as 20, Then (i"’i Eﬂl) eN*—E, and (ﬁ‘— -Bzi') —(zt,0).

Tl B~z I3l
Thus TCn(NNnE). Conversely, let 3e {NnE) and assume that 3 0. There

exists a sequence {(3;,wp)}, (3, w))eN*—FE such that 3,3, w;—0, and
3.+0. Then 3,w, e M — {0}, and 3, w, -0 as 1— co. There exists a subsequence

of {w,}, say {w, }, such that

converges, say

> —u, as v— 0. Let
(s,

—te T Thus e(NnE)CT. q.ed.

(w,,|

t= lim Mi’—. Then 3= l‘,’l

v 3wyl

Define I{w,r)= j vyfor0sr<— R

wl
#{N{w)}n B,
={3€ V|3, w)e Nw), 3| <r}. Note that I(w,r)/r*? is monotonic increasing

in r, and that n(r, m)= VV{T"‘J a,r).
4

, where By C G, and n(N(w))nB,

Define W— {w|0<|w|<1}.Forwe Wand0 <r < R,defineg: My — n(N(w))
by g(3) = —. Then g(MG)=n(N(w))nB,,,, and

)= [ o

(N (W) 0 Br/yawy

=jﬂm
My
1 I(1,r)
T ) T e

Mg
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Thus I(1, r) = |w|*? I(w, r/lwl) and

I(w, s) = i ! ——I(1,|wl|s), letting r=|w|s.

Forw,weW,
W22 I(w, r/|wl) = I(1,r) = W'|*" I(W, r/|w']),

o) - 121

VAT s!wl)
I(w, s)= 17 I (w, Wi/
Define
Iw) = lim I(w, 1)
W) "o rer
— lim I(1, wir)
r0 |wl2"r2”
=lim I, S) =1(1)
for all we W. *
I
Lemma 3.2, (W r) —{(w) uniformly on W as r—0.
Proof.
0< I(w ’) — I(w)
ged.
Now if {w}=|w'], then I(w,r)=I(w,r).
And if

’

w2 ( rIWI)
I{w,—
w w'l

wl < W, I(w,r)= i—

_ I, riwl/iw')

= b ST
Thus lin(l) I{w, 1) exists, 0 <r<R.
Hence, forwe W,
1 jw)?? ( r )
n(r M)-— I(1 ) WI W,—h;l* N
o L I0nr/w)
n(0, M)= lrio W, (rw)?®
I{w, s)

= lim .
50 W 32"
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Thus

n(0, M)= lim_lim %7

w0 r=0 WprZP

. . Iw,n)
= lim lim W, r??

. 1 .
= llm—'vf/’?;' LIH})I(W,P')

In the next section, lim I{w, r) will be related to f v,, and thus, the results
w—0 T

of § 2 can be applied to determine n(0, M).

§ 4. A continunity theorem
A. Multiplicity of a holomorphic map

It is necessary to introduce the concept of multiplicity of a holomorphic
map as the multiplicity of 1| N must be considered in the proof of the continuity
of the area. Let X and Y be complex spaces and let ¢: X — Y be a holomorphic
map. Then ¢ is said to be non-degenerate if the fibers ¢~ !(o(x)) consists of iso-
lated points only.

Let X be a normal complex space, Y a complex space, and 6: X>Y a
holomorphic, non-degenerate map. Take a € X. Take any open neighborhood U
of a such that U is compact and such that Uno~*(o(a)) = {a}. Such a neigh-
borhood exists. Define

py(x,0)=#Uno Yo(x)) for xeU,

where 4 A4 denotes the number of elements of A for a finite set A4, defining
4# A to be 0 if A is empty and # A to be oo if A4 is infinite. The number vy(a, o)
= lim sup py(x, o} is independent of U [9, Lemma 2.1], and is denoted by

v(a, o). Note that if ¢': X’ — X is a biholomorphic map from a normal complex
space X', then, for a'€ X', v(d', o~ ¢)=v(0'(a), 6).

Let X be now an arbitrary complex space and o: X — Y be again a holo-
morphic, non-degenerate map. Let X be the normalizationof X, and g: X > X
the normalization map (see for example S. ABHYANKAR [1]). Thengog: X —Y
is a holomorphic, non-degenerate map, as ¢~ '(a) consists of only a finite
number of points for each a € X. Define v(a, 0) = Zl v(d,o°0).

aeg~(a

Let X beagainnormal,ands: X > Ya holomorplfic z(n)ap such that ¢ ™ *{a(x))
is an analytic set of pure dimension q for every x € X. Suppose that X has pure
dimension k. Take ae X. Let I', be the set of sets A satisfying the following
conditions:

1. An open neighborhood U , of a exists such that ae A C U, and such that A
is analytic and of pure dimension k—q in U ,.

2. The closure U, is compact.

3. The restriction o| A is non-degenerate.

! Notice that the definition of multiplicity if X is normal does not require the fact that X is

normal to be meaningful. Thus a multiplicity, not always equal to the one defined above, could be
defined without passing to the normalization of X. See Section 4C.
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Lemma 4.1. I, as defined above is non-empty.

Proof. There exists an open, connected neighborhood UCX of aand a
proper, holomorphic map ¢:U — D where D is an open set in C* such that
U is compact, o(U)= D, p(a) =0, ¢~ }(0)=a, ¢~ }(z) consists of isolated points
for all ze D, and, if S is an analytic set in an open set U, C U, then either S
consists of isolated points or else there exists a sequence {x,} such that x,e S
and x,—»x,e U; —U,asv-> 0. Let 6" 'o(a)= Land L = ¢(LNU),a g-dimen-
sional analytic set in D. There exists an open neighborhood D'CDofO0and a
set A'C D’ analytic in D’ and of pure dimension k — ¢ such that A'nL = {0}.
Let A" = ¢~ (A4'), an analytic set of pure dimension k — g in ¢~ !(D’), an open
neighborhood of a. Choose an open neighborhood Q of a such that QCQC
C o~ Y(D'). Now it is claimed that there exists an open neighborhood WCY
of o(a) such that x € (J — Q)n A" implies that o(x) ¢ W. For suppose that there
exists a sequence x,e(0—Q)nA” such that a(x,)—o(u), v—od. Since
(0 —Q)nA” is compact, {x,} contains a convergent subsequence. Without
loss of generality, assume x,— xq€(Q — Q)N A" as v-»co. Then 6{x,) = 6(a),
andsoxy € 0~ to(@)nU =LNU.Thus o(xy) € L. And x, € A” implies p(x,) € A'.
Therefore o(xo) € L' n A’ = {0}, and so ¢(x,) = 0. Therefore x, = a € Q, a contra-
diction, and so the claim is established. Choose such a W. Define

U,=0no 1(W), A=A"AU,.

Then U, is an open neighborhood in X of a, U , is compact, and 4 is a pure
{k q)—dimensional analytic set in U,. Take any be A. Then ¢ la(b)n4
is an analytlc set in U ,. Suppose that there exists a sequence {x,} such that
X, €0 a(b)nA and x,—»x,e U, — U, as v— 0. Then x,€ A CJn A" implies
that xoeQ and xpe A”. And x,e0 'o(b) implies xoeo 'o(b), and so
o(xg)=0o(b)e W. Thus xge o™ I(W). But xq¢ U, = Qo™ (W), and so x, ¢ Q.
Hence x, € (0 — Q)N A", and so a(x,) ¢ W by the choice of W, a contradiction.
Consequently, 6~ 'a(b)n A consists of isolated points only, that is, o|A4 is
non-degenerate. q.e.d.

Thus, for 6: X - Y holomorphic, X normal, 6~ !(¢(x)) a pure g-dimensional
analytic set for x € X, define, for ae X,

v(a, 0)= lk'grr: v(a, o] A).

Note again that if ¢":X'> X is a biholomorphic map, then, for a' ¢ X',
v(a', a0 0')=v(a,c) where a='(a’). For if A'el,, then ¢'(A4)=Aerl, and
¢'|A":A—-A is biholomorphic. Thus v(a,0°¢'|4d)=v(a,6]|A4) and so
v(d',0°¢') 2 v(a,0). Similarly, if AeT,, then (¢)"*(4)eT,, and so v(g,6)S
<(d',o°¢). Hence v(a, 6)=v(d’, 0 °0').

Finally, let X and Y be arbltrary complex spaces, and let ¢: X > Y be a
holomorphic map such that ¢~ Yo(x)) is a pure g-dimensional analytic set
for xe X. Let X be the normalization of X and ¢: X — X the normalization
map. Define, for ae X,

v(a, 0)= Z v(d,0°0).
aeX
20 Math, Ann. 172
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The more common concept of the b-multiplicity of a holomorphic func-
tion is also needed. Let f be a holomorphic function on an open, connected
set L contained in a complex vector space W, and let aeL. Then

f@)= ). P;(3—a), where the series converges uniformly to f in an open
A=0

neighborhood of a. The term P, is either identically zero or a homogeneous
polynomial of degree 4, and the terms P, are uniquely defined by f. If f 0
on L, then the smallest index A, such that P, %0 is called the zero-multiplicity
of f at a, and denoted by v(a, 0, f). For b e C, define the b-multiplicity of f at a,
v{a, b, f), tobe the zero-multiplicity of the function f(3)—b at a.

Proposition 4.2. Let f %0 be a holomorphic function on an open, connected
set LCC™ Let ae L. Then v(a, f)=v(a, f(a), f).

Proof (see StoLL [9], Lemma 2.3). For n=1, the proposition has been
proven by W.StoLL [9, Lemma 2.2]. Assume n>2. The fiber f~1(f(3)) is
analytic and has pure dimension n~ 1. In an open neighborhood U CL of a,

f@)=f(@)+ i P30,

where P; is a homogeneous polynomial of degree A or identically zero, and
where P, %0. Take any A eT,. Let A be the normalization of 4, g: A— A the
assomated map. Let 4, e ¢’ 1(a) An open neighborhood U, of 4, and a bi-
holomorphic map g: L, - U, of an open neighborhood L, of 0 € C exists such
that g(0) =4, and o(g(L,))= o(U;) CUNA. Then v(0, f| 4= 0> g) = (ay, f14° o).
But, forte L,,

714090 =f(elg®)+ £ Pi(elg) - olg®)
= fla)+ Z cth.

A=gq
Therefore v(d,, f|A-0) = v(0, flA-0°g) = gq. Therefore v(a, f|A4)
= Y (4 flA-g)=q. Therefore v(a, f)=gq. Take ¢ such that P(c)*0,
deg™ Ha)
and define A= {a+tc||t| <&}, a one dimensional analytic set consisting only
of normal points. Define g(t)=a + t¢. Then

fe®)=1@+ T HOF (PO+0).

Hence A eI, if ¢ > 0 is small enough, and v{q, f]4) = ¢. Hence v(q, f)=4q. g.e.d.
Recall now the definition of ¥, M, N, 1, =, etc. given in the beginning of § 3.
Lemma 4.3. Let (a, b)e N(b), where N(b) is the set of simple points of the

analytic set N(b). Assume that b+ 0. Then v(a,b),z|[N)=1.

Proof. An open neighborhood U’ of 0 e C? and «: U'— U biholomorphic
exists where [/ is relative open in N(b) and a(0)=(a,b). It is a: U'>VPC
and rank,«=p for each xe U'. Define f=mn-a. Then a(x)=(f(x), b) and so
rank, B = p. Take r >0 such that

{GD|—a=SrinN®)CU.
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Define
U={3l3eV,l3—a|l<r}
U"=a" (U x {b}))AN(®)=o" (x" L (U)AN®) C U’
W' ={i|lA-]1<1/2,41eC}

r={om|| e
U xW-VaeC,

defined by &(x, ) = (A~ ! B(x), Ab). It will be shown, by means of &, that NnY
contains only simple points of N. Obviously U” is open in U’ and O0e U™
Take(x, A)e U” x W'.Thena(x) € N(b), B(x) = n(x(x)) € U,and a(x) = (B(x), b)e N
implies &(x, 1) = (l‘ ! ﬁ(x) Ab)e Nasi™ ' B(x)-Ab= B(x)be M.Now |B(x)—a|<r

asf(xye U.Hence |— ﬁ(x) } = |B(x) — a] <r,and{lb — b} = [b]]1 — 1] < |b}/2.

<r|w-bl< ’127’}

b
Hence &(x,\)e Y. Therefore &:U"x W >NANY. Because f is one-one, & is
also one-one. Let x = (x,...,x,). Obviously &, (x, ) =(1"'6,,(x),0), v=1,...,p,
and &,(x, 1) =(—4?B(x),b), and s0 &,, ..., &, &, are linearly independent over
C. Thus rank  ;&(x, A)=p+ 1. Define now &: NnY->U" x W’ by

)
w3

w3 _ w3 (_?»_2_. )
If 3, weNNY, l b al <r and (b ,b) b’ wleN(b). Thus
w3

(T’b> eU and so & is defined. And & is holomorphic. It is |b~'w—1|

=|b|"'|w—b|<1/2, and so &3, wye U” x W’. Now
6wy =2 (= (52.5), )
_(t -1(..!"__3_ )) _‘_V_.)
= (o (50) 50

= (%%,w) =@ w).

Therefore & is surjective, and so, & is bijective. Thus & ' =4& and &:U” x
x W’ — NnY is biholomorphic. Hence every point of NN Y is a simple point,
and so, considered as a complex space, Nn Y is normal. And & biholomorphic
implies that v((a, b), 1| N)=v((0, 1), z| N - &), as &0, 1)=(a,b). Define f:U" x
x W —C by f(x,4)=Ab. Then &(x,4)=(A"'(x),f(x,4)), and t|Nod=f.
But v((0, 1), f)=v((0, 1), b, f), by Proposition 4.2, and v((0, 1), b, f) = 1. There-
fore v((a, b), T|N)=v((0, 1), b, f) = 1. ged.

Let N be the normalization of N and ¢:N - N the normalization map.
Let S be the set of non-simple or singular points of N. Then § is an analytic set
of dimension less than or equal dimN —2=p—1, as N is normal [1,45.15].
20+
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Let S = o(S). Then S is an analytic set in N of dimension less than or equal p — 1.

Recall that T = n(N(0)) was the tangent cone of M at 0. Now T'is an algebraic
set in V and so T has only finitely many irreducible branches T, ..., T}, each
branch being an analytic cone with center 0 and dimension p.

Lemma 4.4. For fixed 2,v((3,0), t|N) is constant on (T x {0})n(T; x {0}
NN —S).

Proof. Identify V x {0} = V. Now T T, is a smooth, connected submani-
fold of V containing SN T T}, a thin, analytic subset. Consequently T T;n
~(N — 8) is connected. Thus it is sufficient to prove that v((3, 0), t| N) is locally
constant.

Let ae TnT;n(N—S). Let {4,,...,4,} = '(a). For each i=1,...,q,
there exist neighborhoods X* of a; and X of Oe Cr**! and a biholomorphic
map o,;: X! —X?, 0,0)=a,. And there exist neighborhoods U*CN of a
and W" of 0eC? and a biholomorphlc map o: W’ - T T,nU*, a0)=a.
Then there exists pairwise disjoint nelghborhoods X Lo X of 4,,...,4,
in X¥, .. X x and analytic sets Y, ..., ¥, in a neighborhood U of ain U* such

that ¢~ Y(U) = U X, U= U . and o(X,)=Y,foreachi=1,...,q, [1,46.15].
i=1

DeﬁneX’-a'l(X)CX and g,=¢|X;:X,» Y, i=1,...,q, and
W=a {UANTATICW", W=a(W).

Each Y;is locally irreducible, and so g, is a topological map [1,46.10].
Define, for i=1, ..., q,

4;={xe Xi|t°g;°0,(x)=0}
=0 1( fl(xf\W))s
6i=0;°0i|AiiAi> Yin W,

a topological, holomorphic map. Now WnY,=UNT,nTnY,=ENnY,
where E =V x {0}. Thus dimWnY,=p. But W=UnT,n T is an irreducible
analyticset,and Y;~ Wisanalyticin W. Therefore Y,n W = Wioreachi=1,....q.
A diagram:

Cp+1
A< s X 5, X,
! inj. ¢ biholo. ¢

top. holo. ¢;| top. holo.

W e Y,

inj.
/biholo.

cra2w
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Now, for any i, « ™ o &;: A;— W’ is a holomorphic, topological map, and there-
fore, o™ ! o ; is biholomorphic outside of a thin analytic set. Hence

G loa: W — A

is continuous on W' and holomorphic except on a thin analytic set. Then, by
the Riemann Extension Theorem, 67 !-a is holomorphic on W'. Hence
«~!od is a biholomorphic map, and so, A} consists of simple points only.
Thus there exists a function f; holomorphic in a neighborhood Z;C X; of 0
such that

AinZi={xeZ] fi(x)=0}

af

0x;

least one j, depending on x. Now A;nZ;= {xe Z}|1t° g;°0,(x)=0}, and so,

in a neighborhood Z,C Z; of 0, {z- g;° 0)" = f; for some natural number m;.
q .

Let W= () (Wnei(0:(Z))), a neighborhood in T, T (N ~S) of a. Forze W,

i=1

and v(x,0, f)=1 for xe A;nZ], that is, (x)*0 for xe AinZ; and at

iM= T G TIN0

= é: v(ei '(3),TIN - @)

=§j1 vioi Mo '@) tIN = g;°0)
= ¥ vlor e O ST

e )

i ged.

i
-

i

B. Local continuity

In this section, it will be shown that almost every point in N(0) has a system
of neighborhoods such that, in any one of these neighborhoods, the area of
N(w) tends to the area of N(0) modulo v(-, t| N) as w tends to zero.

Lemma 4.5. Let (a,0)e(T x {0)(N—35). Let U*SV@C be an open
neighborhood of (a,0). Let 6 be a real valued C*-function on H. Then there
exists an open neighborhood U C U*H of (6,0) such that

I 0Gwv(Gw,tIN)v,» | 6G0vG0),tIN)v, as w—0.

UnN(w) UnN(0)

Proof. Let N be the normalization of N, and ¢:N—N the associated
map. Let {a,,...,a,} = ¢~ *((a,0)). There exists a unique A such that ae T,.
As in the proof of Lemma 4.4, there exist pairwise disjoint neighborhoods
Xy, .., X, 0fdy, ..., 4, and analytic sets Yy, ..., Y, in a neighborhood U C U*n
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NN CH of (a,0) such that:

) UnEST, x {0},

q -~
i) o7 = U X;,
i=1
q

ii) U= U Y,

iv) Q(X)~— Y/ foreachi=1,...,q,

v) there exist an open nexghborhood X! of Oe C**' and 0}: X;— X; bi-

holomorphic, 6;(0)=aq,, for each i=1, .
For each i=1,...,q, it has been shown that 0 is a simple point of
Ai={teX'{1cp-0oi{(t)=0}. Hence there exist an open neighborhood X,
of 0e C**! and a biholomorphic map o¢!:X;—0/(X;)CX; such that
o"(X, N {X € X; |x,41=0}) = Ajno}(X), 6/(0)=0, and X;n{x'|x,,; =0} is
connected, where x"=(x,, ..., X, X, ). Define
g,=0°0;°0]: X;—»a(X)CY;.

Then o; is holomorphic and topological, ¢,(X ) is open in Y/, and ¢,(0) = (o, 0).
Let (v, ...,p,) be an orthonormal base of V and v,,,=(0,1)e V@®C. Then

n+1

oix)= ) o¥(x)v,.

v=1
Let n;(w) = {x'€ X;l0%, ,(x) = w}. Then o,(n:(w)) = N(W)noy(X), and 7,(0)
= {x'€ X;|x,+1=0}. Now there exist an open neighborhood R,CX; of 0
and g,, a holomorphic function on R,, such that

oP  (x)=x" 1 g:(x), X eR,
with g,(x")#0 for x' € R;, and where
m; =v(0,0,6¥. ).
Choose y; >0, §;> 0 such that, if

Qiz {(xla erey xp) ix *xvlz < ()’:)2}
Q:le x {xp+1 I pr+1} <5:} ’

QiCR;.
Hence there exists 0 < 8] < J; such that

dg;
MGX)+ Xp41 5o () + 0

p+ 1
for x' € Q; x {x,4, | Ix,+1 S 8{}. Now define f;:Q;x C—C by
filx', wy=x74, g (x)—w.
Then fi(0,..,0,x,,4,0)=x34,90,...,0,x,,)%0, and so there exists a
Weierstrass polynomial

then

m;-—l
m(xp+1,x,w) xp+l+ Z ai,v(x9w)x;+l
0
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where x = (x,, ..., X,) and the g; ,’s are functions holomorphic in neighborhood
p
{(xl, X | Y X< W< 8:}
v=1

of (0,0)eCP@C with 0<y{ <y, O0<s; and a function e; holomorphic on

1
{(xl’ “eey xp+1’ W)] Z ‘x i2 <(y )2 ’xp+1| <5i’ lW‘ <6:} =Li,

v=1
with 0 < §, <4/, such that
fi=ew;, ¢,+0 on L,.

For x=(x,...,x,), define |x|= ( > !xv12> Then there exist y;, g in

O<y,<y!, O<g<el, such that w(x,,H,x w)=0, |x]<y, w<eg imply
[x,4 1] < é;. Define

P={x|x| <y}
Pi=Px {X,y1 | 1xp01l <83 -
Then
1. ¢;: P{— Y] is holomorphic, o;: P;—0c,(P) is topological and o,(P) is
open in Y, ,(0)=(a, 0), 0

2. X'€ P} implics m; g(x)+ Xp41 = 91 (x40,

+1
3. xeR, wl<gp X'=(X,%p41), w(x;. 1%, w)= 0 imply x' € P;.
Recall that in the proof of Lemma 4.4 it was shown that YnE=Y,nE

for any 1<i, j<gq, where E=V x {0}. Thus D= ﬂ o{P)nE is an open

neighborhood in N(0) of a, as ¢,(P;) is open in Y Take & such that if
Q={a+3l3¢eV, |3 <&}, then (2 x {0})NN@Q)C(2 x {0}) n N(O) C D. Take
{>0, C< mm F and such that

1. (Qx{weC|0<|wl<C})mN§ U Y/cU,

2 @x{weClosw|=n Y-'Eoi(Pé), i=1,..,q.
There exists an open set U C H such that (a,0)e U C U* and

@x{weCl0Z|w| <} }nN=UnNN.
q
Define Y,=UnY;, i=1,..,q. Then NnU= ) Y, From Lemma 43,
i=1

v(3,w), T|N)=1 for 3, w)e N(w), w0, and so *Y,-m er\N(w)zsb for any
i+j, 154, j<q,and w+0. Now NO)InU=Y,nN(0) forany i=1, .., ¢, and
for (3,0)0e N(O)n U, .

v(3,0,7IN)= ) v(6:'(,0),1IN°0)

i

vie7 '3, 0),0,0% )

m; .

-
n
—

M= ipe §
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Assume for the moment that

[ 6Gwv,~»m [ 06G0v, as w—0
YinN(w} YinN®©)

for each i=1, ..., q. Then, as w—0,
§ (G w), tIN)OG, W) 0,3, W)

NwynU
q 4

=Y [ Bu-Ym [ Oy,
i=1 ¥Y;nN(w) i=1 YinN(O)

q
=3Ym | 8y,
i=1  UnNO
= [ ¥6.0),1IN)6G,0)0,6.0.
UnN(©)
Thus all that remains is to prove that for any i,

1gi<q, | Ov,—»m, [ 0v, as w—0.
YinN(w) Y;AN(©)
Let i be fixed, 1 £i<gq. The index i shall henceforth be omitted. Thus,
n+l n+l
for example, 6= ¥ o,0,= 3 0¥v,. Define, for x€ P,
y=1

y=1

4(,,, ..., 0,,) |*

Va2t Tvpl

4,)=0((x0) X s %)

18vi<..<vypSn
Take w in 0 < lw|< { and x € P. Then

m

w(xp+ 12 %, w): H (xp+1 —x‘;+1(x, W))
p=1

where x4, ;(x, w)| <, that is, (x, X4 ,(x, w)) € P". Hence
HW)NP' ={x' € P'| 6,41 (x)=w}
={(x,x4,,(x,w)|xeP, 1 Susm}.

x,®)

as w(x, X, W) e(x’,w) = s 1(X) — w, e(x', w) £ 0. Now w(x, w) e(x’, w)

0
= f(x, W)= Xj+19(x")—w,and /
a p+1

(=5} (mg)+ 301 52—
p+1

Let z,=(x, x4, , (x; W), w). Then w0 implies xp“(x, w)0 for any xeP.

Thus (z)*0. But (z,)=w(z,) (z,,)+e(z,‘) (z)
xp+1 Xp+1 0x, 5
=efz z,).
@) @)
Hence 6.2(” (z,) %0, and so the x5, (x,w), u=1,...,m, are distinct for
p+1

any 0<Iw§<Cand x € P. Now, keep w in 0 < |w} < { fixed. Then

w(xp+ 1 X, w}—..‘: H (xp+1 - x;'i*l(x, W)) 2
u=1
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where x5, (x, w) % x, . (x, w)if p + viorallx e P,and so (xp+ 15X, W0

axp+1
for all x,,,=x5,,(x,w) and xe P. Hence

m

w(xp-!- 12 %5 W) = H (xp+ h;x(x’ W)) s
=1

where h,(x, w) is a well-defined, holomorphic function of x € P, with h,(x, w) +
#* h,(x, w) if u+ v. Define

Ax)= i (9(0’(36, h,(x, w))))x

( d(a,,(x, h(x, W), ..., 0, (X, h(x, ) 2)
x y 2 .
1Svy<--<vpEn 6(x13 ---pr) x

It is now claimed that A,(x)—md,(x) as w—O0 uniformly on P. There
exists a constant K such that |g(x)|>K for all x'e P". Take a>0. Define

d(e) =min(Ka™, {). Take w in 0 < |w| <d(a). For any xe P,
h;T(xa W) g(x9 h”(x, W)) ~w=0 s

1i/m —
andso |k, (x, w)| < (M) <o, A constant k > 0 exists such that, forall x € P,

o

dx, )

<Kk, t=1,..,p+1.

For wfixed, 0 < jw|<d (%) s

|k (x, W)l <mK/2K, xeP.
And from hj(x, w) g(x, h,(x, w)) —w=0,

0=mhy~(x, w) g(x, h,(x, w))ﬁl—(;;z-’-}:‘}l
t
+ hy(x, w)( (x, h,(x, W)+ ——— (x, h,(x, w)) “ (x, w))
axp+1
Since h,(x, w) + 0, o s ; oh
= u 99 ) __ﬂ_l.)
O=mg o +h (ax, t Fx,er 0x, )’
oh, ( o \ _ og
6x, mg+h“ 0 p+l) h hn 6x, )
Now
dg l dg mK mK
h > - > — I e
’"’“ 2rre Bl L v LSl 7
and so
0h, | 2 | 99|
ox, Ié mK | dx,| " * thy 's Ih“l
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for t=1,....p, p=1,...,m. Thus define d, (2)= mm(d(oc) d(”’f) d(ﬁﬁa).

2K
Then, for xe P, 0<|wi<d,(a), t=1,..,p,p=1,..,m, it is
0
|h,(x,w)| <o and l hy (x, w)‘ <a,
ox,
Now there exists a constant ¢, such that
lga <¢y for XeP, v=1,..,n,

t=1,..,p+1.
And for any « > 0, there exists 44() such that for all
15vEn, 1£tsp+1,

do, dao,
a (x’ p+ 1) axt (x$ 0) <a
if xe P and |x,, (| S 4o(). Also, there exists a constant ¢, such that

|Be(x))|<c,; forall x'eP,
and for any o >0, there exists 4,(x) such that

0(ax, x5 1)~ 0(a(x,0)|<a for xeP and |x,.,|S4,(2).

For every B> 0, there exists 4(8)> 0 such that, if

A= (au al,,) Be (bu blp)
Qpy - Gpy) bpi... by,
with a; ] £ 2¢o, byl £ 2¢,la;;— bl < A(B) for 1 <4, j<p, then
|ldetA[* — |detBf*| < 8.
Moreover there exists a constant ¢, such that
ldetdl? <c, if la;;l<2c.

Now take any B>0. Take a=min (1, ;’_ﬁi ) ) Take d,(f)=min(d,(x),
0

di(40()), d;(4;(@))).. Take any w in 0 <|w| <d,(f) and any x € P. Take u in
1£u<m Then

!h;x(x’ W)i é min(a, AO(“)’ 4 1 ((X))
and
8

L3 w| Smin(z, do(@) 4,@), 1=1,....p.
And for 1§v§n, 1<t<p,

(x, h,(x, W) —

0) <a.
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Hence

0
—5;2— (av(x’ hu(x! W))) -

n(x’ w))— ( ,0)+

3

Bav 6h,‘
Gxyes (x, h,(x, w)) ox. (x,w) &

Satcoa=a(l+c)=4(p).
For 15v, <~ <v,<n, define

Avr,(¥) =

(o, (x, hu(x, W), ..., 0, (x, h,(x, w))

O(Xy, .00 Xp)
0(0,,(x,0), ..., 0, (x,0)
AV 'V ’x = ! £
e )
Then |44, ., N* — 14y, ,,@)P|<B, and |4, ., *P<c, Now

|o(e(x, h,(x, w))) O(U(x, 0))| < B. Hence
|4,,(x) — mAo(x)|

m

> {ootanim) T M08 -

u=1 Isvi<: <vpEn

- T {e0) T e,

1Svi<-<vpSn

s ; |6(a(x, h,(x, W) > 4 v.,..s, P =14, 0, ()P +

1Svi< o <vp=n

+ 21!9(“("’ hxw)=006x0) Y 4, 0P S

1Sy < <vpzEn
sme i B4+menf B=cyB
where ¢; =mlc; +c,)n’ is independent of §, x, w. Thus A, (x)—>mAy(x) as
w—0 uniformly on P.
Now let W be any open set in P. Define W'=Wx {x,.,||x,+ <6}
Then o: W x {0} - 6(W')n N(0) is topological and holomorphic, and so

j 66,0)v, = j B(o(x, 0)) (-;-)p x

(W) AN(©0) w
00y, ... 0, ) |2 _ -
X 0 Ve | dx AdX A Adx, AdR
a( 4 14
1Svi<-<vpEn+1 x1a~-~9xp)

j 0(o(x, 0)) (—;—)p X

5(0\:;("7’ 0), vees avp(x’ 0)) l 2
81 %) |

dx; AdZy A Adx,AdX,
1Svi<:<vpsn

i \P
= JAo(x) (~;—) dxy AdXy A Adx,ndX, .
w
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Take w fixed, O < jwl <{. Then

alp(WINnW)=a(W)nNWw).
Let 1, :n(w)nW’ - P’ be the inclusion. Then oo 1,:n(w)nW = o (W) N(w)
is topological and holomorphic, and so

j 0(3, w) v,
a (W inN{w)
i \P
= X O(o(x)) (%) > do, AdG; A Ado, AT,
1E8vi< <vpEn

n(wyn W'

Define h,: W— h, (W) Cn(w)n W’ by h,(x)=(x, h,(x,w)) for p=1,...,m. Then
h,, is biholomorphic, and

WO W' = Uh(W), HW)K(W)=®, u+v.

Thus
G, wo,= Z j 0((x, h,(x, w))) x
(W) N (w) T ow
x a(avl(xs hu(x, W))r (x’ h (x W)))
ISvi<-<vpEn a(xl,'“ p)
i \P
X (—;*) dxy ndX A Adx, AdX,
iy? _ -
= j A {x) (~2~) dx ndx A Adxy, AdX,.
w
Hence
6v,»m [ 6u,, wo0.
a{W'}nN{w) (W )YnN@Q)
Define

‘PICPH—’CP, 'P(xu A xp+1)=(x1) "-’xp)
Wo=p(e " (YNE)CW,CP.

Take any open set WCP such that WCWCW,. Define as before
W' =W x {x,+1€C||x,4,1 <8}. It shall be shown that there exists «>0
such that for |wl<a, o(W)nN(w)C YnN(w). For assume that there exists
a sequence {(3,,w,)} such that w,—»0 as v— oo and (3,, w,)ec(W)nN(w,),
(v w)EYAN(w,). Then {67 1(3,, w,)} C W', and so there exists a convergent
subsequence, which will also be denoted by {¢7'G3,, w,)}. Let a7 1(3,, w,)—
= (X, Xp4 ) CW W' as v— o0, where p(x, x Xp,+1)=x. Then w,—0 implies x,,, =0.
Now (x,0)e W', and so xe W C W,. Therefore (x, O)EO' '(Y) open, and so,
for v large enough, ¢~ !(3,, w,)e ¢ 1(Y), that is, (3,, w,) € Y, a contradiction.
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Hence there exists a >0 such that for |w|<a, c(W)nNW)C YN N(w). Thus
v, [ By, W<a.

a(W)nAN(w) YaNwW
Now
fv,»m [ Ov, as w-0,
a{W)nN{w} (W )n N0}
and

i\ P
j Bv,= j Ap(x) (—;—) dx; ndXy A Adx,AdX,.
a(W’')nN(0) W

Thus for any open set W C W C W,,

i \?
m j Ap(x) (—é—) dx, ndX, A /\dx,,/\d)’cpéliwm_’ig)f j fv,.
w YnAN(w)

Therefore,

m S fv,=m j Ag(x) (%),, dx, Ad%y A+ ndx, Ad, S lim inf J 0v,.
YnN(0) Wo YnN(w)
Now define, for 0 <s <,
F(s)=V x{weC|w|<s},
W(s)=y(e™ (Y F(s)),
W(s) = W(s) X {xpu1 | s sl <3} .
Then W(s) is open in P, and
YAF(s)Ca(W'(s))nF(s)
* e~ Y (YAF(s))CW's).
Therefore, for jwl<s,
fv,< f 6o,

Y AN(w) (W’ {s))nN({w)
But as w0,
J Go,—»m J fv,
(W (S)HnN(w) a{W’ (sNNO)

I \P
=m f Ao(x) (-é-) dx, Ad%y A Adx, AdR,.
Wi(s)
Hence, for any 0 <s<{,
i\ P
limsup 5 Bo,Em j‘ Agfx) (é‘) dxyAdX A Adx AdX,.

w0
YrN(w) W(s)
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Now if 0 < <s, then W{(s')C W(s), and

ﬂ Wis)y=W,.
O<s<{
Thus
I \P
lim sup j va_s_mjAo(x)<~%—) dx; AdXy A Adx AdX=m j Ov,,.
w
YAN(w) Wo YAN(0)
Consequently,
m | @v,<liminf [ 6v,<limsup § 6v,<m [ 6uv,
Y~N(0) w=0  YAN(w) w20 YAN(wW) YAN(©)
and so
lim | 6uo,=m [ 8v,. qe.d.
w20 y N(w) Y AN(0)

C. Local boundedness

In this section it will be shown that for every point of N (0), there exists a
neighborhood such that for any ball in this neighborhood, the product of
v(-, 7| N) and the area of N(w) intersect the ball is bounded by a constant times
the radius of the ball to the power 2p, the constant independent of w for |w]
sufficiently small. This result essentially has been proven by W.STOLL in §2
of [9] However in [9], the normalization of a complex space is not considered
when the multiplicity of a holomorphic map is defined. Thus the two defini-
tions of multiplicity must be related. Here the symbol ¥ will be used to denote
the multiplicity of a map in the sense of [9]. The definition of ¥, along with the
definitions of a distinguished base and a distinguished polycylinder, will
be given here for the convenience of the reader.

Let X and Y be complex spaces and ¢: X — Y a holomorphic, non-degene-
rate map. Take ae X. Take any open neighborhood U of a such that U is
compact and such that o~ !(o(a)) = {a}. Define

¥(a, o) = lim sup py(x, o)

where py{x, o) is as defined in §4 A.

Now let 6: X — Y be a holomorphic map such that ¢~ !(¢(x)) is an analytic
set of pure dimension ¢ for every x € X. Suppose that X has pure dimension k.
Take ae X and let T, be as in §4 A. Define

¥(a,0)= %1}3 V(a,o| A).

Thus ¥ is defined.

Let D be an open subset of an m-dimensional complex vector space W.
Let a be a point of an analytic subset 4 of D. A base C=(¢,, ..., ¢,) of W is
said to be distinguished with respect to (4, a, k) if and only if the intersection
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m
FnA of A with F = {a + Y oz cv} contains a as an isolated point. And U
v=k+1
is said to be a distinguished polycylinder with respect to (A, C, a, k) if and only if
L Itist1Zk<m
2. Numbers ¢, > 0 exist such that

e

U={a-&-szcvllzvi<sv for Vxl,...,m}g cD.
v=1

3. Define
k
Y= {(H— Y z¢ ]|zl <e, for v=1,...,k}

v=1

and ¢:U— Y the projection given by

m k
a(a+ Y zvcv)za-%- Y z,¢,.
v=1

v=1
Define
X,=0"'(n)= {t)+ Y %6 |lzl<e, for v=k+1,...,m} for peY.
v=k+1
Then _
AnX,=AnX, forall yeY
and

AnX,={a}
is required.
Lemma 4.6. Let ae N(0). Let N be the normalization of N and g: N-N
the associated map. Let {a,,. a =0 (a). Let X, .. .» X, be pairwise dis-
joint neighborhoods of a,, ..., a, and X, .0X, analytlc sets in a neighborhood

XCN of a, such that ¢~ *(X)= U X, X= U X,, and o(X)=X, for each

i=1,...,q, and such that X CK mN for some compact set KCV@C. Let
C=(cy,...,¢,) be a base of V, and let ¢=(0,1)e V@C. Let C' =(¢cy,...,Cp ¢,
Cpt 15 -+ Co)y @ base of V@C. Suppose that

U= {a-i— Y oz, +wellzl<e,, v=1,..,n, [wi<a,,“}
v=1

is a distinguished polycylinder with respect to (N, C', a,p + 1) and to (N(0), C, a, p).

Suppose UNN C X. Suppose thatn in0 <n < 1 exists suchthat N(O)nU — U, =&,

where

n
qu{a"'_ Z ZVC‘,+WC“ZV|‘<8v, v‘:l,“'apa 'W'<"6n+l’

v=1

Izl <ne, v=p+1, ...,n}.
Define #: U —»#(U)=Y' by

n P
fc(a+ Y zvcv+wc) =a+ Y z,.

v=1
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ForyeY', define
Ly, wy=UnNmW)NE"(y).
Then there exist constants § >0, x> 0 such that
Y G w,tIN)<k for |w|<3d.

G weL(y,w)

Proof. Define Li(n, w)= L(n, wyn X fori=1, ..., q. Now 7| X, is not constant
on any irreducible branch of X, that is, no N(w)n X, contains an irreducible
branch of X;. Hence there exist constants x; and §; such that if |w| < §,, then

Y WG w.tlX)<xk; foreach i=1,..,q

(3, W)eL(n, w)
The proof of this is contained in the proof of Lemma 2.6 of [9]. Compare

Therel 14 l(ithG} k lalU} n ]f
HereIV@C.C’!X,-IHlp+1|alU|n+1‘r
”iU't\?I N(w) ]L(o,w)

Uy | Y | NWNX, | L, w

Define ;= g|X;:X;—X,, i=1,...,q. There exists a constant I such that
#0 ' (x)<1 for all xeX. It will be shown that v, 1o 0) <I¥((z, w), 7] X})
for any 7 € X, such that 0:(8) =@, w)

Let i be ﬂxed Take be X It is claimed first that v{b, 10 ) < V(b,1° g).
Take any 4 e I',. Then A4 is a pure 1-dimensional analytic set in a neighborhood
of b. Let {A,, ..., A,} be representatives in a neighborhood of b of the irreducible
components of the germ of 4 at 5. Then A1 e Iyand ¥(b, 7o ;] 4,) S (b, 7>, 4).
Let A; be the normalization of 4, and ¢ the associated map. Now A, is pure

1-dimensional, and so, consists only of simple points. Hence, A4, irreducible
at b implies §: 4, - A, is topological in a neighborhood ZCA, of ()
Choose an open neighborhood Dof b such that the closure of Dis compact
and contained in Z, and such that Dn(to gi°o0) t(ze 0;° Q(b)) {b}. Let
D= $(D). Then D C A, is an open neighborhood in 4, of b, D is compact, and
Dn(z- oil4)™ ! (to 0|41 (b))={b}. Since ¢ is topological on D, for any
2eD with §()=z, $Dn(togo0)™! (to0°8(F) = #Dn(r°gld) 1o

s (1 @) (2). Hence (b, 10 ;0 8)= (b, t° 0;|4,). Since A, is a normal, pure
i-dimensional analytic space,

v(b, 7o ;0 8)=¥(b, 70 g;° 0).

Since ¢~ 1(b)=b, i
v(b, 10 0;| A1) =v(b,t° 0;° §).
Since A, €I,
v(b,t° @) S ¥(b,t° 0 A4,).

Hence v(b, 1 g) < ¥(b, 1 0,] A) for any A4 € I,. Therefore
v(b,to @) S Wb, t° ).
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Now let g,(b)=D0¢ X,. It is claimed that ¥(b,7- 9) <!9(b, 7} X ;). Take Be I,
considering b as a point in the analytic space X;. Then there exists an open
neighborhood Uy C X; of b such that be BC U, B is a pure 1-dimensional
analytic set in Uy, Uy is compact, and 7|B is non-degenerate. Let g; *(b)
={by,....,b}, with b, =b. There exist pairwise disjoint neighborhoods
Y, Y in X;ofby, ...,b,suchthat o(Y)C Up,j=1,...,t. LetB= "(B)n Y.,
U= g,‘ I(U B)m Y,. Then Up is an open nelghborhood of b, and B is a pure

1-dimensional analytic set in Uz And Ugzg g“‘(UB)n Y, is compact as g,
is proper. And 7| B non-degenerate implies 7 g,| B non-degenerate as the fibers
o 1(x) consist of isolated points for xe X;, Thus Ber, Take now WCB,
an open nelghborhood in B of b such that W is compact, be WC W CB, and
Wn{(z|B)~" (x(b))} = {b}. Then

b, 1|B)= Iim sup #Wn(|B) ! (t(x).

Define W-_-;(g-‘ x(W)r‘mB Then W is an open neighborhood in B of b, W is com-
pact, and W (zo g;|B)™! (t° o,(b)) = {b}. Thus
#(b, 70 ¢;1 B) = lim sup # W (to ;| B)™! (- 9,(2))-
z—+b,ze B
But ) B
# Wn(tog)B) ! (to (@) <! # Wn(x|B) " (v+ 0i(2)
for all ze B. Thus .
¥(b, 0 0;| B)<1%(b,7|B).
Choose B e I, such that #(b, | X ;) = ¥(b, 7| B). The existence of Be I, such that
(b, 7 ¢;| B)<1%(b, 7| B)
implies
Wb, 1o 0)<I¥(,1iX).
Combining these two results,
v(b,to0)<l¥(b,t|X).
Consequently, for w such that |w| <5— Mln O

Y (G w),TIN)

3, w)eL(yw)

= 2 Y. vtoo)

@ wieLi{g,w) Zeo~ (5, w)

=Y Y Y lra<

i=1 @,weLi(y,w) 2e0i 13, w)

Y X ¥ Iewexi<

1 @.wielin.w) ZeeriG,w)

.....

A

i

i Z lzg((& W), t!Xi) <

i=1 (3,wleLi(y,w)

2 —_
< .-=Z, = qe.d.

2i Math. Ann. 172
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Lemma 4.7. Let a € N(0). For d > 0, define By(a)= {3, w)| |3 —al*+ Iw|* <d?}.
Then there exist constants d >0, k >0, 6 >0 such that for every y>0 and for
any ball B’ of radius y with B' C By(a),

[ (G whtIN) v, <xy?
B'AN(w)
Jor all w with jw| <.

Proof Let N be the normalization, g: NN the normalization map, and
{as,...,a}=¢@ ~!(a). Then thereexist pa:rwmedxsmmt neighborhoods X 1r oo X q
of al, ey g and analytic sets X,,...,X, in a neighborhood X CN of a such

thatg“l(X)—— U X, X= U X, 0(X)=Xforeachi=1,...,q,and X CKNN

where K isa compact set 1n V@C And it will be proven in the appendix of this
paper that there exists a basis C=(cy, ..., ¢,) of V'such that C, = (¢, (1), .-+, €, ()
is distinguished with respect to (7, a, p) for each permutation pof {1,..,n}
Define ¢= (0, 1)e V@®C. Define C,=(¢,1y, -+ Cu(py> & Cugps 1)r -+ Cum) & basis
of V@UC. Identify V=V x {0}. Then a is an isolated point of

TN {a-k Y zylzE C}
v=p+1
implies that a is an isolated point of
N@©O)n {a—:— Y oz +welzeC, WGC}

v=p+1
and

NN {a—&- Y zvc“(v)(zveC}.
v=p+1

Hence C, is distinguished with respect to (N,a,p+1) and with respect to

(N(0), a, p). Hencea polycylinder U, distinguished with respect to (N, C,, a,p+1)

and (N(0), C,, a, p) exists such that U,nNCX. It can be chosen such that

n in 0 <y <1 exists such that if

Uu n {u + 2 Zuw Cuy Tt WE l ]Zu(v), < Cv )’ v=1,..,p; ’Zu(v)l < ”g(vu)’

y=1

v=p+1,..,n; IW|<’18§,’31}a
then U, — U, ,n N(0)= &. Define

n 14
7, (a-i— Y zvcv+wc) =a+ Y, Zyo) Cuns
v=1 v=1
#,U)=Y,
L,(m,wy=U,nNw)n#;(y) for yeY,.
According to Lemma 4.6, x, >0 and 6, > 0 exist such that
2 VG whrrIN)<k,

@.wyeL, (n,w)
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if [w| <4, and ne Y,. Define
= Max {x,|u is a permutation of {1, ...,n}},
d= Min {8,|u is a permutation of {1,...,n}}.

Take d > 0 such that Bj{a)C () U,. Define on V@®C, for 3= ) z,¢,,
() v=1

xG)=5 ¥ dz,ndz,
2 y=1

1
o= o1 X
A constant /> 0 exists such that
o, sy,
on Bj{a)nN(w), where 1,,: N(w)—»V@C is the inclusion map for each w.
Take y> 0 and let
B ={Gw)|13—5> +|w—b* <7’} CBy(a).
Take w in |w| <d. Then

=] vew NSt | 6w en )

B'ANw) B'nN(w)

i \?
=1 b3 g V((S,W),TIN)(%> dz,, ndZ, A Adz, AdZ,

ISy, < <ypEn
B ' AN{w)

S | S ewem(5) x

1svi<+<vp=n 3,w)eL,(n,w)nB
#.(B' AN(w))
xdz, AdZ, A Adz, A dzvp
where the permutation is defined uniquely with respect to the v, ..., v
requiring that

by

P

p)=vy, ., up)=v,, plp+1) < <um).
Now define

n n n
Bl3H= ) 2,2, for 3= 3 z,, 3=} zq,.
v=1 y=1 v=1

Then ||3] = [<3]3)>]'/? is another norm on V. A constant 4 >0 exists such that
ABIS I3l A7 3 forall zeV.

Define B” = {(3, w)| 13— Dbl <y/A, lw— bl < y}. If (3, w)e B', then |3~ b| <y and
lw—b|<7y. Hence 4 ||3—b|| <y, and so (3, w)e B". Thus

7 (B)SR,(B"NUYE
J 4 p »y 2
g {ep-l_ Z Zvcu(v) Z {Z‘,IZ é (—") }
v=1 ve1 A

21*
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P n
withe,= Y byw Gt 2 Gu Cugy Where
v=1 v=p+1
n n
a= Y a,¢,+0c, b= 3 b,c,+0c.
v 1 v=1

Hence

X

i \?
Jwmsl Y j 2 Mw%ﬂmcg
1Sw<<vpgn ) @ wieLu(n, ) 2

X dz,, AdZ, A Adz,, AdZ,, S

2p 2
éik’n!f—;(—}) ? =Ky??
p!

if jw| < 8, where

is independent of y. g.e.d.

D. The limit of I(w,1)

In this section, the two local results of sections 4 B and 4 C are used to

compute lin}) §  v(G, w),tIN)v, This limit along with the results of
Y20 (W) B
§ 4 A will yield lim j 0,
w0 2 (N (W) B,

Recall n: V@ C—V, the projection
B,={3¢eV|hl<r}
(NW)NB,= {3/, we N(w), 3¢ B}
Iw,r= [ v,

a(¥(w)n B,

a(N©)=T.

And S = ¢(§), where S was the set of singular points of the normalization N of
N and ¢: N— N the normalization map. Define

Q=[B,~(T- )]V I[B,na(SANO)]v [(B,~ B)nT].
The s-dimensional Hausdorff outer measure in R” is needed. Let LCR™.

Define Q, = {B(t)| B(t) a ball of radius t < 1/k}, &*(B(t)) = W, ¢, W{ = the volume
of the unit ball in R¥,

QL)= {{Bi}ieN;Biegp O Bf)L}
i=1

A= inf{ S #(B)| (Bhiex € ﬂk(L)}
i=1
1) = lim A (L)
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This limit exists, and is called the s-dimensional Hausdorff outer measure of L.
Note that u(L)=0 implies that for £¢> 0, there exists k,(g) such that 4, (L)<
< W, ¢/2 for k> ky(e). Hence for any k > k,, there exists {B;},.x € 2,(L) such
that, if the ball B, is of radius ¢;< 1/k, then

L dB)=3 W g<eW,,
i=1 i=1
that is,
(JBi2L and Y ti<e.

Identify ¥ =R>". Now the sets T — T and n(SnN(0)) lie thin and analytic
in V, and so they may be expressed as the finite union of manifolds, each mam-
fold of dimension less than or equal 2p— 2. Hence sz(B AT -T)=
= uzp(B nr(SNN(0))) (see for example HUREWICZ and WALLMAN, [2]). Aiso,
if A is a real analytic set in an open set of R™, and if A4 is without interior points,
then A is a set of measure zero. This can be easily shown by induction on m
with the use of Fubini’s Theorem. Now T'n (B B,) is a real analytic set in T.
Suppose that a is an interior point of Tm(B — B,) with respect to 7. Then
there exists an orthogonal coordinate system (v,,...,0,) of ¥ and a biholo-
morphic map

p:U>T
of an open set U C CP such that
aeyU)c(B,-B)nT,

Y2y oo 2,)= Zz o, + 2 f.(@v,,

v=p+1

where z=(z,...,z,) and f,,,, ..., f, are holomorphic on U. Then for ze U,

r’ =)= Z |z,1* + Z FEG

v=p+1
For any A, 1 £A<p,
I 0f(z
0= o-her=5+ 3 LG,
v=p+1 Zz
n 2
0=5§————!v(zn’-1+ s [2L@ 5y,
v=p+1 z;

a contradiction. Thus Tm(B — B,) is without interior points in T, and so has
measure zero in T. Since T is the union of 7 and a finite number of manifolds
of dimension less than 2p, it follows that u, p(Tn(B, B,))=0. Thus y,,(Q)=0.
Lemma 4.8. Given any ¢ >0, then & = 6(¢) >0 and an open set W= W(g)CH
exist such that Q x {0} C W and
[ v(Gw,tIN)v,<e if |w<$.

NiwinW
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Proof. Take a e Q. Then, according to Lemma 4.7, d,>0, §,>0, x, exist
such that if
By (&)= {3, w)| I3 —al* + W <dl},
and if B'C By (a) is a ball of radius y, then
[ v(G w),tIN)v, <k y?
B AN (w)

for all w with |w| < 4,. Then Q x {0} & U By, (), and so ay, ..., a, in Q exist

such that .
Qx{0}< (J Byyfa), where d;=d, .
i=1

Define d, .., > 0 to be the distance between H—H and Q x {0}, and

d= Min d;, &= Min §,,
i=1,...,q,9+1 i=1,..,4
k= Max Kk, .
J
j=1,...4

Let B’ be any ball of radius y <d/4 and B'n(Q x {0})+ . Then (b,0)eB'n
NBjg(a) for some index j exists. Take (3, w)e B'. Then

[B—af*+ W* 12 =16, w) — (a;, 0] = (3, w) — (b, O)} + (b, 0) — (0, O] =

— <2y+ ~1— d;<d;.
Hence B'¢ B; (a)), and so, for all jw} <4, 2
[ (G w),tIN) v, <ky*
B’ ~AN(w)

Now p,,(Q x {0})=0 in R?"*2, Thus there exists {B},_y such that B’,C H
is an open ball of radius y; < d/4, and such that

W= U B> Q x {0}, Z yz”<—~
i=1

It can be assumed that Bin(@ x {0}) £, ie N. Hence § v((3 w),7|N)x
BinN(w)
x v, <Ky for |w| < 4. Hence
§ v(@Gw,tIN) v, <e
W AN (w)
for |w| < 8, where W C H is an open neighborhood of @ x {0}. q.e.d.
Lemma 4.9,

I vGw. 1IN~ | (301N,

n(N(w)n B, TrBr
as w—0.
Proof. Take ¢ > 0. From Lemma 4.8, there exist W = W(g) open, 8, = 6,{¢)>0
such that Q x {0} S WC H and, for (w}| <4,

§ v((3, w), T|N) v, < ~§—

NwynW
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Now Tn(B,— B,) is compact and contained in Q C W open. Hence there exist
O0<r' <r<r”, 6,>0 such that, for

L=(B.—B,)x {w|lw|<é,, weC},

it is NnLc W and LC H. Define K = B, — n(WnE), where E = V x {0}. Then
K is compact, KCB,, and KnQ=¢®. Take (a,0)e(K x {0})nN(0). Then
a¢Q, and so (a, O)E(TX {OHN(N —8). From Lemma 4.5, there exist U,
open, ae U, c U, cH, U, compact with n(U,) C B,, such that for every C°°
function 6 on H,

48] [ 06wvGwIN)o,~> [ 060v((0.tIN)vy,

Uan N(w) UgnN (0

as w-»0. Define 6, = 1. Now if a e K and (a, 0) ¢ N(0), then a J, >0 and an open
neighborhood U, of (a,0) with U, compact and U,c H exist such that
Nw)nU,= @ if |w| < ,. Then for any C*-function § on H, (1) holds also for

q
this U,. Because K x {0} & | ) U, ay, ..., a,in K existsuch that K x {0} C U U,
ack i=1
Define
d3= Min 5
i=1,.
U= U U, 2K x {0} .
i=1

Since LUWuUU contains
[(B,—B,)x {w|Iw| <8,}]u [WnE]U (B, x {0}) ~ (W E)]

which contains B, x {0}, and since LUWU U is open and B, x {0} is compact,
0,>0 exists such that 0<d,<d;, 0<d,<3,, and P=B,x {w|w|<d,} &
CLUWuUU. Then, for jw| <d, < d,,

NWNL=NNLANWSWnNN{Ww),
and so
B, x (whnNwWEWuU, w<3d,.

Now PAN S(UUuW)nN CUuW, and so the compact set PANSWu U U,,.

=1
Hence a partition of unity {6;},_, ., to this covering of PN N exists such that

1. 6, is of class C* on H, 0§0i§1, fori=0,..,q.
2. 6,G,w)=0if GweH-U, for i=1,..,¢
3. 0,3,w)=0if 3G, weH-W.
q
4.0 Y 6,6, w1 if 3weH.

i=0

q
5 Y 6,6 w=1if 3, wePnN.
i=0



308 P.R. THiE:

q
Define (3, w)y= Y. 0,3, w). If {w| < 8,, then
i=1
| 06 wv(@3 w),tIN)v,
N(w)nU

g

j 9i(39 W) V((?» W)’ Tl N) Up

1 Nw)nU

#

H

gl

= [ 6.6,wv(G W), tIN) v,

1 NwinUg,

W

T

=Y 06 wvG0rINY,

i=1 N(O)nUg,

q
=Y | 0G9vGOIN)vY,

i=1 NOnU

= [ 6G,0v(0,1/N)v, as w-0.

N(©O)nU
Hence §5 > 0 exists such that 0 <d5 < d,, 0<d;<d,, and

{ [ 0GwWvGwLTtIN)v,— | 06,07v(G0),tIN)v,

<
NwynU N@O)nU
£ .
<3 for all w with |w| < ds.
Now

NW)A(B, x {w}) =(NwW)n U)U(NwW)n (B, x {w})—U)

for any we C, as n(U,)CB, for each i. But if (3, w)e Nw)n (B, x {w}) - U,
then 6(3, w) = 0. Thus, if [w| < ds, then

j' 03, w) v((3, w), TIN) v, — j 6(3,0)v((3,0),rlN)up<%.

N (W) (Br x {w}) N(O)n (B, x {0))
And
Oé j 90(?» W) V((3’ W)’th) Upé

Mw)n (B, x (w})

é j 00(33 W) V((?» W), TIN) vp é

Nw)nW

s [ vemame<s

NwynW
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if |wl<ds<d,. Now 0,3, w)+03,w)=1 for (3, weN(w)nB, x {w} and
[w| < d5. Consequently,
I v(GwhtIN)v,— | v(3,0),7IN) Upi

a(N(w))n By T Br
= i { V(3 w), TIN) v, — { v(G, w), T|N) up} <
N(wn (Er x {w}) N(©)n (B x (0}

= | 03, w) v((3, w), TIN) v, — { 0(,0)v(3, 0), 7| N) v,,| +
N(w)n(B x {w}) N(0)n (B, x {0O})

¥ 1 0o, W) (3, w), TIN) vp} +
N(w)n(Br x {w})

+ { 00(31 0) V((ﬁ’ 0),T'N) Up<
N (O)n(ﬁr % {0}

<—§-+§+~§—=a it w]<ds. ged.
Let {Ty,..., T} be the irreducible branches of T. From Lemma 4.4, for
each A== 1, ..., b, there exists a constant m,; € N such that

v((3,0),7IN)=m, if 3eTnT,na(N-37),

which is almost everywhere on T;. Thus
b

f vG0,tIN)v,=3% [ v(G,0)zIN)v,

TAB, i=1 TanB,
b
= Z m; .f by
A=1  Tink,
And, from Lemma 4.3, v((3, w), 7| N) = 1 if (3, w) € N(w) and w = 0. Thus
Iwn= [ v,= (G w,tIN)v,.
n{N{(w}) B, n{N(w))n B,
Hence Lemma 4.9 implies

Theorem 4.10. Let {T,, ..., T,} be the irreducible branches of T. Suppose
0 <r < R. Then there exist positive integers m;, A=1, ..., b such that

Iw,n—> Y m, [ v, as w—0.
A=1 TinB,

§ 5. The final result

Theorem 5.1. Let V be a complex vector space of dimension n> 0. Let (})
be a hermitian product on V. Let G be open in V,0 € G. Define B, = {3 V|[3| <r}.
Assume Bg CG,0 < R< 0. Let M be a pure p-dimensional analytic set in G with

P
0e M and 0 < p < n. Define Wp=~7-;-'. Then

1
0, M)= hm j )
n(0, M)= -0 W,r P
MnB,
is a positive integer.
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Proof. From § 3,
; 1
n(O, M): lim “W'—“Z—‘ j Uy

r—0 pr 14
M B,
= lim ! lim I(w, r)
T o0 W,r?F w—o =700
Let Ty, ..., T, be the irreducible branches of T. Take 0 <r < R. From Theorem
4.10, there exist positive integers m;, ..., m, such that

b
lim Iw, =) m; | v,.
w0 i=1  TanBr

From Theorem 2.5, for each A=1, ..., b,
1 5 ,
Up = mi N

W, r??
r
Taa’\B,-

a positive integer independent of r. Thus

b
n(09 M) = Z mlm,l H
i=1
a positive integer. q.e.d.

Appendix

Let M be a pure p-dimensional analytic set in an open neighborhood of
the origin of an n-dimensional complex vector space V. Suppose O0e M and
O<p<n Let S={ulu a permutation of {1,...,n}}. A basis (v,...,v,) of V
is said to be clear if, for every ue S, the basis (v,y), ..., V() is distinguished
with respect to (M, 0, p) (defined in §4 C). The purpose of this appendix is
to prove the existence of a clear basis. The proof is due to W. STOLL. See also
DE RHAM [5].

Let g=n—p. Let A7V denote the space of exterior q vectors over V.
Let P(A?V) denote the complex projective space to A?V, and

ag: ATV — {0} > P(A7V)
the residual map. Let
Vi={agnnalainna+0, a,eV,v=1,..,q; CAV - {0}.

Let G=0(V}). Then G is a smooth, connected, complex submanifold of P(47V),
the Grassman manifold of g-planes in V.

Let P(V) denote the complex projective space to V, and

g:V—{0}-P()
the residual map. Take a,e ¥V, v=1, ..., ¢. Define
E(a,,..,a)={zeV]|zra; A rna,=0}

q
= {Z Ava,|4,€C, v=1,...,q}.
v=1



The Lelong Number of a Point 311

Take a € G. Take any a, A~ Ag, contained in V;no ™ (). Define

E(o)=o(E(ay, ..., a))) .
This is well-defined, and, moreover, for « and f contained in G, E(x) = E(f)
if and only if &= 8.
Lemma A.1. Let N be an analytic set in P(V) of dimension p — 1. Let
A={aeG|E(@)nN + &} .
Then A is a thin, analytic set in G.
Proof. From Lemma 3 of StoLL {8}, A+ G. Thus it remains to show

only that A is analytic. Define T= ¢ '(N)u{0}. By Chow’s Theorem, T
is an analytic set in V of dimension p, and

T={zeV|Qi(z)=""=Qi(z) = 0}
where ¢, is a homogeneous polynomial, v=1, ...,k Let
L={(a;nna,2)|zeT, aynAagnz=0}
={a A rapz)lag A naaz=0,0,(2)="=0Q(2)=0} S ATVDV.

Then L is analytic, and for any 4, and A, in C, (a; A Aa, z) € L implies
(Alag A nay), Ayz)e L. Let L= n [(A2V — {0}) x (V — {0})]. Then

M=(c®0)(L)S G xP(V),
and in fact, M is analytic in G x P(V). Define
n:GxPV)»G,

the projection. Then n|M: M — G is proper, and so n{M) is analytic in G.
But n(M) = A4, for take a & n(M). There exists ze T and a; A Aa € AV such
that (a; A Adag,z)e L' and o(a; A+ ana)=a Then a; A Aa,nz=0,z+0,
and so g{(z)e E()n o{T — {0}) = E{@)n N. Thus ae 4. Conversely, let ac 4.
There exists z¢ T — {0} such thatig(z) e E())n N. Choose any a; A Age ¥,
such that g(a; A~ Aa))=a. Then z€ E(ay, ..., a,), and 50 (a; A~ Aa, z) e L.
And (6@ o) (as A Aapz))=o. Thuseen(M). qed
Denote the set of bases of V by

r= {(vl,...,vn)e@ V{le-"Av,,#O}.
v=1

Then I is a connected complex manifold, the complement of an analytic set
of codimension 1.

Theorem A.2. Let M be a pure p-dimensional analytic set in an open neigh-
borhood of the origin of an n-dimensional complex vector space V. Suppose
0eM and O<p<n. Then there exists a thin, analytic set ACTI such that
(v, .., V)€ I'— A implies that (vy, ..., v,) is a clear basis.

Proof. Let T denote the tangent cone to M at 0. According to Proposition 3.1,
T is a pure p-dimensional analytic set in V. Let N=o(T — {0}). Then N is an
analytic set in P(V) of dimension p — 1. Let

A={aeG|E(@NN +®}.
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From Lemma A.1, A is a thin analytic set in G. For u€ S, define 7,: I'- G by

Tu((Ugs 0 U)) = OVt 1) A" A Upgy) -
Then 7, is holomorphic. And 7, is onto, for take aeG, a=0(a,; A Aay),
a; A Anag€ V. Extend (a,, ..., a,) to a basis (@y, .., g dgr 1, .-, a) €T of V.
Permute (ay, ..., a,) to (by,...,b)e I’ such that a,=b,,.,, v=1,...,9. Then
Tu((bys s b)) =0 (byp+ 1y A" Aby) =0(ay A Aa)=o. Define
A=) 1, '(4),
HEeS

a thin analytic set in I' as each 1,'(4) is thin and analytic Now take
vy, ...,v,) €eI’'— 4. Suppose that (v,,...,v,) is not a clear basis. Then there
exists u € S such that (v, 4y, ..., V() is not distinguished with respect to (M, 0, p),
that is, 0 is not an isolated point of EnM, where E = E(v,(p+ 1), -+, U, (w)- Thus
there exists a sequence {z,} such that z; 0 as A—o0 and 2,+0,z,e EnM.
There exists a subsequence {z, } such that z, /|z, | converges, say, to t, as
v— 00. Then ¢ is a tangent vector to M at 0, and te T. And z, € E for all A implies
thatte E. Leta = 0(v,(p+ ) A " AUu(m)- Then o(t) € 9(E)n o(T — {0})=E(9)n N.
Thus ae 4. But a=1,((vy, ..., ,)) and so (v,...,v,)e1, ' (4)C 4, a contra-
dicition. Consequently, every basis in I' — 4 is clear. q.e.d
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