Math. Ann. 184, 163—168 (1970)

Reflexivity and the Girth of Spheres

Juan JorRGE SCHAFFER and KONDAGUNTA SUNDARESAN

1. Introduction

James [4] introduced the concept of a uniformly non-square unit ball and
certain other geometric properties of Banach spaces, all related to reflexivity.
The purpose of this paper is to focus attention on a similar property, a gen-
eralized (negation of) uniform non-squareness, and show that it can be ex-
pressed in terms of the “girth” of the unit ball, as introduced by Schiffer [5],
i.e., the infimum of the lengths of centrally symmetric simple closed rectifiable
curves in its boundary. Specifically, it is shown that a Banach space is reflexive
if the girth of its unit ball is not 4.

2. Geometric Properties

Let X be a given real non-trivial normed linear space with norm | |;
let 2 denote its unit ball. For each positive integer n and each real g, 0 <g <1,
we consider the following property of X:

(Jn o) There exist x,e X, k=1, ..., n, such that

n

}1:. Ex Xy

for all sequences (&), &= +1, k=1, ..., n, in which every —1, if any, precedes
each +1, if any.

We say that X satisfies (J,) if it satisfies (J, ) for all sufficiently large
0,0< ¢ < 1;and that X satisfies (J) if it satisfies (J,) for every positive integer n.

We remark that (J,) is always satisfied; that the negation of (J,) is the prop-
erty of Z being uniformly non-square; and that, if (J, ) were modified so that
(2.1) held for every sequence (g), &= +1, k=1,...,n, the negation of (J,)
would become the property of X being uniformly non-I} (see [4]), and the
negation of (J) the property of being a B-space (see [1, 3]), all provided X is
a Banach space.

James proved that a non-reflexive Banach space satisfies (J,), (J3) [4;
Theorems 1.1, 2.1]; extending his method, we shall show that such a space
indeed satisfies (J).

Let m be a positive integer, (p;, ..., P,) a strictly increasing sequence of
positive integers, and f =(f)) an infinite sequence in X™*, the dual space of X,
with || fill =1,j=1,2,.... Set

S(p19 sees sz;f)z{xeX:%é("‘ 1)i_1j:;'(x)§1
for all je{pﬁ—h pZJ: 13195"”}

>gn (2.1)

22)
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(where [p,g]l=1{j:p=<j=q}) This set is convex. We define R(py, ..., pspni f)
= inf{||x|| : xe S(py, ..., Pam; [)}. Observe that, if m, f, and all p;, save one,

say p,, are fixed, S(p,, ..., P, ... P2m: f ) and hence R(py, ..., P s Pams )
is a monotone function of p;, the sense depending on the parity of I. We may
therefore define

Km(f): hm hm‘;;llr{loo R(plaaplmaf),

K, =inf{K,(f):f=(f), ie X* | fil =1, j=12 .}

(some of these numbers may be infinite). For fixed f, the sequence (K, (f))
is non-decreasing; the same is therefore true of (K,).
In terms of these definitions, this is the fundamental result of James.

2.1. Lemma ([4; pp. 543-544]). If X is a non-reflexive Banach space,
K,.<2m m=1,2,..., and therefore lix'?qsongm_l/Km = 1.
2.2. Theorem. If X is a non-reflexive Banach space, then X satisfies (J).

Proof. 1t is sufficient to prove that X satisfies (J,, ,) for each fixed n and o;
let these be therefore given. By Lemma 2.1 there exists a positive integer m such
that K,_,/K, >¢. and therefore a sequence f=(f), etc, such that
K, (VKN zK, /K. (f)>9 let m and f be thus fixed, and choose
72> 1 so close to 1 that

Ko (fVKu(f)>"e. 2.3)

By the definition of K,,,( f), there exists a strictly increasing sequence (¢y, - .-, Gamn)
of positive integers with the following property: if (qyq) - s Gi2m)
(911> -+ > Giam-2)) @re any subsequences, then

Rig,1y - 41(2m);f) <tK,(f), 24
R(‘]xu)» e ‘11(2m—2);f) 21! K,._1(f), 2.5

respectively. We fix such a sequence (g, ..., g2, and relabel it as follows:

1 .2 n 1 1 no.n 1 1
@19 D1, .-+ P1s P2 D35 -5 P25 P35 -5 P2is D2i 1o

] n 7 7 1 pA ”
s P2is Paits o5 Dam—20 Dom—15P2ms Dams -++5 2m) -

2.6)

From (2.4), (2.5), (2.6) we deduce in particular

RO ..o N<tK (), k=1,....n (27

R(prllap%’pga'--7pgm—3!pém—2;f’)gT—lewl(f)’ (28)

RS 057 P8, 5T oo D1 Pl 25 N 277 K i), k=1,.m. (29)

Now (2.6) shows that [p%_, p3]CIpsi i, p5] for all i=1,...,m—1
and all k=1, ..., n; therefore (2.2) implies

S(pll‘b"'9p§m;f)cs(prll’pillrpg’"'?p;m—;i’p%m——Z;f)a k:]‘""’n' (2'10)
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Similarly, if 1<I<k<n, (2.6) shows that [p},,,,p5t'T C [p%_1 Phd,
i=1,...,m—1, and therefore

SEh, . P DTS, PSS P o P, Do 23 ), 1SI<k<n;
@11

if 1 £k <1 <n, on the other hand, (2.6) shows that [p5;. ,, 5 *1C [PEis1s Phis 2l
i=1,...,m—1, and therefore

=S(ph, . P I CSh, 05 05 PV Pt P23 /), 1SkSi<n.
(2.12)

Using (2.7), we choose u, € S(p%, ..., p&,.; /) with Jju, || £t K, (), k=1, .., n
Since all the sets S(...; f) are convex, (2.10) and (2.8) imply

2.
1
similarly, (2.11), (2.12), and (2.9) imply

i n
”_zlluk“‘*' Z uk

i+1

n

_Zuk

1

n! =n"" 21 Ky (f):

nt >t K, (f), I=1,..,n—1.

We finally set x;, = u,/t K,,(f) and find |[x, || =1 and

n
Z Ly Xy
1

(using (2.3)) for all sequences (g), &= +1, k=1,...,n, with all —1 preceding
all +1. Thus (J,,,) holds, and the proof is concluded.

We have shown that (J) is necessary for non-reflexivity; i is, however, not
sufficient, as the following result shows.

znt 2 K, (fVKW(f)>en

2.3. Theorem. Let X be a separable non-reflexive Banach space, and let
(X,) be an increasing sequence of finite-dimensional subspaces of X such that

{J X, is dense in X. There exists a separable reflexive Banach space Y and a

1
sequence (Y,) of subspaces of Y such that Y, is congruent to X, for every n; and
each such Y and every space isomorphic to it satisfies (J).

Proof. To construct Y, choose p, 1 <p <co, and let Y be the closed subspace
of the Banach space [P(X) consisting of those sequences (x,) that satisfy x, € X,
n=1,2,.... This space is separable and reflexive (see [2]). Now X satisfies
(3,,,) for every n and every ¢ by Theorem 2.2; the fact that the same is true of
every space isomorphic to Y then follows exactly as in the proof of [4; Lemma 1.1,
Theorem 1.2], and we need not repeat the argument.

Remark. Suppose that X, in addition, is not & B-space (i.e., is not uni-
formly non-I for any n); this is conjectured in [4] to be the case always, and
shown to hold when X has an unconditional basis. Then the same proof shows
that Y and all spaces isomorphic to it are separable and reflexive but are not

12¢
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B-spaces. An example is obtained by taking X =PI, X,=0L,p=2, so that Y
can be represented as the space of infinite lower-triangular matrices of real

a0 m 2\1/2
numbers with [[(x,,,)]l =< Y (Z Ixm,.i) ) <.

m=1\n=1

3. The Girth of Spheres

Let X be as before, with dimX = 2. Let 2, ¢X denote the interior and the
boundary of the unit ball, respectively. The inner metric § of 6% is defined as
usual by d(p, ¢) = inf{l(c): ¢ a curve from p to q in 4X}; here “curve” means
“rectifiable geometric curve”, and I(c) is the length of ¢; details of notation,
terminology, and prodfs may be found in [S]. Among other parameters of X
defined in [57, we have m(x) = inf{é(—p,p): peéZ} = mf{{{c):ca curve in 82
with antipodal endpoints}; 2m(X) may be termed the girth of 2, a term more
clearly justified by the characterization mentioned in the introduction
[5; Lemma 5.1].

It is obvious that m(X) = 2; in [6] it was shown that, although m(X) > 2 for
all finite-dimensional X, there exist spaces with m{X)=2. We shall now
show that these are precisely the spaces satisfying (J).

In the following lemma, p, g € X are opposite if p+ q=0.

3.1. Lemma. m(X) = inf{l(c): ¢ a curve in X\Z, with opposite endpoints}.

Proof. 1If € is the set of curves in X\Z, with opposite endpoints and €,
is the subset of those that lie in ¢Z, this inclusion and the definition of m(X)
imply inf{i(c):ce @} <inf{l(c):ce €} =m(X). Let ¢e® be given; setting
u=min{||x]| : xe ¢} =1, we find that u"'ce @, but u~'¢ contains a point
ge¢Z. The symmetric closed curve s (not necessarily simple) obtained by
putting 4! ¢ and — ! ¢ end-to-end can therefore also be obtained by putting
end-to-endacurvedfrom —qtoqin X\, and the curve —d. By [5; Theorem 3.3],

m(X)S(—q, @<IO)= 3=l )=p" (IS U0).
Since ce & was arbitrary, m(X) £ inf{l(c): c e €}, and the conclusion follows.

3.2. Theorem. For a given positive integer n and a given 9,0 < ¢ < 1, the space
X satisfies (1, ) if m(X)<2¢™" and only if m(X)<2(¢—n"")"" (the latter
provided gn> 1). Therefore X satisfies (1) if and only if m(X)=2.

Proof. 1. Assume that m(X) < 2¢~!. There exists, then, a curve ¢ in 02 with
antipodal endpoints, say —p, p, such that [=1[(c)<2¢7!. Let g:[0,[]—d%
be the parametrization of ¢ in terms of arc-length, and set p,=gkn ' )edZ,
k=0,...,n so that po+p,= —p+p=0. Set x,=1"*n(p, — px—1) k=1,...,n.
Then |x|=1"'n|gkn ) —g(k—)n ]| <1, so that x e X, k=1,...,n.

J n

Further, —Y x,+ 3 x, = "' n(po — p; + p, — p) = —21 'np;. Therefore

. i j+1
J n
““‘%:xk+ Z:xk

j+1

=21""n>g, j=0,...,n, and (J, ) holds.
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2. Assume that X satisfies (J, ) with gn>1, and set u= (Qn—- 1)L Let
x€Z, k=1,...,n, be as specified in (J, ) and set pjz,u( Z X+ Z xk>,

jt+1
j=1,...,n. We consider the polygon p with consecutive vertlces Po= —DPu

Pi» ---» P> and claim that it lies in X\ Z,. Indeed, a point on the edge pyp, is
of the form Apy + (1 — )p, =p (Z Xe— (1 —=A)xy — ),x,,), 0< 1< 1, while a point
1

ontheedge p;,_,p;,j=2,...,n, is of the form

-1
lpj-1+(1~/1)pj=p( Zxﬁ—Zx,;Htx —(l“i)xj),
0< /451, and therefore

[Apj—1+ (1 =Dp;l > plon—A—(1—=A)=pulen—1)=1,
0<AZH, j=1,..,n

as claimed. Also, py —po=p(x,—xy), pj—Pj-1=—p(X;_1 +Xx)), j=2,..,n
by Lemma 3.1,

m(X) £l(p)= ; Ip;= Pl S2np=2(@—n"H7".

We can now combine Theorems 2.2 and 3.2 and obtain our main result.
3.3. Theorem. If X is a Banach space and m(X)> 2, then X is reflexive.

Remark. A slightly more general result is: If m(X)> 2, then the completion
of X is reflexive. An easy proof is obtained from the following observation:
if X is a dense subspace of Y and Y satisfies (J,, ), then X satisfies (J, ,) for
every ¢, 0 < g <p; therefore, if X does not satisfy (J), neither does Y. It is
in fact true that m(X) = m(Y) whenever X is a dense subspace of Y.

It follows from Theorem 2.3 that the converse of Theorem 3.3 does not hold.
To put this remark into clearer perspective, we recall some concepts from [5].
An isomorphism class X is the class of all normed spaces isomorphic to some
one of them. Obviously, either all spaces in an isomorphism class are Banach
spaces, or reflexive Banach spaces, or none is. Also, all spaces in X have the
same (linear) dimension dimX. We set m,(X)=inf{m(X): X € X}, m*(X)
=sup{m(X): XeX}. It was shown in [5; Theorem 8.3], [6; Theorem 7] that
m,(X)=2 if and only if dim X is infinite. In contrast to the fact that m*(X)2 =
for all X with finite, and for some with infinite, dimension [5; Theorem 8.4],
our present Theorems 3.3, 3.2, and 2.3 imply the following result.

3.4. Theorem. m*(X)=2 for every isomorphism class of non-reflexive
Banach spaces, and for some isomorphism classes of (separable) reflexive Banach
spaces.
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Remark. By combining the Remark to Theorem 3.3 with the fact that
m{X} = m(Y)if X is a subspace of Y, we find, in contrast to [5; Theorem 84, (¢)]:
For every infinite cardinal WX there exists an isomorphism class X with dimX =N
and m*(X)=2.
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