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t. Introduction 
In some recent research on differential equations in a Banach space [t7],  

the author was led to consider certain geometrical properties of such a space, 
and notably the following problem : to give a lower bound for the length of a 
curve joining antipodal points of the unit sphere and lying o n  the sphere. 
Although the original context was infinite-dimensional, this question does not 
appear to be trivial by any means even for three-dimensional normed spaces. 
It belongs to a family of little-explored geometrical problems dealing with the 
inner metric structure of the (surface of the) unit sphere. The inner metric 
geometry of convex surfaces has been extensively studied (e. g., [1], [4]); what 
is new and decisive about the questions we are referring to is that the inner 
metric is determined by the norm generated by the body bounded by the 
surface itself. They are, of course, problems "in the large". 

The purpose of this paper is little more than to present a few parameters 
associated with a normed space that arise in this context, and to give a prelim- 
inary discussion of their values. The two-dimensional case has been discussed 
previously, even for "norms" induced by non-symmetric convex sets [8], and 
a strong result obtained recently [9], [10] (see also the Remark at the end of 
Section 4). In a sense (and in more than one technical device) this paper is 
related to [16]. It is hoped that it will help place some of the relevant questions 
in the proper light, even if it cannot claim to contribute significantly to answering 
them. The amazing amount of underbrush that has to be cleared away, espe- 
cially in Sections 3, 4, 5, indicates, to this author at least, that the geometry of 
finite-dimensional convex sets is still quite imperfectly known. All the fun- 
damental problems in our study are finite-dimensional; the infinite-dimensional 
case has been included mainly because the extra cost is slight, and almost all 
the results concerning it are obtained with the use of the finite-dimensional 
theory. 

Section 3 discusses the inner metric of the unit sphere. Section 4 deals with 
two-dimensional spaces; this case can be analysed quite thoroughly, and the 
conclusions concerning it are required in most of the remaining work. Section 5 
introduces the parameters: inner diameter, perimeter, girth, that are the main 
object of our study. Section 6 is concerned with the concept of "nearness" 
of isomorphic normed spaces, and of equivalence classes of such spaces under 
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congruence. This concept is applied in Sections 7 and 8 to show that the 
parameters are continuous with respect to it, and attain, for every fixed finite 
dimension, their extreme values. Section 8 contains the main results concerning 
these extreme values, Section 9 includes some conjectures and concluding 
remarks. 

2. Normed spaces 

We shall be dealing throughout  this paper with real normed spaces; the 
fact that the scalars are real numbers will always be understood. Completeness 
of infinite-dimensional spaces will play no r61e. If X is such a space, ll'tlx 
denotes the corresponding norm, and we set 2(X)=  {x e X : Ilxlt < 1}, Zo(X) 
= { x  e X : Ilxll < 1}, ~z~(X)= {x e X:  Ilxll = 1}. We write I1"11, Z, Zo, aZ, when 
no confusion is likely. If p e t?2, its antipode is - p ,  and the two points are 
antipodal. For  any A C X, coA denotes the convex hull of A. 

In particular, R denotes the real field with the norm If.fIR=H, so that 
X(R) = [ -  1, 1], etc. 

dim X denotes the linear (Hamel) dimension of X or, rather, of the under- 
lying linear space. X is n-dimensional, finite-dimensional, countable-dimensional, 
infinite-dimensional if d imX is, respectively, n, a finite cardinal (written dim X < 
< ~) ,  finite or countable infinite, not finite (written d imX = oo). 

A subspace Y of X is a linear manifold in X, provided with the norm of 
X (closedness is not assumed). Thus Z ( Y ) = Z n Y ,  S ,o(Y)=2onY,  d,~(Y) 
= d Z n  Y. A set A C X is finite-dimensional if it is contained in a finite-dimen- 
sional subspace of X. 

If X, Y are normed spaces, an isomorphism from X to Y is a linear homeo- 
morphism T : X  ~ Y, i.e., a bounded bijective linear mapping with a bounded 
inverse. A congruence is an isometrical isomorphism; equivalently, an iso- 
morphism T with [[ T[[ = [l T -  1 I[ = 1. X, Y are isomorphic [congruentj if there 
exists an isomorphism [a congruence] from X to Y; these relations are equiv- 
alence relations. Isomorphic spaces have the same dimension; spaces with the 
same finite dimension are isomorphic. 

If X, Y are normed spaces, we denote by X 03 Y the outer direct sum of X 
and Y (algebraically) with the norm ttxGytlx~r = max{llXltx, Ilyllr}, so that 
Z ( X O  Y)=N(X)@~(Y) .  Obviously, dim(X(~ Y ) = d i m X  + d i m  Y, and X, Y 
are canonically congruent to the subspace X@{0}, {0}@Y of X@Y,  re- 
spectively. 

2.t .  Lemma. I f  X, Y are normed spaces, dim Y<  o % d i m X > d i m  Y, there 
exists a normed space Z such that X and Y @ Z are isomorphic. 

Proof. Set dim Y = n, and let V be an n-dimensional subspace of X. There 
exists an isomorphism T : V ~  Y. There further exists in X a bounded projection 

P with range V(e.g., Px = ~ (x,  e*) ei, where {ei: i = 1 . . . . .  n} is a basis of V 
1 

and the e* are bounded linear functionals on X with ( e~, e*) = 6 u, i,j = 1 .... ,n--  
these exist by the Hahn-Banach Theorem). Let Z be the null-space of P, a 
subspace of X. We consider the linear mapping T':X-- ,  Y(~Z, defined by 
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T ' x =  T P x O ( I - P ) x .  T'  is bounded:  llT'll Nmax{[lTPll ,  I l l -P l [} ;  and T'  
has the inverse T" : Y O Z ~ X  defined by T"(y(~ z) = T -  ly  + z, which is also 
bounded:  IIr"ll < 1 + liT-ill .  Therefore T'  is an isomorphism from X to 
Y @ Z .  

3. The inner metric 

In this section we consider a fixed normed space X with dim X > 2. Our 
purpose is to examine the inner metric of 0Z, i.e., the distance given by the 
infimum of the lengths of curves. Concerning inner metrics in general, see 
[13]. Our first purpose is to show that the infimum of the lengths of curves with 
given endpoints in 0Z cannot be decreased by allowing the curves to pass 
through the exterior of S. In an inner-product space this is obvious, since 
radial projection onto gZ of such a curve does not increase the length; but 
this argument fails in every other normed space (except for some two-dimen- 
sional ones : see [18]). The argument given below could be simplified somewhat 
in the special case when Z is strictly convex. 

We are concerned with rectifiable curves in X or in subsets of X. All curves 
considered will be rectifiable: curve means "rectifiable geometric curve", as 
defined in [3 ; pp. 23--26],  i.e., as the equivalence class of all parametrizations 
(continuous functions from a compact interval of real numbers into the space) 
with the same standard representation in terms of arc-length. Following 
common usage, however, and without danger of confusion, a curve c often 
stands for the common range of its parametrizations - -  a compact set - -  
as, e.g., in "a point of c", "co c" ; we set Q (c) = max { It x II : x s c}. If c is a curve in the 
subset A of X, say, we denote by l(¢) its (finite) length, and by 9, :[0,/(¢)]--,A 
its standard representation in terms of arc-length. Thus g~(0), g~(l(c)) are the 
initial point and the final point of c, and c is a curve from its initial point to its 
final point. I f a  e X, 2 is a real number, and c is a curve in X, a + 2¢ denotes the 
curve obtained from c by the mapping x - -*a+2x .  Thus l(a+2c)=21(c),  
ga+ ~,(s) = a + 2gc(2- ~ s), 0 <= s < l(a + 2¢). A curve ¢ is simple if it has no multiple 
points, i.e., if 9c is injective. 

3.t .  Lemma. I f  p, q ~ O Z and c is a curve from p to q in X \  Zo with Q(c) > 1, 
there exists a curve c 1 from p to q in co ¢\S o such that I(%) < l(¢) and 6(q)  < 6(c). 

Proof. Let E be the class of all curves c' from p to q in co c\Z0 such that 
l(c') < l(c); this class contains c, hence is not empty. Set 6 = 6(c). Suppose the 
conclusion to be false: then every c' e E satisfies 6 < 6 (c') < sup { llx It : x e co c} _~ 
=< 6, so that 6(c') = 6 > 1. We may then set a(c') = max {s : [Igc,(s)[I =6  } for each 
c' ~ fi;, since the set of numbers on which the maximum is taken is compact and 
not empty. 

We claim that we can construct, for every c 'e  ~, some c"s  ~ such that 
~r(c") < a ( c ' ) -  ( 0 -  1); repeated application of this construction will yield a 
contradiction, since 6 - 1 > 0 and obviously ~r(c') ~ 0 for every c' e E. 

We proceed to establish our claim. We set u = g,,(~r(c')); now 

6 -  1 = [lull- ]lpl] _-< Hu-pll  _-< a(c')__< l ( c ' ) - ] ] q -  ult < l ( c ' ) - ( t lu l ] -  tlqtt) 

= t ( c ' ) -  ( 6  - 1 ) ;  
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we m a y  therefore consider  the points  v, w of  ¢' defined by v = g,,(a(c') - (~ - 1)), 
w = g , , ( a ( ( ) +  ( ~ - 1 ) ) .  O n  account  of  the definit ion of  a ( ( )  we have IIwl[ < Q. 
The  curve ¢" is now obta ined  f rom c' by replacing the piece with arc lengths 
s t  [ a ( c ' ) - ( ~ o -  1), a ( c ' ) + ( Q -  1)] by the straight-l ine segment  vw, t raversed 
once f rom v to w. Clearly c" C co c' C co c and  l(c") < l(c') < l(c). Fur ther ,  for any 
inter ior  poin t  (1 - 2) v + 2w, 0 < 2 < 1, of  the segment  

Q = ( 1 - 2 )  Q + 2 ¢  > (1  -2) f lv l l  + 2  Pfwrl > It(1 - 2 ) v + 2 w l l  > 

> llull - (1 - 2) Tin - vlr - 2 llu - wit > ~ - (1 - 2)(~ - 1) - ,~(~ - 1 )=  1 ; 

thus c " n S  o = 0 ,  so that  c " c ~ ;  and  every point  of  c" beyond  the arc- length 
a(c') - (Q - 1) is ei ther an interior  poin t  of  the segment,  or  a point  of  c' at  or  
beyond  the arc- length a ( c ' ) +  ( Q -  1), so that  its n o r m  is < ~ in ei ther  case. 
Therefore  o-(c") < a(c') - (e - 1), as claimed. 

3.2. Lemma.  I f  p, q ~ OZ, and c is a f inite-dimensional curve f rom  p to q in 
X \  Zo, there exis ts  a ( f ini te-dimensional)  simple curve c o f rom p to q in co c c3 ~Z" 
with/(Co) < l(c). 

Proof.  1. c is f ini te-dimensional  and  compac t ,  hence c o c k s  o is finite- 
d imensional  and  compact .  Define ~ as in the p r o o f  of  L e m m a  3.1, and set 

= inf{Q(c') : c' ~ ~} _>_ 1. Let  (c.) be a sequence in ~ with lim ¢(c,) = ¢. Since 

all c, have the same initial and final points,  and  lengths bounded  by l(c), there 
exists a subsequence tha t  converges  uniformly to a curve c~ c ~ (i.e., a sub- 
sequence of  suitable pa ramet r i za t ions  converges  uniformly to a pa ramet r i za -  
t ion of  c~; see [3 ;  Th. (5.16), pp. 24 - -25 ] ) ;  obviously,  Q(c~)= ~. We claim that  
Q(c~)=l ,  so that  c~ is in the f ini te-dimensional  c o m p a c t  set ( c o c \ Z o ) ~ S  
= co c ~ (Z\X0) = co c c~ ~Z : indeed, if Q(c~) > 1, there would  exist, by  L e m m a  3.1 
appl ied to c~, a curve  ca f rom iv to q in co c~\Zo C co c\2~ o wi th / (e l )  ~ l(c~) < l(c) 

- -  so that  c~ c E - -  but  with Q(c~) < Q(c~) = Q, which cont radic ts  the definit ion 
of  Q. 

2. The  curve c~ satisfies all requirements ,  except pe rhaps  that  of  being 
s imple ;  its existence shows tha t  p, q are connected  by a curve in the (finite- 
d imensional)  c o m p a c t  set co c n  0Z ; hence there is a "shor tes t  join",  i.e., a curve 
Co f rom p to q in co c n  dZ  with m i n i m u m  length, so that  l(%) < l(c~) < I(¢); and  
such a "shor tes t  jo in"  is a s imple curve [3;  (5.18), (5.19), pp. 25- -26] .  

Remark.  I f  X is a Banach  space  and convex hulls are replaced by closed 
convex  hulls, L e m m a  3.2 remains  valid with "f ini te-dimensional"  deleted in 
the a s sumpt ion  and  the conclusion,  since the closed convex hull of  a c o m p a c t  
set in a comple te  locally convex space is compact .  

3.3. Theorem.  (a): I f  p, q ~ ~Z,  then 

(3.1) 

inf{l(c) : c a curve f rom p to q in X\2;o} 

= inf{l(c) : c a curve f rom p to q in OS} 

= inf{l(c) : c a simple curve f rom p to q in OZ} 

= inf{l(¢) : c a f ini te-dimensional simple curve f rom p to q 

in OZ} < 09. 
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(b)" I f  dim X < oo, these infima are attained. 

Proof. Proof of (a). We  m a y  assume wi thout  loss that p 4 = q. Let  g l ,  ~2, ~a,  
~4 be, in order,  the four sets of  curves on which the infima are taken in (3.1). 
N o w  ~1 ~ ~2 ~ 1~3 ~ 1~4, and g l  is no t  empty since dim X > 2; (3.1) will therefore 
be established if we show that  for every c e ~1 and every number  e > 0 there 
exists Co ~ ~4 such that  /(co) < l(c) + e. 

Let c s g l  and e > 0  be g iven;  set l=/(c) ,  t / =  ( / + 2 ) - % ,  and  choose  an 
integer m > ½(~/-1+ I) t .  We define c l to be the broken line with consecutive 
vertices p, Uo, u 1 . . . . .  u,,, q, where u i = (1 + q) gc(im- 11), i = 0 . . . .  , m ; thus I] ui I[ > 

1 + t / for  all i, and I lu i -  ui_ 111 < (1 + q) m -  1 l, i = 1, ..., m. Since Uo = (1 + t/) p, 
u,, = (1 + q) q, every point  x ofc 1 is of  one of  the forms x = (1 + z) p o r x  = (1 + z)q, 
0 _< z -< q - -  and [Ixll = 1 + z > 1 in either case - - ,  or  else x = (1 - 2) ui_ 1 + 2u~, 
0_<2<  1, 1 _ < / < m - - a n d  then tlx[] ~ [[ui- 1[[ - 2  l lui-ui-  111 > (t + r / ) (1 -½m-  11)> 
> 1 o r  Ilxlt > i l u i t t - ( 1 - 2 )  Ilui-u~-lll >(1  + r/)(1 - ½ m - l / ) >  1, according as 
0 _< 2 _< ½ or  ½ N 2 _< 1. Thus  c I is a finite-dimensional curve f rom p to q in X\22o, 

and l ( q ) =  Hu0 -P[ ]  + ]lure-q]] + ~ ][ui-ui-1]l < 2 t / +  (1 +tl) l = l + e .  We now 
1 

apply L e m m a  3.2 to c~ and find c o e g4 with/(Co) < l(c 0 < I ÷  e, as was to be 
shown. 

Proof of (b). Since ~22 is c o m p a c t  if d i l n X  < 0% inf{l(c) : c e g2} is attained, 
and indeed at a simple curve, i.e., at some c o e g 4 = ~  a [3 ;  (5.18), (5.19), 
pp. 25- -26] .  

For  any p, q e (722 we now define 6x(p, q) = inf{l(c) : c a curve from p to q in 
~?Z}, so that  6x(p, q) - -  or 6(p, q) for short  - -  is the c o m m o n  value of  the infima 
in (3.1). Thus  6x is the inner metric o f ~ Z  (cf. Theorem 3.5). 

3.4. Theorem. Let p, q ~ t? ,r, be (liven. Then: 
(a): I f  Y is a subspace with dim Y > 2 and p, q ~ Y, then 6y(p, q) > 6x(p, q). 
(b) : For any integer n > 1 + ½6x(p, q) and any a > 0 there exists a subspace Y 

with 2 < dim Y < n such that p, q e Y and 

(32) 6r(p, q) < 6x(P, q)(1 - n-1(1 + ½6x(p, q)))- i + a ; 

therefore 

(3.3) 6x~,q)=inf{cSy(p,q): Y a subspace with 2 N d i m Y <  oo}. 

(c) : There exists a countable-dimensional subspace Y such that p, q ~ Y and 

6v(P, q)= 6x(p, q). 
Proof. (a) is trivial, since t?,Y,(Y) C OZ. We may  assume p 4: q. Set 6x(P, q) = 6, 

and let n, a be as assumed. There exists a curve c f rom p to q in X\2~ o (or even in 
022) with l ( c )= l  so close to 6 tha t  n > l + ½ l  and l ( 1 - n - l ( l + ½ 1 ) )  -1 < 
< 6(1 - n - l ( 1  + ½6))-1 + ~. We now carry ou t  the cons t ruc t ion  in the p roof  o f  
Theorem 3.3, (a), with e = ( n ( l + ½ l ) - l - 1 ) - l l > O ,  t / = ( l + 2 ) - l e  
-- ½(n - (1 + ½l))- 11, and m = ½(t/- t + 1) = n - 1. The m + 1 = n points  u o . . . . .  u,, 
are conta ined in some subspace Y with 2 < dim Y__< n, which also contains  
p = (1 + q)-  ~ u o and q = (1 + q)-  ~ u,,. The broken  line c1 therefore lies in Y, and so 
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does the curve c o . Thus  

fir(P, q) < l(¢o) < l +  e = l(1 - n -  1(1 + ½l)) -1 < 6(1 - n -  1(1 + ½ fi))- 1 + a ,  

and (3.2) holds for this Y. (3.3) is an immedia te  consequence.  I fn  o > 1 + ½fix(P,q) 
and, for every n > no, Y, is a subspace with 2 < dim Yn < n, p, q e Yn, that  

satisfies (3.2) with a = n -  1, and if Y = ~ Yn is the countable-dimensional  space 
nO 

spanned by the Y,, (a) and (b) yield 

fix(P, q)<= fir(P, q) <= fir,(P, q) N fix(P, q)(1 -- n -  1(1 + ½fixP, q)))- 1 + n-  ' 
6x(p,q) as n ~ o o ,  

so that (c) holds. 
Remark. If d i m X  < o% we may  choose c in such a way that  I =  fi (Theorem 

3.3, (b)); therefore (b) holds with a = 0 in this case. 
3.5. Theorem. I f  p, q e OZ, then 

(3.4) llq - Prl < 6(p, q) < 2 Ilq - Plf. 

6 is a metric on OZ, and is (uniformly) equivalent to the metric induced on ~?S 
by the norm of X.  I f  c is a curve in (?Z, its length with respect to fi is equal to 
l(c). 

Proof. The  fact that  [tq - Ptl <= fi(P, q), that  fi is a metric, and that  curves have 
the same length in both  metrics follows at once from the definitions. Since p, q 
certainly lie in some 2-dimensional  subspace, Theorem 3.4, (a) shows that,  in 
order  to prove fi(p, q) < 2 IJq - Plf - -  f rom which the equivalence of  the metrics 
follows - -  there is no  loss in assuming that  d i m X  = 2. The  p roo f  of  this special 
case will be given in Theorem 4.4. 

We record a well-known fact abou t  inner -product  spaces. 
3.6. L e m m a . I f  X is an inner-product space with the inner product (., .), then 

(p ,q )=cosf i (p ,q ) ,  0_<_fi(p,q)=< n, for all p ,q~SZ .  

4. Two-dimensional spaces 

T h r o u g h o u t  this section, X is a normed  plane (d imX = 2). N o w  gS, is (the 
range of) a simple closed curve, unique up to or ienta t ion (rectifiability follows 
from convexity), the length of  which we denote  by 2L  = 2L(X). If p, q e (3Z, 
there are exactly two simple curves from p to q in 8Z, and the sum of their 
lengths is 2 L ;  fi(p, q) is of  course the length of  the shorter  of  these, so that  

(4.1) 6(p,q)<=L, 

(4.2) fi(p, q ) =  L (bo th  curves have equal lengths L) if and only if p + q = 0.  

The  following known result establishes the existence of  one pair  of  "con-  
jugate  diameters".  

4 , t .  Lemma.  There exist u, v e 8Z that are the midpoints of  consecutive 
sides of a parallelogram containing Z,. 
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Proof. See [5]. In the s impler  of  DAY'S two proofs  a eucl idean metr ic  is 
in t roduced in X, and any pa ra l l e logram of  least euclidean area  containing Z 
ra ther  obvious ly  satisfies the conclusion.  In order  to use a compac tness  
a rgumen t  to show that  the least a rea  is at tained,  an a pr ior i  bound  for the 
d iamete r  of  the para l le lograms  is required,  but  not  men t ioned  there ;  now a 
para l le logram of  euclidean heights ha, h2 and  area  A has a d iamete r  (euclidean 
length of  the longer  diagonal)  A+(A(h; 2 + h2 2) + 2(A 2h~- 2h2 2 _ 1)21)21 ; if 2; 
has eucl idean d iamete r  d and  width  b, there is a rectangle of  sides b, d con-  
taining 2;; we m a y  therefore restrict  the para l le lograms  conta in ing 2; (which 
have h ~, h 2 ~ b) to have A N bd, so tha t  their d iameters  are < (2d(d + (d 2 - b2)~)) ½. 

4.2. Theorem.  L < 4; L = 4 / f  and only if 2; is a parallelogram. 
Proof. Let u, v e  02; be as given by L e m m a  4.1. The  b roken  line with con-  

secutive vertices - u, v - u, u + v, u is conta ined  in the b o u n d a r y  of  the para l -  
le logram H that  conta ins  22, hence is a curve f rom - u to u in X\2 ;  o ; its length is 
llvl[ + 2[[ull + l]vTI = 4 .  By T h e o r e m  3.3, L = f ( - u , u } < 4 .  

If 2; is a pa ra l l e logram with u, v as midpo in t s  of  consecut ive sides, the 
vertices are + u + v, and the length of  each side is 2; hence L = 4. 

v v ÷ z ~  

/ 
F~g. I 

Assume conversely that  L = 4 ,  and let u, v, and the pa ra l l e logram / /  be 
given as before (Fig. 1). I f S  = H,  S is a para l le logram,  and  the conclusion holds;  
otherwise,  since S is convex and conta ined  i n / I ,  one of  the vertices of  H does 
not  be long to Z ;  we assume  tha t  it is u + v (otherwise in terchange v and  - v). 
Since the line th rough  u + v paral lel  to uv is a line of  suppor t  of  H, there is a 
distinct parallel  line of  suppor t  of  S that  separates  u + v f rom the segment  
uv C Z, and therefore contains  poin ts  v + 2u, u + 2v with 0__< 2 < 1. N o w  the 
b roken  line with consecut ive vertices - u, v - u, v + 2u, u + 2v, u is a curve  
f rom - u to u in X \ Z o ,  and  therefore,  by T h e o r e m  3.3, 

4=L=b(-u,u)< Ilvll +(1 +2)Ilull +(1 -2)Ilu-vii + 211vii 
= 2 ( 1 + 2 ) + ( 1 - 2 )  I l u -  vii _<2(1 + 2 ) + 2 ( 1 - 2 ) = 4  ; 

equali ty mus t  hold t h r o u g h o u t ;  since 1 - 2  4:0, this implies 1tu-vii  = 2, so 
that  ½(u - v) e 0Z. Since this is the midpo in t  o f  the segment  u ( -  v), this whole  
segment  lies in 02;. Hence  u - v ¢ Z, and  in terchanging v and - v in the preceding 
a rgumen t  we conclude tha t  the segment  u v is also conta ined  in 0Z, and therefore 
Z is the pa ra l l e logram with consecut ive  vertices u, v, - u, - v. 
5 Math. Ann. 173 
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The following lemma belongs to the class of results on plane convex sets 
that are intuitively obvious, annoyingly awkward to prove, and probably 
published in some out-of-the way paper. Its ad-hoc proof  is given for the sake 
of completeness. 

4.3. Lemma. Let  p, q ~ ~Z be given, 0 < II q - P II < 2. Set u = tl q - P II - l(q _ p) 
e OZ, and let ~ be the well-defined simple curve f rom - u to u in ~27 that contains 

p, q. Then ¢ = ½(p + q) + ½ t]q - Pll ~ is a curve f rom p to q in X\27o. 

t l  

Fig. 2 

Proof. (See Fig. 2). Since t i q - p l l < 2  - -  whence p + q + O  - -  and q - p  
= tI q - p JI u, p and q are in the same open half-plane with edge ( -  u) 0 u; therefore 

is well defined, and - u, p, q, u follow on it in that order. The lines ( -  u) p and 
uq meet at v = (2 - IJq - PI])- X(p + q); now I[v]t = (2 []ql[ - i[q - Pt[)- l][p + q[] ~ 1, 
so vCXo;  and 2 - l l q - p l l > O ,  hence v lies in the same half-plane of edge 
( -  u) 0 u as p, q, and s. It follows from the convexity that Zo is contained in the 
union of the open strip whose edges are the lines ( -  u) 0 u and pq, and the open 
angle of vertex v and sides v p ( -  u) and vqu. Now c lies in the half-plane of edge 
pq that does not contain 0, hence contains v; c lies a for t ior i  in the open half- 
plane of edge ( -  u) 0 u that contains v. 

Assume now by contradiction that  x ~ ¢n2~ o ; it follows from the preceding 
that x must be in the open triangle v ( - u ) u .  The line vx meets the diameter  
( -  u) u in an interior point z, hence z e Zo. Therefore the segment vz meets ~27 
in exactly one point, say y, and the segment vy does not meet 27 o. Now y is the 
unique intersection of the line vx  with 02~ in the half-plane of edge ( -  u) 0u that 
contains v; it is hence the unique intersection of the line vx with ~. On the other 
hand, x e ¢  implies x = ½ ( p + q ) + ½ 1 1 q - p ] f y '  for some y ' ~ ,  and x - v  
= ½ [[q-  Pit ( Y ' - v ) ;  therefore y = y ' ,  and x ties in the segment vy, which did 
not meet 27o ; this contradicts the assumption on x. 

Remark. It is not difficult to show that the restrictive assumptions on Ilq - Pit 
may be removed ; the case ILq - Pit = 2, p + q 4~ 0 requires a somewhat  similar 
proof. 

4.4.  T h e o r e m .  If p, q ~ ~ ,  6(p, q) ~ ½L ]Jq - Pt] < 2 Ilq - PlI. 
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Proof. The second inequali ty follows f rom Theorem 4.2. The first inequality 
is trivial if rlq-pll = 0 ,  and follows f rom (4.1) if IPq-pIP = 2 .  We therefore 
assume that  0 <  Hq-Pl!  < 2; with ~, ¢ as in L e m m a  4.3, c is a curve f rom p to q 
in X\Zo,  and l(¢)=½llq-pll l(~)=½Lllq-pll. The conclusion follows from 
Theorem 3.3 and the definition of  6. 

Remark. The only result of  Section 3 we have used in this section is Theorem 
3.3; the p roo f  o f  Theo rem  3.5 by means of  Theorem 4.4 therefore involves 
no circularity. 

Theorem 4.2 gives an  upper  bound  for L ;  we now seek a lower bound.  
4.5. Theorem. L > 3 ; L = 3 if  and only if 2; is an affinely regular hexagon. 
Proof. 1. Let u e ~32; be given. The  function x ~  1Ix - ull is con t inuous  on the 

connected set c3Z, and has the values 0, 2 at x = u, x = - u, respectively. There 
exists therefore v s c~2; with I t v -  ull = 1, i.e., v -  u E ~S. The points  v -  u, v are 
in the same half-plane of  edge ( -  u) 0 u, and - u, v - u, v, u follow in that  order  on 
~22, since v - (v - u) = u. Therefore 

L = f i ( - u ,  u)>= II(v-u)-(-u)t l  + t l v -  (v-u)l l  + Ilu-vii--Ilvtl  + Ilull + t lv-ull  = 3 .  

2. If  22 is the affinely regular hexagon with consecutive vertices u, v, w, - u, 
- v, - w, we have u - v + w = 0, and hence L =  llw - ( -  u)ll + t lv  - wll + t lu  - vii 
= Itvll + Ilull + tlwll = 3. 

p 

- • y 

-N /z 

Fig, 3 

3. Assume that  L = 3 ; choose  u to be an extreme point  o f  2;, and let v be as 
in part  1 o f  the proof.  We claim that  the whole segment (v - u) v lies in 0S. 
Indeed, let p be the midpoin t  (in arc-length) of  the shorter  simple curve from 
v - u to v in ~?S (Fig. 3). We  have 

3 = L = 6 ( - u , u ) >  I P ( v - u ) - ( - u ) l t  +~(v-u ,p )+~(p ,v )+  I l u -  vii 

= 2 + 6(v-u ,  p) + 6(p, v ) _ R +  ]lP-(V-U)][ + llv-p[[ ~ 2 +  t lv-(v-u)ll  = 3 .  

Therefore equali ty holds at  each step, and we must  have lip - (v - u)[I = 6(v-  u,p) 
= 6 ( p , v ) =  flv-pll and I[p-(v-u)[4 + [[v-pl l  = [[v-(v-u)l[ = 1, whence 
I[p-(v-u)t t=tlv-pl l---½. Thus  2 u + 2 ( p - v ) ,  2 ( v - p ) E O L ' ;  but  u is the 
midpoint  o f  the segment having these endpoints ,  and was assumed to be an 
extreme point  of  2;. Therefore bo th  points  must  coincide with u, whence 
5* 
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p = v - ½u, the midpoin t  of  the segment  (v - u) v ; since p e OZ, the whole  segment 
lies in OZ. 

If  v is not  an extreme point  of  Z, the preceding implies that  v + 2u ~ 0Z for 
some sufficiently small 2 > 0 ;  we assume 2 < 1 .  But then I I ( v + 2 u ) - u l l  

= ]lAv + (1 - 2) (v - u)tl = 1, and 

3 = L =  3 ( -  u, u) > II(v - u)  - ( -  u)lt + Ii(v + ;~u) - (v - u)ll + II(v + ; tu)  - ull 

= 1 +(1  + 2 ) +  1 = 3  + 2 > 3 ,  
which is absurd. 

Therefore v is also an extreme point, and by the same argument  as above, 
applied to v, v - u instead of  u, v, it follows that  the segment ( -  u) (v - u) lies in 
~Z;  then v - u  is also an extreme point,  and the segment uv lies in ~Z. Thus S 
is the affinely regular hexagon with consecutive vertices u, v, v -  u , -  u , -  v, 
U--V.  

Remark. The fact that  3 < L_< 4 and that  the extreme values are at tained by 
the planes with an affinely regular hexagon and a parallelogram, respectively, 
as unit disks, was shown in [13], and is proved here for completeness ; it was not  
shown there that  the extreme values are at tained by these planes only. 

5. Inner diameter, perimeter, girth 

We now define the parameters  associated with a no rmed  space that  are the 
main  objects of  s tudy in the sequel. X again denotes a no rmed  space with 
d i m X  ~ 2. The parameters  are : 

D(X) = sup {6(p, q) : p, q ~ ~Z} 

(5.1) M(X)  = sup {~5(- p, p):p ~ OZ} 

re(X) = i n f { 6 ( -  p, p) : p ~ dX}.  

We may  call D(X) the inner diameter of 3Z, 2M(X)  the perimeter of  Z, and 
2re(X) the 9irth o f Z  (cf. L e m m a  5.1, (a)). 

5.t. Lemma. (a): 

re(X) = inf{l(c) : c a [simple] curve in O Z with antipodal initial 
and final points} 

(5.2) = ½inf{l(~) : ~ a simple closed curve in OS, - ~ = 
(set-theoretically) }. 

(b): I f  d i m X  < ~ ,  the suprema and infima in (5.1), (5.2) are attained. 
Proof. Proof of  (a). The first equali ty in (5.2) follows from the definitions of  

m and 6 (cf. Theorem 3.3). I f~ is a simple closed curve in 0Z, - ~ = ~, and p is a 
point  on ~, then ~ is obtained by joining end- to-end a simple curve c from - p 
to p in 0Z and its reflection - c; and/(c)  = ½1(~), so that, in (5.2), re(X) < ½infl(~). 
Conversely,  let c be a simple curve from - p to p in OZ ; c jo ined end- to-end 
with - c need no t  be a simple closed curve, since there may  exist on  c a pair  of  
ant ipodal  points distinct f rom - p, p. Consider  therefore the set {s 2 - s I : 0 < 
< s 1 __< s 2 < l(c), 9c(sO+ Oc(S2)---- 0}, which is non-empty  (it contains  l(c)), 
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compac t ,  and  bounded  away  f rom 0(s2 - sl  > II0c(s2)- 0c(s0II = 2). This set has  
a posit ive m i n i m u m ,  at ta ined,  say, for s~ = a 1, s2 = az.  Then  the arc  of  c between 
arc- lengths oh, o2 conta ins  no pair  o f  ant ipodes  except  the endpoin ts  ; this arc, 
together  with the cor responding  arc of  - c, const i tute  a s imple closed curve 
in 027 with - ~ = ~ and l(~) = 2(a 2 - a l )  < 2/(c). Therefore,  in (5.2), re(X) > 
> ½infl(~), and  equali ty holds. 

Proof of  (b). 6 is con t inuous  and,  if d i m X  < ~ ,  OS is c o m p a c t ;  therefore 
the s u p r e m a  and infima in (5.1) are at tained.  The  first in f imum in (5.2) is a t ta ined 
in consequence  of  this and  T h e o r e m  3.3 ; the second inf imum in (5.2) is a t ta ined,  
in view of  the p r o o f  of(a),  because the first one is. 

O u r  ma in  concern in what  follows will be obta ining relat ions between D, 
M,  m for the same space and for different spaces, and  bounds  for their values. 
The results in this section are somewha t  scattered, and  of varying degrees of  
obviousness.  M u c h  m o r e  is known  abou t  m than is abou t  D and M. 

5.2. Lemma.  2 < m(X) < M(X)  < D(X) < 4. 
Proof. Obvious  f rom the definit ions and  f rom T h e o r e m  3.5. 
5.3. Theorem.  (a): I f  Y is a subspace with dim Y >  2, then m( Y) > re(X). 
(b): For any inteyer n > 1 + ½m(X) and any tr > 0 there exists a subspace Y 

with 2 ~ d im Y < n such that 

m(Y) < re(X)(1 - n -  1(1 + ½re(X))) -~ + a ; (5.3) 

thereJore 

(5.4) m ( X ) = i n f { m ( Y ) ' Y  asubspace, 2 < d i m Y < ~ } .  

(c): There exists a countable-dimensional subspace Y such that re(Y) = re(X). 
Proof. (a) is trivial by  T h e o r e m  3.4, (a), ,since ~27(Y)C 027. To  p rove  (b) we 

assume n, a given;  by the definit ion of  m(X) there exists p e 027 such that  
n > i + ½ 3 x ( -  p, p) and  

6x(-- p, p) (1 -- n -  1(1 + ½6x(-- p, p))) - t  = re(X) (1 - n - 1 ( 1  + ½re(X))) -~ +½a.  

We app ly  T h e o r e m  3.4, (b) with - p ,  p instead of p, q and  ½tr instead of  tr, 
and find (5.3), since re(Y) ~ 6 r ( -  p, p). (5.4) is an immedia te  consequence.  The  
p roof  of(c) now follows f rom (a), (b) precisely as par t  (c) of  T h e o r e m  3.4 followed 
f rom par ts  (a), (b) of  that  theorem.  

Remark. I f  d i m X  < Go, L e m m a  5.1, (b) and  the R e m a r k  to T h e o r e m  3.4 
show that  (b) holds with o = 0. 

5.4. Theorem.  I f  dim X = 2, 3 < m(X) = M(X)  = D(X) = L(X)  < 4; the lower 
[upper./ bound is attained if and only if 27 is an affinely regular hexagon [a 
parallelogram/. 

Proof. (4.1), (4.2), (5.1), and  T h e o r e m s  4.2 and  4.5. 
5.5. Theorem.  I f  dim X < ~ ,  re(X) > 2. 
Proof. Assume,  by contradic t ion ,  that  re(X) = 2 (cf. L e m m a  5.2). By L e m m a  

5.1, (b), there exists a poin t  p ~ 027 and  a curve c f rom - p to p in 027 with l(c) = 2. 
If Y is the subspace  spanned  by ¢, we have 2 5 re(Y) ~ l(¢) = 2, so we m a y  assume 
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without loss that ¢ spans X;  set d imX = 1 + n, n > 1. There exist points qi on c, 
i = 1 . . . . .  n, which, together with p, form a basis of X. 

Now 2=1(c )>  ]lp+qill + Ilp-qi}l > 1 ]p- ( -p ) l l  =2 ,  whence llp+qitl + 
+ lip - q+ll = 2, i = 1 . . . . .  n. Since 

p=½1lp+q~ll p+qi  +½11p-q,ll P-q~ i = 1 , . ,  n, 
lip + q+ll lip - q~ll . . . .  

this makes p an interior point of each segment with endpoints 

lip + q~ll- ~(p + ql) ; 

since these endpoints, and p, all tie in dZ, so do the whole segments. The i-th 
segment has the direction of 2q+ + ( l iP-  q~/I - lip + q~ll) p; and these vectors, 
together with p, form a basis of X. Therefore p is an interior point of the (convex) 
intersection of ~Z and a supporting hyperplane at p; and therefore there exists 
a point q 4: p on c that belongs to that intersection. Since the segment pq then 
lies in ~Z, so does its midpoint ½(p + q). But then 2 = l(c) > ILP + qtl + Hq - Pl[ 
= 2 + IIq - Pll > 2, a contradiction. 

5.6. Theorem. I f  dimX > 3, m(X) < 4. 
Proof. On account of Theorem 5.3, (a), there is no loss in assuming dim X = 3. 

Assume, by contradiction, m(X) = 4 (cf. Lemma 5.2). If Y is any 2-dimensional 
subspace, re(Y) = 4 (Lemma 5.2, Theorem 5.3, (a)), and Z(Y) is a parallelogram 
(Theorem 5.4). 

If p, q are distinct extreme points of X, and Y is a 2-dimensional subspace 
containing p, q, these points are extreme points of Z(Y), hence vertices of this 
parallelogram; therefore tlq-P]t = 2. The set of extreme points is thus finite, 
i.e., Z is a polyhedron. 

Let p, q, r be consecutive vertices of a face of S. By the preceding, 

11½(q + r) - ½(p + q)H = ½ I l r -  pH = 1. 

But let Y be the 2-dimensional subspace containing ½(p + q), ½(q + r); now 
these points are midpoints of edges of S, and either of these edges together 
with the midpoint of the other determine the plane of the face, which does not 
contain 0; therefore Y contains neither of these edges, and both points are 
vertices of the parallelogram Z(Y); hence l]½(q + r) - ½(p + q) H = 2, a contradic- 
tion. 

The following two results concern 3-dimensional X;  their proofs use this 
assumption strongly. 

5.7. Lemma. I f  dimX = 3 and p, q ~ ~Z, then 26(p, q) < 6 ( -  p, p) + 6( - q, q). 
Proof. 1. By Theorem 3.3, (b), there exists a simple curve c from - p  to p 

in ~£, and a simple curve b from - q  to q in dZ, such that l(c)= 6 ( - p ,  p), 
/(b) = 6 ( -  q, q). As in the proof of Lemma 5.1, (a), we see that there exist al ,  a2, 
0 ~  al < a 2 </(¢), such that the arc of c between arc-lengths a~ and a2, joined 
end-to-end with the corresponding arc of - c ,  gives a simple closed curve 
in ~,~ with - ~  = ~. Then a s \ ~  consists of two components (Jordan Curve 
Theorem), and the mapping u ~  - u : d Z - - * ~  maps each of these onto the 
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other (rather than each onto itself) since it is orientation-reversing on 0Z, but 
orientation-preserving on .~. Thus either q ~ ~, or - q ,  q belong to different 
components of0S\~ ; in either case, ~ n b 4: 0, whence either c n b 4:0 or - cnb  4: 
4:0; we may assume the former without loss, since we might otherwise replace 
c by - c traversed in the opposite sense. 

2. There exists, then, uE crib. Since reflection in 0 preserves 6, we have, 
using Theorem 3.5, 

2(p, q) = 6(p, q) + 6 ( -  p, - q) ~ 6(p, u) + 6(u, q) + 6 ( -  p, u) + 6(u, - q) < 

l(c) + l(b) = 6 ( -  p, p) + 6 ( -  q, q). 

5.8. Theorem. I f  dim X = 3, then M ( X ) =  D(X). 
Proof. For any p, q e 0Z, Lemma 5.7 yields 6(p, q) < ½(6(- p,p) + 3 ( -  q,q)) < 

< M(X).  By (5.1), D(X)<  M(X).  The reverse inequality is trivial (Lemma 5.2). 
We consider some special spaces. 
5.9. Theorem. I f  X is an inner-product space, re(X) = M ( X )  = D(X) = re. 
Proof. Lemma 3.6. 
5.t0. Lemma. For every normed space Z with d i m Z > l ,  M ( R Q Z )  

= D ( R O Z ) = 4 .  
Proof. On account of Lemma 5.2 it is sufficient to show that if c is a curve 

from ( -  1)•0 to 1 G 0 in O E(R G Z), then l(c)=> 4. Intuitively, it takes arcs of 
lengths at least 1, 2, 1 to get from the "centre" to the "rim" of the "bottom" of 
S(R G Z), from there to the "rim" of the "lid", and from there to the "centre" of 
the "lid", respectively. 

More rigorously, define e b : R ® Z ~ R O R  by ~b(2®z)=2G]]Zllz. • is 
obviously norm-preserving and distance-decreasing, hence continuous and 
curve-shortening. Thus ~b(c) is a curve from ( -  1)@0 to 1 @0 in ~(OS(R@Z))  C 
C (?Z(R G R), and S(R ® R)=  [ -  1, 1] G [ -  1, 1] is a parallelogram. By (4.2) 
and Theorem 4.2, l(c) > l(tb(c)) > 6ReR( ( -  1)~)0, 1 ~)0) = L(R t~R)  = 4. 

For a given normed space Z, d imZ > t, we define R @ ' Z  as algebraically 
identical with R O Z ,  but with the norm [[2OZllRe,z=max{[2],½[2[+ [IZltz}. 
Obviously, 112@ZliR~Z < 112@zllRe,z <3ll2@ZllR~Z, so that R O ) Z  and R G ' Z  
are isomorphic under the identity mapping. 

5 . t l .  Lemma. For every normed space Z with d imZ k 1, D(R G 'Z )  < 3. 
Proof. Let p = ) . . ~ ) z e O Z ( R O ' Z )  be given. Then p lies in 2-dimensional 

subspace Y spanned by 1 G 0 and some 0 ® Zo, Zo e OE(Z) (if z 4: 0, this subspace 
is unique). But E(Y) is the affinely regular hexagon with consecutive vertices 
0GZo, 1G}Zo, 1 @ -  }Zo, etc., as follows from the definition of the norm in 
R ®'Z.  By Theorems 3.4, (a) and 4.5, and (4.2), we have 3 ( -  p, 100)  + 6(1 @0, p) < 
< 6 r ( - p ,  l @ O ) + 6 r ( l ~ ) O , p ) = 3 .  If q~t3Z(RO)'Z)  is another point we thus 
have (cf. proof of Lemma 5.7): 

26(p, q) = 6(p, q) + 6 ( -  p, - q) ~ 6(p, 1 @0) + 6(1G0, q) + 

+ 6 ( - p ,  1G0) + 6(1G0, - q ) ~ 3 + 3 = 6 ,  

whence 6(p, q)_< 3. Since p, q ~ OZ(R G ' Z )  were arbitrary, the conclusion 
follows. 
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6. Isomorphism classes 

This section constitutes a digression, of some independent interest, on the 
structure of classes of normed spaces. Its development goes somewhat beyond 
the immediate application to the study in hand. 

In the sequel we shall be dealing with an isomorphism class X, to be under- 
stood as the class of all normed spaces isomorphic to a given one ; inasmuch as 
we are concerned with properties that are congruence-invariant, the set- 
theoretical difficulties in such a formulation can be overcome by assuming all 
the spaces in the class to have one and the same underlying linear space of the 
appropriate dimension ; but we shall make no explicit use of this assumption. 
We denote by dim X the common dimension of all spaces in X. In particular, 
Xn will be the unique isomorphism class containing spaces of dimension n, 
l < n < ~ .  

In the isomorphism class X, congruence is an equivalence relation. If 
X ~ X, its congruence class - equivalence class with respect to congruence - 
is denoted by X;  the collection of all congruence classes of X is denoted by 
)~. We intend to introduce in )~ a natural pseudo-metric. 

If X, Y are isomorphic spaces, we set 

A(X, Y)= inf{log II T]I II T-111:T an isomorphism from X to Y}. 

The following lemma summarizes some obvious properties of A, the proof of 
which is left to the reader. 

6.t .  Lemma. I f  X,  Y, Z, W are isomorphic normed spaces, then 

A(X, Y ) = A ( Y , X ) ~ O ,  

A(X, Z) < A(X, Y)+ A(Y, Z) ,  

A(X, Y)= 0 if X,  Y are congruent, 

A ( X , Z ) =  A(Y, W) if X,  Y are congruent and Z, W 
are congruent. 

On each isomorphism class X, A is thus a congruence-invariant pseudo-metric. 
Every continuous function on (X, A) is congruence-im, ariant. 

I fX is an isomorphism class, Lemma 6.1 shows that A induces a function 2 
on X x ~,, as follows: if X, Y e X, A (X, Y) ---- A (X, Y).. 

6.2. Theorem. For each isomorphism class X, A is a pseudo-metric on X. 
I f  q~ is a continuous function on (X, A), there exists a unique f.unction (o on 
X such that tp(X) = (o(X) for all X e X ; and (o is continuous on 0¢, A). 

Proof. Lemma 6.1 and the definition of A. 
Remark. A pseudo-metric very similar to 3 is described by DVORETZKY 

[6;p.  156] for finite-dimensional spaces (where it is a metric; see betow); it is 
obviously related to the metric introduced by SHEPHARD [19] for convex sets; 
see also [20]. The following theorem is sketched by DVORETZKY [6; p. 156], and 
is similar to the results of MACBEATH [14] and SHEPHARD [19] for affine- 
equivalence classes of convex sets ; we give a proof for completeness, and also 
because our definitions are slightly different from DVORETZKY'S. 
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Added in proof. The author became aware, after submitting the manuscript 
of this paper, of the fact that the pseudo-metrics A and zi had been introduced, 
for Banach spaces and congruence classes of such, respectively, by BANACH 
and MAZUR: see [2; pp. 242--243], where BANACH queries whetherA is indeed 
non-zero for distinct congruence classes (i.e., a metric). 

6.3. Theorem. For each integer n > 1, (X,, 2) is a compact metric space. 
Proof. 1. If X, Y e X,, with A (X, Y) = A (X, Y) = 0, there exists a sequence 

(T) of isomorphisms from X to Y with lim II r / I  II T7  ~1t = 1. Since Ti may be 
j--* co 

replaced by tt rT~l l  rs  without altering the value of the limit, we may assume 
without loss that lim t1 rjll = lim ]I T7111 = 1. In the n2-dimensional space of 

j~oo j-,oo 

(bounded) linear mappings from X to Y, the bounded sequence (T) has a 
subsequence converging to, say, T; and since the sequence of inverses is bounded, 
risinvertible, i.e., anisomorphism ;and ]1 rf] = !im tl Till = 1, tl T -  111 = !im [I T711i 

j~oo J ~ 0  

-- 1, so that T is a congruence. Thus Jf -- I?. We conclude that zt is a metric 
o n  Xn" 

2. We consider an n-dimensional linear space E, and in it an n-dimensional 
ellipsoid S with its centre at 0; thus S is the unit ball of a euclidean space E s. 
Let K be the class of all closed convex sets K C E such that - K = K, S C K C 
C n½S ("closed" means radially closed or, equivalently, closed in the natural 
Hausdorff topology of E, i.e., the topology of Es). On K we define the Hausdorff 
metric with respect to S: 

An(K, K') = inf{2 : K C K' + 2S, K' C K + 2S} . 

It is well known that the infimum is attained and that A n is a metric; and, by 
the Blaschke Selection Theorem (cf., e.g., [7; pp. 64--67]), (K, An) is compact. 

3. In view of the assumption on K, there is associated with each K ~ K the 
unique normed space E K ~ X, that has E as underlying linear space and X(EK) 
= K:  its norm is the Minkowski functional of K. 

We consider the mapping ~/,: K---,/~r :(K, An)-~(X ., A). This mapping is 
uniformly continuous, in fact Lipschitzian: indeed, let K, K ' ~  K be given, 
set 2 = An(K , K'), and let T be the identity mapping from E r to EK,. We have 
K C K ' + 2 S C ( I + 2 ) K ' ,  K ' C K + 2 S C ( I + 2 ) K ,  so that [ JT[ [ , I [T- t [ [~I+2  
= 1 + An(K , K'); and 

A(q~(K), #(K')) = A(EK, Er,) < log II rll tl T -  1I I < 

< 2 log(1 + An(K, K')) < 2An(K, K').  

4. The mapping # from the compact space (K, An) into (X,, z{) is thus 
continuous ; to complete the proof, it remains to show that # is surjective, For  
any X ~ X,, let V be some bijective linear mapping from X to E; then VF,(X) 
is a symmetric bounded closed convex set in E. By a result of JOHN [ t 1], there 
exists a bijective linear mapping W : E ~ E  such that S C W V X ( X ) C  n~S, i.e., 
W VT_,(X) e K. Now obviously W V is a congruence from X to Ewvz(x), so that 
q)(W VZ,(X))= )(. Since )( was an arbitrary element of X,, • is surjective. 
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6.4. Corollary. I f  ~ is a real-valued continuous 
attains its infimum and supremum on X,.  

Proof. Theorems 6.2 and 6.3. 

Junction on (X., A), (p 

7. Continuity of the parameters 

We use the concepts introduced in the preceding section in order to compare 
the metrical properties of unit spheres in different normed spaces. 

Let X, Y be isomorphic normed spaces, dim X = dim Y ~ 2, and let T be an 
isomorphism from X to Y. T induces the homeomorphism T : ~ Z ( X ) - ~ Z ( Y )  
defined by z(p) = 1[ Tp 1[ ~ 1 Tp- - i t s  inverse is given by z - 1 (p,) = [[ T - 1 p, ]1 x 1 T -  lp,, 
as is easily verified. 

7.t. Lemma. Let X, Y, T, z be as described. I f  p, q ~ OS,(X), then 

[6r(Z(p), z(q)) -- fix(P, q)t <= 6(tl rtl II T -  ill - 1). 

Proof. 1. Let c be a curve from p to q in t?Z(X); the curve ti T -  1H Tc is in 
Y\Zo(Y) ,  since x e c  implies liT-Ill l lTxl lr> Ilxllx--1; and l(tlT-lll Tc)< 
< II TII II T -  X ll l(c) (the former length measured in Y, the latter in X). 

Let b be the curve from z(p) to z(q) in Y\Zo (Y )  consisting, consecutively, of 
the radial segment from z(p) to ][ T -  111 Tp, the curve [1 T -  111 Zc, and the radial 
segment from I1 T -  1[1 Tq to z(q). We have, using Theorem 3.3, (a), 

6v(z(p), z(q)) ~ l(b) = (ll T -  ~tl II TpII r - 1) + l(ll T -  1II To) + 

+(t iT-i l l  IlZqllr-1)<2(IITII r lT-Xl]-1)+ IITII [lZ-~l[ l(c). 

Since c was an arbitrary curve from p to q in ?S(X),  we have, using Theorem 3.5 
(or Lemma 5.2) 

(7.1) 6r(z(p),z(q))<=2(!lTIl IIT-Xll- 1)+ tITll tIT-lit fix(p,q) <- _ 
<(}x(P,q)+6(llTll IIT-11I- I). 

2. Repeating the same argument, with X, Y, T, r, p, q replaced by Y, X, 
T -  1, z-  1, z(P), z(q), respectively, we have 
(7.2) 6x(P, q) < 6r(z(p), z(q)) + 6(11 T -  l tl II Zll - 1). 

Combination of (7.1) and (7.2) yields the conclusion. 
7.2. Theorem. I f  X,  Y are isomorphic normed spaces, dim X = dim Y > 2, 

then 
(7.3) [D(Y) - D(X)I, [M(Y) = M(X)I, Im(Y) - m(X)l = 6(e dtx'r) - 1). 

For every isomorphism class X (except X1), D, M, m are continuous - -  indeed 
locally Lipschitzian - -  (congruence-invariant) functions on (X, A). 

Proof. For every isomorphism T from X to Y, the corresponding home- 
omorphism ~ is antipode-preserving. The definitions and Lemma 7.1 then yield 
[D(Y)-D(X)[ ,  [M(Y)--M(X)I ,  l m ( Y ) - m ( X ) t < 6 ( l l r l l  lIT-111- 1). Since r is 
an arbitrary isomorphism, the conclusion follows by the definition of A. 

Before proceeding to discuss the extrema of the functions D, M, m on the 
isomorphism classes, we interpolate a striking application to the estimation of 
m of DVOm~TZKY'S Sphericity Theorem [6], concerning "quasi-spherical" sec- 



Inner Diameter and Girth of Spheres 75 

tions of convex sets of sufficiently high dimension. We first state, in our ter- 
minology, the special case of this theorem that we require. 

7.3. Lemma. There exists a number t¢ > 0 with the followin9 property: for 
any ~ > O, any integer n > e K2~- 2, and any n-dimensional normed space X there 
exists a 2-dimensional subspace Y such that A (Y, E z) < e, where E 2 is a 2-dimen- 
sional euclidean space. 

Remark. This special case is stated, qualitatively, in [6; p. 156]. Observe 
that here the "asphericity" of Z(Y)  - -  in DVORETZI<V'S terminology - -  is 
1 - e-~, rather than e, but this does not affect the result, except possibly for the 
value of x. 

We have not computed an estimate of x, since DVORETZKY'S numerical 
estimates are likely to be very much too large, especially for the particular case 
of plane sections. 

7.4. Theorem. There exists a number x o > 0 such that, i f  X is a normed 
space with 2 < d i m X  < ~ ,  then re(X) < 7r + Xo log-  ~(dimX). 

Proof. Set n = d imX.  By Lemma  7.3 there exists a 2-dimensional subspace 
Y of X such that A(Y, E 2) < x log-  ~n. Now Theorem 7.2, with Theorems 5.3, (a) 
and 5.9, yields 

m(X) < m(Y) < m(E 2) q- 6(exp (x log-  ½ n) - 1) < n + 6 x log-  ½ n exp (xlog-  ½ n), 

and the conclusion follows, with Xo = 6x exp (x log -~ 2). 
7.5. Corollary. I f  X is an infinite-dimensional normed space, then m(X) < n. 
Proof. Theorems 7.4 and 5.3, (b). 

8 .  E x t r e m e  v a l u e s  

We investigate the extreme values of the functions D, M, m, as the space 
varies in an isomorphism class. For  obvious reasons we exclude once and for 
all the isomorphism class X1. If X is an isomorphism class, we define : 

D * ( X ) = s u p { D ( X ) :  X ~ X} D , ( X ) = i n f { D ( X ) :  X ~ X }  

(8.1) M*(X) = sup {M(X) : X ~ X} M,(X)  = inf{M(S)  : X ~ X} 

m*(X) = sup {m(X) : X ~ X} m,(X) = inf{m(X) • X ~ X}. 

In particular, for each integer n > 2, we set D*(n) = D*(X,), ..., m,(n) = m,(X,). 
We say that D*(X), etc., is attained if the corresponding supremum or infimum 
in (8.1) is attained. Trivial bounds for these extrema are provided by Lemma 5.2. 

Two of the extrema are easily determined : 
8.t .  Theorem. For every isomorphism class X , D * ( X ) = M * ( X ) = 4 ;  both 

extrema are attained. In particular, D * ( 2 ) = M * ( 2 ) = 4 ,  and each is attained 
exactly when Z(X)  is a parallelogram. 

Proof. By Lemma 2.1 there exists a normed space Z with d i m Z >  1 such 
that R O Z  ~ X. Therefore, by Lemma 5.10, D*(X) ~ D ( R ~ Z )  = 4, M*(X) > 
> M ( R  G Z ) =  4. Equality follows by Lemma 5.2. The two-dimensional result 
follows from Theorem 5.4. 

For  the other extrema, we have the following basic application of the theory 
in Sections 6 and 7 : 
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8.2. Theorem. D,(n),M,(n),m*(n),m,(n) are all attained jor every n, 
2 ~ n <  c~. 

Proof, Theorem 7.2 and Corollary 6.4. 
Less is known abouth the values of D,,  M ,  than is about those of m,,  m*; 

we discuss the latter two first. 
8.3. Theorem. (a): m,(2) = 3, and is attained exactly when S(X)  is an affinely 

regular hexagon. 
(b): 2 < m,(n) < 3 for all n, 2 < n < oo ; (m,(n)) is a non-increasing sequence," 

if m,(oo) = !ina m,(n), then 2 < m,(oo) < 3, and 

(8.2) m , ( n ) - m , ( o o ) < n - l ( ( l + ½ m , ( o o ) ) - ~ - n - l ) - l ~ 1 5 n  -1 for all n > 3 .  

(c) : For every infinite-dimensional isomorphism class X, m,(X) = m,(oo), For 
every infinite cardinal N there exists an isomorphism class X with dimX = N, 
such that m,(X) = m,(oo) is attained. 

Proof, Proof of (a). Theorem 5.4, 
Proof of (b). By Theorems 5.5 and 8.2, m,(n)> 2. I fn  > 2, Theorem 5.3, (a) 

yields 

m,(n + 1) < in f{m(ROX)" X ~ X,} < m,(n) 

since m ( R G X ) < m ( { O } O X ) = m ( X ) .  Thus (m,(n)) is non-increasing, and 
m,(n) < m,(2) = 3. The limit m,(oo) exists, and 2 < m , ( ~ )  < 3. 

Let n, n' be integers, n'>_n > 3. Let X ~  X n, be such that m(X)=m,(n')  
(Theorem 8.2). Since 1 + ½re(X)< 1 + ½" 3 < n, we may apply Theorem 5.3, (b), 
with its appended Remark, and find a subspace Y of X, dim Y< n, such that 

m,(n) < m,(dim Y) <_ m(Y) < m(X)(1 - n-  ~(1 + ½m(X))) -1 
= m,(n')(1 -- n-i(1 + ½m,(n')))- 1. 

Letting n' tend to oo and observing that m,(oo) <= 3 < n, we obtain (8.2). 
Proof of (c). Let X be any infinite-dimensional isomorphism class. For 

every X ~ X, Theorem 5.3, (b) implies 

m(X) = inf{m(Y) : Y a subspace, 2 _< dim Y< oo} = 

> inf{m,(n) : 2 < n < oo} = m,(oo) ; 

thus m,(X) > m,(c~). Conversely, for each integer n > 2 let Y. e X, be such that 
m(Y.) = m,(n) (Theorem 8.2), By Lemma 2.1, there exists a normed space Z .  
such that Y,@Z,  ~ X. But then, using Theorem 5.3, (a), 

m,(X) < m( Y, (~ Z.) < m( Y, G {0}) = m( r,) = m, (n) . 

Since this holds for all n, m,(X)< lim m,(n)= m,(oo), and equality holds. 
n ~ o o  

With Y, as in the preceding paragraph, we form Yo~ = ( ~  Y,, the space ufall 
2 

~o 

sequences ( ~  y,, y, e Y,, with only finitely many non-zero terms, and with the 
2 

norm ]i[~YnY~ =nlaxllynllr"" Obviously dimY~o=N0, and since Y~o has, 
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for each n >2,  a subspace canonically congruent to Y,, we have m , ( ~ ) <  
<m(Y~)<m(Y.)=m,(n).  Since this holds for all n, we must have m(Y~) 
= m , ( ~ ) .  

For any infinite cardinal R, let Z be a normed space with dim Z = R;  then 
d im(Yo~OZ)=Ro+b¢=R,  and m,(~)<m(Y~OZ)<m(YooG{O})=m(Y~o) 
= m,(~) .  If X is the isomorphism class of Y~ OZ,  then dimX = ~, and m,(X) 
= m , ( ~ )  is attained at Y®®Z. 

8.4. Theorem. (a): m*(2)= 4, and is attained exactly when 2(X) is a paral- 
lelogram. 

(b)" n < m*(n) < 4 for all n, 3 < n < ~ ; (m*(n)) is a non-increasing sequence, 
with lim m*(n) = n, and there exists a number ~c o > 0 such that 

(8.3) m*(n)-n<x,  olog-~n, for all n>=2. 

(c): For every infinite-dimensional isomorphism class X, m*(X)< n. I f  X 
contains an inner-product space (and such X exists with d i m X =  N for each 
infinite cardinal N), then m*(X)= n is attained. 

Proof. Proof of (a). Theorem 5.4. 
Proof of (b) and (c). 1. If X is an isomorphism class containing an inner- 

product space X, then m*(X) > re(X) = n (Theorem 5.9); in particular, m*(n) >= 
>=n, 2<=n<~. 

If 2 <  n < ~ and X is a normed space with dimX>__ n, there exists an 
n-dimensional subspace Y of X and hence, by Theorem 5.3, (a), re(X)<= re(Y)<= 
< m*(n). Therefore (m*(n)) is non-increasing, and m*(X)<= lim m*(n) for every 

n ~ 3  

infinite-dimensional isomorphism class X. 
2. By Theorems 5.6 and 8.2, m*(n) < 4 for 3 =< n < ~ .  By part 1 of this proof 

and Theorem 7.4, n< m*(n)< n + ~'o log -~n, whence lirn m*(n)= n; and (8.3) 

and the conclusions in (c) follow. 
8.5. Theorem. (a): M, (2 )=  D,(2)= 3, and each is attained exactly when 

S(X) is an affineIy regular hexagon. 
(b)" M,(3) = D,(3) < 3. 
(c): M,(X) < D,(X) < 3 for every isomorphism class X. 
Proof. Proof of (a). Theorem 5.4. 
Proof of (b) and (c). By Lemma 2.1 there exists a normed space Z with 

dim Z > 1 such that R G Z ~ X; but since R • Z is isomorphic to R O ' Z  (p. 71), 
Lemmas 5.2 and 5.11 yield M,(X) < D,(X) ~ D(R O'Z) < 3. 

From this and from Theorem 5.8 we obtain M,(3) = D,(3) < 3. 

9. Conjectures and remarks 
The reader will have observed that the results we have obtained do not 

penetrate very deeply beneath the surface. It is therefore appropriate that, in 
closing, we state some rather rash conjectures ; if nothing else, disproving their 
strongest forms may produce enough insight and encouragement to obtain 
more substantial information. Although there are many points in the paper 
that raise questions, we restrict ourselves to the explicit statement of three 
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points, leaving the others to the reader's curiosity. Conjecture 9.3 is the problem 
that originally motivated the research leading to this paper (see [17]), 

9.1. Conjecture. For every normed space X with d imX > 4, D(X) = M(X).  
9.2. Subsidiary conjecture. For every isomorphism class X, D,(X)= M,(X); 

or, at least, D,(n) = M,(n),  4 < n < ~ .  
9.3. Conjecture. m , ( ~ )  = 3. Equivalently, m,(n) = 3, 3 < n < ~ .  
9.4. Subsidiary conjectures. (a): M, (X)=  D,(X)= 3 for every isomorphism 

class X (Lemma 5.2, Theorems 8.3 and 8.5). 
(b): m,(3) = 3. 
9.5. Conjecture. m*(3) = re. Equivalently, m*(n) = re, 3 < n < ~ .  
Well-known results on the approximation of finite-dimensional convex 

sets (cf. [7; pp. 67---71]) may be restated in our terminology as follows, using 
the argument in the proof of Theorem 6.3 : for each integer n, 2 < n < ~ ,  the 
class of spaces X e X, such that 27(X) is a polytope - -  i.e., has only a finite set of 
extreme points - -  is dense in (X,, A); and the same is true of the class of the 
X ~ X, with smooth 27(X), indeed with t3S(X) of any fixed degree of continuous 
differentiability. Since the parameters D, M, m are continuous in (X,, A), the 
attemps at proving or disproving the conjectures may thus be restricted to 
either class of spaces. The use of spaces with polytopic unit balls yields a kind 
of "combinatorial" approach, and some important steps for a reduction of 
Conjecture 9.3 by this method have been carried out by E.G. STRAUS(private 
communication). The use of spaces with smooth unit balls, on the other hand, 
suggests an approach by differential-geometric methods: here OS(X) is a 
Finsler space, and the problems involve geodesics. The author does not 
conceal his surprise at the apparent intractability of even the three-dimensional 
case of Conjectures 9.3 and 9.5. 

Added in proof. KLEE has shown that every finite-dimensional space with a 
potytopic unit ball is congruent to a subspace of the normed space - -  call it 
G) R I of all sequences of real numbers with only finitely many non-zero terms 
provided with the maximum norm [ t2 ;  Prop. 4.5], and consequently to a 
subspace of the Banach space Co (see [12 ; Prop. 4.7] for this together with a 
strong converse). It follows from the remarks of the preceding paragraph and 
from Theorems 5.3, (a) and 8.3 that m , ( ~ ) =  m ( • R ) =  m(co). 

It may be remarked, finally, that some additional results may be obtained 
if attention is restricted to spaces that are symmetric with respect to a maximal 
subspace, i.e., that admit a non-trivial self-congruence leaving such a subspace 
pointwise invariant. This matter will be dealt with elsewhere. 

Added in proof. We have settled Conjecture 9.3 in the negative: indeed, 
m , ( ~ )  = 2. This will be shown in an Addendum to the present paper. 
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Addendum: Inner Diameter, Perimeter, and Girth of Spheres 

JUAN JORGE SCH~.FFER 

This note supplements the author's paper [3], which is assumed to be 
known and shall be referred to in the sequel as S, its contents being quoted as, 
e.g., Theorem S. 5.2, formula S(8.2). Our purpose is to examine the girth of 
cube-shaped(strictly speaking, parallelotopic) spheres and use them to refute 
Conjecture S. 9.3 ; the situation for large dimensions is indeed as bad as it can 
be : it turns out that m,(~v) = 2. 

Unless otherwise noted, the normed space X will be finite-dimensional. If 
d imX = n > 2 and the unit ball Z is a polytope, its maximal (i.e., (n - 1)-dimen- 
sional) faces shall be simply called its faces ; their union is OZ. 
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A curve obtained by joining end-to-end straight-line segments, each 
traversed once from one endpoint to the other, is a polygon; there is exactly one 
way of thus building up a polygon in which no consecutive segments are 
collinear and traversed in the samc sense; the segments in this representation, 
considered as arcs, are the edges of the polygon, and their endpoints its vertices. 

If Z is a polytope, it seems obvious that shortest distances in aS  are attained 
by polygons : 

t .  Lemma. I f  Z is a polytope, p, q E ~ Z, there exists a polygon ta from p to 
q in OZ such that l(p) = 6(p, q). This p is simple. 

Proof. We order the faces of Z in some arbitrary way. By Theorem S. 3.3 
there exists a curve c from p to q such that l(c) = 6(p, q). We modify ¢ successively 
by replacing, at the ruth stage, the arc between the "first" and "last" points of 
the curve (obtained at the preceding stage) in the ruth face (in the chosen order) 
by the straight-line segment, traversed once, from the former to the latter. We 
end up with a polygon p from p to q in ~Z with 3(p, q)< l(o)< l(c)= 3(p, q). 
p is simple, since otherwise a strictly shorter polygon from p to q in ~3Z could 
be constructed from it in the obvious way, which would be absurd. 

2. Lemma. I f  Z is a polytope, there exist p ~ 027 and a simple polygon p 
from - p to p such that re(X) = l(p). 

Proof. By Lemma S. 5.1, (b), m(X) = min {6( - p, p) : p ~ t3Z}. The conclusion 
follows from Lemma 1. 

We consider in particular, for n = 2, 3 . . . .  , the space R, = ~ )  R, algebraically 
1 

the outer direct sum of n copies of R (whence dim R, = n), and provided with the 

maximum norm ~ x ~ = max (IxJl : 1 __<j___ n} ; this space is sometimes known 

as I, ~. Then Z, = Z(R,) = ~ )  [ - 1, 1] is a parallelotope, or "cube". The face of 
1 

27, defined by x ~ = 1 [x j = - 1] is the upper[lower] j th face of Z,, j = I . . . . .  n. 

3. Lemma. m(R~) > 2n(n - 1)- 1, n = 2, 3 . . . .  
Proof. By Lemma 2 there exists p e 027, and a polygon p from Po to - P o  

with l(p)= m(R,); assume that its vertices are, in succession, Po, Pl . . . .  , Pk-1, 
Pk = --PO" Each edge of p lies in some face of 27,; performing an appropriate 
congruence of R, onto itself, if necessary, we may assume that the faces involved 
belong to exactly the 1st, 2nd, ..., rth pair of upper and lower faces, I < r ~ n. 

b 

We consider the number L =  ~ ~ If/-P~-11, where p, = ~ )  Pl. For  each j, 
j=l i=1 j=l 

1 < j  < r, some vertex, say Pho3, 1 < h(j) < k, lies in the upper or lower j th face, 
k 

so that P~u)= + 1 and ~ IN - p~- 11 > I~ t j ) -  ~ l  + [p~ - p£tj)[ = I_+ 1 - p~l + 
i = l  

+ f - P~ T- 11 = 2. Therefore 

(1) L=> ~ 2 = 2 r .  
j = l  
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On the o ther  hand, for each i, 1 < i N k ,  we have I ~ - ~ - 1 1 ~  i lP i -P i - l l I ,  
j =  1, . . . , r ;  and the edge Pi- lP i  lies in some face, say the (upper or  lower) 

q(i)th, l<q(i )Nr,= so that ei'q(1)-"q(° = + l . - e i - 1  _ T h e r e f o r e  ~ IN-~_tl_- < 
j = l  

_<_ (r - 1) HPi - -  P i -  1H, and 
k 

(2) L <  ~ (r - 1) IIp~- P~- 1 It = (r - 1) l(p) = (r - 1) m(R, ) .  
i = 1  

Compar i son  of (1), (2) yields m ( R , ) >  2 r ( r -  1)-1 > 2 n ( n -  1)-1 
4. Lemma.  Let  p ,  be the polygon in R, (n  > 2) with successive vertices 

Po, Pl, . . . ,P ,  9 iven by pi = @ p~, where 
j = l  

( n - 1 ) - l ( n - l - 2 ( i - j ) )  l < j < i < n  

P{= ( n - 1 ) - l ( n + l - 2 ( j - i ) )  O < = i < j N n  

(whence Po = - P~). Then Pn is a simple polygon f rom Po to p~ = - Po in 8 Zn and 
/(p~) = 2n(n - 1)- 1. 

Proof. [~l = 1 and p{_ 1 = Pi = 1, i = 1 . . . .  , n, so that  the edge p~_ lPi lies in the 
upper i th face of  22~, i = 1, ..., n ; thus p,  lies in 8Z~; it is simple, since each edge 
lies in a different face of  Z, .  Fur ther ,  

(3) P { - P { - I =  2 ( n - 1 )  - l s g n ( ] - i ) ,  i , j =  l . . . . .  n ,  

so that  l (p . )=  ~ [Ipi-p~-l l l  = 2 n ( n -  1) -1 
i = l  

5. Theorem. m(R,)  = 2n(n - 1)- 1, n = 2, 3 . . . .  
Proof. Lemmas  3, 4. 
6. Lemma.  With p .  defined as in Lemma 4, the linear span o f  ]3 n is all R ,  i f  n 

n 

is even, and is the (n - 1)-dimensional subspace R',_ 1 defined in R ,  by ~ ( -  1)i xJ = 0 
1 

i f  n is odd. In  the latter case, m(R',_ 1) = 2n(n - 1)- 1. 
Proof. The  span o f p ,  is the span of  pl, ..., p , ;  it is also the span of  ql . . . .  , q,, 

i 

where qi = Pi - Pi- 1, i = 1, .. . ,  n (recall that  Po = - P.), for indeed 2pi = ~ qk -- 
k = l  

- ~ qk, i =  1, . . . ,n .  If q i=  @ q{, the qi are given by (3). The  matr ix  ((q{))is 
k = i + l  j = l  

thus skew-symmetric,  all elements with j > i being equal ;  if n is even it is non-  
singular - -  its inverse is ((r{)) with ~ = ½(n - 1) ( -  t) ~+~ sgn(] - i ) - -  and ifn is odd 
it is singular and its rank  is n - 1 (as a consequence of  the even-order  case). Also, 

( -  1)Sq, s.'= 2 ( n -  1) -1 Z ( -  1)s + Z ( -  1) = - 2(n-  1) -1 ~, ( -  1) i, 
j = l  j = l  j = i + l  j = l  
i = 1 . . . . .  n, and the sum vanishes when n is odd.  This yields the conclusion. The  
last par t  of  the s ta tement  follows, since p,  is in 8Z(R'~_ 1), whence m ( R ' _  1) < 
_-</(On) = 2n(n - 1)- 1, but  m(R'~_ 1) > m(R~) = 2n(n - 1)- 1 (Theorem S. 5.3, (a), 
Theo rem 5). 
6 Math. Ann. 173 



82 J . J .  SCHA.FFER : Inner Diameter and Girth of  Spheres 

7. Theorem. m,(2n + 1) < m,(2n) < 2 + n-  1, n = 1, 2 . . . . .  whence m,(oo)  = 2. 
Proof. The first inequality holds by Theorem S. 8.3. For given n and R~nas in 

Lemma 6, we have dimR~n = 2n, whence m,(2n) ~ m(R'2~) = 2 + n -  1. 
Remark  1. The bound m,(n)  < m(R,)  = 2 + 2(n - 1)- 1 is weaker. 
Remark 2. Theorem 7 implies, for the infinite-dimensional spaces mentioned 

in S, p. 78, m(@ R) = re(co) = 2. 
Beyond exploding Conjecture S. 9.3, and consequently rendering nugatory 

the remarks based on it in [2] and I-1 ; Remark 2 to Theorem 111.D, p. 352], 
the results obtained here do not supersede any given in S, except that Theorem 7 
is an improvement on the estimate S (8.2). In particular, the question still 
remains whether m , (3 )=3 ;  we might replace the disproved conjecture, 
somewhat diffidently, by the query whether equality holds in Theorem 7 for 
all n. 
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