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Summary - Zusammenfassung 

The Infinitesimal Group of the Navier-Stokes EquatiOns. The Navier-Stokes equations 
for an incompressible viscous fluid admit time translation, time dependent change of 
the pressure origin, a scale change, rotatiort of axes, and time dependent spatial translation. 
No other transformations appear if dependence on derivatives is allowed. 

Die infiuitesimale Gruppe der Navier-Stokes Gleiehungen. Die Navier-Stokes Glei- 
chungen fiir sin inkompressibles, viskoses Fluid lassen eine Zeitvetschiebung, eine zeit- 
abh~ngige Versehiebung des Druckursprungs, eine 5Iagstabsiinderung, eine Verdrehung 
der Aehsen und eine zeitabh~ngige, ri~umliehe Versehiebung zu. Andere Transformationen 
erscheinen nicht, wenn sine Abh~ngigkeit yon den Ableitungen zugelassen wird. 

0. Introduction 

The Lie theory originated as the investigation of the infinitesimal group of a 
differential equation [2, w167 25--27]. A differential equation is said to admit a 
change of variables if it takes the same form in the new variables as in the old. 
Such changes of variables evidently constitute a group, called the group of the 
equation. The infinitesimal group of the equation consists of those members of 
the group which correspond to small changes of the variables; we need not be 
precise at  this point. Powerful techniques are available when the infinitesimal 
group is known and nontrivial, e.g., the order of an ordinary differential equation 
reduces by one for each independent generator of the infinitesimal group. In this 
paper we determine the infinitesimal group of the Navier-Stokes equations of 
fluid dynamics [1, p. 147]. 

1. The 5~avier-Stokes Equations 

The velocity field (u, v, w) and pressure p of an incompressible viscous fluid 
satisfy the Navier-Stokes equations 

vt + uvx + vvy § wv~ + py --  ~(vxz + v~v § vz,4 ~ 0 
(1) 

we + uw~ § v %  + ww~ + p~ --  v(w~z + w~  + wz~) = 0 

u~ § v~ § Wz = O. 
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The subscripts denote partial derivatives with respect to time t and the usual 
cartesian coordinates x, y, z. The modified pressure p has absorbed the densi ty 
factor,  assumed to be constant ,  and  includes also the potent ial  of the external 
force field, if such is present [1, p. 176]. The kinematic  viscosity v is assumed to be 
constant.  I t  is a consequence of (1) t ha t  

Pxx § P~ § P~ § u~ -~ § vy 2 § w~ ~ § 2uuv~ § 2u~w~ § 2v~w~ = 0 (2) 

and  we may  adjoin this to (1) upon occasion. 
I n  certain places we will use the following condensed nota t ion  for the wriables .  
The independent  variables x, y, z, t are denoted by  x i, where the indexing set 

is i C {x, y, z, t}. t~epeated indices i, j, . . .  are to be summed over {x, y, z, t}. 
The dependent  variables u, v, w, p are denoted by  u% where the indexing set 

is ~ ~ {u, v, w, p}. l~epeated indices a, fi . . . .  s to  be summed over {u, v, w, p}. 
Subscripts i, j, . . .  on the u" denote the corresponding partial  derivatives. 

2. Infinitesimal Transformations 

We consider infinitesimal t ransformations of the form 

(x~), = x ~ + ~ i ,  i ~ {x, y, z, t}, 
(3) 

(u~) ' = u ~ + s~ ~, ~ ~ {u, v, w, p}, 

where s ~ is negligible. Bo th  the coordinates x" and the field u" vary,  and each ~" 
m a y  be a funct ion of x, y, z, t, u, v, w, p [2, w 28]. The corresponding infinitesimal 
operator  is 

a smooth funct ion [ of all of the variables changes to ] ' = / §  s ( X / ) §  O(e 2) 
under  (3). (Throughout,  smooth may  as well mean infinitely differentiable, 
a l though someth ing  weaker will of ten suffice.) 

Since (1) is a second order system, it is necessary to obtain the second extension 
of (4); this is an operator  

3 0 
= x + + (5) 

The subscripts on the 6's are labels, and any  part ial  differentiations of the ~'s will 
be made explicit. I f  /_ denotes the column consisting of the four expressions on 
the left hand  side in (1), the Navier-Stokes equations L : 0 admi t  the infinitesimal 
t ransformat ion (3) provided X(2)L ~ 0 whenever L : 0 [2, w 28]. Tha t  is, we 
must  have 

$t ~ § uG ~ § v~ d § w& ~ § ~'~Ux § ~'uy § ~.w% § Gp _ ~,(~ § ~,y § ~ )  = O, 

( §  two others),  (6) 

G ~ § ~d § G w = 0, 

holding as a consequence of (1). 
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The coefficients ~ ,  ~i~ are worked out in Section 5. Suffice it to say for now 
tha t  ~" involves first derivatives of the ~" and tha t  ~j involves second derivatives, 
and (6) modulo (1) is a system of homogeneous linear second order partial  differ- 
ential equations that  the ~" must  satisfy. 

3.  T h e  R e s u l t s  

The details of the derivation are given in Section 5. System (1) admits  the 
following linearly independent infinitesimal transformations, and no others. 

(I) The operator 
0 
0t 

generates the one parameter  group of t ime translations t' = t + h, where --  
< h < ~ is a constant. 

(II) With G(t) an arbi trary smooth function, the operator 

a(t)  

corresponds to the transformation group p '  ~-- p + if(t), where g(t) is an arbi trary 
smooth function. The pressure change a t  each instant is uniform over the fluid 
and does not affect its motion. The group is not a Lie group. 

( III)  The integral form for the operator 

x - - +  y + z + 2t O - - - u - -  v - - - -  w 2p 
aw 

is a one parameter  group of scale changes: 

(x', y', z') = ]c(x, y, z), 

t' ~ ]c~t 

(u', v', w') = (l/k) (u, v, w), 

p '  ---- (1//c 2) p ,  0 < / c  < ~ .  

(IV) The infinitesimal rotations 

0 0 0 
. . . . .  W - -  

Y Oz z Oy -]- v Ow ~v 

Z - - - -  X - - ' ~  W - - - -  ~ - -  
~x ~z ~u ~w 

x - - - - y  + u - - - - v - -  
Oy ~x ~v au 

generate a three parameter  rotation group; the integral form need not be dis- 
played. We note only tha t  the velocities rotate with the coordinates. 
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(V) Let  Ex( t ) ,  Ey( t ) ,  Ez ( t )  be any smooth functions. Then (l) admits the time 
dependent displacement operators 

- x ~ , ~ ( t )  E,~(t) -~- Ex( t )  -~u -@ 

o o 
Ey(t)  ~- E,y(t) ~v - -  yJE~(t) -~p 

o O O 
E~(t) ~z ~- E ~ ( t ) -  - -  z J E t ( t ) - - .  

Ow ol) 

The corresponding infinite dimensional group is not a Lie group: 

x '  = x + af t)  

y '  ~ y -4- b(t) 

~' = z + c(t) 

u '  ~ u + a(t) 

v '  = v + ~(t) 

w '  = w -~- d(t) 

p '  = p - -  xg( t )  - -  yb(t)  - -  ze( t ) ,  

where a(t) ,  b(t), c(t) are arbitrary smooth functions. The moving axes remain 
parallel to the fixed axes but the origin traces an arbitrary smooth path. The 
inertial reaction produced by the acceleration of the frame is balanced at each 
instant by a spatially constant pressure gradient. 

I t  is to be emphasized that  our considerations are entirely local in character. 
I r a  solution of (1) is given in a region and one of the above transformations is 
applied then the transformed quantities will satisfy (1) in the transformed region, 
with nothing said about boundary conditions. 

Note that  a Coriolis acceleration 2~2 X u cannot be balanced by a pressure 
gradient, in general, and the form of (1) is not preserved in moving axes if there is 
a non-vanishing angular velocity. In other words, the rotations (IV~ cannot be 
time dependent. 

4. Local Motion 

The transformation group (V) may be useful in classifying the local behavior 
of solutions of (1), as follows. Let  there be given a solution of (1) in a neighbor- 
hood of a point P0 = (xo, Y0, z0, to). The coordinates (~(t), fi(t),  y( t ) )  of a particle 
moving from P0 with the fluid satisfy 

s(t) = q ~ ( t ) ,  ~(t), ~,(t), t) 

~(t) = v (4 t ) ,  ~(t), ~,(t), t) 

i,(t) = w(o~(t), ~(t), ~,(t), t), to < t < t~, 

~(to) = xo,  fi(to) = Yo, 7(to) = zo. 
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We assume tha t  this sys tem has a twice differentiable solution on a nonzero t ime 
interval .  ( I t  is sufficient to assume tha t  u, v, w h~ve continuous par t ia l  deriv- 
a t ives  in a neighborhood of P0.) 

We introduce local coordinates,  x ' ,  y' ,  z' and  local velocities u ' ,  v', w' according to 

x'  -~ x - -  ~( t ) ,  y '  --~ y - -  fl(t), z' = z - -  7( t) ,  

u ' ( x ' ,  y ' ,  z' ,  t) ~- u (x '  + ~(t),  y '  + fl(t), z' + 7(t), t) - -  ~(t) ,  (similarly for v', w') .  

The  pressure in the  local f rame can be t aken  to be (we use also t rans format ion  
(II)): 

p ' (x ' ,  y ' ,  z', t) ~-- p ( x '  + a(t) ,  y '  + fl(t), z'  + y(t) ,  t) 

- p(~(t) ,  ~(t), ~(t), t) 

+ x '~( t )  + y'fi(t)  + z '~(t) .  

I n  the  p r imed  coordinates the relat ive field u ' ,  v', w', p '  satisfies the Navier-  
Stokes equat ions for a fluid which remains  a t  rest  a t  the origin: 

u'(0, 0, 0, t) = v'(0, 0, 0, t) = w'(0, 0, 0, t) = 0, 

i f(0,  0, 0, t) = 0, to =~ t g t~. 

Local  s tabi l i ty  against  small d is turbances  which s ta r t  within a Small region 
a round  the moving  origin m a y  depend on a local l~eynolds number  appropr ia te  
to the  region (cf. [5]). We do not  pursue  the  m a t t e r  here. 

We remark  a t  this po in t  t h a t  the  Bernoulli  integral  is essentially invar ian t  
for  the  t ransformat ions  (V). Tha t  is, suppose the fluid veloci ty field is i r rotat ional :  
a veloci ty  poten t ia l  $ exists such t h a t  u ~ V~b, in vec tor  notat ion.  The Bernoulli  

1 
integral  is the  famil iar  h --~ ~ + ~- u - u + p ,  sat isfying Vh ~- 0. I t  is clear tha t  

the p r imed  field for  t ransformat ions  (V) above is also irrotational,  with a veloci ty 
poten t ia l  ~ ' - ~  ~b + dx:  + [ ~ y ' +  ~z', say. I f  h'  denotes  the Bernoulli  integral  
fo rmed  with the quant i t ies  of the  p r imed  field, it is a s t ra ight forward  m a t t e r  to 
ver i fy t ha t  h'  - -  h is a funct ion only of t. 

5. The Derivation 

The explicit form of the  coefficients in the second extension (5) is to be ob- 
ta ined f rom the recipe of [2, w 28], namely ,  for our  tensor  notat ion,  

dx i U~ dx---i , 

d ~ i  a U ~  d ~  k 

~i~ = dxJ ~k dx--5" 

Taking  the  to ta l  der ivat ives  indicated,  we find 

z:~ 0~---~ + " u ~  7x ~ ~k - -  ~u~ u~uk~ ~ ~ a x  i ~ u ~  - -  ~ ' -  
(7) 
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for the coefficients of the first extension, and for the second extension, 

- -  axi ax i + au~ ax - - - - ~  us~ + ~ u ~  + - -  uj ui~ ~,ur au~ 

a2~ ~ o~k a2~k 
axi ax i uk" au~ ax i u~uk" ax~ au~ ui~uk~' (8) 

Equations (7) and (8) are general formulas for a second extension; nothing of 
(1) is involved. 

We consider first the divergence condition in (6). That  is, it is required that  
~'< -t- ~u v -~- ~w = 0 hold by virtue o~ (1). The quanti ty in question is 

~--~+aPua~ a~ ~+aPv~+--av a~ ~ + ~ p ~  [a~ u~+ a~ " ~ u ~ + ~ u ~  

_ [ ~ ~ + at~ ~ ,  + ~ + v~u~ + ~ v z ~  

a~ ~ a~ t aU a~ ~ a~ t 

Ow ~' aw w x ~ t  

05 x a ~  aU a~t u ] a~-v 

a-~.  + av . a~-TW. ~ - ~ .  t au v~ + ~ v .  ~ - ~  + ~  v, 

- [ ~  u,v~ + a~  u,v, + .. .~ + a~'~ a~_Z a~ ~ " a~ ~- w~ + p~ 

 w,1 ] _ r a~ ~ a~. + _ _  + - u~w~ + ~ u~w, + . . .  . L as W~ + as u az w" as ] L-~u au " 

Since no second derivatives of the u" appear, the only substitution available from 
(1) is u~ -t- v~ ~- w~ = O. The quadratic terms in the derivatives contribute 

~ k  ~t ~/~tk ~ au~ 

where a (summed) denotes u or x, v or y, w or z. This is independent of (1) unless 
it is proportional to ux + v u -]- w~ = u J .  The only proportionality possible is 
the vanishing one, i.e., 

- -  = 0 .  au~ 

This is to s~y, the coordinate displacements cannot involve the dependent 
variables. 
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The remaining conditions are more or tess obvious:  

- -  - -  = 0  @ @ @ 

- -  - -  0 

Ox ~y Oz 

because p~, p~, Pz and ut, vt, wt do not  appear  in u~ + v~ 4- w,, and 

~ §  oF ~ O, 
~x N + ~-V= 

- -  - -  = A,  say, 
Ou Ox Ov Oy 3w Oz 

~v Oy ' Ow Oz ' ~u Ox ' 

Ov Oz ' Ou Ox ' Ov Oy ' 

where A may  be a funct ion of all of the variables. Integrabi l i ty  of this system 
requires 

OA OA ~A 
- -  - -  - -  O .  

Ou ~v ~w 

(9) 

Since we already have OA/Op = 0, the solution is evidently 

+B~ 

~' = o~__uy u + [o#u 4- A ) v  + e~Uw + B u (10) 
~x ~ Oy ~z 

- - u +  v - ?  + A  w + B ~  
Ox ~y \ ~z 

where now A and Bx, By, Bz are functions of x, y, z, t. The first equations of (9) 
becomes 

(~) 
OB x OBy ~B z 
~ + ~ + W  =0. 

The first equat ion of (6) has 683 terms, formally,  when we use (7) and (8) for 
the explicit form of the coefficients. The conditions obtained so far produce sub- 
stantial  reductions, however. For  one thing, all terms involving u.u .u ,  and u.u. .  

disappear. The remaining second derivative terms come f rom the combinat ion 
~x + ~y  -~ ~:z~ and are, omit t ing coefficient --v, 

~ +A ~ + ~ v + ~  L~x x ~ - ~ + ~  

@" uuz @ ~y uu @ ez uz ~x Dy zu ~z 
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where  Au = uzz + %~ + u~  d en o t e s  the  usua l  Lap lac i an .  This  is i n d e p e n d e n t  
of (1) un less  the  coeff icients  sa t i s fy  

aS x __ aSv __ a~  __ C,  say, 
ax ay ~z 

--@+~ = 0 ,  ~ §  = - + ~ = 0 ,  
ax ~z ~x ~z ~ v  

(12) 

where  C m a y  be  a f u n c t i o n  of x, y, z, t. The  cond i t i ons  (12) are  to  the  effect  
t h a t  t he  s y m m e t r i c  p a r t  of t h e  t e n s o r  O~i/Oxi is scalar,  i.e., 

• as~/= c<~, i,j=~,y,~. 
2 \ax~ + ax~/ 

The  a n t i s y m m e t r i c  p a r t  is a curl ,  a n d  we i n t r o d u c e  f u n c t i o n s  D~, Dr, D: of 
x, y, z, t b y  

D~ = a~. = __aS: 
~z ~y 

D~ - -  a~: _ a zx (13) 
ax cqz 

D ~  - -  a r  x - -  a}Y 
ay ax 

W e  n o w  give (6) expl ic i ty .  W e  use  t h e  s impl i f ica t ions  f o u n d  t h u s  far,  we 
s u b s t i t u t e  f rom (1) for t h e  second der iva t ives ,  a n d  we collect  t e rms .  The  f i rs t  
Eq. of t he  set assumes the form 

2C - -  a~t\ a ~  

V a~ 
+ L at 

+ [a,p_ 
L av 

+ L ~ w  - 

+ 

+ 

+ 

+ 

aD[1 aD___~ aD~ w 
~-x J % - -  2v @ % - -  2v az 

ax ] ay az '- 

@ -- A)  px + \ at Ox/ 

aC aA u2 aC aA 

a>v~,~ + ( ~  _ aD~ ~w + --aD~ ~.  
ay \ ay az ] " & 

a,q [~C ~A vA(C -k A)  + u 
[-~ "+ ~--t ~x J 

cOB~] w V_~D~ aBX]v [aD~_~D~ + O. L at +v~D~+~yj  +L at 'J[.l 

%x 

(m  

00 aA aDy t 
uv + ~ + as + ax z 
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The form of SP is no t  ye t  determined,  bu t  it cannot  involve the derivatives, 
so the coefficients of the derivatives mus t  vanish. I t  is apparen t  t ha t  A = - -2C  
must  hold, and the first set in (11) then gives 

aC 
~x 

aC 
~y 

aC 
d ~ N 

az 

implying tha t  C depends at  
in (14) are 

aDz __ 
8y 

~Dz __ 

az 

a D ~  _ 

ay 

ov_2__~ = 
8z 

most  

a~z  a~y a~z 

8x 2 8x ay ax 8z 

a2~x a ~  a2~ 

@ ax ay 2 ay az 

-a2~x ---- a2~Y ---- a2~--= O, 
az ax az ~y az 2 

on t. The vu, v~, wy, w~ coefficient conditions 

a2~ a2~y 
--= . . . .  / ' ,  say, 

~y2 8y 8x 

8z 8y az 8x 

ay ax ay 8z 

a2~ - -  a2~x= F .  
az ~x aZ 2 

We now argue tha t  the second and third  equations of (6) will give a similar set of 
conditions, to  be obtained by  cyclic permuta t ion  of the indices. The solution 
of the system is ev i de n t l y / "  ~ 0 and 

~ = Cx --  D~y 4- Duz + Ex  

~Y = D~x + C y - -  D~z + Ey 

~ = - - D y x  -~- D x y  + Cz + E~ 

where now the coefficients depend on t but  not. on x, y, z. 
The remaining conditions from (14) are 

a~t- -  2C 
at 

B~ - -  a~x 
at 

at 

B~ = a~--~ 
at 

a~ p a~ p ~ p  
- -  ~ - - o 

~u 8v Ow 

~ = - 2 c  
@ 

(15)  
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a B  x 8C 

8x  8t 

8 B x  _ 8D z 

~y at 

8 B  x _ 8Du 

az at 

8~P a B  x . 

ax at ' 

it5) 

to  these we add the corresponding conditions obtained by permuta t ion  of the 
indices. The second condition in (11) yields 8 C / a t  = 0, so C is a constant .  We also 
find 

tD__z ~ -  - -  - ~ _ - -  ~ 8 ~  x aDz 

8t 8y  8y  at at 

= - -  8Bx  ~_ 82~ x -~  8Du 

8t 8z t z  8t at ' 

so tha t  Dy, D~ are constants,  as is D~ by symmet ry .  
The form of ~ is determined as 

~p = - 2 c p  + F 

where F as a function of x, y, z, t mus t  satisfy 

8x at 8t 2 

By symmet ry ,  F mus t  be of the form 

where G is ~ funct ion of t. The last remaining condition of (15) gives 

~t = 2 C t  -~  H 

where H is a constant.  
The independent  parameters  in the $ system are constants  C, Dz, Dy, D ,  H 

and the arbi t rary  smooth functions E x ( t ) ,  E y ( t ) ,  E z ( t ) ,  G( t ) .  These are associated 
with the linearly independent  infinitesimal operators listed in Section 2. 

6. Disturbance Equations 

Suppose a solution of (1) is given in a region. We wish to consider neighboring 
solutions of the form u + e~ ~, ..., p ~- 's~ p where e 2 is negligible. I f  we use vector  
nota t ion ~ ~ (~ ,  ~ ,  ~w), u = (u, v, w), the disturbance field satisfies [3, w 7] 

a-7 + (u .  v) ~ + (~. v) u § v~p - ~A~ = 0 (16) 
v . g = 0 .  
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:For given u this is ~ homogeneous linear second order system for ~, SP. A solution 
gives ~, ~P as a functional of the values of u and its derivatives, but  the de- 
pendence on these is not pointwise. That  is, such a disturbance field is not the 
infinitesimal transformation of a one parameter  group, in general, even if de- 
pendence on the derivatives of u is allowed. We show this as follows. 

Let  us reformulate the infinitesimal transformation considerations to allow 
for dependence on the derivatives. We introduce 16 new dependent variables 
u~ ~, these being functions of x, y, z, t; the subscript no longer denotes partial  
differentiation. We replace (1) by a system of 20 first order Eqs. in 24 variables: 

( +  two others), 

u~ § vy + w~---- 0, 

~u ~u 
8x u x : O, ay uy ~ O, 

( +  14 others). 

The derived Eq. (2) also becomes first order: 

apz ~Px~____x + ~_~Pu~y + -~z + ux~ + v~  -~- w ~  + 2UuVx + 2 u y ~  + 2v~w u = O. 

The divergence condition is of .actual  order zero, i.e., u~ + v u + wz : 0 is an 
algebraic constraint on the dependent variables. 

We consider infinitesimal operators with symbol 

x = ~ +  ~+~e-~o; 
each coefficient may be a function of all 24 variables. The first extension requires 
new notation: 

8 0 

Observe that  all partial  derivatives are made explicit. Formula (7) no longer 
applies, since we have a different set of variables. Instead, 

d~" ~u, d~ k 
~(~ dx  r ~x k dx  i 

~- ax--) + ~u--~ ~x - ~  + ~us---~ ~x - - i  

~x ~ [ ax i + ~u--~ ~x - ~  ~ a ~  ~xi J 
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and 
d~i ~ Ou~d~ ~ 

~ i ( i ~ -  dx i  8x  ~ dx i  

~x~ 8uk~ 8xi 

The given sys tem M = 0 admi ts  an infinitesimal t r ans format ion  if X(~)M = 0 
whenever  M ~ 0, where M denotes  the  column of 21 left  hand  sides. T h a t  is, 
the  ~'s mus t  sat isfy 

~t u + U~x '~ + v~v~ + w~2 ~ + ~"u~ + ~u  v + ~Wu: 

(4- two others), 

" ~ 2[$x~Ux ~v'%, & " u ,  ~y(y) - ,. . 

4- Q'% 4- ~Z% 4- :Y2*wz 4- ~Zu~ 4- ~?w~ 4- ~"v~] = O, 

a n d  also 

~(~x) - -  ~xz ~ = 0, ~(v)~ r = 0, ( +  14: others) .  

I f  we subst i tu te  Ou~/~x i = ui" in these last  equat ions they  take  the form 

~ d  - -  0~---2~ -t-  - -  u~ ~ % - -  ' - t-  ( 1 7 )  -ax~ au~ - -au~U'ue Lau/ ~u/ j ~ "  

Now, the following combinat ions  of the der ivat ives  are the only ones available 
f rom the given sys tem:  

8Uz ~ 8 
~u~ auY~ 4- , 4- vy 4- w~) 

Ox "-t- 8y & ~ (u z  

The der ivat ives  ~uj~ /~x  ~ can be el iminated f rom $r in (17) only if 

uk ~ = A~zl ( f l ,  j) ,  say ,  (18) 
8 u ~  8uj~ 

where zJ (fl, ]) is defined by 

A(u, x) = A(v, y) = A(w, z) = 1, 

A (fi, y) = 0 otherwise.  

The  integrabi l i ty  condit ion for sys tem (18) works out  to be 

~A ~ . OA ~ A . ~  . 
~ui~ a)r ~Urn r 
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Suppose A(y, m) ---- 0, A(fl, ]) : O, and ~x : y in (19). Then 

a ~  a ~  (~ (y no t  summed) 
u j f l  - -  ~ U m  r r,~ 

I f  m, fl, j are give n satisfying A(fl, ~) =- 0 there is a y satisfying 7 ~ # and A(y, m) 
= O, since each condition exludes at  most  one value of y. There follows 

a ~  - -  0 if A (fi, ]) = 0; 
~uj# 

in other  words, $~ can depend only on ux, vu, wz as far  as the uj~ are concerned. 
But  then (18) gives 

aS---~ : 0 i f  A(fl, ]) : O, 
8ui~ 

so ~ also is a funct ion only of uz, vy, wz among the uy.  
I n  (19) assume tha t  A(fl, ]) = 1 and A(y, m) = 0, and set ~ = y:  

~ m  aAr 
if A(fl, j) = 1, A(r, m) = 0 (y no t  summed).  

The right hand  side is independent  of fl, ], which is to say 

#u x avy aw z 

I t  is s t raightforward from this tha t  ~ depends on the uj~ only as a funct ion of 
Ux q- v u ~- ws. All solution manifolds are contained in the subspace Ux ~ u u ~- w~ 

= 0, however, so ~ does no t  depend on the ug~ at  all. We now apply the same 
a rgument  to 

A ~ - -  a~:~ i f  A( f i ,  ]) : 1 ,  

to  find tha t  ~" cannot  depend on the ui~. 
Wi th  ~i, ~" independent  of the variables uja, we are reduced to essentially 

the same system as the one t reated previously. There are no other  infinitesimal 
t ransformations of (1) than  the ones listed in Section 2, even with dependence 
on derivatives admit ted.  

7.  C o n c l u s i o n s  

The infinitesimal group of the Navier-Stokes equations is spanned by the opera- 
tors listed in Section 3. The infinitesimal group does not  enlarge if dependence on 
derivatives is admit ted.  The usefulness of the group remains to be shown - -  the 
Navier-Stokes equat ions are non-linear, and the techniques of representat ion 
theory  are not  immediately  applicable. 

The present t r ea tment  was an outgrowth  of conversations with B. P. Bogert ,  
A. J.  Claus, and  F. M. Labianca  in a seminar on the per turbat ion  theory  of the 
Navier-Stokes equations. I n  particular,  the question came up as to whether  the 
coordinate stretching of Lighthill  [4] has to do with a t ransformat ion group;  it 
does not,  according to Section 6. 

7 Aeta Mech. 38/1--2 
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