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Summary — Zusammenfassung

The Infinitesimal Group of the Navier-Stokes Equations. The Navier-Stokes equations
for an incompressible viscous fluid admit time translation, time dependent ehange of
-the pressure origin, a scale change, rotation of axes, and time dependent spatial translation.
No other transformations appear if dependence on derivatives is aliowed.

Die infinitesimale Gruppe der Navier-Stokes Gleichungen. Die Navier-Stokes Glei-
chungen fiir ein inkompressibles, viskoses Fluid lassen eine Zeitvetschiebung, eine zeit-
abhéngige Verschiebung des Druckursprungs, eine MaBstabsénderung, eine Verdrehung
der Achsen und eine zeitabhingige, rdumliche Verschiebung zu. Andere Transformationen
erscheinen nicht, wenn eine Abhingigkeit von den Ableitungen zugelassen wird.

0. Introduction

The Lie theory originated as the investigation of the infinitesimal group of a
differential equation {2, §§ 25—27]. A differential equation is said to admit a
change of variables if it takes the same form in the new variables as in the old.
Such changes of variables evidently constitute a group, called the group of the
equation. The infinitesimal group of the equation consists of those members of
the group which correspond to small changes of the variables; we need not be
precise at this point. Powerful techniques are available when the infinitesimal
group is known and nontrivial, e.g., the order of an ordinary differential equation
reduces by one for each independent generator of the infinitesimal group. In this
paper we deteimine the infinitesimal group of the Navier-Stokes equations of
fluid dynamices [1, p. 147].

1. The Navier-Stokes Equations

The velocity field (u, v, w) and pressure p of an incompressible viscous fluid
satisfy the Navier-Stokes equations

Ut _!_ Uty + /Uuy + w, + Pz — V(uzx + uyy + uzz) - 0
Uy + WUy + VO A+ WO, + Py — V(U + Yy + 0,) =0
Wy ~+ UW, vy, + ww, + P, — YWy + Wyy 4+ wy,) =0

Uy + vy +w, =0,
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The subscripts denote partial derivatives with respect to time ¢ and the usual
cartesian coordinates #, y, z. The modified pressure p has absorbed the density
factor, assumed to be constant, and includes also the potential of the external
force field, if such is present [1, p. 176]. The kinematic viscosity » is assumed to be
constant. It is a consequence of (1) that

Pz + Pyy -+ Pz -+ uzz -+ Uyz -+ wz2 + 2“;/”1 -+ 2uzw;r + 2Uzwy =90 (2)

and we may adjoin this to (1) upon occasion.

In certain places we will use the following condensed notation for the variables.

The independent variables #, y, z, { are denoted by %, where the indexing set
is ¢ € {2, ¥, 2, t}. Repeated indices 4, 4, ... are to be summed over {x, y, z, t}.

The dependent variables u, v, w, p are denoted by u*, where the indexing set
i8 « € {u, v, w, p}. Repeated indices «, §, ... are to be summed over {u, v, w, p}.
Subscripts ¢, j, ... on the «’ denote the corresponding partial derivatives.

2. Infinitesimal Transformations

We consider infinitesimal transformations of the form

(@) = x - 8&¢, i€z, y, 2t
(3)

(W) = us &, € {u, v, w, P,

where ¢2 is negligible. Both the coordinates x" and the field %" vary, and each &
may be a function of %, y, 2, £, u, v, w, p [2, § 28]. The corresponding infinitesimal
operator is

A
oxt

. a
X =45 —4 & P C3
U
a smooth function f of all of the variables changes to f = f + &(Xf) + 0(e?)
under (3). (Throughout, smooth may as well mean infinitely differentiable,
although something weaker will often suffice.)
Since (1) is a second order systern, it is necessary to obtain the second extension
of (4); this is an operator
0 0
— + &

Bu; U ouy”

Xgy=X + & (5)

The subscripts on the &’s are labels, and any partial differentiations of the &s will
be made explicit. If L denotes the column consisting of the four expressions on
the left hand side in (1), the Navier-Stokes equations L = 0 admit the infinitesimal
transformation (3) provided Xl = 0 whenever L = 0 [2,§ 28]. That is, we
must have

E% + ubt + vE 4 wE -y + oy F S, - 5P — v(EG, + &y + ER) = 0,
{4+ two others), (6}

BN &Y =0,

holding as a consequence of {1).
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The coefficients &;, & are worked out in Section 5. Suffice it to say for now
that £;* involves first derivatives of the & and that 3 involves second derivatives,

and (6) modulo (1) is a system of homogeneous linear second order partial differ-
ential equations that the £ must satisfy.

3. The Results

The details of the derivation are given in Section 5. System (1) admits the
following linearly independent infinitesimal transformations, and no others.

(I) The operator

ot

generates the one parameter group of time translations ¢’ = ¢ 4 %, where —oo
< b < o0 i8 a constant.

(IT) With G(¢) an arbitrary smooth function, the operator
G() P

corresponds to the transformation group p’ = p -} g{f), where g(t) is an arbitrary
smooth function. The pressure change at each instant is uniform over the fluid
and does not affect its motion. The group is not a Lie group.

(I11) The integral form for the operator
x—%—f—y{%—{—z% +2t%——u%—- v%—wg’%}— 2p£—o
is a one parameter group of scale changes:
@y, 2") = Kz, y,2),
t = k%
(w', v, w'y = (1/k) (u, v, w),
p=01)p, 0<k<oo.

(IV) The infinitesimal rotations

yaz oy ow ov
0 % b 0
2= r— — U —
ox 8z+ ou ow
0 a 1] [
X—— Y — —_——
oy ox o ou

generate a three parameter rotation group; the integral form need not be dis-
played. We note only that the velocities rotate with the coordinates.
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(V) Let E,(), B,(), E.(t) be any smooth functions. Then (1) admits the time
dependent displacement operators

F.] R & .. g
Bult) 5+ Balt) 35 — 2Bty o

F:} R 2 . 2
E,(t) 8~y + By P YL, P

F] N o .. ]
B0 7+ B 5 — 2B o

The corresponding infinite dimensional group is not a Lie group:

' = x + a(t)
y =y + b))
2 =z | cff)
w = u -+ d(t)
v = v 4 Bt
w = w 4+ &)

P = p — xi(t) — yb(t) — 2E(t),

where a(f), b(t), c{t) are arbitrary smooth functions. The moving axes remain
parallel to the fixed axes but the origin traces an arbitrary smooth path. The
inertial reaction produced by the acceleration of the frame is balanced at each
instant by a spatially constant pressure gradient.

It is to be emphasized that our considerations are entirely local in character.
If a solution of (1) is given in a region and one of the above transformations is
applied then the transformed quantities will satisfy (1) in the transformed region,
with nothing said about boundary conditions.

Note that a Coriolis acceleration 2£ X w cannot be balanced by a pressure
gradient, in general, and the form of (1) is not preserved in moving axes if there is
a non-vanishing angular velocity. In other words, the rotations (IV) cannot be
time dependent.

4. Local Motion

The transformation group (V) may be useful in classifying the local behavior
of solutions of (1), as follows. Let there be given a solution of (1) in a neighbor-
hood of a point Py = (x,, ¥, 20, £). The coordinates (oc(t), B(t), y(t)) of a particle
moving from P, with the fluid satisfy

&(t) = u(“(t)s Bt), y(6), t)
&) = wle(t), B®), p(8), ©)
PO =w(alt), fE), v(0), 1), o=t =t

a(fo) = %o, Bt) = o, vt} = 2.



The Infinitesimal Group of the Navier-Stokes Equations 39

We assume that this system has a twice differentiable solution on a nonzero time
interval. (It is sufficient to assume that u, », w have continuous partial deriv-
atives in a neighborhood of P;.)

We introduce local coordinates, ¢, ', 2’ and local velocities #', ', w" according to

¥ =z — «ff), y' =y — B, d=z—y(),
w{x',y,72,t) = u(x’ “+ o),y -+ B), 2’ + p(t), t) — &(#), (similarly for o', w').
The pressure in the local frame can be taken to be (we use also transformation
(II):
Py, 2 ) = pla’ + alt), y' + Bl0), 2 + (), 1)
— p(a(t), B, y(0), 1)
+ a8t + Y B + 250,
In the primed coordinates the relative field «', v, w', p’ satisfies the Navier-
Stokes equations for a fluid which remains at rest at the origin:
%'(0,0,0,8) ='(0,0,0,t) = w(0,0,0,1) = 0,
2'(0,0,0,8) =0, by =t=1t.
Local stability against small disturbances which start within a small region
around the moving origin may depend on a local Reynolds number appropriate
to the region (cf. [5]). We do not pursue the matter here.
We remark at this point that the Bernoulli integral is essentially invariant

for the transformations (V). That is, suppose the fluid velocity field is irrotational:
a velocity potential ¢ exists such that v = V', in vector notation. The Bernoulli

integral is the familiar A = ¢ + % u - u + p, satisfying A = 0. It is clear that

the primed field for transformations (V) above is also irrotational, with a velocity
potential ¢ = ¢ + az’ - by’ 1 é2', say. If k' denotes the Bernoulli integral
formed with the quantities of the primed field, it is a straightforward matter to
verify that »° — A is a function only of 4.

5. The Derivation

The explicit form of the coefficients in the second extension (5) is to be ob-
tained from the recipe of [2, § 28], namely, for our tensor notation,

age dgk
= S
‘i dzt T
. _ d&* « dEF
6= Mg
Taking the total derivatives indicated, we find
o — 850‘ aé’:m 8 aék & aék o
W Ve T T @)
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for the coefficients of the first extension, and for the second extension,

o0& ok ok ogk | agk
e -, u.ﬁu ol 12 ﬂ g
0 {amz T ou U T g M T G oai | up T | ik
32501' 625« aZSa 62;&0‘
= - 94, —— 4,8 Y
MW+WWJ+WW’+WM7‘
azsk «3251{7 azgk
e gy — ey By e 2 gy By ® 8
oad ot * oub ot 1 F oxd oub k (8)
a2§k a a&k a:g-k
_ b — e g0
o o ™ P +a 5T g it T g ik
ok . .
— oo W - wud + wfu).

Equations (7) and (8) are general formulas for a second extension; nothing of
(1) is involved.

We consider first the divergence condition in (6). That is, it is required that
&+ £ 4 £ = 0 hold by virtue of (1). The quantity in question is

o&% E)“ 8“ 8“ 8” 6 8” okt

_[guxz+Z%uxuy+aa—izuxuz+z—f:uxut—}—%%cvgcuﬁ—k-é‘%vzuy
-I—%i—zvxuz—l—zf ,z-ut+ wxz—{— wx“ﬂ+%§wz“z+g—iwzut
+a 10H+ pzy+ px z+2—§pxut]+%§—v

*[%%E“v”ﬂ+%%“ﬂ”y+"']+%+%uz+%vz+%wz+%pz

&% o&Y 0% . Ot oE*
l: x+‘_ y"'i'?z'wzﬂ_;;wt:‘_l:—a; ,.z+ uwy_‘_“"]-
Since no second derivatives of the «" appear, the only substitution available from
(1) is u,, + v, + w, = 0. The quadratic terms in the derivatives contribute
ok,
— o Yot
where ¢ (summed) denotes % or w, » or y, w or z. This is independent of (1) unless
it is proportional to u, + v, + w, = u,°. The only proportionality possible is
the vanishing one, i.e.,
o _
oub
This is to say, the coordinate displacements cannot involve the dependent
variables.
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The remaining conditions are more or less obvious:

oEN  pEv gk
AT N M 9
or | oy oz 0, ®)

o _ o e pp ase o
o oz ou oz’ ow oy

where 4 may be a function of all of the variables. Integrability of this system
requires

Since we already have d4/8p = 0, the solution is evidently

g“:(a—é:x—-}-A)u—i—%rv—{—a—Efw‘f_Bz
oy oz

ox
0 . 05 234 ogv
E_axu+(ay+A)v+azw+By (10)
5wza—fzu+a—5;v+(§ff+A)w+Bz

ox oy oz

where now 4 and B,, B,, B, are functions of #, y, 2, . The first equations of (9)

becomes
0 0 o&%
{m;az}[ e *]

(11)

f++

The first equation of (6) has 683 terms, formally, when we use (7) and (8) for
the explicit form of the coefficients. The conditions obtained so far produce sub-
stantial reductions, however. For one thing, all terms involving « % u_and u u_
disappear. The remaining second derivative terms come from the combination
&re + &, + £, and are, omitting coefficient —v,

3 85 oE® ok
<_8;_LA)A + A + Aw {:a x.‘z:+ xg—i_?%xz
og¥ og¥ og¥ "E 35" 3&’
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where Au = u,, + u,, + %, denotes the usual Laplacian. This is independent
of (1) unless the coefficients satisfy

o _ o o

—_— = = C, say
ox oy oz
(12)
dgr o _ A oo A Ee
oy ' oo % | ox b2 oy

where ¢ may be a function of z, y, z, £. The conditions (12) are to the effect
that the symmetric part of the tensor 0£%/9af is scalar, i.e.,

L fogt | aely L
The antisymmetric part is a curl, and we introduce functions D,, D,, D, of
z, Y, 2t by

p, — &
0z oy
o0&+ o8%
_ —me— = 1‘
Dy or 2 ( 3)
p,_ & _
oy ox

We now give (6) explicity. We use the simplifications found thus far, we
substitute from (1) for the second derivatives, and we collect terms. The first
Eq. of the set assumes the form .

e 00 ar (20 a4
(2C—~8?>ut—(— s 20+ A 2”(;}% + 890)4«31.}%1

4f—§+zw+@0+mU~($+ )+B}

L

o&P

i ot ¢z = Oz
rogp UD D, oD,

e ax]v_zyay”y e

+

— 2v ]wzv%}—a—f—yw —2vaa&w:
Y ? (14)

E
(s 242)
(S0 ) (S22

____”1)2_’_ __y__.g.& q)w+a_]2_yw2
oz o0z

S

+<80+a~ +5)uw

b, 9B, Dy 9B,
E—F_VAD:Jray}v%[ vAD, +

ot oz

—ﬂw+——4w+m+ =K
+|



The Infinitesimal Group of the Navier-Stokés Equations 93

The form of & is not yet determined, but it cannot involve the derivatives,
so the coefficients of the derivatives must vanish. It is apparent that 4 = —2C
must hold, and the first set in (11) then gives

gg f2g o8y dRE% —0

sx  oa? Odwdy ow oz
80 REx o2k o2E* —0

by oydw oy oy ox
8¢ 3251:' 32511 - o2k .

2  dzoéw Oz oy 02 ’

implying that C depends at most on ¢ The v, v,, w,, w, coefficient conditions
in (14) are

oD %" 0%y

D, g % =T, 83y,
oy oy Oy dx

oD, T 0

&  ozdy ozéx

F) . _ orE? - 2% N

oy B oy oz &y on

aDy . aﬁél . ?.ga; .

6z ozow o2

We now argue that the second and third equations of (6) will give a similar set of
conditions, to be obtained by cyclic permutation of the indices. The solution
of the system is evidently I" = 0 and

#=Ce—Dy+ Dpz+ B,
#=Du+Cy—Daz+ E,
&= —Dx+ Dy + Cz+ B,

where now the coefficients depend on ¢ but not on z, ¥, =.
The remaining conditions from (14) are

%920
ot
o
SY-"
_ o
B, = at
(15)
B, =%
ot
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2B, _ 20

dx ot

2B, 4D,

dy o ,
(15)

9B, _ oD,

0z ot

or 9B,

dx o’

to these we add the corresponding conditions obtained by permutation of the
indices. The second condition in (11) yields 8C/dt = 0, so C is a constant. We also
find

oD, 9B, & 4D,

o ey  oyer at
8Dy _ _ B, o _ oDy
at & &z ot o’

so that D, D, are constants, as is D, by symmetry.
The form of &? is determined as

= —20p + F
where F as a function of #, y, 2, £ must satisfy

oF _ 8B P

e feeee} e

dr ot ate

By symmetry, ¥ must be of the form
F=~xE’x—yE’y—zE"z+G‘

where @ is a function of ¢. The last remaining condition of (15) gives

£ =20t + H

where H is a constant.

The independent parameters in the & system are constants C, D,, D, D,, H
and the arbitrary smooth functions ¥,(t), E,(f), E,(f), G(t). These are associated
with the linearly independent infinitesimal operators listed in Section 2.

6. Disturbanee Equations

Suppose & solution of (1) is given in a region. We wish to consider neighboring
solutions of the form u + &£, ..., p + &2 where ¢* is negligible. If we use vector
notation § = (&%, &, &%), u = (u, v, w), the disturbance field satisfies {3, § 7]

B E+ G u Ve — A =0
V.&=0.

(16)
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For given u this is a homogeneous linear second order system for &, &7. A solution
gives &, &P as a functional of the values of w and its derivatives, but the de-
pendence on these is not pointwise. That is, such a disturbance field is not the
infinitesimal transformation of a one parameter group, in general, even if de-
pendence on the derivatives of ¢ is allowed. We show this as follows.

Let us reformulate the infinitesimal transformation considerations to allow
for dependence on the derivatives. We introduce 16 new dependent variables
u;*, these being functions of z, y, 2, ¢; the subscript no longer denotes partial
differentiation. We replace (1) by a system of 20 first order Eqgs. in 24 variables:

au, ou, ou
ur+mu+m@+wm+4u—vbf+5j+5ﬂ=:&
(4 two others),

uz+vy+wz:0:

ou ou
& uy=0, <
ox oy

(+ 14 others).

—u, =0,

The derived Eq. (2) also becomes first order:
0 2 op, |
%‘” + 7}; + 312— + u,® 4 v, 4w, 4 2uw, 4 2uw, + 20,0, = 0.

The divergence condition is of.actual order zero, i.e., w, + v, +w, =0 is an
algebraic constraint on the dependent variables.
We consider infinitesimal operators with symbol

x=elgpel el

ot u® ou® ’

each coefficient may be a function of all 24 variables. The first extension requires
new notation:

*3 3 o a
X=X+ & e -+ & NS
) o)

Observe that all partial derivatives are made explicit. Formula (7) no longer
applies, since we have a different set of variables. Instead,

. & ous dEx

@7 G2t ok dt
I Ol
oxt | ouf ozt Buf oat

_ Ousfogk | oitouP | o ouf
oxF foxt © Oub oxt ouf ozt
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and
o 96 owtdEt
P T gy Bk dui
s dcow | o oug

b ouf oxf  Owyf oad

oug (ok | o oud | oet ouy
dak |oxd  owboxl ' du,f G2 |

The given system M = 0 admits an infinitesimal transformation if XM = 0

whenever M == 0, where M denotes the column of 21 left hand sides. That is,
the &'s must satisfy

&+ ubt + v5 + wér A Sy 4wy + U
+ &2 — Wl + Ejy + Sl =0,
(+ two others),
'+ &+ =0,
B + 5 T o 1+ 208wy + &My + Eu,
+ &M 4 &ty + EMw, A &0, + EPwy + &) =0,
and also
oy — &4 =0, Sy — & =0, (+ 14 others).
If we substitute ou®/dx! = u;* in these last equations they take the form

QE_“ ase . — 8_51.’: o 8Ek

. S — = U —_ =
Pl h e~ L e [auiﬁ oup

J gy,
i

N

ot

age agt ] duf

Now, the following combinations of the derivatives are the only ones available
from the given system:

Gugt g Quyt ot O ,

ox - dy + o’ ot (y + vy 4 02).

The derivatives ou;f{ox* can be eliminated from £ in (17) only if
e _ ot
ouf . ouf

— e = A4, j), say, (18)
where 4(8, §) is defined by
A, x) = A, y) = Aw, 2) = 1,
4B, y) =0 otherwise.

The integrability condition for system (18) works out to be

ogm 28l

o4° 0A° .
L = _ . 19
au?ﬁ aa.y I a,p au]ﬂ 4 (y, m) — E A(B, ) (19)
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Suppose A(y, m) = 0, 4(8, j) = 0, and x = y in (19). Then
an _ o

= — not summed).
Bujﬂ aum;’ v (y )

I m, B, § are given satisfying A(f, j) = O there is a y satisfying y 4 £ and A(y, m)
= 0, since each condition exludes at most one value of y. There follows

o™ . .
Eu_jﬂ*o it A7) =0;

in other words, £&™ can depend only on w,, v,, w, as far as the u;# are concerned.
But then (18) gives

oE . L
8u}-ﬂ_0 if AB, ) =0,

s0 £ also is a function only of u,, v,, w, among the u;”.
In (19) assime that A(f, j) = 1 and A(y, m) = 0, and set o = y:
an _ _ o4
8%7"9 - au,,/

if 4B,9) =1, A(y, m)y =10 (y not summed).

The right hand side is independent of 8, §, which is to say

It is straightforward from this that &™ depends on the u;f only as a function of
4y + v, -+ w,. All solution manifolds are contained in the subspace u, + u, + w,
= 0, however, so £&” does not depend on the %;f at all. We now apply the same
argument to
o&* . .
A“:W if AB, ) =1,
to find that & cannot depend on the .

With &, & independent of the variables u;%, we are reduced to essentially
the same system as the one treated previously. There are no other infinitesimal
transformations of (1) than the ones listed in Section 2, even with dependence
on derivatives admitted.

7. Conclusions

The infinitesimal group of the Navier-Stokes equations is spanned by the opera-
tors listed in Section 3. The infinitesimal group does not enlarge if dependence on
derivatives is admitted. The usefulness of the group remains to be shown — the
Navier-Stokes equations are non-linear, and the techniques of representation
theory are not immediately applicable.

The present treatment was an outgrowth of conversations with B. P. Bogert,
A. J. Claus, and F. M. Labianca in a seminar on the perturbation theory of the
Navier-Stokes equations. In particular, the question came up as to whether the
coordinate stretching of Lighthill [4] has to do with a transformation group; it
does not, according to Section 6.

7 Acta Mech. 38/1-2
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