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The Langlands Quotient Theorem for p-adic Groups 

Allan J. Silberger 
Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115, USA 

Langlands' paper [3] reduces the problem of determining and classifying all 
irreducible quasi-simple representations of a group G=~J(1R), where ~; is a 
connected and reductive algebraic group defined over IR, to the problem of 
determining and classifying all irreducible tempered representations of G. In this 
paper we shall state and prove the analogue of Langlands' theorem for p-adic 
groups. 

The organization of this paper is as follows. The first section recalls notation. 
The second and third sections summarize known facts. The fourth section presents 
the statement of the Langlands quotient theorem. The final sections of the paper 
give the proof. 

The author would like to acknowledge invaluable discussions with Nolan Wallach. Wallach has also, 
independently, proved the main theorem of this paper. The author would also like to thank H. Jacquet 
for many helpful comments and suggestions. 

t. Some Notation 

Let ~3 be a connected and reductive algebraic group defined over a non- 
archimedean local field O. Write G for the group of all O-points of ~.  

In this paper we shall employ notations and terminology from [2] and [4]. We 
begin by recalling some of this terminology. 

Throughout  the paper we shall abuse notation by referring to O-groups and 
the corresponding groups of O-points by the same capital letter. The reader should 
have no difficulty in distinguishing, from the context, our intended usage. 

We fix a minimal p-pair (Po, A0) (P0 = MoNo) of G. A split torus A of G is called 
a standard torus if A C A o and if A is a split component of some p-subgroup of G. A 
p-pair (P, A) is called a semi-standard p-pair if A is a standard torus. A semi- 
standard p-pair (P,A) is called a standard p-pair if P3Po. Notation:  
(P1, A1)>-(P2, A2) means that P~ 3P2 and A 1 CA 2. Every p-pair (P',A') of G is 
conjugate to a standard p-pair of G in the sense that : there exists ye  G such that 
(p,r, n,.v) = (yp,y- 1, yA'y- t)>-(Po, Ao). 
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Let A 1 and A 2 be standard tori of G. We write W(AllA2) for the set of all 
homomorphisms s:A 2 ~A  1 which are induced by inner automorphisms of G. In 
particular, when A 1 =A 2, we write W(A) or W(G/A)= W(AIA). Note that W(A) is 
the factor group NG(A)/ZG(A), a finite group. Write W 0 = W(Ao); W 0 is the relative 
Weyl group of G. For  any A 1 and A 2 and se W(AllA2) there is at least one Soe W o 
such that solA 2 =s. 

Let A be a standard torus of G. Let X(A) denote the group of all rational 
characters of A. We write a = Hom(X(A), 7/)@IR and call a the real Lie algebra 

Z 
of A. We write a* (respectively, a*) for the dual space (respectively, complexified 
dual space) of a ([2], § 7 or [-4], §0.5). Let M denote the centralizer of A. There is a 
natural mapping H:M-~a and a pairing ( , ) : a * x  a ~ l R  ([2], §7). We assume a 
fixed W0-invariant inner product on a*, so that, when convenient, we may identify 
each a* with a subspace of a* and each a with its dual a*. We may assume that, 
when a and a* are so identified, the pairing ( , )  on a* x a and the scalar product 
(,) on a* x a* are the same mapping. 

Corresponding to any standard p-pair (P,A), we have a set of simple roots 
S°(P, A)C a*. The elements of X°(P, A) are the non-zero projections to a* of the 
simple roots X°(Po, Ao)C a~. We write + a* for the subset of a* consisting of all 
linear combinations of elements of X°(P, A) having non-negative coefficients, a* + 
for the subset of a* consisting of all elements which, under the scalar product 
on a*, map + a *  to the non-negative reals. We write + A  and A + for the subsets 
of A which are mapped by H to + a  and a +, respectively. 

An element of a* is called regular if it is not orthogonal to any element of 
the set of reduced roots Sr(P,A). Letting a vary in A, we write a T  oo , if 
(~,H(a))-*oo for all cteX°(P, A). I f a e A  + and H(a) is regular, then a"--~ 0% n-* oo. 

P 

For  any standard torus A we write 3~(A) for the set of all p-subgroups P such 
that (P, A) is a semi-standard p-pair. For  every Pe~(A)  there is a un ique / se~(A)  
such that Pc~fi=M (i.e., P = M N , / 5 = M N ) ;  P is called the opposite of P. 

We write doe(G) [-respectively, do(G)] for the set of all classes of irreducible 
admissible representations of G [respectively, unitary admissible representations 
of G]. We write °do¢.(G) [respectively, °do(G)] for the subset of doe(G) [,respectively, 
do(G)] consisting of all supercuspidal classes. We write doa(G) for the set of all 
discrete series classes in do(G), wdo(G) for the subset of d°(G) consisting off all 
classes of tempered representations. 

Let (P,A) (P=MN) be a semi-standard p-pair of G. Let 6=6p denote the 
modular  function of P. Let aecoeo~e(M) and lift a to a representation of P, trivial 
on N. We write I(P, G, a) = I(P, a) = I(P, G, co) = I(P, co) for the induced repre- 
sentation Ind~p(6~/Ea). The representation I(P, a) is admissible. If, in addition, a is 
unitary, then so is I(P,a). For  any vea~ we define the quasi-character 
xv(m) = q v=q <v'm')> (me M). The constant q > 1 is conventionally the module of f2. 
Given a as above, we set a~(m)= a(m)xv(m) (me M) and define a~ e co~e doe(M). 

Let A~ and A 2 be conjugate standaid tor i  with Mx and M E the respective 
centralizers. Let a e co e doe (M 1) an d let s e W(A 2[A 1 ) have representative y = y(s) ~ G. 
Set a t (m)--a(y- lmy)  (me M2). Write are  co~e doe(ME). As the notation indicates, the 
class co~ depends only upon s. We write W(G/A1, ~) or W(co) for the subgroup of 
W(G/A1) consisting of all elements which fix the class co. 
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Let n t and n 2 be admissible representations of G. We write n, ~ n  z if n, and r~ 2 
are equivalent representations. It is easy to see that I(P y, a y) ,.~ I(P, a) for all (P, o) as 
above and y~ G. 

Let X be a finite set. We write IX] to denote the cardinality of X. Let n 1 be an 
admissible representation of G and let nz~ C2 E ~¢.(G ). We write [n2, nl]  or [C2, n , ]  
for the number of factors in a composition series for n~ which are equivalent to n 2. 

2. A Preliminary Classification of  Irreducible Admissible Representations 
- -  as Components  o f  I(P, ~9), e~ Supercuspidal 

The purpose of this section and the next is to summarize some of the ideas 
which are developed in [4] in order to orient the reader relative to Langlands' 
classification. We shall also use some of the facts presented in these sections in 
proving Langlands' quotient theorem. 

Let n be any admissible representation of G in a vector space ~ .  Let (P,A) 
(P = MN) be a semi-standard p-pair of G. The Jacquet module 3~(P)= Jf/M~(P) 
may be defined as the universal object for all P-module morphisms from ~ to 
P-modules V on which N acts trivially. Any such V -  in particular, ~ ( P )  - may be 
regarded as an M-module. A basic theorem, due essentially to Jacquet (cf. [4], 
Corollary 2.3.6), asserts that ~¢'(P) is an admissible M-module. We write n(P) for 
the representation of M in ~g(P). The functor J f f~ -~(P)  from the category of 
admissible G-modules to the category of admissible M-modules is exact. We also 
remind the reader that the same is true of the functor Ind,(@/2.)  from admissible 
M-modules to admissible G-modules for any PE~(A). Recall also that both 
functors are transitive. 

Now let n be an irreducible admissible representation of G and a an irreducible 
admissible representation of M. The Frobenius reciprocity theorem ([4], 
Corollary 1.7.11) implies that n occurs as a subrepresentation of I(P, a) if and only 
if @/2a occurs as a quotient of n(P). By [-4], Theorem 3.3.1 and an easy induction, 
n occurs as a subrepresentation of I(P, cs) if and only if n occurs as a quotient 
representation of I(P, a). As we shall use this fact repeatedly, we emphasize that 
occurs as a quotient of I(P, a) if and only if a occurs as a quotient representation of 
@/zn(P). We write ~9~(P,A) for the set of all c,~ ~¢(M) such that 6~ 1/2co is the class 
of a subquotient of 0~f(P). The elements of ~ ( P ,  A) are called class exponents of n 
with respect to (P, A). It is not always true that, if coe ~9~(P,A), then n is a quotient 
of I(P, co); however, if there is one supercuspidal co6~(P,A), then 
~0~(P, A) C °~c(M) and Jr(P)  is a direct sum of isotypic subspaces, each with a finite 
composition series. We shall describe this decomposition further in a moment. 

Let o and n be as in the preceding paragraph. Then alA is, by Schur's lemma, a 
quasi-character X~ times a(1). We call ~ the central exponent of a. We write 
~ ( P ,  A) for the set of exponents of n with respect to (P, A), i.e., for the set of all 
central exponents of the class exponents of n. 

Now let a6cJ)6°Sc(M). Then, for any PI6~(A), l(P, co)(P 0 has a finite 
composition series with the composition factors {cS~/zco~lsE W(G/A)}, each factor 
counted with the indicated multiplicity (Casselman first proved this for the principal 
series; cf. [4], Theorem 5.4.1.1 for the general case). In addition, each component of 
I(P, co) accounts for some component of I(P, co)(P1) ([4], Corollary 5.4.4.6). This 
implies that I(P, co) has a composition series whose length is bounded by [ W(G/A)]. 
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We may now give a "preliminary" classification of all irreducible admissible 
representations of G. Let n be an irreducible admissible representation of G. 
According to Jacquet (cf. [4], Corollaries 2.4.2 and 2.8.3), if n is not supercuspidal, 
then n(/5) 4= (0) for some proper standard p-pair (P, A) (P = MN) of G. Taking 
(P, A) minimal, one obtains aecoe °Ne(M) such that n is a quotient representation 
of I(P, co). 

Now let A a and A 2 be standard tori of G, M 1 and M= the respective 
centralizers. Let aieco~e°g¢(M~), i=1,2 .  Then, for any Pi~(Ai )  (i=1,2), the 
induced representations I(PI, coo and I(P2, co2) have either isomorphic or disjoint 
composition series. The composition series are isomorphic if and only if there 
exists an isomorphism se W(AllA2) such that co~=cor In particular, the com- 
position series of I(P~, coo (although, of course, not generally the representations 
which occur as irreducible quotients or subrepresentations) does not depend on 
the choice of P~ ~ ~(A 1). 

In summary, it suffices, in order to classify all elements of d~¢(G), to list a set of 
representatives {A } for all conjugacy classes of standard tori, to list representatives 
for °g¢(MA)/W(A) for all A E {A} (M A = ZG(A)), and, finally, choosing PA ~ ~(A) for 
each Ae {A}, to list the components of I(PA, co) for all coe°g¢(MA)/W(A ). 

3. Tempered Representations and their Classification as Components 
of I(P, o) (tuE82(M)) 

Let g be an irreducible admissible representation of G. Then ~ belongs to the 
discrete series of G if and only if: 

(1) the central exponent Z~ of ~ is unitary ; and 
(2) for every standard p-pair (P,A) (P=MN) and every Z~3£~(P, A), z(a)~0, 

a-e-,oo (cf. [4], Theorem 4.4.4). The representation g is tempered if and only if the 
following condition is fulfilled ([4], Lemma 4.5.3) : For every standard p-pair (P, A) 
and every ZeJE~(P,A), Iz(a)l< 1 for all aeA +. This condition implies that )~ is 
unitary. If ~ is tempered and coeds(P, A) has a unitary central exponent, then co is 
itself a tempered class of M. Thus, a "minimal" tempered class exponent for 
belongs to the discrete series of M. One sees easily from this that, for every 
tempered n, there is a standard (P, A) and an 0.~82(M ) such that n C I(P, co). An 
irreducible admissible representation n is not tempered if and only if there is a 
standard p-pair (P, A) and ae A + such that Iz(a")D--* ce, n ~  oo, for some Z s ~,(P, A). 

An irreducible admissible representation n of G is called essentially tempered if 
there is a quasi-character Z of G such that Xn is tempered. 

Let us briefly mention the rather precise analogy which exists between the 
classification of irreducible admissible representations as components of I(P, co) 
[(P, A) (P=MN) a standard p-pair; coe °g¢(M)] and the classification of irreduc- 
ible tempered representations as components of l(P, co) [(P,A) as before; 
coegz(M)]. We have already observed that every irreducible tempered repre- 
sentation of G is a component (direct summand!) of I(P, co) for some standard 
p-pair (P,A) (P=MN), some coegz(m). 

Let (P, A) (P = MN) be a standard p-pair of G, aecoe g2(M). For any P 'e  ~(A) 
the representation 6~,,1/21(P, co)(P') has a tempered direct summand whose com- 
position factors are {coSJse W(G/A)}, again with the indicated multiplicities. As 
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before, this leads to the following result : Let Aa and A z be standard tori, M~ and M z 
the respective centralizers. The (unitary) induced class C~ (co~) depends only on 
co~Sgz(M~)/W(G/A~), not on PiE~(A~), i =  1, 2; C~(o) l )=  C~(o~2) if and only if Aa 
and A 2 are conjugate and co] =o~ z for some s~W(Az[A1); otherwise the repre- 
sentations are disjoint. The procedure for listing and classifying tempered 
representations goes exactly as at the end of the preceding section. 

The theorem of the next section shows that the disjoint union 

H {(co, v)lco~wg(Ma), y ea  *+ and regular} 
(P ,A)>- (Po ,  Ao) 

( P = M A N )  

is in natural one-one correspondence with #¢(G). 

4. The Statement of Langlands' Quotient Theorem 
The main purpose of this paper is to prove the following theorem (cf. [3], Lemmas 
3.13, 3.14, and 4.2): 

Theorem4.1. (1) Let (P,A) ( P = M N )  be a standard p-pair of  G and let 
a~co+~(M) .  Let v+ a *+ and assume that v is regular. Then I(P, co_/=a~) has 
exactly one irreducible quotient representation. 

We write J(a, v) for the irreducible quotient representation of (1). 
(2) Let (P~,Ai) (Pi=MiNi) be a standard p-pair of G, let ai~i~wS(M"),and let 

vi~a *+ be regular, i=1,2. I f  J(at, vl)~J(a2,  v2), then PI=P2,  co~=c~) 2, and 
V I = V2" 

(3) Let n be an irreducible admissible representation of G. Then there exists a 
standard p-pair (P, A) (P = MN), an irreducible tempered representation a of  M, and 
a regular element ve a *÷ such that rc~J(a, v). 

5. Defining the Langlands Quotient Representation J(a", v")--the Proof of (1) 

Proposition5.1. Let (P",A") (P"=M"N")  be a standard p-pair of G. Let 
a" ~ ~"~ w~(M ". Let v" ~ a"* + and assume that v" is regular. Then I(P", ~ "  v-=I ,,") has 
exactly one irreducible quotient representation. 
Proof. Let (P",A") (P"=M"N"),  (P',A') (P'=M'N') ,  and (P,A) ( P = M N )  be 
standard p-pairs of G such that (P", A")>(P', A')>(P, A). By [4], Corollary 4.5.11 
we may assume that there is a representation a'~co'c¢2(M') such that a" occurs as 
a quotient of I(P'~M",  a') and, by [4], Corollary 2.4.2 and Theorem 4.4.4, we may 

further assume that a' occurs as a quotient of I(Pc~M', av_ ~ vo) where a~ ~ °~(M) 
and v o is a linear combination of the elements of X°(Pc~M ', A) with all positive 
coefficients. Clearly, any quotient representation of I(P",a"v_-~,j,) is also a 
quotient representation of I(P, cov=l,.o_¢,)). Since I(P',o;) is tempered, every 
element o)~,~ i~ ~ ~ r e  (P, A)(s~ W(G/A)) satisfies SVo~ + a*. i, ' - 0 t ' , ¢ o ' )  

The proof of Proposition 5.1 continues via a series of lemmas. 
We call a regular element v"~a"* generic if Vo-V" is fixed by no element of 

W ( G / A ) -  W(M"/A). 

Lemma 5.2. The generic elements of a"* comprise an open dense subset of a"*. 
Proof. Fix s~ W ( G / A ) -  W(M"/A). It is enough to show that the set of all regular 
v"~a"* such that s (vo -v" )=Vo-V"  lie in (at most) a hyperplane of a"*. If v" is 
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regular and both  s(v o - v " ) =  v o - v "  and sv o = Vo, then sv"= v", which is impossible, 
since s¢ W(M"/A). We may assume sv o 4= v o. If sv o - s v " =  v o - v " ,  then (v", - s - 1 % )  
= (v o - SVo, %) 4= O. Since v" = 0 is not a solution of this linear equation, the set of 
solutions constitutes a hyperplane of  a"*. 

Lemma 5.3. Let p be an irreducible admissible representation of  M". I f  v" is generic, 
then 

[~°v--1-(vo- v"~, 5 ~/2 M,,#(/5 c~ M")] - [o~v_--~-~ o_ v,,~, 6 ~/2 I(P", #)(16)] , 

the two sides being non-zero if and only if # is equivalent to a quotient of 
I(P c~M", a~v=3¢,o_ ~,,~). 

Proof. It follows from Frobenius '  reciprocity theorem that  # occurs as a quotient  
of b~I,2I(p",#)(16"). Therefore, by the transitivity of the Jacquet  functor, 
[¢°v-'~ ~,o-~"), ~'/~2M"#(16c~M")] = [mV=r(~o- v"), 6 le/2I(p", #) (16)]. By Frobenius '  re- 
ciprocity theorem the left side is non-zero if and only if # is equivalent to a 
quot ient  of I(Pc~M", Wv=~(~o_ ~,,~). 

Now let v" be generic. Since 

[~ov=i(~o_ ~"), 5~/2i(p, COv_~(,o _ ~,,))(/5)] 

= [W(G/A,  ~v--~(~o-~"))] = [W(M"/A,  og~f(~o- ~,,))] , 

we see that 
1/2 [C°V=7(~o- ~"), ~e I(P, ~o~=X(~o_ ~,,)) (16)] 

= [cov=3(~o_ ~,,), 51v/2~M,,I(Pc~M ", e~v=T(~o_ ~,,)) (16c~M")] 
_ _  1 / 2  - - [~ov=r,o, a e~M,,I(PnM, a~v=,~ o) (16n M")]. 

This implies that, for every component  # of I(PmM", ~Ov=~(~o_ ~,,)), 

1/2 -- - [mV=3-(~ o- ~,,), b e,~M,,#(Pc~M )] = [ogv=~(~o_,,,~, b ~/2 I(P", #)(16)3 - 

The lemma is proved. 

Corollary 5.4. Let # be an irreducible admissible representation of M". Let  v" ~ a"* 
be generic. Then there exist equivalent quotient representations of I(P",#) and 
I(P, oJv=3(~o_~,)) if  and only if # occurs as a quotient representation of 
I ( P c~ M", oJ V =~ ~o _ ~,,~). 

Proof. By Frobenius '  reciprocity theorem I(P",#) and l(P,~v=3(vo_~,,~) have 
equivalent quotient  representations if and only if ogv=T~o_ ~,,) occurs as a quotient  
of c5~/2I(p",#)(16). By Casselman's lemma affirming that  supercuspidals are 
projectives in the category of admissible representations (with a fixed central 
exponent),  og~=,f~,o_,,, ~ occurs as a quot ient  if and only if 

[~o~=~ ~ o -  ~"~, ~/~ ~(n", #) (16)] > 0 .  

Thus, Lemma 5.3 implies this corollary. 

Lemma 5.5. I f  v" is generic and # is equivalent to any quotient of  

l(Pc~ M", coy-= ~ (~o - ~")) , 

then I(P",#) has only one irreducible quotient representation. 
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Proof Let I(P", #) have more than one irreducible quotient representation. Then 
there is a morphism of G-modules I (P",#)~rhOrc z, where rq and rc 2 are 
admissible representations of G satisfying [#,6~/,27ci(15")] >0, i =  1,2. If kt is a 

1 / 2  -- tt  quotient of l(Pc~M",e)v=~(vo_v,,)), then [~O¢=r(vo_,.,,), 6enM,,l~(Pc~M)]>O. 
Therefore, by the exactness of the Jacquet functor, 

1 / 2  -- - [C°v=-r(vo- v"), fienM"#( Pr iM )] < [C0V=--r(~o -v"), 511/21( P', P)(/5)] . 

If V" is generic, this contradicts Lemma 5.3. 

Lemma 5.6. Let a" be a tempered quotient of I(Pc~M", ~oV=r~o) and let v" be any 
regular element of a "*+. Then I(P",a"v=r~,, ) has exactly one irreducible quotient 
representation. 

Proof It is enough to show that [~ov=~tvo_~.,),61/ZI(P",a " ~tfi~l 
- -  ] / ~ ]  v " ] "~ l d 

1 / 2  - - - = [~Ov=r(~o_,.,,), 6e~M,.~r (PoeM)]; otherwise we arrive at a contradiction as in 
Lemma 5.5. By the first part of the proof of Lemma 5.3 we know > and, by 
Lemma 5.3, the equality for v" generic. The composition factors for 
61p/z i(p,,  ,, if, a_ v=~,,)( ) consist of all the classes ~Ov=q-~(~o_ ~,,), counting multiplicities, 
where s lies in a certain fixed subset X of W(G/A). Let Y = X ~  W(o~v_~(~o_ v,,)). For 
v" generic, Y C W(M"/A) and 

1 / 2  . ~ - -  . . - -  [Y]=[cov=q(~o_~,,),be I(P a )(P)]----[~ . . . .  6 ~  M a ,/=q~ (Pc~M")] 1/=1(~ - ) - _ ,, . 

We shall show that the same is true for all regular v"ea "*+ 

Let s e X - Y  and suppose that S(Vo-V")=Vo-V". Then, by analytic con- 
tinuation, ~o~,+v_ a ..... eOcg,(o,,)(P,A) for almost all v'ea'* and thus, since 

G Cu,(o)~.) is a tempered class, SVoe +a*. Since v"-sv"=Vo-SV o and, as is well 
known, v " - s v "e  +a*, it follows that sv o lies in the subspace of a* spanned by 
X°(Pc~M ', A). Thus, sv" = v " -  v 1, where (v 1, v")=0. This implies that 
(sv", sv") > (v", v"), a contradiction, unless sv" = v", in which case, sv o = Vo and, by 
the regularity of v", se W(M"/A). Thus, Y C W(M"/A) for all regular v". The proofs 
of Lemma 5.6 and of Proposition 5.1 are complete. 

Proposition 5.7. Let a'i~o'i~z(M'), let a' i occur as a quotient representation of 
I (PnM',  M', ar~_7,~o), and let a' i' be an irreducible component of I(P' ~M", M", a'i), 
i= 1,2. I f  a'~ is not equivalent to a2, then J(al, v") is not equivalent to J(a2, v"). I f  7z is 
any irreducible quotient representation of I (P~ M", M", av=x~o) and 
I(P", G, ~_ V=-~v,,) has a quotient equivalent to J(a'~, v"), then ~ ,,~ a'~. 

Proof The first assertion follows from the second; we prove the second. Suppose 
is an irreducible quotient of I(Pc~M", cov=~o) such that n ~ a" and such that 

I(P", a" v--~") and I(P", ~-v~ , , " )  have equivalent quotient representations. Then 
there are surjective morphisms I(P", n_ v=~v,,)~2 and I(P", a"_ v=q-,,,)~2, where 2 is 
irreducible. By Frobenius reciprocity [~ v~v,,,b~!,22(/5")] >0  and 

~ 1 / 2  ~ v,,(P c~ M")] >0. It follows that 
[ ( . D ~  ( v o -  v " ) ,  ~ P c ~ M  ' ' ~  - [/ -~"I 

1 / 2  - - [~Ov=X(~o _ ~,,), 6e I (P ,  a_ v=~.,) (P)] 

> I-oJv-~l-(.,o_ v,,), ~/~2(/5)] > [o~ ~ ~,,, ~ , , a "  ._~-~,.(/sc~M")] V = ~ ( o -  ) - 1 / -  ' 
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This contradicts the fact that these multiplicities are equal (see the proof of 
Lemma 5.6). 

Proposition 5.8. Let v" be a regular element of  a "*+. Let a" be any irreducible 
tempered representation of  M". I f  J(a", v") is equivalent to a quotient representation 
of  I(P, eJv_~:~(~o_~,,)), then a" is equivalent to a quotient representation of  
I (P~M",  O~v~,,o). 
Proof If v" is generic, Corollary 5.4 implies the present Proposition. I f J  =J(a", v") 
is equivalent to a quotient of l(P,%~:XC~o_~,,~) and a" is not equivalent to a 

quotient of I(P, ~Ov-_:- i ~o), then [cov_-:~(~o_ ~,,), 6~/2J(P)] > 0 and 

1 / 2  . - . 
[ - ( D l / ~ ( v o _  v,,), 6p~M, , (7  (PoeM)] = 0 .  

Define the set YCW(G/A,  eoV:~(~o_,.,,)) relative to I(P",ai~.v=T¢,)just as in 
the proof of Lemma 5,6. Then Yc~W(M"/A)=O. On the other hand, I(P",a") 
is tempered. If seY, then oJv_=~o+~,,c~)m,,,,,~,,)(P,A) for all v"¢a"*. 
Therefore, SVo~+a*. Since S(Vo-V")=Vo-V" with v"¢a "*+, we have Vo-SV o 
= v" - sv"¢  + a*. Therefore, both v o and sv o are linear combinations of elements 
of Z ° ( P ~ M  ', A). Thus, (v", v" - sv" )=  0, which implies that v"= sv" and contradicts 
Y¢~ W(M"/A)=0. Proposition 5.8 is proved. 

Proposition 5.9. Let a" be any irreducible tempered representation of  M". Let 
r~=J(a",v"). Let J(P, oJ~_~(~o_~..)) and J(P~M",w~_~=r~o) denote the maximum 
completely reducible quotient representations of  respectively, I(P, ogv---r(~o-~")) and 
I(Pc~M", cov=~o). Then Ire, J(P, co~r(,o _ ~,.))] = [a", J(Pc~M", cov==~o) ]. 

Proof Frobenius' reciprocity theorem implies that 

[~¢,J(P, cov=-i(vo-¢,)]=UoV=~(~o-,,,,), , ~ )J 

and 
t~ 1 / 2  . - - [a", J (PmM , ~o~/_-- i ~o)] = [c°v~ ~o, 6e~,M"a ( P < M ) ]  . 

Lemma 5.3 implies that the right side multiplicities are equal when v" is generic. 
The proof of Lemma 5.6 implies that they are equal for all regular v" e ~"* +. 

6. Uniqueness--the Proof of (2) 

Proposition 6.1. Let (P.~, A'i' ) (P' i '  = M'{N}') be a standard p-pair of  G (i = 1, 2). Let 
a i ~ % e w~(Mi ) and let ," "* . . . . . .  v i ~ ai be a regular element in the positive chamber of  a'i'* 
corresponding to Pi." I f  J(a 1 ," v'~)~ J(a2, v~), then PI" = P2," ~o a" =(o2," and v"l ~-- ~/'2" 

Proof Let (Pi, At) (Pi = MiNi) and (P'i, A'i) (P'i = m'iN'i) be standard p-pairs of G such 
that (P'[, A'{)~(P'i, A'i)>-(P i, Ai) (i= 1, 2). Let ai~o~ie °g(m i) and vie a* be such 
that I(Pf~M' i, %,v-~, )  has an irreducible quotient representation a'iE cole e~z(Mi) 
such that a'[ is a summand of l(P'ic~M'i',oYi). If J=J(a~,  v'~),-,J(a~, v~), then A 1 is 
conjugate to A 2 and there exists s¢W(A2[A 0 such that o~] =~2 and s(v,-v';)  
= v 2 - v '  ~ ([4], Corollary 5.3.2.2). If ~o2,~(v~+~;~ is not a class exponent with 

(D '  respect to (P2,A2) for C~ i ( , ,~ i )  for all v'~e %'*, then (JJZ,sV=l(vl_~,,~ cannot be a 
class exponent with respect to (P2, m2) for J, since all the class exponents of J are 
analytic continuations of class exponents for the classes C~,(~o],v,~). Since 
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G t Cu,~(co2,~,~) is tempered, s-~ v2 is a linear combination of elements of Z°(P~, A~) 
with non-negative coefficients. On the other hand, since (v2, v~)=0 and 
v z = v z + sv'~ - sv 1, we see that (v2, v2) = (svl, v2) - (s~,'~, vz). Thus, (sv 1, vz) > (v 2, v2); 
similarly (svl, v 2 ) > ( h ,  vl). By Schwarz's inequality ( sh ,  v2) z =(vl,  vl)(vz, v2) , or 
sv~ = +-v 2. Since both sv~ and v 2 are linear combinations with positive coefficients 
of elements of Z°(P2,A2),  we have s h = v  2 and sv~ = v  2. Since v~ and v~ lie in a *+ 
and are regular in d~ *+ and a~ *+, respectively, we may conclude that 
sv 1" =v 1" =v z," a'~ *+ = a"*+2 , and s~ W(M'~/Ao). 

. . . .  ' . . . . . . . . .  v". By Thus, we may assume M I = M 2 = M ,  P ~ = P z = P " ,  and v ~ = v 2 =  
Proposition 5.8 a'~ is equivalent to a quotient representation of I(Pzc~M", ° v - ~  ~J" 

r! tt By Proposition 5.7 a~ ~ a 2. 
" " " a n d  " a r e a s  Let J be a representation of the same class as J(a~, v~), where a~ v~ 

in Proposition 6.1. 

Corollary 6.2. Let (P, A) (P = M N )  be a semi-standard p-pair o f  G. Let  a be a 
tempered representation o f  M and vea* ,  v regular and in the chamber which is positive 
relative to P. Let J ~ J(a, v). Then there exists s o e W o and a representative y = y(so)e G 

t¢ tt y tt c r y  ~ tt ~ such that (PY, AY)=(P~, Ax), M =M~,  and S O l  = ~ 1 '  (71, 

Proof  Let y be chosen such that (PY, A') is a standard p-pair. The~ I(P, a _ v ~ j  
l(pr, or  v.:~r~0j ' Furthermore, the above hypotheses imply that Soy is a regular 

element in a positive chamber of the dual real Lie algebra of A r. The corollary 
follows from the proposition. 

7. Existence-- the Proof of (3) 

For the "existence" theorem we shall need Langlands' Lemma 4.4, [3], p. 87. We 
shall restate this lemma in our own terminology. 

Let (P, A) (P = M N )  be a standard p-pair of G. Using our fixed Wo-invariant 
inner product on a*, we identify the real Lie algebra a of A and its dual a* with 
one another and with a subspace of a~. The set of simple roots S°(P, A) consists of 
the set of projections ~ 0 ~  to a* of a subset S(P)CZ°(Po,  Ao). The set of weights 

t : , t {2~oI~o e S(P)} ( a*. Clearly, (2~o, %) = (2,o, c~ ) = 6~ ,,. We also have (~, ~ ) _ 0 for any 
two distinct elements of Z°(P, A). Let 3 denote the real Lie algebra of the split 
component Z of G. 

Lemma 7.1 (Langlands).  Let yea* and assume that v is orthogonal to 3. Then 
there is a unique subset F(v)CX°(P,A)  such that v =  ~ c~2~- ~ d~cq where c~>0 
and d ~ O .  ~ v  ~ v  

Proof  As Langlands formulated his version of this lemma only for the case 
2~°(Po, Ao) and a*, and not for an arbitrary set of parabolic roots, we must 
remark: Langlands' proof depends only on the fact that a set of simple roots 
satisfies (~o, ~o)~ 0 (~o # ~o) and the dual basis of weights (consequently) satisfies 
(2~o,2~)~0. Since these relations hold for elements of S°(P,A) and the corre- 
sponding dual basis of weights, Langlands' proof also applies to our case. 

Proposition 7.2. Let  n be an irreducible admissible representation of  G. Then there 
exists a standard p-pair (P", A") (P" = M"N ' ) ,  an irreducible tempered representation 
~" o f  M", and a regular element v"Ed '*+ such that n ~ J ( a " ,  v"). 
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Proof If r~ is essentially tempered, take (P, A) = (G, Z). Since all elements of 3" are 
regular, this case is obvious. We shall consider only the case in which the central 
exponent Z~ of rc is unitary. The general case follows trivially from this case. For 
every standard p-pair (P, A) (P = MN) of G consider the set of exponents 3E~(P, A). 
If ZE3i~(P,A), then, by Lemma 7.1, there exists F=F()OCZ°(P,A) such that 

logqlx(a)l = ( ~2 c~2~- ~ d~a, H(a)) for all a6 A. If F00 = 0 for all X ~ 3E=(P, A) for all 
1 

standard p-pairs (P, A), then rc is tempered (cf. § 3). Otherwise, we may choose (P, A) 
and Xe3[~(P,A) such that F()~) has maximum nonzero cardinality. Given such a 
(P, A) and )~, we may (and do) define (P", A") >- (P, A), where A" is the largest torus 
in the kernel of all the root characters ~ of A such that aeZ°(P,A)-F(z). 
Setting X"=zIA", we see that F(Z")=Z°(P",A"), since Z°(P",A '') is the set 
of projections of the elements of F(Z) and, for each eeF(Z), 2 ,ea"*Ca* 
and logql)('(a)l=( ~ G2,,H(a))(aeA"). Clearly, [F(z)]=[F()( ' ) ] .  Let 

\~ef(x) 
a"eoo"s29,(P",A") be such that )(' is the central exponent of the class co". Also 
assume, without loss of generality, that 6~,?a" occurs as a quotient of ~(P"). It 
follows from the choice of (P", A") and )(' that the weight v"= v"()(') defined such 
that logql)('(a")] =(v",H(a")) for all a"sA" is a regular element of a"* and that 
(v",c0>0 for all eeZ°(P",A"). 

We claim that co" is essentially tempered. To see this note that, if (P~,A~) 
(PI=M1N1) is a standard p-pair of G such that (P",A")>-(P, AI), then 
(*PI=Plc~M",A1) is a standard p-pair of M". If Zle31o~,,(*P1, AI), then 
)~leX~(P1,A1) and )CIlA" = Z". Thus, ifal~A~(*P1)c~°M " (°M" = kernel H~r,), then 

l°gol)~l(al)[= ( ~  c(~1)2~ - ~ d:l)~,H(al)), 
\asF1 aCF1 

where F~ C Z°(P~, A 1). However, by the maximality of [F],  we may identify F~ and 
F(Z"), so 

logJz~(a~)[ = ( - ~ ; d : ~ ) c t ,  H(a~)), 

which implies that Iz~(a~)[ < 1 for all a~ as above. Thus, co" is essentially tempered 
and the proposition follows. 
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