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On the Existence of Pathological Submeasures 
and the Construction of Exotic Topological Groups 

Wojchiech Herer and Jens Peter Reus Christensen 

The present paper originated from an attempt to solve a problem of Maharam 
(see [5]). She asked whether a sequentially point continuous outer measure 
defined on a 0-algebra °~ of subsets of some set X can be controlled by a countably 
additive probability measure (i.e. whether there exists a countably additive 
probability measure with the same null sets). Our results may be considered as a 
partial solution of this problem, since we give a "'counterexample" which is 
~-subadditive but not necessarily sequentially point continuous. 

The result is applied to the construction of an abelian topological group 
with very strange properties. 

First we fix some terminology. An algebra of sets is a Boolean algebra d of 
subsets of some set X. A real valued (finite) set function (p defined on d is called 
weakly finitely (countably) subadditive if 

q)(uAi) < Z (Ai) 

for any finite (countable) family A i (i~I) of disjoint sets in ,~¢. If this inequality 
holds for not necessarily disjoint families of sets we call the set function q~ finitely 
or countably subadditive. Instead of "finitely subadditive" we shall usually write 
simply subadditive and instead of "countably subadditive" ¢-subadditive. 

A weakly subadditive (Q-subadditive) set function q~ on .~¢ is called a sub- 
measure (O-submeasure) if its values are non negative, it is increasing (i.e. for 
A c B we have always q~ (A)< q~ (B)) and ~o (0)= 0. It is clear that a submeasure is 
subadditive. All Q-submeasures are automatically countably subadditive. 

All measures considered in the present paper are finitely additive, real valued 
and non negative set functions. A submeasure q~ on d is called pathological if it 
is not identically zero and there does not exist a non trivial measure u on d 
dominated by q~, 

Let,~- be a paving of subsets of X such that there exist at least one finite covering 
of X with W-sets. Let ~ be a non negative real valued setfunction defined on ,~-. 
Then the set function ~0, defined for all subsets A of X as 

~(A)  = inf{E~(Bk)[ A c= U Bk, Bk ~,~} 

where the infimum is taken over all finite coverings of A with ,~'-sets, is a submeasure 
defined on the Boolean algebra ~ (X)  of all subsets of X. 

It is easily seen that any submeasure can be obtained in this way. By this 
procedure any submeasure defined on d can be extended to the algebra of all 
subsets of X. Such an extension is of course maximal (in the pointwise ordering) 
between all extensions. 
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Our  most important result in this section is the existence of pathological 
submeasures. We begin with a lemma. 

Lemma 1. Let X be a finite abelian 9roup and S c= X a non empty subset of X. 
Then for any measure u defined on all subsets of  X we have 

u(X) ~ (IXI/ISI) sup {u(x + S)lx ~ X}  , 

where t. f denotes cardinatity of a set. 

Proof of  Lemma. For  every x X we have that 

Zs(Y - x)u({y}) ~ sup {u(x + S)[ x ~ X} .  
Y 

Summing this inequality over all x e X and changing the order of summation we 
obtain the desired inequality. 

Our first step in proving the existence of pathological submeasures is the 
following theorem. 

Theorem 1. Let e > 0 be an arbitrary positive number. 7here exist a finite set X 
and a normalized submeasure q~ (i.e. qo(X)= 1) defined on the algebra ~ ( X )  such 
that any measure u defined on this al.qebra and dominated by ¢p satisfies u(X) < e. 

Proof Let h and n be natural numbers and let us consider a finite abelian 
group X = G h, where G is some finite abelian group of cardinality n. Let us denote 
by k i, for i = 1 . . . . .  h, the coordinate projections of X onto G and let us define a set 
SC=Xas 

S={xeXIk~ (x )+-O  for all i = l  . . . . .  h}. 

Let us consider the set function ~ defined for every set A g X as 

~p(A) = min {]BI IB _c X, A _c B + S}. 

The set function ~p is a submeasure defined on the algebra ~ (X). Let us consider 
h elements xl ,  ..., xh e X, then the element x e X defined by ks(x)= ki(x~) does 
not  belong to the set {x t . . . .  , xh} + S. From this we conclude ~ ( X ) >  h. 

Now let us consider the normalized submeasure q~ defined for A = X by 
¢p(A) = ~p(A)/w(X). Let u be an arbitrary measure on the algebra of subsets do- 
minated by ¢p. We obtain by Lemma 1 that 

u( X)  ~ (nn/(n - 1) h) (l/h).  

By choosing n and h suitably we conclude the proof  of Theorem 1, 
If d is an algebra of subsets of the set X we denote by q~(~¢) the set of all 

normalized submeasures on d equipped with the topology of setwise convergence. 

Theorem 2. For every atomtess aloebra of sets ~ ,  the set H of all normalized 
pathological submeasures on d is a dense G~ subset of ~(sd). 

Proof. The space @(d)  is a compact  Hausdorff  space. An easy argument 
shows that the sets 4 ,  defined for n = l, 2 . . . .  , by 

• , = { q ~ q ~ ( d ) l u ( X ) > ( l / n )  fo r somemeasu re  u<q~} 
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are closed in q~(d), H e n c e / / i s  a Ga subset of q~(d) and by the Baire property of 
compact  Hausdorff  spaces it suffices to show that the complements of the 4,,'s 
are dense in q~(d) for n = 1, 2 . . . . .  

Let ~p be an arbitrary element of q~(z¢) and let U be a basisneighbourhood 
of ~p defined by 

u = {9 e ~ (d ) l  Iv ,(A3- q , (a , ) t  < ~, i = t . . . . .  p }  

where e > {3 and A i e d .  Let C 1 . . . . .  Cq be the atoms of the algebra of sets 
generated by A 1 . . . .  , Ap and let us consider the algebras of sets cg~ = {A E ,~'[A ~ C~} 
for i =  1 . . . . .  q. Since ,~' is an atomless algebra of sets each of the algebras cd~ 
contains an isomorphic copy of any finite algebra of sets. And since a submeasure 
defined on a subalgebra can always be extended on the whole algebra we obtain 
by Theorem 1 that for an arbitrary natural number n there exists submeasures ~p~ 
on the algebras c~ with q3~ (C~) = ~0 (C~) and such that any measure u on cdi dominated 

q 

by ~o i satisfies u(Ci) < (1/(nq)). Let us define a set function ~ on the family ~ '  u U cgi 
l = l  

as follows: ~(A)= ~p(A) if A E ~ and ~(A)= ~p~(A) if A ~cdi. The set function ~v is 
the submeasure defined by 

It is easy to see that p coincides with ~p on ~ and hence W E U. And every measure 
u on d dominated by t t, satisfies u(X)<(1/n)  so ~p belongs to the complement 
of q~n. This concludes the proof. 

Coronary. Let s]  be an algebra of sets having an atomless subaloebra. 7hen 
there exists a pathological submeasure on ~¢. 

The proof  of the corollary is immediate. The next lemma may be considered 
as a kind of Hahn decomposition for weakly countably subadditive set functions. 

Lemma 2. Let s~ be a ~-algebra of  subsets of  X and ~ a weakly countably sub- 
additive set function defined on s~ such that ~(X) > 0 and with the property that 
every family A t (t ~ T) of  disjoint sets with ~ ( At) < O for all t ~ T is at most countable. 
Then there exist a set Ao ~ d with ~. (Ao)>0,  ~ ( X \ A o )  < O and such that ~ (A) > O 
for all A c= Ao. 

Proof of  Lemma. By Zorns lemma we may choose a family Bt(t e T) of pairwise 
disjoint sets in d with ~(Bt)<0 which is maximal (by inclusion) among such 
families. The set A o = X~(uB~) now satisfies the conditions of the lemma. 

Now we shall state a very important  property of pathological countably 
subadditive submeasures. 

Theorem 2. Let ~p be a pathological countably subadditive submeasure defined 
on a Q-algebra ~ of  subsets of some set X.  There is neither a eountably additive 
measure u on sg with the property that u (A) = 0 implies tp (A) = O for all A e ~ nor is 
there a non zero countably additive measure v such that ~p (A) = 0 implies v (A) = O for 
all A ~ d .  
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Proof. Let us assume that u is countably additive measure on d with the 
property that for all A e~¢ u ( A ) = 0  implies ~0(A)=0. We may assume that 
u(X)<(X) .  Let us consider the set function ~ defined for A ~ d  as ~(A) 
= q~(A)-u(A). It is easy to see that ¢ satisfies the assumptions of Lemma 2. 
Let A o be the set from Lemma 2. The restriction of u to A o is then a non trivial 
measure dominated by q~ and this contradiction finishes the first part of the proof. 

Let us assume now that v is a non zero countably additive measure on .~  with 
the property that for all A ~s¢  ~o(A)=0 implies v(A)=0.  In that case one can 
prove (exactly in the same way as if q~ would be a measure, see [3], Theorem B, 
§ 20) that v is continuous with respect to ~0, e.g. for any e > 0 there is a number 
6 > 0  such that for all A ~ d  ~o(A)< b implies v(A)< ~. 

Let r o > 0 be such a real number  that for every A ~o~¢ ~0(A)< r o implies 
v(A) < (1/2) and let us consider the set function ~ = q~ - rov on sO. We may assume 
(by choosing r o sufficiently small) that ~ (X)>  0. It is again easy to see that the 
condition of Lemma 2 is fulfilled and we choose the set A 0. If v is normalized 
(which of course is no serious restriction) it is easily seen that the restriction 
ofv to A o is non zero and dominated by ~0. This contradiction concludes the proof. 
Note that the set A o has strictly positive measure in both parts of the proof. 
This, however, requires different arguments to verify. 

Let us consider a normalized pathological submeasure q0 defined on the 
algebra of clopen sets in the Cantor  space K = {0, t }N. Then the formula 

~p(A) = in f{~  9(A~)IAC=uA~}, 

where the infimum is taken over all countable coverings of A with clopen sets, 
defines an extension of cp to a countably subadditive submeasure defined on all 
subsets of the Cantor  space K. That this infimum is indeed an extension of 9 
can be seen by a trivial compactness argument. In the sequel a submeasure defined 
on the clopen sets shall always be extended with this procedure. Of course the 
extended submeasure is also pathological. The following result applies the 
continuum hypothesis. 

Theorem 3. There exists a a-algebra s¢ of sets with the property that every 
non zero countably subadditive submeasure defined on it is non pathological. 

Proof. It is known that, assuming the continuum hypothesis, there exists a 
a-algebra of sets s¢ with a non zero countably additive measure u such that 
u(A) > 0 for all uncountable sets A e ~¢ (see [6], Proposition 20.1"). It is easily 
seen using Theorem 2 that this algebra has the property stated in the theorem. 

We shall now apply the preceding material in the construction of abelian 
topological groups with very strange properties. First we make some introductory 
definitions. 

Let (G, + ,to) be an abelian topological group. 
The topological group G is called exotic if there does not exist any non trivial 

strongly continous unitary representations of G into L(H) over some Hilbert 
space H. It is very easy to show that G is exotic if and only if there does not exist 
any non trivial continuous positive definite functions on G. A curious property 
of exotic groups is given by the following theorem. 
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Theorem 4, Let (G, + ,(9) be a metrizabte exotic group. Let 0 be a group homo- 
morphism of G into the group of homeomorphisms of some compact Hausdorff space 
(i2, ~). Suppose that for each o ~g2 the mapping from G into f2 defined by 
g - - - >  (Og) (co) is continuous. 

Then each minimal closed O(G) invariant subset of l2 consists of a single point 
which is a fixpoint for all homeomorphisms in. O(G). 

Proof. Let A = f2 be a minimal closed O(G) invariant subset. Suppose that A 
is not a single point, Then of course no point of A is a fixpoint for all elements 
of O(G). In our definition of exotic group we required the group to be abelian. 
The usual fixed point theorem implies that there exists an O(G) invariant Radon 
probability measure u supported by A (there may of course exist several). The 
Lebesgue theorem of dominated convergence is easily seen to imply the represen- 
tation of G constructed by considering O(g) as a unitary operator in L 2 (u) is 
strongly continuous. We need the metrizability of G since the Lebesgue theorem 
is only valid for sequences. The continuity of the functions (O(g) f , f )  is then first 
established for continuous functions f on A and then by approximation for 
f ~ L 2 (A, u). By choosing a suitable continuous functionfwe see that our represen- 
tation is non trivial. This concludes the proof. 

We do not know whether the above property characterizes exotic groups. 
A similar argument as the above proof yields that if G is a metrizable exotic 

group then every extreme invariant mean on the space of bounded uniformly 
continuous functions is multiplicative. We also do not know whether or not this 
property is characteristic for exotic groups. 

The above property of course implies in particular that there exists at least 
one invariant mean m on the space UCB(G) of uniformly continuous bounded 
functions on G, which is multiplicative. Hence there exists an ultrafilter ~ on G 
such that 

re(f) = lim f (g)  

f o r f  e UCB(G). 
The invariance of m is seen to imply that 

F - F =  {gl - g z l g l ,  gz e F} 

is dense for all F ~ J .  This solves negatively the hypothesis stated in [1 ] Chapter 5. 
In the sequel M shall denote the real topological vector space of equivalence 

classes (modulo Lebesgue nul sets) of Borel measurable functions on the unit 
interval with the topology of convergence in measure, The space M is a complete 
separable and metrizable real topological vector space. 

Theorem 5. Let E be a real topological vector space which is complete, separable 
and metrizable. Then E is exotic as a topological group if and only if there does not 
exist any non trivial continuous linear operators from E into M. 

Proof. Let 0 be a non trivial continuous linear operator from E into M. 
Let r e R be an arbitrary real number. The (equivalence class of a) function 
exp(ir O(x) (t)) on the unit interval can be identified with a unitary (multiplication) 
operator on L2([0, 1]) (of course the unit interval is considered with Lebesgue 
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measure). For fixed r we obtain a strongly continuous unitary representation 
of the topological group E and by choosing r suitably we can obtain that this 
representation becomes non trivial. 

Conversely let ~o be a non trivial strongly continuous unitary representation 
of the topological group E into L(H) over some Hilbert space H. Of course it is 
no serious restriction to assume that H is separable. Using a well known structure 
theorem of abelian Von Neumann algebras (see [21) we can assume that q~(x) 
for x ~E  is an equivalence class of a measurable function on [0, l] such that 
[~o(x) (t)[ = 1 for all t ~ [0, 1]. It follows easily from well known results that for 
each x e E there exists a unique (equivalence class of a) real measurable function 
O(x) on the unit interval such that for all reals r E R we have 

q)(rx) (t) = exp(ir O(x) (t)) 
for almost every t ~ [0, 1 ] .  

O(x) is a linear operator from E into M. Since we have for x ~ E 

O(x) = lim n(tp(n- I x ) -  1) 
n ~ O  

where the limit holds in the topology for convergence in measure, we conclude 
that 0 is a Borel measurable mapping from E into M being a pointwise limit of 
continuous mappings. From this it follows that 0 is indeed continuous (see [l]). 
This concludes the proof of the theorem. 

Theorem 6. Let E be a real topological vector space which is complete, separable 
and metrizable. Let 0 be a continuous linear operator from E into M. Then there 
exists a dense G~-set A c= E such that for all x ~ A the (equivalence class of)  set 
{t ~ [0, l l l0(x)  (t) ~e 0} is the same and such that this (equivalence class of)  set 
contains the (equivalence class of)  set {t ~ [0, 1 }[ 0(y) (t) 4= 0} for all y ~ E. 

Proof. Let P be the space of (equivalence classes of) measurable subset of the 
unit interval equipped with the topology of convergence in measure. P may be 
identified naturally with a closed subset of M. We define the mapping S: M - - >  P 
by letting S ( f )  be the equivalence class of the set {t~ [0, 1 l [ f ( t ) ~ 0 } .  

Lemma 3. The mapping S : M - - >  P defined above is Borel measurable from 
the Polish space M into the Polish space P. 

Proof of Lemma. A Borel measurable lifting is a mapping L which chooses to 
each equivalence classf  ~ M a Borel measurable function L ( f )  on the unit interval 
such that the induced mapping from M x [0, 1] into the reals defined by 

(f ,  t)---> L ( f )  (t) 

is measurable with respect to the product Borel structure and such that the 
equivalence class o f L ( f )  isf. A Borel measurable lifting cannot be linear (see [11). 
The usual martingale argument by means of which one can show the existence 
of linear liftings of L °~ (see [11) can easily be modified to yield the existence of 
Borel measurable liftings of L °°. Using such a lifting a Borel measurable lifting 
of M is easily constructed. Let k be the function of two real variables defined by 

k(a,b)=~O if (a :#0 and b = l )  or ( a = 0  and b = 0 )  
/1 else. 
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Let L be a Borel measurable lifting of M and let us identify an element of P with 
its characteristic function. We have then 

1 

G(S) = {(f, A) s M x P1A = S(f)} = {(f, A)I ~k(L( f )  (t), L(A) (t))dt = 01. 
o 

This shows that the graph of the mapping S is Borel measurable and S is therefore 
Borel measurable (see [1]). This finishes the proof of the lemma. 

Since S is Borel measurable we may choose a dense Go subset A ~_ E such that 
the restriction of SoO to A is continuous from A to P (see [t]). Let D be an arbitrary 
countable dense subset of E which is a vector space over the rationals. We may 
assume that A is invariant under translations with elements in D. It is now very 
easy to see that A has the properties stated in the theorem and the proof is fin- 
ished. 

Let now u be a normalized pathological submeasure defined on the clopen 
subsets of the Cantor space K = {0, 1 }"~. The submeasure u is extended in the 
natural way to a countably subadditive submeasure defined on all subsets (also 
denoted u). We may assume that u(A) > 0 for each clopen set A + 0. Let us consider 
the space C(K) of continuous real valued functions on K equipped with the 
topology of convergence in u "measure"; with this topology C(K) is a separable, 
metrizable and separated linear topological space. Let G be the completion of 
C(K) with the above mentioned topology. The space G is a complete, separable 
and metrizable linear topological space. Each element of G may" be identified with 
an equivalence class (modulo u null sets} of Borel measurable functions on K. 

Theorem 7. The space G constructed above is exotic as a topological oroup. 

Proof. Suppose G is not exotic. Let 0 be a non trivial continuous linear operator 
from G into M. Let A C K be a ctopen subset; we consider G A the closed linear 
subspace of G consisting of all elements whose support (u essentially') is contained 
in A. Let T c= G A be a dense G o subset of GA with the properties of Theorem 6. 
For any f ~ T we define ~(A) to be the Lebesgue measure of the set 

{t ~ [0, 1]10(f) (t) + 0} ; 

the definition is valid according to the preceding results. 
From Theorem 6 we easily conclude that ~ is a non trivial submeasure defined 

on the algebra of clopen sets; moreover a has the (very much) stronger form of 
subadditivity given by 

0~(A w B) + a (A c~ B) < ~ (A) + ~(B) 

for all clopen sets A, B ~ K. It is well known that this strong form of subadditivity 
implies the existence of a measure v on the clopen sets dominated by ~ and such 
that v(K)= ~(K) (see [4]). The continuity of 0 implies that ct is continuous with 
respect to u in the sense that to e > 0 exists d > 0 such that u(A) < d~ct(A) < e for 
all clopen sets A _c_ K. 

The measure v has a unique extension to a countably additive Borel measure 
on K. The continuity ofc~ and hence of v with respect to u now gives a contradiction 
with Theorem 2. This concludes the proof. 
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Some problems with relation to the preceding results remain open. The most 
interesting of those problems is whether or not there exist a pathological submeasure 
u defined on the Borel field of K such that u satisfies u ( A . ) - - >  u(A) for all sequences 
A. of Bore] sets whose characteristic functions tends pointwise to the characteristic 
function of the Borel set A. 
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