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Some Relations Between Curvature 
and Characteristic Classes 

ALFRED GRAY 

1. Introduction 

Let M be a Riemannian manifold and let M m denote the tangent space to M 
at m. If P is a 2p-dimensional subspace of M,,, Thorpe [7] has defined the 2p th 
sectional curvature 7zp(rn, P) and has proved the following theorems. 

Theorem A. If M is compact and for some p with 2p < dimM we have 
72p---0 on M, then the Euler characteristic ~((M)= 0. 

Theorem B. If M is compact and for some p we have 7z, constant on M, 
then each Pontryagin class Pk(M)= 0 for k __> p. 

We shall show that weaker assumptions about the curvature of M still 
imply the vanishing of the Euler characteristic and some of the higher Pon- 
tryagin classes. Let R p denote the curvature operator corresponding to 72, 
(see § 2). Specifically we prove the following theorems in § 5. 

Theorem (5.1). Assume M is compact. For each m e M denote by /VR,(m ) 
the maximal subspace of M,, on which R p behaves like the p th curvature 
operator of a flat manifold. If dim./VRp(m ) is constant and 2p < dimJVRp(m), 
then ;((M) = 0. 

Theorem (5.2). Assume M is compact. Let ~p~K)(m) denote the maximal 
subspace of M,, on which R p behaves like the pth curvature operator of a 
space of constant curvature 72 = K. If dim ~'~p~r)(rn) is constant and 
2p < dim JV~,~K)(m ), then 

Pk(M) = 0 for k > p + ¼(dimM - dim ~/[~,~r)(m)) 

Actually we prove a slightly more general form of Theorem (5.2), which 
includes the results of Cheung and Hsiung [2]. 

The distributions m-* ~,rR~(m) and m ~  ,~B~<r~(m) have some additional 
features which are perhaps just as interesting as Theorems (5.1) and (5.2). 
In Theorems (4.3)-(4.5) we prove that rn~  ~Rp(m) and m ~  X~p<~)(rn) are 
integrable, their integral manifolds are totally geodesic, and the integral 
manifolds have zero or constant 7z,. Then under some additional assumptions 
we prove in Theorem (4.7) that the integral manifolds are complete. 
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2. Riemannian Double Forms 

Let M be a (C ~) differentiabte manifold, let ~ ( M )  be the algebra of dif- 
ferentiable functions on M, and let 3~(M) be the Lie algebra of vector fields 
on M. Following de Rham [31 we define a double form of  type (p, q) on M 
to be an o~ (M)-linear map 

m : X(M) p × 3~(M) ~ ~ ~.~(M) 

which is skew-symmetric in the first p-variables and also in the last q-variables. 
We shall use the notation 

co(X 1 . . . . .  X,) (Y~, ..., Yq) (2.1) 

to denote the value of co on the vector fields X1, ..., Xp, Y~, ..., Yq. Then 

co(X 1 . . . . .  Xp): 3~(M)q ~,~" (M) 

is the X(M)-linear map whose value on the vector fields 1(1 . . . . .  Yq is given by 
(2.1). I f p = q  and 

co(X~ . . . . .  X . )  (Y, . . . . .  Y.) = ~o(Y~ . . . . .  Y.) (X,  . . . .  , X . )  

we say that m is symmetric. 
As de Rham has noted, it is possible to define the exterior product co A 0 

of two double forms o~ and 0 of types (t9, q) and (r, s), respectively, by the formula 

(co A 0) (X~ . . . . .  Xp+,) (YI . . . . .  Yq+s) (2.2) 

= ~ eQe~,co(X,~ . . . .  ,Xep)(Y,~ 1, .... Y~)O(X~, . . . . . . .  XQ,+.I(Y,,+, . . . . .  Y~,+) 
#~Sh(p,r) 
¢r~Sh(q, s) 

for X I . . . . .  Xp+~, YI . . . . .  Yq+s ~ 3~(M). Here Sh(p, r) denotes the set of all (p, r)- 
shuffles; specifically 

Sh(p, r) = {Q ~ ~p+,:Q~ < ~2 ' ( ' ' "  ( Q p  and Qp+l < " "  < Qp+,}, 

where ~p+, is the symmetric group of degree p + r. It is not difficult to show 
that ^ is an associative multiplication and that 

cO ̂  0 = ( -  1)Pq+'s0 ^ co (2.3) 

where co has type (p, q) and 0 has type (r, s). 
We shall find three further operations on double 

Vx(X ~ 3E(M)) be an affine connection on M (see [4]). 
forms useful. Let 

Definition. Let co be a double form of type (t9, q) on M and let X1 . . . . .  Xp+l, 
Y2 . . . . .  Y~ ~ 3E(M). Then double forms IZz(co) of type (p, q), Do) of type (p + 1, q), 
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and eg' of type (p + 1, q -  i) are defined by the formulas: 

P 
Vz(cO ) (X, . . . . .  Xp) = Vz(to(X~ . . . . .  Xv) ) -  ~ to(X~ . . . . .  VzX j . . . . .  Xp); (2.4) 

j = l  
p + l  

(Oto)(X 1 . . . . .  Xp+l)= ~ (--1) ~+~ IZx,(to)(X 1 . . . . .  3~ . . . . .  Xp+O. (2.5) 
j = l  

to'(Xt . . . . .  X~+ I) (Y2, ..., Yq) (2.6) 
p + l  

-- Z ( - l ) J + ' t o (  x '  . . . . .  XJ . . . . .  X,+,)(X~, Yz .. . . .  Yq)" 
j = i  

(Note that D depends on V for q > 0.) 

Proposition (2.1). Let to and 0 be double forms on M of types (p, q) and (r, s) 
respectively. Then we have the following formulas 

Vz(to A 0)= Vz(to) A 0 +toA Vz(0); (2.7) 

D(~o A 0) = O~o A 0 + ( -  1) p to A DO; (2.8) 

(to A 0)' = to '  A 0 + ( - -  1) p + q O9 A 0 ' .  (2.9) 

Proof. (2.7) follows directly from (2.2). We prove (2.9); the proof of (2.8) 
is similar. We define operators tx and ~lx(X e ~(M)) as follows. Let to be a 
double form of type (p, q), and let X l . . . . .  Xp, Y1 . . . . .  Yq ~ ~(M). Then 

,x(to) (Xa . . . . .  X~_,) (Y~ ...... Yq) = to(X, X~ . . . . .  Xp_~) (Y~ . . . . .  Yq), 

qx(to)(X1 . . . . .  Xp)(YI, ..., Y~_,) = o(X, . . . . .  Xp)(X, Y, . . . . .  Yq-O- 

We have the formula 
Zx(O~') = q x ( t o )  - Z x ( O ~ ) '  . 

Then (2.9) is proved by induction using this equation and the fact that ~x 
and qx are skew-derivations. 

Next we assume that M has a Riemannian metric ( , ) ,  and that V is the 
Riemannian connection corresponding to ( , ). The curvature transforma- 
tion Rxr(X,  Y~ 3E(M)) is defined by the formula 

Rxr  = Vtx.). l - [ Vx, Vy] 

for X, Y~ ~(M). (Note that some authors define the curvature transformation 
to be the negative of ours.) We define a double form on M of type (2, 2) by the 
formula 

R(W, X) (Y, Z) = ( R w x  Y, Z ) .  

We call this double form the curvature double form, and more generally we 
call R p = R A.-- A R (p-times) the pth curvature double form. 

It is well known that the curvature transformation, and hence the correspond- 
ing double form, satisfy certain identities, including the first and second iden- 
tities of Bianchi. We shall find it useful to consider other double forms which 
satisfy the same identities. 
28* 
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Definitions. A Riemannian double form is a symmetric double form A on M 
of type (p, p) with the following properties: 

A' = 0 ; (2.10) 

DA = 0.  (2.11) 

Note that for A = R, (2.10) and (2.11) reduce to the first and second Bianchi 
identities respectively. In passing, we remark that the requirement that a 
Riemannian double form be symmetric is redundant because of the following 
proposition. 

Proposition (2.2). Let A be a double form of type (p, p) on M which satisfies 
(2.10). Then A is symmetric. 

Proof. This is well known for the ordinary curvature form of type (2, 2); 
a nice proof has been given by Milnor [6, p. 54]. In fact this proof can be gen- 
eralized to the case at hand. Instead of an octohedron, one just uses a gen- 
eralized octohedron in RP~ 

It is very easy to form new Riemannian double forms from old because 
of the following proposition. 

Proposition (2.3). Let A 1 and A 2 be Riemannian double Jbrms on M. Then 
any homogeneous polynomial P(A 1, A2) with constant coefficients is a Riemannian 
double form. 

Proof. This is an easy consequence of Proposition (2.1) and Eqs. (2.8) and (2.9). 
Proposition (2.3) shows that any power of a Riemannian double form is a 

Riemannian double form. In particular R p is a Riemannian double form for all p. 
(Thorpe [9] has shown that R p satisfies (2.10).) 

3. Examples of Riemannian Double Forms 

Of course the curvature double form and its powers are the principal ex- 
amples of Riemannian double forms. We next describe several ways of con- 
structing Riemannian double forms of type (2, 2). First let f be a 2-form on M; 
then we set 

AI(W, X) (Y, Z) = 2f(W, X) f (Y ,  Z) + f (W,  Y) f (X ,  Z) - f (W,  Z) f (X ,  Y). (3.1) 

Next let 9 and h be symmetric bilinear forms on M. We may regard g and h 
as double forms of type (1, 1). Then 

(g A h) (W, X) (Y, Z) = g(W, Y) h(X, Z) - g(W, Z) h(X, Y) 
+ g(X, Z) h(W, Y) - g(X, Y) h(W, Z). (3.2) 

(Here we have written 9(W, X) for g(W) (X), etc.) Note that 

(Dg) (W, X) (Y)  = Vw(O)(X, Y) - Vx(g)(W, Y). (3.3) 
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Proposition (3.1).Let f be a 2-form on M, and let g and h be symmetric bi- 
linear forms on M. Then 

(i) /f Vx(f)=O ,for all X ~ /t~(M), then Ay is a Riemannian double form; 
(ii) /f  Dg = Dh = O, then g A h is a Riemannian double form. 

We omit the proof, which is a straightforward calculation from (3.t), 
(3.2), and (3.3). 

Some examples of Riemannian double forms on M (besides t-he curvature 
double form R) which have special geometric interest will now be given. 
In what follows we write g = ( , ~, where it is convenient. 

Example t. Let K be a constant and set 

K 
B ( K ) = R -  ~ - g A g .  

Then B(K) is a Riemannian double form (because Dg = 0) which measures how 
much the curvature tensor of M differs from that of a space of constant cur- 
vature K. 

Example 2. More generally let h be a symmetric bilinear form on M with 
Dh = 0. Set 

B(h, K) = R - ½(h A h + Kg A g) ; 

then B(h, K) is a Riemannian double form. Note that a hypersurface of a 
space of constant curvature has such a bilinear form h, namely the second 
fundamental form. The condition D h = 0 is equivalent to the Codazzi equa- 
tion (see [4], for example). Thus B(h, K) measures how much the curvature 
tensor of M differs from that of a hypersurface with second fundamental form h 
of a space of constant curvature K. (Compare Chern [1].) 

Example 3. Let M be a K~ihler manifold and let F be the K~ihler form of M. 
Define 

K 
D(K) = R -- -if- (g A g + 2AF) 

where K is a constant. Then D(K) is a Riemannian double form which measures 
how much the curvature of M differs from that o fa  K~ihler manifold of constant 
holomorphic curvature K. 

Example 4. A double form C can be formed from the Weyl conformal 
tensor in the same way that one is formed from the curvature tensor. Thus 

R 0 1 
C = R +  2 ( n -  1 ) ( n - 2 )  g a g  ( n - 2 )  g A k  

where n = d imM ~ 3, k is the Ricci curvature of  M, and Ro 6 o~(M) is the Ricci 
scalar curvature of M. If M is locally symmetric, then C is a Riemannian 
double form. 

It is quite natural to generalize Examples 1, 2, and 3 by defining Riemannian 
double forms of type (2p, 2p) which measure how much the pth curvature 
double form differs from that of a manifold whose p th curvature double form 
is particularly simple. 
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Example  5. Let K be a constant and set 

Bp(K) = R p -  2 -p KPg 2p . 

Then Bp(K) is a Riemannian double form of type (2p, 2p) which measures how 
much R p differs from the p th curvature double form of a manifold of constant 
sectional curvature. 

Example  6. Let h be a symmetric bilinear form on M with D h = 0. Set 

Br,(h, K)  = R p - 2-P(h 2 + Kg2)  p . 

Then Bp(h, K)  is a Riemannian double form of type (2p, 2p) which measures 
how much R e differs from the curvature double form of a hypersurface with 
second fundamental form h in a space of constant sectional curvature K. 

Example  7. Let M be a K~ihler manifold and let F be the K~ihler form of M. 
Let K be a constant and set 

Dp(K) = R e - 8-P(g2 + 2AF)p. 

Then Dp(K) measures how much R p differs from the curvature double form 
of a K~ihler manifold of constant holomorphic curvature. 

For geometric interpretations one further property of Riemannian double 
forms is useful. For  m e M, a Riemannian double form A determines a tensor 
Am on the tangent space Mm in the obvious way. 

Proposition (3.2). Let  A be a Riemannian double form of  type (t9, p) on M.  
Suppose that 

Am(x 1 . . . . .  xp) (xl, ..., xp) = 0 (3.4) 

for  all x I . . . . .  xp ~ Mm. Then Am = O. 

Proof. Linearization of (3.4) shows that 

A(x l  . . . .  , Xp) (yl,  x2 . . . . .  xp) = 0 

for all xl . . . . .  x2, Yl e M,,. Suppose that 

A(x , ,  . . . ,  x~) ( v , . . . ,  y ~ - l ,  x~ . . . .  , xp) = 0 (3.5) 

for all x~ . . . . .  xp, y l ,  . . . , y q _ l e M ~ .  Let X p + l = y  I and let y q ¢ M , .  Then by 
(2.10) we have 

p + l  

0 =  ~ ( - 1 )  j+l  a ( x l  . . . . .  ~ j , . . . , x p + 0 ( x j ,  y 2 , . . . , y ~ , x ~ + l  . . . . .  x~) 
.i=1 

= A(X1 . . . . .  x~) (Yl . . . . .  y~, xq+ , , . . . ,  x~) 

- ~ A(x l  . . . . .  x j - l ,  Yl ,  xj+l . . . . .  xp) (xj, Y2 . . . .  , ya, xq+ I , . . . ,  xv) 
./=1 

= (q + 1) A ( x l , . . . ,  xp) (Yl . . . . .  yq, x~+ 1 . . . . .  xp). 

Thus by induction (3.5) is true for q = 1, ..,, 2p. Hence Proposition (3.2) follows. 
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The 2pth sectional curvature ~2p of Thorpe [7] is defined as follows. Let 
m e M and let P be a 2p-plane in M,,. Then 

72p(m, P) = 2P((Zp) !) -1 RP(e: . . . . .  e2p) (el, ..., e2p), 

where {e: . . . . .  e2p } is any orthonormal basis of P. (Our coefficient differs from 
Thorpe's because of our use of shuffle permutations.) Obviously Y2 is the 
ordinary sectional curvature of M. 

Using the notion of 2p th sectional curvature together with Proposition (3.2), 
we obtain the following proposition. 

Proposition (3.3). (i) Bp(K) = 0 on M if and only if 72p(m, M) = K p for all 
m G M ;  

(ii) Bp(h, K) - 0 on M if and only if yEp(m, M) for each m G M has the same 
properties as the 2pth sectional curvature of a hypersurface of a manifold of 
constant sectional curvature YE ; 

(iii) Dp(K) =- 0 on M if and only if 72p(m, M) for each m G M has the same 
properties as the 2pth sectional curvature of a manifold of constant holomorphic 
curvature. 

4. Spaces of Nullity of Riemannian Double Forms 

Definition. Let m G M and let A be a Riemannian double form of type (2p, 2p) 
on M. We set 

A~a(m)={xl GMm:A(xl, x2 . . . . .  Xp)=0 for all Xz . . . . .  xpEM,,}  

and we denote by Az A the distribution m ~ a ( m ) .  We call ~ ( m )  the space 
of nullity of A at m, ~ the field of nullity of A, and/zA(m ) = dim Ara(m) the 
index of nullity of A at m. 

These notions were defined for the case p = 1 in [5]. We show in this section 
that the result of [5"] generalize completely to the case of arbitrary p. 

The following propositions will be useful; we omit the proofs, which are 
straightforward. 

Proposition (4.1). Let A be a Riemannian double form of type (p, p) on M. 
Then for each m G M either pA(m)= dimM or #a(m)< d i m M - p .  

Proposition (4.2). Let A be a Riemannian double form of type (p, p) on M, 
and let X 1 . . . . .  Xp+: ~ ~(M). Then 

p + l  

y= ( - 1 ) J  . . . . .  . . . .  
j=: (4.1) 

= Z (-- 1) J+k+l A([XI, X,], X x . . . . .  Xj . . . . .  Xk . . . . .  Xp+ :). 
l<j<k<p+l 

We remark that Eq. (4.1) is just a generalization of a well-known formula 
for closed differential forms. 

We are now in a position to prove very simply the key result of this paper. 
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Theorem (4.3). Let U be an open subset of M on which the index of nullity 
#A of A is constant. Then the distribution ~ is integrable on U. 

Proof. Let X1 and X 2 be vector fields in , ~ .  From (4.1) it follows that 
[X1, ArE] is in A~. 

We next show that any integral manifold of the field of nullity ArA of a 
Riemannian double form A is totally geodesic. Let L be a Riemannian manifold 
isometrically imbedded in another Riemannian manifold M. Let 
X(L)= {X IL:X ~ 3E(M)}; then we write ~(L) = X(L)@X(L) ±, where 3E(L) ! 
is the collection of vector fields normal to L. Let P : X(L) ~ 3E(L) be the natural 
projection. ForX,  Y~ 3E(L)we denote the Riemannian connection and curvature 
operator of L by 6 x and rxr, respectively. The configuration tensor [4] of L 
in M is an ~(L)-l inear map t : 3E(L)× Y~(L)~.(L)  defined 

tx Y=  Vx Y - 3 x  Y(X, Y ~ Y~(L)) and tx Z = P Vx Z ( X  ~ 3£(L), Z E X(L)±) . 

The configuration tensor vanishes if it vanishes on either X(L) or 3E(L) j-, 
and so it is equivalent to the second fundamental form h [4]. We say that L 
is totally geodesic in M if and only if t = 0 on L. 

Theorem (4.4). Let L be an integral manifold of ~ ; then L is totally geodesic 
in M. 

Proof. Let X1, )11 E •(L) and X 2 . . . . .  Xv+ t, Y2 . . . . .  Yp e X(L) ±. Then 

0 = (D A) (X 1 . . . . .  Xp +1) (Yt , . . . ,  Yp) 
2p+l  

= ~, ( -  1) j+'  Vxj(A(X 1 . . . . .  f[j,..., Xp+,))(Y1 . . . . .  Yp) 
j = l  

=A(X2 . . . . .  Xv+ l) ( Vx, Y~, Y2, ..., Yp) 

= A(X2 . . . . .  Xv+ ,) (tx, Y,, Y2 . . . . .  Yv)" 

Thus tx, Y1 is in ~ and so tx, Y1 = O. 
The spaces of nullity of the Riemannian double forms Bp(K), Bp(h, K), 

and Dp(K) of Examples 5, 6, and 7 of § 3 have particularly nice geometric inter- 
pretations. By Theorem (4.3) ~,t~c)(m) is the maximal subspace of M,, on 
which the pth curvature double form behaves like that of a space of constant 
curvature Y2 = K. Similar interpretations of the spaces of nullity of By(h, K) and 
Dp(h, K) can be given. The next theorem shows that the pth curvature double 
form of an integral manifold of one of the distributions WB,tK ), '/~,t*,x), or 
~4~pa¢ ) is what one would expect it to be. 

Theorem (4.5). (i) if L is an integral manifold of A~B~a¢ ~, then the p th curvature 
double form r p of L is given by 

r p = 2-PKpg2P ; 

(ii) if L is an integral manifold of A~th, XO, then 

r v = 2-r(h  2 + Kg2) v ; 
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(iii) i f  L is an integral manifold o f  JVVp(K ), then L is a Kiihter submanifold 
o f  M and 

.re= 8-P KP(92 + 2AF) p . 

Proof. This follows f rom the Gauss  equat ion (see [4]): 

P R x r  = rxr - [tx, t r ] .  

We next generalize a result of  [5]. Let A be a Riemannian  double  form. 
If  Vx(A) = o~(X) A for some l - fo rm a and all X ~ X(M), we say that  A is recurrent. 
If in addi t ion ~ = 0, we say tha t  A is parallel. It  is easy to see that  i fA is recurrent,  
then so is A q, and the associated 1-form is q~. 

Proposition (4.6).Let A be a Riemannian double form on M and let G be the 
set on which the index of  nullity #A assumes its minimum value 2. Then la A is 
upper semicontinuous, and the set G is open. 

P r o @  It  suffices to p rove  that  for any  m e M there exists a ne ighborhood  U 
of  m such that  #(m')_< la(m) for m ' e  U, but  this is obvious.  

Theorem (4.7). Assume that M is a complete Riemannian manifold and that A 
is a recurrent double form of  type (t 9, p) on M.  Then each integral manifold 
L o f  yV a on G is complete. 

Proof. I f 2  = d i m M ,  the p roof  is trivial, so we assume 2 < n. Let 7 : [0, b ) ~ L  
be a unit speed geodesic. Since M is complete  we may  extend 7 to a geodesic 
7: [0, o o ) ~ M .  Let  Z , X  1 . . . .  ,Xp ,  Y1 . . . . .  Yp~ 3E(M) be such that  for O<_t<_b, 
Z~.(o=7'(t), each Xi~(, ) and  Yi~(0 is perpendicular  to A/~(7(t)), and each Xi 
and Yi is parallel on 7 [ [0, b]. Define f : [0, b] ~ R by 

f = A ( X 1 , . . . ,  X v) (YI . . . . .  Yp)'~ 7. 
Then 

f '  = Vz(A ) (X ,  . . . . .  Xp) (I71 . . . . .  yp) o 7 

= {a(Z) A ( X  1 . . . . .  Xp) (Y , , . . . ,  Yp)} o 7 = Y*(a)f ,  

t 

and so f ( t ) = f ( O ) e x p S T * ( a ) ( t ) d t  for O < t < b .  It follows that  if f (0 )4=0 
0 

then f ( t )  + 0 for 0 < t _< b. Since X1 . . . . .  Xp, Y1 . . . . .  Y,, are arbi trary,  we must  
have#a  ()'(b)) = 2. Therefore  y(b) ~ G, and  so there exists c > b such tha t  7([0, c)) C G. 
Hence  every geodesic in L is infinitely extendable  (in L) and so L is complete.  

Tho rpe  [7] has shown that  if72 p vanishes on M for some p, then Y2q vanishes 
on M for all q > p. We generalize this result as follows. 

Theorem (4.8). Let  A~ and A z be any two Riemannian double forms on M.  
Then for  all m ~ M we have 

~ ( m ) c ~  J j : ( m )  c= A~,^a~(m ) . 

Proof. This is an obvious  consequence of (2.2) and the definition of the 
spaces of  nullity. 
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Corollary (4.9). Let A be a Riemannian double form on M. Then 

for all integers p and all m s M. 

The main geometric interest of this corollary is in the case when A = R q 
for some q. In this situation we also have the following result. 

Theorem (4.10). Let P be a 2r-plane in M~ such that for some p <= r we have 

P n -/~R.(m) # O. 
Then y2r(m, P) = 0. 

Proof• Let {el . . . . .  e~,} he an orthonormal basis of P such that e 1 ~ ~p(m). 
There exists a number 2 such that 

?2r(m, P) = 2 Z e ~ P P ( e l ,  e ~2 . . . . .  e ~p) (e~, . . . . .  e~2p) 

• R~-P(e~2p+~ . . . . .  e~2 ) (e~2 . . . . . . . .  e~2~). 

Here the sum is over all Q, a ~ S h ~ ,  r - p) such that Q1 = 1. From this formula 
the theorem is immediate. 

We conclude this section by generalizing another result of Thorpe [7], 
which states that if M has constant 2pth sectional curvature K2p and constant 
2q th sectional curvature K2q, then M has constant 2(p + q) th sectional curvature 
K2aK2 ~. 

Theorem (4.11). Let A 1 and .4 2 be Riemannian double forms of  types (2p, 2p) 
and (2q, 2q), respectively, on M. Let P be a (2p + 2q)-plane in Mm and assume that 

dim(Pc~ ~ - A , ( m ) )  >= 2q + 1, 

dim(Pc~ XR~_A~(m)) >__ 2p + 1. 

Then the (2p + 2q) th sectional curvature of  P is given by the formula 

72p+ 2q( m, P) = 2P+q((2P + 2q)!)-i (A 1 A A2) (el, ..., e2p+ 2q)(el . . . . .  eEp + 2~) 

where {e I . . . . .  e2p+2q} is any orthonormal basis of P• 

Proof. This is a direct calculation from the definition of ~2p+2~(m,P). 

5. Applications to the Computation of the Pontryagin Classes 
and Euler Characteristic 

As pointed out in the introduction the topological conclusions of this 
paper result from Theorem (4.3) and Theorem (4.5). We now give the proofs 
of the theorems stated in the introduction. 

Theorem (5.1). Suppose M is compact and PRp is constant on M and 2p < #Rp. 
Then z(M) = O. 

Proof. If 3 ( M )  denotes the tangent bundle of M, we have a Whitney 
direct sum 

~-(M) --- -~RpO ~ .  
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Here ~CR, and ~C~p are vector bundles because/~Rp is constant. The Riemann- 
ian connection of 3-(M) induces a Riemannian connection on the vector 
bundle JV~p; furthermore the curvature double form of this connection is the 
restriction of the curvature double form of ~'-(M) to YlrR~. Thus from the de- 
finition of JVR~ it follows that the Euler class %(~VRp)= 0. Thus 

Z(~'-(M)) = Z ( ~ )  Z ( ~ )  = o, 

and the theorem follows. 

Theorem (5.2). Suppose M is compact and g = p~,(h, K) is constant on M 
and 2p <= #. Then 

Pk(M)=O jbr k > p + ¼ ( n - # )  

where n= dimM and Pk(M)~H4R(M,R) denotes the kth Pontryagin class. 

Proof. Let W'= ~p(h,r)- Just as in Theorem (5.1) we have 

J ( M )  = X @  X ± 

and so 
P(M) = P(J (M))  = P(JV) P( ~'~±), 

where P(yV), etc., denotes the total Pontryagin class. A calculation similar 
to that given in [7] shows that 

PR(A/)=O for k > p .  

Obviously Pk(A~±) = 0 for k > ¼(n- #) and so the theorem follows. 
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