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The paper relates to the design of  machine tool spindles for 
optimal static stiffness using computer simulation. Current 
trends are to have computer algorithms which are reliable 
and allow efficient and accurate programming. In particular, 
algorithms which may be repeatedly applied to model complex 
systems, by gradually building up to the final system, are 
extremely useful. The algorithms described allow the analysis of 
complex statically indeterminate spindles and provide stiffness 
values and deflected shapes. The algorithms may also be used 
with nonlinear bearing stiffnesses thus enabling the resulting 
nonlinear static stiffness of  the spindle system to be predicted. 
The algorithms are also fast compared to normal methods and 
thereJore allow the designer to investigate a range of  design 
possibilities interactively. 
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1. Introduction 

Perhaps the most common exercise in machine design is that 
of spindle specification. This involves taking into account the 
following design constraints: 

Function. 

Speed range. 

Expected loads. 

Accuracy. 

Life. 

Noise. 

In turn, this requires the designer to specify or consider: 

Shaft geometry. 

Bearings: type, number, preload, lubrication, fit. 
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Alignment. 

Thermal expansion. 

Drive - type and position. 

Stiffness and deflections. 

Dynamic response and natural frequencies. 

For machine tools it is generally accepted that the spindle is 
the most significant contributor to the static and dynamic 
stiffness of the machine tool. Ideally the designer aims to 

optimise both the static and dynamic stiffness of the spindle. 
It would, therefore, be very attractive to have an expert system 
that would accomplish this within certain specified constraints. 
The work described in this paper is a prerequisite of such an 
expert system. 

For many years, a systems approach has been used for 
modelling the dynamic characteristics of structures [1] and was 
applied to machine tool spindles [2]. However, the equivalent 
approach for a static analysis, which could accommodate shear 
effects, multiple bearings (with radial and tilt stiffness) and 
multiple changes in shaft section, was not generally available 
as the problem was indeterminate. The objective of the work 
described in this paper was therefore to ensure that the systems 
approach used for the prediction of dynamic stiffness could 
also be used for static stiffness predictions. This enables a 
single set of data (defining the geometry, bearings, etc.) to be 
used for both the static and dynamic stiffness predictions. 

As a result of the development of such an approach it has 
also been possible to investigate experimentally the effects of 
the nonlinear stiffness of bearings on optimum spindle stiffness 
(see [3, 4]). These nonlinear effects have been reported pre- 
viously [5] but in the past were ignored in analysis. This paper 
describes the algorithms which were developed to allow the 
systems approach to be employed for static stiffness predic- 
tions. These algorithms are then used to investigate the effects 
of nonlinear bearing stiffness on the design of spindles for 
optimal static stiffness. 

These algorithms, together with those for the analysis of 
dynamic stiffness, have since been incorporated into an expert 
system for optimising the static and dynamic stiffness of 
spindles [6]. 
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2. Addition Algorithms 

A spindle system may be considered to be made up of a series 
of shaft elements joined together axially with bearings added 
at discrete positions. Thus, it was decided to develop a method 
of static analysis which involved successively adding shaft 
elements or bearings, as desired, so that a complex spindle 
could be readily achieved. This had already been achieved for 
the dynamic analysis of spindles [2]. For the static analysis 
this required that routines be devised for determining the 
stiffness at one end of a shaft when it was added to an already 
existing spindle system. Consider such a shaft element. 

2.1 Shaft Element 

Consider first the case, as shown in Fig. 1, of an applied 
external force F at x = L on the shaft element to be added 
as shown in Fig. 1. For static equilibrium this requires - F  at 
x = 0 and a moment M = F L  at x = 0, which are provided by 
reactions from the existing spindle to which it is attached. 
(Note moments are defined as positive anticlockwise.) 

Now for small deflections, 

¢P0 
- -  = - - % , L & -  % ' L  
F 

dy 
i .e.~x = ~p + y 

where ~p is the slope from bending and y is the slope from 
shear. 

M = - E l  dcp 
dx  

and 

F = RGA3, 

If it is assumed that the radial and bending stiffness of the 
already existing spindle have been found experimentally, then, 
since the force and moment applied to the existing spindle are 
known, the deflection and slope at the join may be calculated. 
It follows that the objective of the analysis is to determine the 
deflection (YL) and slope (~PL) due to a force F at x = L on the 
added shaft element, knowing the deflection (3'0) and slope 
(%) at x = 0. If the same analysis is completed for an applied 
external moment M at x = L on the shaft element to be added, 
then the radial and bending stiffness for the new spindle are 

- - - - ~  Existing 
Y Spindle 

x=0 [ x - L  

F L to be added 

F F 
F 

Fig. I. Force and moment equilibrium of a shaft element with an 
applied external force. 

known. Thus it is necessary to find YL and ~Pc knowing Yo 
and ~Po. 

At section x, 
The shear force is, 

F = R G A y  (1) 

and the moment is M = - F ( L -  x) so that 

d~ 
- F ( L  - x) = - E l  -~-- 

dx  

Integrating yields, 

when x = 0, ¢p = q% so that C~ =-EI~Po and thus 

g) = ~o + E-I Lx  - (2) 

Now the total slope is the sum of the slope due to bending 
plus the slope due to shear, thus 

d~ 'P°+~5  b e -  +~,~)i  

integrating, 

y = ,pox + E t [  2 - + ~d~  + C2 

when x = 0, y = Y0 so that C2 = Yo and therefore, 

Y = Yo + ~poX + E1 - + ) t ~  (3) 

Thus, if we introduce the concept of a static receptance we 
obtain, 

Y~ _ Yo + _F_ + E l  - + k ~  (4) m 

~,L F x : r  F 

and 

cPx 
_ ~po + b e  - ( 5 )  

13x,L--Fx=L F ~J 

The notation adopted is the same as that presented by Bishop 
and Johnson [1] for dynamic receptances including damping, 
i.e. a prime ( ')  indicates slope resulting from bending. If a 
similar analysis is conducted for an applied external moment 
M, we obtain, 

Y. _ Y o  ('P0 X X 2  

f3~L. M:,=c M + M 2EI  (6) 

and 

_ % _ cPo x ( 7 )  

f3 x, r, M ,~= L M E1 

Using the static receptances derived above it is possible to build 
up a complex shaft using the same addition routine repetitively. 
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2.2 Series Addition of Shaft Elements 

Consider the existing spindle to be system C with receptances 
y. Then when an additional shaft (or system B) is added and 
an external force F is applied at x = LB on the additional shaft 
element we obtain, for static equilibrium, the state shown 
in Fig. 2. 

From compatibility, 3% for system B equals YLc for system 
C and also tPoB for system B equals ~PLc for system C. 

Using linear superposition, YLc for system C = % L F  + 
%L,(-FL) = y% for system B and hence for system B, 

Y% 
- -  = YLL-- "~LL 'L 
F 

0c  Lc 013 LB 

[ System C ...... ~ ...... ~M] System B ......... ] ~  

Fig. 3. Addition of a shaft element. (Applied external moment at x = L~ 
on system B.) 

and 

x 2 

6~L' = YLL" + %,L,X 2El  (10) 

X 
6:,'c' = YL'L' E1 (11) 

Also the slope resulting from bending will be continuous 
(though the slope involving shear will not). 

Using linear superposition, ~PLc for system C = YL,L,(--FL) + 
%,LF = tp% for system B and hence for system B, 

tp% 
- -  = - - ~ L , L , L  -F "~L'L 
F 

Thus substituting in Eqs (4) and (5) for yoJF and q~%/F, 

l[/_x 2 ~ ]  x 
f3,L = YLC -- yLL'LB + [ -  yL,L,La + %'Llx + E l i ' -  -- +hGA 

(8) 

and 

1[ 2 2] 
[3x,L = --YL'L'LB + YL'L + -~I LX -- (9) 

When an external moment M is applied to the additional shaft 
element at x = L,~ we have the state shown in Fig. 3. 

The opposite moment at x = 08 on system B is required for 
static equilibrium. From compatibility, as above, y% for system 
B equals YLC for system C and also ~p% for system B equals 
q~Lc for system C. 

Therefore, using linear superposition, YLC for system 
C = yLL'M = y% for system B and hence for system B, 

Y% 
_ _  ~ AlL L, 
M 

and qOLc for system C = %,L,M = ~P0e for system B and hence 
for system B, 

¢P% 
- -  ~ "YL'L" M 

Thus, substituting in equations (6) and (7), 

0 c L c 0B L B 

System C FL~ ( F L  l System B 

F F 
F 

Fig. 2, Addition of a shaft element. (Applied external force at x = L8 
on system B,) 

2.3 Addition of a Bearing 

Consider the existing spindle to be a system C with receptances 
y then when an additional bearing is added and an external 
force F applied to the shaft element we obtain the moments 
and forces on the system C and bearing as shown in Fig. 4. 

If  the radial and tilt bearing stiffnesses are assumed to be 
known, considered to be linear at this stage, and defined as, 

k = radial stiffness 

k' = tilt stiffness 

for the two representations in Fig. 4 to be identical, 

F = F ~  + F 2  (12) 

the deflection YLC will be the same on the bearing and on the 
shaft, i.e. system C. Using linear superposition, 

Fz 
YL c = YrrFI + %L,MI = ~- (13) 

and the total slope will be the same on the bearing and on 
the shaft, i.e. system C. Thus 

FI Fi _ M~ 
q~Lc + ~ ] 1  = %,LF,+ %'L'M~+ XGA k' (14) 

We require for the new system A (i.e. system B plus the 
additional bearing), 

YLc ~ L c  

%L = ~ - ,  ~xL'L- F 

Thus eliminating f'2 from (12) and (13) 

(F - F~) 
"~LLF! -I- "~LL,M! - -  k 

rearranging, 

F1 YLL + + YLL'M1 = ~ (15) 

NOW rearranging (14) 

YL'L + XGA 

and substitute for F~ in (15) 
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System C I System  
/ 

Added M 1 
Bearing 

Fig. 4. Addition of a bearing. (Applied external force at x = Lc on 
system C.) 

@c'L + hGA) 

therefore, 

From (13) yLC=~LLF~ + ~LL'M~ and substituting for Ft from 
(16) 

YLc 

@L 'L + XGA1)) + ~'LL' M1 

We require aLL = yLJf which from the above and substituting 
for M~ from (17) after some manipulation yields, 

I ~LL(U--~L'L') +~LL'('YL%+xlGA) 
(18) 

We also require C~L'L = ~PLc/F. From (14) ~PLc = "/L,LF] + "/L,L,MI 
and substituting for F~ from (16) and M] from (17) and 
rearranging gives, 

"/LL + ~ k '  - ~/L'L' + 7LL' ~/L'L + XGA 

TO complete the set of static receptances when a bearing is 
added it is necessary to also consider an external moment M 
applied on the shaft element we obtain the moments and forces 
on the spindle and bearing as shown in Fig. 5. 

For the two representations to be identical, 

M = M~ 4- M 2 

and using a similar approach to that used for an external force, 
the following relationships are obtained. 

System C ~ ?  

/ 
Added 
Bearing 

System C 

I 
)M1 

@2 
Fig. 5. Addition of a bearing. (Applied external moment at x = L c on 
system C.) 

12LL' 
1 

kk' 
~LL' 

(20) 

{2L, L , 

1 '~L'L' ("~LL-[- lk) -[- '~L'L~LL' 

(21) 

With the static receptances derived above it is possible to 
systematically build a spindle system and determine its static 
stiffness. Thus, consider a typical spindle and its division into 
constituent elements, as shown in Fig. 6. 

As the force is applied at the righthand end, the spindle is 
built from the left. The first shaft element {1 } is a free/free 
shaft and therefore has no static stiffness. We thus start with 
the bearing {2} and its static receptances are given by, 

1 1 
"YLL = ~; ~/L'L' = ~7 and "YL'c = "YLL' = 0 

This assumes no coupling between the radial and tilt stiffnesses. 
These receptances define the current system C. The shaft 

element {3} is then added as system B using Eqs (8) to (11) 
with x = L3, the length of the element. This produces [3eL, [BL,L, 
[3BL, and I3L,c, for the sum of the first three elements. We now 
define the sum of the first three elements as the current spindle, 
i.e. system C. Thus, 6LL, fBL'L, f3LL' and [BL, L, become ~/LL, ~/L'L, 
3'LL' and "YL'L' for the addition of the shaft element 4 which is 
then the current system B. The procedure is then the same as 
for the addition of element {3} and we find ~LL, 7L'L, 7LL' 
and ~c'c' for the first four elements. 

The bearing {5} is then added using Eqs (18) to (21) and 
produces C~LL, C~L'C, C~BL' and C~L,L' for the sum of the first five 
elements and these become ~LL, "YL'L, "YLL' and "/L'L' of the new 
current system C for the addition of the shaft element {6} in 
the same manner as the previous shaft elements. The final 
values are those for the whole spindle and the static stiffness 
at the point of application of the force is 1/~/LL. 

The deflected shape is obtained by working back through 
the elements and determining the interface forces and couples. 
This allows the deflection and slope at bearing {2} to be 
calculated. The shaft element {1 } has no bending within it so 
the deflection is simply the extrapolation of the slope of bearing 
{ 2 }. Then for other shaft elements in turn each have a known 
deflection and slope at x = 0  and from Eqs (4) to (7) the 
deflection along the element may be obtained. The deflection 
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Fig. 6. Division of spindle into elements. 

I F 

t 
F 

and slope at x = L for each shaft element becomes the deflection 
and slope for the next shaft element at x = 0, and so on. 

For a force or moment applied at other than the end of a 
spindle the same approach may be easily adapted. Consider 
the spindle shown in Fig. 7 with the load applied in the 
position shown. It is easy to consider this as two spindles 
joined together but with each spindle having a force and 
moment applied at an end as shown in Fig. 8. 

To determine the force and moment on each spindle it is 
necessary to ensure that the deflection and slope due to bending 
are the same at the join. To use the equations previously 
developed we must build each spindle from the left so the 
Spindle R is rotated horizontally as shown in Fig. 9. Note the 
associated sign change on the moment. Also, the slope at the 
end will now have to be negative to ensure the same slope as 
for spindle L. Thus, 

Y L  = [~LL]L (F - FR) - [~LL ' ]L  MR = [~LL]R FR - ['~ILL,]R MR 

and 

~ L  = ['~L,L]L (F - FR) -- ['YL,L,]L MR = --[['YL,L]R FR -- ['YL'L']R MR] 

where for example ['/L'L]L is a receptance of the complete 
spindle L. 

From these equations it is possible to solve for FR and MR 
in terms of F and then the stiffness y J F  may be obtained. 
The deflected shape may then be found by treating each spindle 
separately with the relevant force and moment applied. 

A typical output from a computer program written to include 
these algorithms is shown in Fig. 10. The stiffness shown 
applies to the point of application of the force. The deflected 
shape is shown without units as the force magnitude was not 
specified. However, if the force is specified then a dimensioned 
deflected shape is given. It should be noted that the computer 
code is quite simple and efficient because the same addition 
algorithms are applied repeatedly. The program has no dif- 
ficulty with the fact that with tilt stiffnesses in the bearings 

~ F 

Fig. 7. Spindle with load applied away from an end. 

Spindle L 

Fig. 8. Forces and moments on two spindles, L and R. 

Fig. 9. Spindle R rotated horizontally. 

the system is indeterminate even before the third bearing 
is added. 

3. Nonlinear Bearings 

It is known that bearings exhibit nonlinearity [5], but this has 
largely been ignored in the past owing to the difficulty of 
modelling this effect. It is possible to include the nonlinearity 
of the bearings in the modelling of the static stiffness of 
spindle systems using the systems approach method. 

Lacey et al. [5] developed the variload spindle (a hydrauli- 
cally actuated variable preload bearing unit, no longer 
available) to allow bearing preload to be varied with running 
speed. Their work involved the measurement of the static 
stiffness of angular rolling element bearings under different 
preloads. Figure 11 shows the radial load deflection character- 
istics as published by Lacey [5] for a 7024 angular contact 
bearing under low, medium and high preloads. 

These curves clearly show the nonlinear characteristics of 
the bearing and that the nonlinearity can be seen to closely 
follow a cubic curve under low and medium preloads. How- 
ever, under high preload condition, the nonlinearity follows a 
quadratic curve. 

$ 

S t i f f n e s s =  6 .61e+8  N / m  

Fig. 10. Typical output from program. 
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It follows that if the equation representing the required 
nonlinear load-deflection relationship of the beating can be 
determined, then the nonlinearity of the bearing under consider- 
ation can be modelled. The nonlinear load-deflection character- 
istic of the bearing under medium and high preload conditions 
was therefore modelled using a cubic equation of the form, 

y =  a~ ~ + bx 2 + cx + d 

To obtain the exact cubic equation which can represent the 
nonlinear relationship between the applied radial load P and 
the beating radial deflection u for medium preload bearings, 
load deflection values were taken from Lacey's medium preload 
curve (Fig, 11) and a cubic equation as shown below was 
derived. 

P = 7.65 × 1016 u 3 - 8.58 × 1012 u 2 @ 4.41 × 108 u (22) 

where u is in metres and P is in Newtons. 
A nonlinear load-deflection curve derived using Eq. (22) can 

be seen in Fig. 12 and is found to be in close agreement with 
Lacey's curve (Fig. 11). 

Since the stiffness of the bearing can be represented by the 
slope of the load-deflection curve, differentiating Eq. (22) gives 
the nonlinear radial stiffness equation for the medium pretoad 
bearing at a deflection n, i.e. 

dP 
k~ - - 22.95 × 1016 U 2 - -  t7.16 × 1012 u + 4 . 4 1  (23) 

du 
× t0 s 

and the flexural or tilt stiffness of the bearing was taken to be, 

k~ 
k , -  104 (24) 

4. The Nonlinear Stiffness of Spindle 
Systems 

The nonlinear static ~tiffness of a spindle system can therefore 
be modelled using the nonlinear bearing static stiffness equa- 

Load (kN) ....... ~Ieavy / /  

...... 3.8kN / / /Medium 
10 ... / 2.5 kN 

. /  / 

/ ,,/ 
8 l /"  

- I I  ~ t  
/ / /  - / 

6 / / /  

/ / 
4 i , '  / 08kN 

2 / /  

0 20 40 60 

Deflection (gin) 

Fig. 11. Load-deflection curves for a bearing with different preZoads. 
(After Lacey [5]). 

tions by initially setting the beating stiffness k r to 4.41 × 
10 sN/m, (i.e. from Eq. (23), when u = 0 )  and kt = 
4.41 × 104 N/m from Eq. (24)). 

Using the previously derived receptance equations, the 
receptance and hence the deflection at the spindle nose sub- 
jected to an applied load of say 50 N can be determined for 
a spindle system with dimensions as shown in Fig. 13. The 
resulting deflection and load values enable a point on the 
nonlinear spindle load-deflection curve to be plotted. 

To obtain the next point on the nonlinear spindle load- 
deflection curve, i.e. adding an extra 50 N load, it is first 
necessary to find the new (i.e. under the current loads) values 
of kr and k t for each bearing. This can be achieved by finding 
the loads acting on the bearings by working backwards as 
described previously for the original 50 N load applied at the 
spindle nose. The deflection at each bearing can then be tbund 
knowing the force and the stiffness, and hence the new values 
of k,. and k, may be obtained for each bearing using Eqs (23) 
and (24). The extra spindle deflection caused by the extra 
applied load of 50 N with the new bearing stiffnesses can then 
be calculated and added to the previous spindle deflection 
caused by the first 50 N load. This total spindle deflection is 
then plotted against the total applied load on the spindle, which 
is now 100 N, thus giving the second point on the nonlinear 
spindle load-deflection curve. The above process is repeated 
with load increments of 50 N until a load required, say 
1.2 × 104 N, has been reached. 

The predicted nonlinear load-deflection characteristics for a 
typical spindle system with dimensions as shown in Fig. 13 
for three different bearing spans can be seen in Fig. 14. To 
check for accuracy, load increments smaller than 50 N were 
tried and found to have no effect on the accuracy of the 
spindle load-deflection curve. A further check was made by 
applying a full load on the same spindle system with zero 
load-bearing characteristics. The load on each beating was then 
determined and from the nonlinear beating stiffness plot, the 
effective linear stiffness of each bearing was determined and 

Load (N) 
14000 

12000 

10000 

8000 

6000 

4000 

2000 

0 

. r  

i r  

re,i* 

I l a  ~1" 

| r  
i S 

m ¢ 
J 

• T  

m g 

J / 
7 

7 l i  

0 , 0 2  

Def lec t ion  (mm 

: 1 

0 . 0 4  0 , 0 6  

Fig. 12. Predicted load-deflection curve for bearing with medium pre- 
load. 
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Fig. 13. Spindle dimensions. Young's modulus of elasticity E = 2 × 
10 ~ N/m 2 and the shear modulus G = 8 × 10~°N/m 2. 
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Fig. 15. The effect of nonlinear bearings on the spindle nose deflection. 

12000100008000 Load (N) //~ r Y/'~,, ," : :' 
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6000 / "' 

/ / , ,  ,~,,, Span=0.3rn 

40002000 l ~  " Span=0.2m 

Deflection (mm) 
0 0.1 0.2 0.3 

Fig. 14. Predicted nonlinear stiffnesses of the spindle system for three 
different bearing spans, 

used for the next iteration. It was found that after two iterations, 
the same result as before was achieved, 

5. The Effect of Nonlinear Bearings on 
Optimal Design of Spindle Systems 

The effect of the nonlinearity of the bearing on the deflection 
and stiffness of a typical spindle system with parameters as 
shown in Fig. 13 can be seen in Figs 15 and 16. Note that the 
stiffness of the spindle system decreases as the applied load 
increases and is most sensitive at the lower range of the 
applied loads, i.e. as the applied load increases from zero, the 
stiffness decreases rapidly until a point is reached where the 
decrease is less severe, i.e. from 6 kN upwards. Note that if 
linear bearings were assumed, the spindle static stiffness would 
be constant for all applied loads. 

Also, the nonlinear effect of the bearing has resulted in 
slightly different optimum spans for different applied loads. 
The optimum spans range from 0.35 to 0.4 m, depending on 

3.5 T Static Stiffness (xl0e6Nlm 

2.5 ~ =  

1.5 ~ " 

[ 1 i I " ; ', 1 

0.40 0.35 0.30 0.25 0.20 0.15 0.10 

--=--Load=2KN 

Load=4KN 

--°~Load=6KN 

¢ Load=SKN 

~ '~Load= lOKN 

Load=12KN 

Span (m) 

Fig. 16. The effect of nonlinear bearings on the spindle nose stillness. 

the magnitude of the applied load. Note that a correctly chosen 
bearing span is more critical at lower applied loads, as, under 
these lower loads, the spindle static stiffness decreases rapidly 
when the span is decreased (Fig. 16). Again if the nonlinearity 
of the bearing stiffness was ignored, the optimum span would 
be the same for all values of applied loads. 

From the above predictions, it can be seen that the stiffness 
of spindle systems varies with the magnitude of the applied 
force. Therefore, for optimum design, it would be helpful if the 
nonlinear effect of bearings can be included in the prediction of 
the static stiffness of spindle systems. 

6. Conclusions 

The systems approach described above, together with the con- 
cept of static receptances, allows very rapid calculation of 
stiffness and deflection for complicated spindles with multiple 
bearings exhibiting nonlinear and both radial and tilt stiffness. 
These spindles are statically indeterminate and hence the 
approach has many advantages. Comparisons with far more 
complex computer programs show excellent agreement. It is 
thus possible to perform parameter optimisation in a very short 
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time and this is proving to be very attractive to designers who 
need to be able to operate interactively. 

The algorithms described in this paper together with those 
for the analysis of  dynamic stiffness have been successfully 
incorporated into an expert system for optimising the static 
and dynamic stiffness of  spindles [6]. 
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Nomenclature 

A area of cross-section 
E Young's modulus 
F applied force 
G shear modulus 
l second moment of area 
L length of shaft element 
M bending moment 

y horizontal direction pelt~endicular to X,Z-plane 
x position along shaft 
y slope resulting from shear 
X shear factor for section 
q:, slope resulting from bending 

Parameters with subscripts 

c~ static receptance after addition of bearing 
13 static receptance after addition of shaft element 
y static receptance of existing shaft system 

Subscripts: The static receptances have two subscripts which indicate, 
first, the position of the displacement or slope and secondly the 
position of the applied force or moment. Slope and moment are 
differentiated from deflection and force by the addition of a prime, 
e.g. L' represents the slope or moment at the position L 


