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On Rational Singularities in Dimensions > 2 
D. Burns* 

Introduction. We consider here in a rudimentary way the natural 
generalization of Artin's rational surface singularities [3] to higher 
dimensions. A point x ~ X is rational if (Rin. Og)~ = 0, for i>  0, where 
n : X-~ X is a resolution of singularities. Basically, we extend the results 
of Laufer [15-] to this situation, our main tool being the result of Grauert- 
Riemenschneider [9] that R i n.  Q} = 0, for algebraic singularities. Several 
examples are found of such singularities, especially the Arnold singu- 
larities of [1], and all quotient singularities. We consider in § 5 the rela- 
tionship with ~b-harmonic forms, though we are unable to present an 
appropriate "vanishing theorem for harmonic integrals" in this situation. 
Just what the appropriate curvature condition, if any, for Jb-harmonic 
forms should be is not clear, and seems an interesting open question. 

"Rational singularities" of the sort considered here should be useful 
as examples and in computing arithmetic genera of modular surfaces and 
their analogues ("local contributions come only from cusps"). They are 
also among the singularities for which the homology Todd class of [5] is 
particularly simple: if all singularities of the projective variety X are 
rational as above, and n : ) ( ~  X is a resolution, then the homology Todd 
class of X is n,(z(.~)), where T(X) is the homology Todd class of .g 
(i.e., the Poincar6 dual of the usual Todd class). This was pointed out 
to the author by Paul Baum. 

Definition (1.1). Let x be a point in X, a complex analytic space. 
Call x a rational singular point if, given a resolution of singularities 
n" X ~ X  in the sense of [!0], then (R~n, (_9~)x=0, for i>0 .  

It follows from Hironaka's work that, 1. a resolution X always exists 
[11], 2. given any two such 1(1 and Xz, there is a third Xa which dominates 
them both, and, therefore, 3. the condition on R i n,  (9~ is independent 
of the choice of X, by [10], Corollary 2, p. 153. Proposition (5.3) below 
gives an intrinsic analytic characterization of this property. 

In the case where dim~X = 2, this is the definition given by Artin 
in [3]. In higher dimensions, however, the condition is in some sense 
less restrictive than in dimension 2, as the following example shows: 

(1.2) Example. Let V cIP" be a smooth hypersurface of degree d, 
defined by the non-singular homogeneous form F(Z) in the homogeneous 
variables Z1 . . . . .  Z,+I.  Let X be defined by F ( Z ) = 0  in ~"+1; X is the 
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"cone over V". Let H~ ~ V be the line bundle induced on V by the 
"tautological" line bundle on ]?" (dual to the hyperplane bundle). The 
"tautological" map n : H* = ~" ~ X is a resolution of singularities with 
n -  1 (0) = V. Using this, it is easy to see that 0 ~ X is a rational singular 
point iff d < n. 

In fact, by [9], we can compute Rin, (.f2 in the algebraic category. 
The Leray spectral sequence of n shows Hi(X,d)~,)=H°(X, Rin,(92) 
=(Rin,(9~7)o, and the Leray sequence for p: X ~ V  shows Hi(X, (92) 
= Hi(V, R ° n ,  ~0jT)= ( ~  HI(V, d~(Hv ~")). All these groups vanish for i>  0, 

n~0 
if d < n. For d = n + 1, H"-  1 (V, C) is one-dimensional. 

For X of dimension 2, with n - i  (x) an imbedded submanifold of X, 
x is a rational .~ngularity iff n -  l(x) is a rational curve. That is certainly 
not the case for an isolated rational singularity in higher dimensions. 
For  example, by the above, the cone over a cubic threefold V C ]p4 has a 
rational singularity at 0, and a resolution with n-1(0)= V, but V is not 
a rational variety [6]. 

(2.1) Recall the point of view of [15], which we will be using below. 
In particular, recall the long exact sequence for "cohomology at oo": 

• ..A*H~(Y, ~-) ~ Hi(y, ~ ) - ,  H~ (Y, ~)A.p,~ + I(¥, ~ ) _ ,  ... 

For Y a complex manifold, and ~" =/~(E) the sheaf of germs of sections of 
a holomorphic vector bundle E, then H*(Y, (9(E)) may be calculated as 
the cohomology of the quotient complex C®(Y, E®A°'*)/C~(Y, E®A°'*). 
Here C°°(Y, E® A °'*) is the C°%Dolbeault complex, and C~(Y, E®A °'*) 
the subcomplex of smooth compactly supported E-valued (0, g)-forms. 

(2.2) Consider X a normal complex analytic space with x ~ X an 
isolated singularity. There exists in X a basis of neighborhoods U of x 
such that 1 . 0  is compact, 2. 0U is an imbedded smooth sub-manifold 
of X, and 3. 0U is strictly pseudo-convex. It is easy to construct such U's, 
of course, by imbedding a neighborhood of x into a subdomain of IE N, 
and looking at the intersections of small balls with X. 

(2.3) By Artin's algebraization theorem [4], we may assume for a 
local question near x ~ X, that X is a normal, affine algebraic variety. 
As such, by [t0],  we may assume that we have a resolution rc : X ~ X  so 
that .~ is Zariski open in a smooth projective variety. In this situation, 
we can apply the result of Grauert and Riemenschneider [8], that 
Rirc, fm~ =0 ,  for i > 0 ,  n = d i m X .  

(3.1) The rationality of an isolated singular point x e X is a local 
condition, so we are free to assume X is normal affine algebraic, as 
above, with x as its only singularity. Taking n : X - - . X  also as in (2.3), 
and considering the Leray spectral sequence for n, we want Hi(~ ", t~) = 0, 
i > 0, to show rationality of x. The Lera~¢ sequence also shows that 
Hi()(, s'2~) = 0, i > 0. By Serre duality, H~(X, (_0~) = 0, for i < n. 
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Proposition (3.2). Let 09 be a holomorphic n-form defined on a deleted 
neighborhood of x e X,  which is nowhere vanishing on this neighborhood. 
Then x ~ X is rational if and only if co is square integrabte in a neighborhood 
o fx .  

Here square inte#rable means S co A ~ < ~ ,  for U any su[ficiently 
u 

small relatively compact neighborhood of x e X.) 
¢ 

Proof. Choose a relatively compact neighborhood U of x as in (2.2), 
so that co is defined on U - {x}. Let/.~ = re- t(U). Just as in (3.t), we have 
Hi(0,  g2~)=H~"-i(0,(9~7)*=0, for i>0 .  If x is rational, we also get 
H~-I(C ~, O~)=0,  i > 0 ,  and hence, the exact sequence: 

O~  H°(8 ,  f2x~)~ H°(O,  O~)~O 

and hence ~z*co has an extension to all of U, and for 

I~A~= ~*~A~*~<~. 
u u 

Conversely, if o~ > ~ co A ~ = f n*o9 A n*~,  then co has an extension 
v 

to 0 as a hotomorphic form [i5] .  In this case, consider the following 
commutative diagram, where the vertical arrows are cupping, or wedging, 
with &: 

... ~ H~(O, £2~)--* H~(0, f2~;)~ H~ (O, 0~ )~ . . .  

• J l T 
• . . - ,H;(u,  e o ) - - , ~ W ,  e o ) - , n ~ ( v ,  ee)--,.--. 

The right hand arrow is an isomorphism, since "at oe" ~5 =co doesn't 
vanish. H~(O, (.90) = 0 for i < n, and Hi([?, f2~) = 0, i > O, so Hi(0,  O0) = O, 
for 0 < i < n. For i = n,/_/i(O, (90) is always trivial for U open. 

Corollary (3.3). Let X be locally a complete intersection with isolated 
singular poim x, defined locally by equations fl  . . . . .  fk in C "+k. Then x 
is rational iff 

@(f~ .. . . .  fk) 
co = d x  1 A .." A dx~ "~(Xn+l . . . . .  Xn+k ) 

is locally square-integrable at x on X. 

(Here @(el, . - . ,  fk )  determinant.) ~(Xn+ i, i i l, x-~+ ~) is the Jacobian 

Proof. It is easy to check that co is a well-defined nowhere vanishing 
n-form on a deleted neighborhood of x in X. 

(3.4) Example. Arnold has recently classified those isolated hyper- 
surface singularities whose versal deformations contain only finitely 
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many analytically inequivatent singularities [1]. They are surprisingly 
direct generalizations of the rational double points of dimension two, 
and the rationality of these Arnold singularities can be deduced from the 
2-dimensional case by (3.3). 

Arnold's singularities are given by the following list: 
2 = 0 ;  n >  1, m>_2 A.(m): x2 + x~+ l + x2 + ... + x,,+ x = _ 

2 = 0 ;  n_>4, m > 2  O,(m): X d X " I - 2 + X Z , ) + X ~ + ' " + X m + t  _ _ 

E6(m): x 3 + x ~ + x 2 + . . ' + x 2 + t = O ;  m>=2 

2 = 0 ;  m > 2  Ev(m): xl (x2 + x3)+ x~ + . . . +  x~+i = 

2 E8(m): x 3 + x S + x ] + . . . + x , , + l = O ;  m > 2 .  

Lemma (3.5). f dx  < c  log where 2 is a sufficiently 
Ixl =< i I x 2 -  22t = 

small complex parameter. (Here dx  stands for Lebesyue measure in C.) 

Proof. dx dx  dx  / l \  
= S - - < c  ~ - - = c ' l o g [  ) .  

Ix[<l  1x2-22[ I~l=<i-t-lzt l x 2 - t l  - i--<l~b--<l~l Ixfz - ~  

Lemma (3.6). Let  f (x2 . . . . .  x.) be a continuous function near 0 • ~ " -  1, 

with f (O)= O. Then, if ~ dx2 . . ,  dx .  a~ I f(x2 . . . . .  x,)f < o% for e sufficiently small, then 

dx  I ... dx ,  
Ix 2 +-f- (x; ,[~,x , ) l  < o% for e sufficiently small. (d~ = the polydisc 

A~ 

of  radius e about 0 in the appropriate ff~k' s.) 

Proof. Use Fubini's theorem and (3.5): 

dxl  dx  2 dxn dx l  ... dx ,  = ~ S ix 2 + f ( x2  . . . . .  x,)t "" 
A~ 

dx  2 ... dx  n <=c'f < o 0 .  
a~ 

To prove the rationality of Arnold's singularities we proceed by 
induction on m. For m = 2, the singularities are known to be rational, and 
each has the form f ( x l ,  x2) + x3 2 = t3. By (3.3) or [15], co = d x l / x  dx2/2x  3 
must be locally square integrable on the variety in question. Considering 
the variety a branched double covering over (xl, x2)-space, we have 

dx i  d x  2 
~ I f (x l ,x2)]  < co, for e small. 
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For larger values of m, one considers the variety in question as a branched 
double cover of (xl . . . . .  xm)-space, and we will want 

dx 1 ... dx,. 

I ix +g(x,, x=-l)l Zl~ ' ' ' ,  

dxl ... dxm- 1 
Induction implies j Ig(-~, ~.~x~-~)l < co, and (3.6) says we are done. 

A~ 

Recall that (1.2) these are not the only isolated rational hyper- 
surface singularities. 

Proposition (4.1). Let M be a complex manifold, and F a properly 
discontinuous 9roup of automorphisms of M. Then X = M/F has only 
rational singularities. 

Proof. Ifx is a singular point of X, then the statement is local about x, 
and we can therefore assume 

1) M = the unit ball about the origin in C ,  

(4.2) 2) F = a finite group of unitary linear transformations, 

3) no element ~ e F fixes, pointwise, a hyperplane in C .  

By assumption 3), M is locally isomorphic to X, outside a subvariety 
of M of Codimension 2 (the union of the fixed point sets for Y e F). We 
will proceed by induction on the dimension of M. 

For dimension 2, the result is known, and can be derived directly 
from [t 5], using the following lemma: 

Lerama (4.3). Every holomorphic n-form co defined on the regular points 
of X is locally square integrable. 

Proof. We only have to prove this in a neighborhood of the point 
0 e X mapped onto by 0 ~ M C C", under the Assumptions (4.2). In this 

case, ~ o)A C5 = __1 .f p 'o)A p*~, where V may be taken, say, as the 
v/r g v 

ball of radius ½, p is the quotient map M--+ X, and O = ordF. By (4.2) 3) 
and the comment after it, ~z*co is holomorphic except on a subvariety 
of codimension 2, hence it extends to all of M, and the integrals in 
question are finite. 

(4.4) Next, assuming dim X > 2, we first show that if l t :X  ~ X is a 
resolution of X, then Rift. (9~ can be supported only at 0~X.  To see 
this, take y a point of x different from 0, and y' ~ M a point over y. Let 
F r = the stabilizer of y' in F. If y is singular, F r ~ {e}, and since F acts 
linearly, F r fixes the line through 0 and y, call it L(y). Since F acts unitarily, 
F r fixes L(y) l, the orthogonal complement to L(y) in C". It is easy to see 
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that a neighborhood of y in X is isomorphic to a neighborhood of 0 in 
L(y) x (L(y)±/Fv). By induction, L(y)'/F r has a rational singularity at 0, 
and hence, so does L(y)x (L(y)±/Fy). 

(4.5) Under Assumptions (4.2), we can assume X is an open subset of 
an affine algebraic variety, and hence we can find a resolution n : .~--, X 
where X is an open subset of a projective manifold. By (4.2) 1), X is Stein, 
and hence, to show Rin ,  (9~ = 0, it suffices to show H+(,~, 0~)= 0, i >  0. 
The Leray spectral sequence and (4.4) show that these spaces are finite 
dimensional, and hence we may use Serre duality to conclude they are 
zero iff H~"- iiX, f2~t) = 0, i > 0. Using the Leray spectral sequence for H*, 
and R k r~, Q~ = 0, k > 0, we see H i(X, I2~) = Hi (X, n ,  g2~). As noted in [15], 
n ,  f2~ can be characterized as the sheaf of germs of holomorphic n-forms 
on the regular points of X which are locally square-integrable on X. 
It remains to compute HI(X, It, 12~) by means of the map p. 

In fact, by (4.3) and its proof, we have that (p, 0~) r = ~,  f2~t, where the 
(.)r denotes F-invariants with respect to the natural action of F on p ,  f2~. 
It is easy to check that, if 

o -- ,  o b  -- ,  # ; i  ° X ~ i  l ~ . . . 

is the fine Dolbeault resolution of f2~, then 

0- ,  (p, o~) r- ,  (p, #~/o)r L. . .  

is a fine resolution on X. Hence, taking compactly supported sections, 

0-~ r+(x, (p, ~;~ o)q ~ rc(x ' (p, ~ i  ' )q  -+--. 

is the same thing as 

0 ~  F~(M, 8~°)r ~ F~(M, ~ / 1 ) r ~  ... 

Thus, we have 

I-I~(X,n, f2~t)=H~(X,(p, f2~)r)=H~(M, f2~)r=o, i<n,  

since HI(M, f2~) = 0, because M is Stein. 
(5.1) It is clear that our previous considerations should be related 

to the arcohomology of Kohn and Rossi. In the case of an isolated 
2-dimensional singularity, the sole obstruction to rationality was 
H~(.~, f2~)= 0, i.e., all 2-forms near t~X should extend to .~. For X of 
dimn, we want H~(X, f2~t)=H~-~(X, f2~I) to be zero as well (1 < i < n ) ,  
and it is these invariants we show are directly related to the ~b-complex. 

We recall for convenience the definition of the rib-complex. Let M 
be a complex manifold, with smooth boundary dM, which we'll assume 
is an open set in some slightly larger manifold M'. Assume DM defined 
by r = 0 ,  where dr4=O on aM, and M =  {mEM'lr(m)<0}. For V a 
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holomorphic vector bundle, define vector spaces as follows: 

~¢q(v) = C°~(M, V ® A °'q) 

~q{V) = {q~ ~ ~¢q(V) which extend smoothly across OM} 

~q(V) = {q~ ~ ~Tq(v) such that ~r ^ q~t~M = 0}. 

~on ~7*(V) preserves ~*(V), and so passes to ~*(V) = ~*(V)/C*(V). 
~*(V) is the ~b-complex associated with V. 

~¢~(V) = {q~ e ~¢q(V) with compact support} 

~ £  ( v) = dq( v)/~/~ (v) 

~7£ ( v) = ~q( v)/d~ ( v) . 

We would like to consider the following diagram: 

o-~ ./*(v)-~ ~/*(v)-~ ~ * ( v ) ~ o  

o--, ~ * ( v ) - ,  sT*(v)~ d*~(v)--,o 

l _ 1 
0-~, ~*(v) --, sp (v ) - - ,  ~*(v)  --,0 

The maps are all inclusions or restrictions. 
Assume, now, that OM is strictly pseudo-convex. In cohomology 

in dimensions > t, a induces an isomorphism, which may be seen 
by Theorem 3.4.8 of [12], or by restricting both spaces of forms to 
M ~ = {m~ M'l r(m) < - e < 0} for e > 0 sufficiently small, and using the 
Leray sequence to see that in dimensions > 1 in cohomology this gives an 
isomorphism. Consequently, fl induces an isomorphism on cohomology 
in positive dimensions. 

Next, consider the map 7. The i th cohomology of ~*(V) is 
H~(M,(9(V)) which is dual to H"-~(M,O(I2~®V*)), for i<n, by the 
integration pairing. By 5.t5 of [7], H~(~g*(V)) is also dual to 
H"-~(M, O(O"M® V*)), for i < n, again by integration pairing. Since the 
map induced by ~ on cohomology is obviously compatible with these 
pairings, this map is an isomorphism for i < n. Consequently, 5 induces 
an isomorphism of H~(~7* (V)) with Hi(~*(V)) for i < n - t. But Hi(~*(V)) 
is ng(vloM). 

Proposition (5.2). For M, V as above, there is a natural isomorphism 
H~(M, (9(V))~, Hg(VIoM), 0 < i < n - -  1. 

Now H~(VleM) for 0 < i < n - 1 may be represented by forms harmonic 
with respect to the (subelliptic) Laplacian constructed from db and Her- 
mitian metrics on M and It", It would be interesting to know whether this 
Laplacian has a decomposition as in the work of Bochner, Kodaira, 
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and others on classical Laplacians, and whether such a decomposition 
might yield vanishing theorems for harmonic sections. Summing up, 
we have: 

Proposition (5.3). L e t  x ~ X be an isolated singularity,  and let OX be 
smooth  and s t r ic t ly  pseudo-convex .  Then  x is a rationat s ingulari ty  i f f  

1) every  hotomorphic  n - f o r m  o) on X -  x is L 2 at x,  
2) ~ " - Hg(Qxlox) - O, 0 < i < n - 1. 

Remarks .  a) It would be interesting to know an explicit way of 
stating 1) in terms of the values of co on dX, i.e., as a section of f2"x[e x.  

b) A. Ogus has shown, using local duality and the result of Grauert 
and Riemenschneider used above, that projective rational singularities 
are Cohen-Macaulay in characteristic zero. 
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