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t. Introduction 
Throughout  the present paper Twill be a linear operator with domain D(T) 

in a (real or complex) linear space X and range R(T) in the same linear space. 
In his paper [2], TAYLOR presents an intensive study of the relationships 

between the nullity n(T) and defect d(T) on one hand, and the ascent ~(T) 
and descent ~(T) on the other. The main purpose of the present paper is to clear 
up a number of matters which were left open in TAVLOR'S paper. In what 
follows, therefore, we suppose the reader familiar with the definitions and 
notations introduced by TAYLOR in the first section of [2]. 

In the second section of this paper we gather a few simple facts on linear 
manifolds in a linear space. We present these facts because they will be fre- 
quently used in the fourth section. 

The third section is devoted to the study of the relationships between the 
linear subspaces N(Tk), D(T k) and R(T  k) for k = 0, 1, 2 . . . . .  A number of lemmas 
is presented to show how these manifolds are situated in the space X. We use 
these results in the fourth section in order to get a better understanding of the 
relationships between the numbers n(T), d(T),~(T) and ~(T). 

Also, in Section 4 we prove that in the case n(T) = d(T) < ~ and p = ~(T) 
= ~(T) < ~ ,  the linear space X is the direct sum of the linear manifolds N(T p) 
and R(TP). It is well-known that this statement is true in the case that either 
D(T) = X or p = 1, but in general its truth was unknown (cf. [2], Theorem 5.5 
and also the comment to this theorem). 

2. Linear spaces 
In the sequel we need some simple facts about linear manifolds in a linear 

space. We gather these facts in this section. First of all, we present the following 
definition. 

Definition 2.t .  The linear spaces X1 and X 2 are said to be isomorphic 
whenever there exists a one-one linear mapping from X1 onto X2. For  ab- 
breviation we use the symbol XI _~ X2 to denote that X1 and X2 are isomorphic. 

Let M and N be linear subspaces in the linear space X. As usual M + N 
denotes the set of all x + y with x e M and y e N. It is easy to show that M + N 
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is the smallest linear subspace which contains M and N. If, in addition, 
Mc~N= {0} we write M ~ ) N  for M + N .  I f N C M ,  then either M/N or 

M 
N 

denotes the quotient space M modulo N. 
Lemma 2.2. Let M and N be linear subspaces in the linear space X. The~7 

M M + N  
M c~N - N 

Proof. Let [x] denote a coset in the quotient space (M + N)/N. Define for 
each m G M 

• /m = [m]. 

Then J is a linear mapping from M into (M + N)/N. 
If [x] is an element in (M + N)/N, then x = m + z with m ~ M and z 6 N, 

and hence [x] = [m]. This shows that d is a linear mapping onto (M + N)/N. 
Combining this fact with the fact that the kernel of J is the subspace M n  N, 
we obtain the desired result. 

If X is any linear space, the dimension of X (denoted by dim X) is the 
maximal number of linearly independent elements in X. Hence, the value of 
d imX can be zero, any natural number or + oo. 

Obviously, two isomorphic linear space have the same dimension. This 
statement has a partial converse as follows. If the linear space X1 and X2 
have the same finite dimension, then X~ and X2 are isomorphic. 

Lemma 2.3. Let M1, M2 and N be linear subspaces in the linear space X. 
Suppose that M 1 C M y  Then 

(2 - 1) dim M1 < dim M2 
Mlc3 N = M2c~ N 

Proof. Let [x] denote a coset in the quotient space M2/(M 2 c3 PC). Then the 
mapping , /defined by 

Jm = [m] 

for each m in MI,  is a linear mapping from M~ into M2/(M2c~N ). The kernel of 
J is the subspace MI c~N. Hence M~/(MI c~N) is isomorphic with a subspace 
in M2/(M2c~N). But then formula (2 - 1) is true. 

Lemma 2.4. Let M~, M2 and N be linear subspaces in the linear space X. 
Suppose that M: C M2, and that 

dim M~ dim M2 = - - < 0 ( 3 .  
M l n N  M2c~N 

Then M~ + N = M2 + N. 
Proof. Let J be defined as in the proof  of the preceding lemma. Then 

dim {MI/(M 1 nN)} = dimJ M1, 
and hence 

dim {M2/(M2c~N)} = dimJ M 1 < oo. 

But then J is a mapping onto M2/(M2nN). 
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Take an element x in M2. Since J is a mapping onto M2/(M2c~N), there 
exists an element m in M l such that Jm = [m] = Ix]. But then x = m + z, with 
z in N. This shows that M 1 + N C M2 + N C MI + N, and hence M1 + N = M 2 + N. 

3. The subspaees N(Tk), D(T k) and R(T k) 
In this section T will be a linear operator with domain D(T) in the linear 

space X and with range R(T) in the same space. The null space of T is denoted 
by N(T). 

By induction we define the iterates T 2, T 3 . . . . .  For  n > 1, T" is the linear 
operator with domain 

D(T") = {x:x, Tx, ..., Tn - l x  are in D(T)} 

and such that for each x in D(T") 

T"x = T(T"-  1 x). 

Also we define TO= I is the identity operator from X into X. 
Let n and m be non-negative integers. Then x ¢ D ( T  "+m) if and only if 

T"x ~ D(T"), and in this case 

Tm(Tnx) = Tn+"x .  

This is easily proved by induction on m. 
This section is devoted to the study of the relationships between the sub- 

spaces N(Tk), D(T k) and R(T k) (k = 0, 1, 2 . . . .  ). First of all, we have the following 
well-known formulas : 

N(Tk)C N(Tk+I), D(Tk)DD(Tk+I), R(Tk)DR(T ~+~) for k=O,  1,2, . . . .  

Furthermore,  we present the following lemmas. 

Lemma 3.t.  For k = O, 1, 2, ... and i= O, 1, 2 . . . .  , we have 

N(T  i+k) ~_ N(Tk)nR(Ti) .  
N(T  ~) 

Proof. Define for each x in N(T  i+k) C D(T i) 

Jx  = Tix .  

Then J is a linear operator from N(T  i+*) into the linear space N(Th)nR(Ti). 
Let y be an element in N(Tk)c~R(TI). Then y =  Tix for some x ED(Ti), and 

Tix~N(Tk)CD(Tk).  This implies that x belongs to D(T i+k) and Ti+kx 
= Tk(T*x) = 0. Hence x ~ N(Ti+k), and Jx  = y. But then we have proved that J 
is a mapping onto N(Tk)c~R(Ti). 

Since the kernel of J is N(Ti), the last fact implies that the quotient space 
N(Tt+k)/N(T*) is isomorphic with N(Tk)nR(Ti). 

Lemma 3.2. For k = O, 1, 2, ... and i = O, 1, 2 . . . . .  we have 

R(T') D(T') 
R(Ti+k) - {R(T k) + N(Tt)} c~D(T ~) • 
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Proof. Let [y] denote  any coset in the quot ient  space R(Ti)/R(Ti+k). Define 
for each x in D(T ~) 

J x  = [Tix] .  

Obviously ,  J is a l inear ope ra to r  f rom D(T i) onto  R(T~)/R(TI+k). 
If J x = 0, then Ti x = Ti + k z for some z ~ D ( Ti + k), and hence x - Tk z ~ N ( Ti). 

This shows tha t  

N (J) C { R(  T k) + N ( Ti)} c~ D( Ti) . 

Conversely ,  if x e {R(Tk)+ N(Ti)}c~D(Ti),  then Tix  belongs t o  R(Ti+k), 
and hence J x  = 0. This shows 

N(J)  3 {R(T  k) + N(Ti)} n D(T') . 

But then N ( J ) =  { R ( T  k) + N(Ti)} c~U(T i) and  

R(T ' ) /R (T  '+k) ~_ D(T*)/N(J).  

This comple tes  the proof.  

L e m m a  3.3. For k = 0, 1, 2, ... and i=  0, l, 2 . . . . .  we have 

D(T  i) R ( T  i) 

D(Ti+k) = D(Tk)c~R(Ti) • 

Proof. Let [y] denote  any  coset in R(TI) /{D(Tk)nR(Ti)} .  Define for each x 
in D(T i) 

J x  = [Tix] . 

Then  it is easy to show tha t  J is a linear ope ra to r  f rom D(T ~) on to  
R(Ti)/{D(Tk)c~R(Ti)} with N (J)= D(T'+k). Hence  

D(Ti) "~ D(Ti) ~_ R(J) ~ R(T')  
D(T  i+k) = N(J)  D(Wk)c~R(rl) " 

L e m m a  3.4. For i = O, 1, 2 . . . . .  we have 

N(Ti+ 1) N(T)c~R(T ' )  
(3 - 1) { N ( T  i) + R(T)} c~ N ( T  '+ t) ~ N ( T ) n  R ( T  '+ ') " 

Proof. Let  [y] denote  any  coset  in the quot ient  space 

N ( T ) c ~ R ( T  ~) 

N(T)c~R(T,+ 1) • 

J x  = [Tix] . 

Then  J is a linear ope ra to r  f rom N ( T  i+ 1) into the space (3 - 2). Hence  in order  
to p rove  (3 - 1), it will suffice to show tha t  J is a m a p p i n g  on to  (3 - 2), and  tha t  

N (J) = { N ( T  i) + R(T)} n N  (T  i+ 1). 

I f  [y] is in (3 - 2), then y = Tix  ~ N ( T )  for some  x in D(Tt). But then x belongs 
to N ( T  t+1) and J x  = [Tix] = [y]. This  shows that  J is a m a p p i n g  onto  (3-  2). 
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Take x in N(J),  then T i x e N ( T ) n R ( T i + l ) ,  and T i x =  Ti+lz  for some z 
in D(Ti+I). But then x -  Tz  is in N(Ti), and so x e N ( T t ) + R ( T ) .  This shows 

(3- 3) N (J) C {N(T  i) + R(T)} n N  (T  i+ 1). 

Conversely, take x in {N(T  i) + R(T)} c~ N ( T  i+ 1). Then x = n + Tz  for some 
N i n e N ( T  i) and some z e D ( T ) .  Since T z = x - - n e  (T)CD(Ti ) ,  we have 

z e D(T  i÷ 1). But then Tix = Tin + T i+ lz = T i+ lz, and hence J x  = 0. Combining 
this with (3- 3), we obtain N ( J ) =  {N(TI)+ R(T)}c~N(Ti+~). This completes 
the proof. 

Lemma 3.5. For i = O, 1, 2 . . . . .  we have 

dim N(T)  = dim N(Ti)  
N(T)c~R(T  i) R ( T ) n N ( T  i) " 

ProoJ~ First of all, we observe that it follows from Lemma 2.2 and from the 
preceding lemma that 

N(TI+~)+R(T) . .~  N ( T ) ~ R ( T  i) 

N ( T  i)+ R(T)  = N(T)c~R(T  '+ ~) 

for i =  0, 1, 2 . . . . .  But then 

N(T)  i- ~ N(T)c~R(T  k) 
dim N(T)c~R(Ti  ) - ~, dim k=0 N ( T ) n R ( T k + l )  

= i-1~. dim N ( T k + I ) + R ( T )  = d i m  N ( T i ) + R ( T )  
k = 0 N ( T  k) + R(T)  R(T)  

and so, once again by Lemma 2.2, 

dim N(T)  -- dim N(TI) 
N ( T ) n R ( T  i) R ( T ) n N ( T  i) • 

If for some non-negative integer i 

dimN(T) /{N(T)c~R(Ti)}  < 0o, 

then the preceding lemma implies that 

N(T)  N(T ' )  
(3- 4) N(T)c~R(Ti  ) _ R(T)c~N(TI  ) 

Using ZORN'S lemma, it is possible to prove that formula (3 - 4) is always true. 

4. Ascent, descent, nullity and defect 
This section is devoted to the study of the relationships between the numbers 

n(T), d(T), ~(T) and 6(T). For the definition of these numbers, we refer to 
Taylor's paper ([2], Section 1). 

Some statements which appear in this section are already proved by TAYLOR. 
Since our methods differ considerably with those of [2], we present all theorems 
with full proof. 

Theorem 4.t.  Suppose that p = ct( T) and q = c~( T) are finite. Then 

(4- 1) ~t(T) =< 6(T), 
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and we have equality in (4 - 1 ) / f  and only if T has the additional property 

(4 - 2) O(T v) C R(T) + O(Ta). 

Proof. Suppose that  p = a(T) > g(T) = q. Then R(T v) = R(T~), and hence we 
have by L e m m a  3.1 

0 = dim {N(T p+ 1)/N(TV)} = dim {N(T) c~R(TV)} 
= dim {N(T)c~R(Tq)} = dim {N(T q+ 1)/N(Tq)}. 

But this implies p = a(T) < q, contradic t ing the assumpt ion  p > q. Hence, we 
must  have p < q. 

If  p = q, then trivially D(T  p) C R(T) + D(Tq). 
Conversely, suppose that  T has the addit ional  proper ty  (4- 2). Since 

q = 6(T) < oo, L e m m a  3.2 implies tha t  

O(T q) C R(T) + N(T~). 

Combin ing  this fact with (4-  2), we obta in  

D(T p) C R(T) + N(T~). 

Since p < q, the null space N(T p) = N(T~), and so 

D(T p) C R(T) + N(W"). 

But then, by L e m m a  3.2, 

R(T p) D(T p) 
R(TV+ 1) = {R(T) + N(TV)} c~O(T v) = (0), 

and hence R(TV)=R(TV+I). This implies p > q. Combin ing  this fact with 
p < q, we obtain  ~(T) = p = q = 6(T). 

Note  that  in the case D(T) = X, the linear opera tor  T always satisfies the 
condi t ion  (4 - 2). 

Theorem 4.2. Suppose that either n( T) or d( T) is finite, and that p = a( T) < oo. 
Then 

(4 - 3) n(T) < d(T), 

and we have equality in (4 - 3) if and only if T has the additional property 

(4 - 4) X = R(T) + N(rv) .  

Proof. Since p = ct(T) < ~ ,  it follows from L e m m a  3.1 that  

N ( T)c~ R ( T v) = (0). 

But then L e m m a  3.5 implies 

N(T) N(T')  
n(T) = dim = dim 

N ( T ) n R ( T  p) R(T)c~N(TP) " 

and  so, by L e m m a  2.3, 

N(T p) X 
(4 -5 )  n ( T ) = d i m  R(T)c~N(TV ) __<dim R(T)c~X = d ( T ) .  

This shows that n(T)<= d(T). 
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Now suppose that we have equality in (4 - 3). Then we have also equality in 
(4- 5), and hence 

dim N ( TP) dim X ---- < ~ o 0 .  
R(T)c~N(T  p) R ( T ) n X  

But then Lemma 2.4 implies that X = R(T)+ N(TV). 
Conversely, suppose that T has the additional property (4- 4). Then by 

Lemmy 2.2, 
X R(T)  + N ( T  v ) N ( T  v) 

R(T)  = R(T)  - R(T)c~N(TV) " 

But then we have equality in (4 - 5), and hence n(T) = d(T). 
Theorem 4.3. Suppose that n(T) = d(T) < oo, and that p = a(T) < ~ .  Then 

(i) 6 ( T ) = a ( T ) ,  
(ii) n(T ~) = d(T i) < oo for i = 0, 1, 2 . . . .  , 

(iii) X =  R(TV)~)N(TV).  

Proof. (i) From the preceding theorem it follows that 

X = R(T)  + N(TV).  

This implies, by Lemma 3.2, that 

R ( T  p) D(T  p) 
R(Te+ 1) = {R(T) + N(TV)} n D ( T  p) = (0), 

and hence 6(T) ~ a(T) < 0o. Combining this fact with the result in Theorem 4.1, 
we obtain 6(T)= a(T). 

(ii) Let k be a non-negative integer. From 

X 2) R ( T  k) 2) R ( T  k+ 1) 

it follows that 

X . X R(T*) 
d(Tk+ 1) = dim R(Tk + 1) = d t m  ~ + dim R(Tk + 1) 

= d ( r  k) + dim {R(Tk) /R(T k+ 1)}. 

Since d(T) < o% we have d(T k) <= d(T k+ 1) < 0o (el. [2], Lemma 3.3 (b)), and so 

d(Wk+ 1) _ d(T k) = dim {R(Tk) /R(T *+ 1)}. 

Then we deduce from Lemma 3.2 that 

D(T  k) 
d(Tk+ 1) _ d (T  k) = dim 

{R(T)  + N(Tk)} n a ( T  k) " 

Observe that R(T)  + N ( T  k) + D(T k) = R(T)  + D(Tk), and apply Lemma 2.2, then 

d(Tk+ 1) _ d (T  k) = dim R(T)  + D ( T  k) 
R(T)  + N(Tk)  " 

Since n(T) = d(T) < 0% and since p = a(T) < o% the preceding theorem implies 
that X = N ( T  p) + R(T).  Observe that N ( T O  C D(Tk). Then 

X = R(T)  + N ( T  v) C R(T)  + D(T  ~) C X ,  
8 Math. Ann. 172 
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and hence 

(4 - 6) 
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d(Tk+ i) _ d(T  k) = d i m X / { R ( T )  + N(Tk)}.  

F r o m  X 3 N ( T  k) + R(T)  3 R(T),  it follows that 

X N ( T  k) + R(T)  
> d(T)  = dim N(Tk  ) + R(T)  + dim R(T)  

Combining this with formula (4- 6), we obtain 

(4 - 7) d(T  k+ ') - d (T  k) = d(T) - dim {N(T  k) + R(T)} /R(T) .  

Observe that  the Lemmas  2.2 and 3.5 imply that  

dim {N(T*) + R(T)} /R(T)  

= dim N(Tk) = dim N ( T )  
R(T)c~N(T  k) N(T)&R(T*)  " 

Since d i m N ( T )  = n(T) < oo, we have 

dim N(T)  N(T)c~R(Tk ) = n(r )  - dim {N(T) c~R(Tk)} . 

Combining  these facts with formula (4 - 7) and using the hypothese n(T) = d(T), 
we obtain 

d(Tk+ 1) _ d ( r  k) = dim {N(T)c~R(Tk)} , 

and hence, by L e m m a  3.1 

d(rk+ 1) _ d ( r  k) = dim {N(T  k+ 1)/N(Tk)} . 

Since N ( T  k) C N ( T  k+ i), and since d i m N ( T  k+ i) = n(T~+ 1) < ~ ,  it follows that  

(4 - 8) d(Tk+ 1) _ d(T k) = n(rk+ 1) _ n(rk) .  

Formu la  (4 - 8) holds  for each non-negat ive integer k. Hence d(T °) = n(T  °) = 0 
implies 

i --1 i - 1  

d(T  i) = ~ {d(T*+ 1) _ d(Tk)} = ~ {n(Tk+ 1) _ n(T*)} = n(Ti) .  
k=O k=O 

This completes  the p roo f  of  (ii). 

(iii) Since p = ~(T) < ~ ,  L e m m a  3.1 implies 

(4 - 9) N ( T p) c~ R( T p) = (0). 

But then 
N ( T  v) X 

n(T v) = dim g(Tv)c~N(TV) < dim R(T-----~ = d(TV)" 

By (ii) we have n(T p) = cl(T v) < oo. Hence  

N ( T  p) X 
dim R(TV)c~N(TV) = d i m  R - - ~  < oo,  

and so, by Lemma  2.4, we have X = R ( T n ) + N ( T V ) .  Combining  this with 
(4-  9), we obta in  

X = R ( T  v) ~ N(TV).  
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In the particular case D ( T ) =  X and p =  ~(T)=  5(T )<  oo, it is possible to 
prove that 

X = R ( T  p) ~ N(TP),  

without using the hypothesis n ( T ) =  d (T )<  oo (cf. [1], § 1, Hilfssatz 8). But in 
general Theorem 4.3 (iii) does not hold, if we omit the assumption that 
n(T) = d(T) < oo, as is seen from the following example. 

Let D be a linear manifold in the infinite dimensional linear space X such 
that dim X/D = 1. Suppose that T is the restriction of the null operator from X 
into X to D. Then D = N ( T )  and R(T)  = (0), and hence 

n(T) = d(T) = + ~ ,  ct(T) = 6(T) = 1. 

But X 4= D =  N ( T ) O  R(T) .  
It is interesting to note that in the case n ( T ) = d ( T ) <  oo and p =~(T)  

= 6(T) < oo, it is not necessary that D(T  p) = D(T p+ 1). In order to show this, we 
present the following theorem. 

Theorem 4.4. Suppose that n ( T ) = d ( T ) <  oo, and that a ( T ) = 6 ( T ) <  0o. 
Then, for i= O, 1, 2 . . . . .  

D(T') X 
D(T  i+1) - D(T)"  

Proof. Let i be some non-negative integer. Since p = ~ ( T ) <  0o, we have 
R ( T  p) C R(Ti). By the preceding theorem, p = a(T) = ~(T) < ~ implies that 
X = R(TP)~N(TP) .  Combining these facts with N ( T  p) C D(T), we obtain 

X -- R ( T  e) + N ( T  p) C R ( T  i) + N ( T  p) C R ( T  ~) + D(T) C X ,  

and hence X = R ( T  i) + D(T). Then, by Lemma 2.2, 

X D(T) + R ( T  i) R ( T  i) 

D(T) - D(T)  D(T)c~R(T i) " 

But then, as a consequence of Lemma 3.3, 

X D(T') 
D(T) = D(T  i+1) 

We proceed with an investigation of the case 6(T) < oo. 

Theorem 4.5, Suppose that either n( T) or d( T) is finite, and that q = fi( T) < 0o. 
Then 

(4 - 10) d(T) < n(T) + d i m X / { D ( T  q) + R(T)},  

and we have equality in (4 - 10) if T has the additional property 

(4- 11) N ( T ) n R ( T  ~) = (0). 

In the particular case that also d(T) < oo, we have equality in (4 - 10)/f  and only 
if T has the additional property (4 - 11). 
8* 
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Proof. Since 
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X D D(T  q) + R(T)  D N ( T  q) + R(T)  D R ( T ) ,  

we have 

X D(T q) + R(T)  
d(T) = dim + dim - -  

D(T q) + R(T)  N ( T  q) + R(T)  

By Lemma 3.2, q = b(T) < oo implies that 

and so 

D(T ~) C R(T)  + N(Tq),  

+ dim 
N ( T  a) + R(T)  

R(T) 

dim D(Ta) + R(T)  = O. 
N ( T  q) + R(T)  

Furthermore,  it follows from Lemmas  2.2 and 3.5 that 

dim R(T)  + N ( T  q) = dim N(Tq) 
R(T)  R(T)  c~N(T q) 

= dimN(T)/{R(Wa)c~N(T)} .  

Combining these facts, we obtain 

X N ( T )  
(4 - 12) d(T) = dim - -  - -  + dim 

D(T  q) + R(T)  R ( T ~ ) n N ( T )  ' 

and hence 

d(T) ~ n(T) + d i m X / { D ( T  ~) + R(T)}.  

If, in addition, N(T)c~R(T  q) = (0), then 

n(T) = dimN(T) /{R(Tq)c~N(T)}  . 

But then formula (4- 12) implies that we have equality in (4- 10). 
Conversely, suppose that 

oo > d(W) = n(T) + d i m X / { D ( T  ~) + R(T)}.  

Then, by formula (4- 12), 

oo > n(T) = d imN(T) / {R(Wa)nN(T)}  , 

and hence R(T~)c~N(T) = (0). 

Theorem 4.6. Suppose that n(T) = d(T) < oo, and that q = b(T) < oo. Then 

a(T) = b(T) 

if and only if X = D(T  q) + R(T).  
Proof. In the case X = D(T  ~) + R(T), our hypotheses imply that we have 

equality in formula (4- 10), and hence, since d ( T ) <  ~ ,  we have N(T)c~R(T  q) 
= (0). But then, as a consequence of Lemma  3.1, we have p = a (T) < q = 6 (T) < oo. 
Since 

D(T v) C X = D(T  a) + R ( T ) ,  

Theorem 4.1 implies that a(T )=  b(T). 
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Conversely, suppose that  n(T) = d(T) < ~ and q = ~(T) = 6(T) < or. Then, 
by Theorem 4.3 (iii), we have X=N(Tq)~R(Tq) .  Since N(Tq)CD(T~ and 
R(T ~) C R(T), this implies X = D(T q) + R(T). 
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