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Semi-Ideals in Posets 

P. V. VENKATANARASIMHAN 

t. Introduction 

In this paper we develop a theory of semi-ideals for posets (partially ordered 
sets). In Section 2 we summarize some results used in subsequent sections; 
for the proofs of these results, the reader is referred to [12]. Some concepts 
relating to ideals like cut-complement, comprincipal envelope and normality, 
as well as results concerning them carry over almost verbatim to semi-ideals. 
These are given in Section 3. The concepts of comprincipal ideal, cut-comple- 
ment of an ideal and comprincipal envelope of an ideal were introduced by 
Vaidyanathaswamy [10]. The concept of comprincipal ideal is identical with 
that of closed ideal of Birkhoff [3, p. 59]. Section 4 is devoted to a study of 
normal and dense semi-ideals. In this section we obtain generalisations of 
some theorems of Balachandran [1] and a theorem of Pankajam [6]. The last 
two sections deal with prime semi-ideals. Guided by the definition of Stone's 
topology for prime ideals (in a distributive lattice) we introduce a topology for 
the prime semi-ideals in a poset, and obtain extensions (vide Section 6) of 
some of the results of Stone [8] and Balachandran [2]. While the above 
topology for semi-ideals shares some of the features of Stone's topology 
(cf. Theorems 28 and 32) there are also one or two points of departure. Thus the 
topology for the prime semi-ideals is connected and non-Hausdorff while the 
Stone's topology of a Boolean algebra is totally disconnected and Hausdorff. 
space. 

2. Prdiminafies 

We shall denote the ordering relation in a poset by <.  The greatest and 
least elements of a poset, whenever they exist, will be denoted by 1 and 0 
respectively. A non-null subset A of a poset P is called a semi-ideal if a ~ A, 
b < a(b e P)=~ b ~ A. A semi-ideal A of P is called an ideal if the sum of any 
finite number of elements of A, whenever it exists, belongs to A. The principal 
ideal generated by a and the principal dual ideal generated by a are denoted 
by (a] and [a) respectively. An element a of a poset P with 0 is said to have a 
pseudo-complement a*, if in P, there exists an element a* such that (a] n(a*] 
= (0] and for b ~ P, (a] n (b] = (0] =~ (b] _~ (a*]. 

Theorem A. The set S~ of all semi-ideals of a poser P with 0, forms a complete 
distributive lattice closed for pseudo-complements under set-inclusion as ordering 
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relation. The lattice sum and lattice product in S, coincide with the set union and 
set intersection. Similar result holds for the set S~ of dual semi-ideals of a 
poset with 1. 

The pseudo-complement of an element A of Su will be denoted by A*. 

Theorem B. The set Iu of all ideals of a poser P with 0 forms a complete 
lattice under set-inclusion as ordering relation; the lattice product in I~ is the 
same as that in S,. Similar result holds Jbr the set I~ of  all dual ideals of a poset 
with 1. 

We shall denote the set-inclusion, set-union and set-intersection by _c, 
and c~ respectively. The lattice sum in I ,  and I~ will be denoted by V- 

Lemma A. tn a poset P, a lattice product [ I  a, (lattice-sum E ai ) exists if 
i ~ I  i e I  

and only if c~(aJ (c~ [ai)} is a principal ideal (principal dual ideal). Also whenever 
Hai(~.al) exists c~(ai_] = (Hail (c~ [ai)= [~ai)), 

Lemma B. In a poser P with O, the pseudo-complement a* of an element a 
exists if and only if (a]* is a principal ideal. Further whenever a* exists (a]* 
= (a*]. 

Theorem C. In a poset P closed for pseudo-complements, the following 
results hold: 

(i) a <-_ a** for every a e P. 

(ii) a<b=>a*>b* for a, b e P .  

(iii) a*** = a* for every a e P. 

(iv) P has the greated element 1 and 1 = 0", 

Theorem D. In a poset P closed for pseudo-complements the following 
results hold: 

(i) I f  a finite product a l .a  2 . . . . .  a, exists in P, then so does the product 
a** "** .... a**. further(a D a 2 a,)** = a** a** ** and(a 1 .a 2. . .a,)* 1 . , . 2  . . . . . . . . . . . .  a n  • • 

- - ~ 1  " u 2  . . . . .  an  ) " 

(ii) I f  a sum ~, a~ exists in P, then the product I]a* exists in V and(~ai)* = Ha*. 
i e l  i ~ l  

3. Comprincipal Ideal and Cut-complement 

A semi-ideal of a poset P is called a comprincipal ideal if it is a product of 
principal ideals. The comprincipal envelope of a semi-ideal is the product of 
all the principal ideals containing it, Similarly we define a comprincipal dual 
ideal and the comprincipal envelope of a dual semi-ideal. By the cut-comple- 
ment of a semi-ideal (dual semi-ideal) A of P, we mean the set of all elements x 
such that x > a(x <= a) for all a ~ A and it is denoted by Ac. The cut-complement 
of A c is denoted by Ace. 

The following two results (Theorem 1 and 2) are clear. 
23 Math. Ann. t85 
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Theorem 1. Any comprincipat ideal of a poser P is the product of all the 
principal ideals containing it. Similar result holds for dual ideals. 

Theorem 2. The comprincipal envelope of a semi-ideal (dual semi-ideal) 
A of a poser P is the smallest comprincipal ideal (comprincipal dual ideal) 
containin 9 A. 

Remark. For any semi-ideal (dual semi-ideal) A, A~ is a comprincipal dual 
ideal (comprincipal ideal). 

Theorem 3. The comprincipal envelope of a semi-ideal or a dual semi-ideal 
A of a poser P is Ace. 

Proof. Let A be a semi-ideal of P. Then A,c = N (x]. Now the elements 
x~Ac 

x E A c are precisely those elements of P which are. > a for ever)" a ~ A. It follows 
that Ace is the product of all the principal ideals containing A. Hence the first 
part. The second part is proved on similar lines. 

Theorem 4. A semi-ideal or a dual semi-ideal A of a poser is comprincipal if 
and only if A = Ace. 

Theorem 4 follows from Theorem 3. 

4. Normal and Dense Semi-ideals 

A semi-ideal (dual semi-ideal) ofa poset P with 0(1) is called normal if it is a 
normal element of the lattice Su(S~) of all semi-ideals (dual semi-ideals) of P. 
Similarly we define a dense semi-ideal (dense dual semi-ideal) in a poset with 
0(1). If the lattice of all ideals (dual ideals) 1~(I~) of a poset P with 0(1) is closed 
for pseudo-complements, an ideal (a dual ideal) of P is called normal if it is a 
normal element of 1~(I~). An ideal (a dual ideal) of a poset P with 0(1) is called 
dense if it is a dense element of I~(I~). We shall denote the dual ideal consisting 
of the dense elements of a poset by D. 

Hereafter, throughout this section, unless otherwise stated, P will denote a 
poset closed for pseudo-complements. 

Theorem 5. Every normal semi-ideal of P is a comprincipal ideal. 

Proof. Any normal semi-ideal of P is of the form A* for some A E S~. Since 
A =  U (a], by Theorem D, A*=  (] (a]*= ~ (a*] by L e u m a  B, thus 

a ~ h  a~A a~A 

completing the proof. 

Remark. If A, A* E I x then clearly A* = A°(A ® denotes the pseudo-com- 
plement of A in I~). 

Theorem 6. I x is closed for pseudo-complements. 

Proof. Let A ~ I u. Then clearly A ~ Su and so A* exists. By Theorem 5, 
A* E I~. Hence the result follows by the above remark. 

Corollary 1. Any normal semi-ideal A of P is a normal ideal of P. 
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Proof. Clearly A = B* for some B e Su. Hence by Theorem C, A = B***. 
Also, by Theorem 5, B**e 1,. Now the result follows by the remark under 
Theorem 5. 

Corollary 2. Every normal ideal A of a complete lattice L closed for pseudo- 
complements is principal. 

Proof. From Theorem 5 it follows that A is of the form N (a*]. Since L is a 
i e l  

complete lattice, by Lemma A, n(a*] = (Ha*]. Hence the result. 

Theorem 7. The pseudo-complement of a semi-ideal A of P is identical with 
that of its comprincipal envelope. 

Proof. Since A** is comprincipat (Theorem 5) and Ace is the smallest 
comprincipal ideal containing A (Theorem 2), we have A _~Acc~ A**. By 
Theorem C, it follows that A* 3__ (A¢~)* ____ A*** = A*. Hence A* = (A J * .  

Theorem 8. The dense semi-ideals of P are precisely those whose cut- 
complement is contained in D. 

Proof. Let A be a semi-ideal of P with A* = (0]. Then if x e A¢, (x] =3 A and 
so by Theorem C and Lemma B, we have (x*] ~ A* = (0]. Hence x e D and so 
AcC=D. 

Conversely, suppose A is a semi-ideal such that A~ =CD. If x ~ A*, by 
Theorem C and Lemma B, we have (x*] =3 A** =3 A. It follows that x* e A~ = D. 
Hence x < x** = 0 and so A* = (0]. 

Theorem 9. I f  in a poser P (not necessarily closed for pseudo-complements) 
with 0, 1, D = [1), then any dense semi-ideal A has' P for its comprincipal envelope. 

Proof. If (a] is any principal ideal containing A, (a]* =A*=(0] .  Hence 
a ¢ D. As D = [1), it follows that (1] is the only principal ideal containing A, 
whence the result follows. 

Theorem 10. In a complete lattice L closed Jot pseudo-complements the 
dense semi-ideals are precisely those whose comprincipal envelope is a principal 
ideal having non-void intersection with D. 

Proof. Since L is a complete lattice, if A is any semi-ideal of L, A~c is 
principal, say Ace = (t]. If A*=(0], by Theorem 7, (t]* = (0]. Hence t e D. Thus 
t e A¢~nD, proving thereby A¢¢nD is non-null. Converse is got by retracing 
the steps. 

Theorem 11. I f  every element of P is normal the set of normal ideals 
coincides with the set of comprincipal ideals. 

Proof. In view of Theorem 5, it suffices to prove that every comprincipal 
ideal ~ (a,] of P is normal. Since every element of P is normal, ~ (all = ~ (a**] 

i ~ l  i~1 i~I  

= ( V  (a*])" by Theorem D (as I ,  is closed for pseudo-complements by 
\ i ~ l  

Theorem 6). Hence the result. 
23* 
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Remark. Theorems 7, 8, 9, and 10 generalise the corresponding results of 
Balachandran [1] about ideals in distributive lattices. Theorem 11 is a generalisa- 
tion of the following result of Pankajam [6]: In a Boolean algebra the set of 
comprincipal ideals is identical with the set of normal ideals. 

5. Prime Semi-ideals in Posets 

A semi-ideal (dual semi-ideal) A of a poset P, (A ~ P) is called prime if 
(a] n (b] __c A ::> (a] _c A or (b] __c A([a) c~ [b) ___c A ~ [a) _c A or [b) __c A). An ideal 
(a dual ideal) of a poset is called prime if it is prime as a semi-ideal (dual semi- 
ideal). It is clear that in a lattice our definitions of prime ideal and prime dual 
ideal coincide with the usual definitions. 

A prime semi-ideal (prime ideal) A ofa  poset P is called minimal prime ifA 
does not contain any other prime semi-ideal (prime ideal). A semi-ideal (ideal) 
A of P is called completely meet-irreducible ifA is not the product of any family 
of semi-ideals (ideals) which does not contain A as a member. By the corollary 
under Theorem 12, it follows that a completely meet-irreducible semi-ideal 
of a poset is prime. 

Theorem 12 (cf. [7, Theorem 16] and [4, Corollary 1 under Theorem 8]). 
Given a semi-ideal A of a poset P and b ¢ A(b ~ P), among all the semi-ideals 
containing A and not containing b, there exists a maximal one, and it is prime. 

Proof. Since the set-union of any family of semi-ideals is a semi-ideal and 
is the 1.u.b of the family, first part follows by Zom's Lemma. 

Now let B be a semi-ideal which is maximal among all the semi-ideals 
containing A and not containing b. Suppose B is not prime. Then there exist 
x, y s P such that (x] n (y] _c B and (x], (y] ~ B. The maximal property of B 
implies that b ~ B w (x], B u (y]. Consequently b E (x], (y] so that b ~ (x] n (y] 
which is a contradiction. Hence B is prime. 

Corollary. Any semi-ideal of a poser is the product of all the prime semi- 
ideals containing it. 

Theorem 13. If  a prime semi-ideal of a poset contains the product of a 
finite number of semi-ideals, then it contains at least one of them. 

The proof of the above theorem is similar to that of the corresponding 
known result concerning prime ideals in a lattice (vide [9, Theorem 8]). 

Corollary. I f  the product of a finite number of semi-ideals of a poser P 
is (0], then any prime semi-ideal of P contains at least one of them. 

Theorem 14. A prime semi-ideal A of a poser with 0 is either normal or 
dense. 

Proof. A*nA** = (0] and so by the corollary under Theorem 13, A ~ A* 
or A =3 A**. Hence the result. 
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Theorem 15. The set complement cA of a prime semi-ideal A of a poset P 
is a dual ideal. 

Proof. Clearly cA is a dual semi-ideal. Further if x~, x2 . . . . .  x, ~ cA and 
xl. x2 . . . . .  x, exists, by Lemma A, (xl. x2 . . . . .  x,] = (xl] n (x2] n . . .  n (x,] ~[ A, 
since (xi] ~ A for i = 1, 2, ..., n and A is prime. Hence xl. x2 . . . . .  x, ~ cA and so 
cA is a dual ideal. 

Theorem 16 (cf. [2, 3.2.61). The set complement cM of a maximal principal 
dual ideal M = [a) of a poser with 0 is a normal prime semi-ideal. 

Proof. Clearly cM is a semi-ideal. Now if (x], (y] ~ cM, then x, y >__ a and 
so a e (x] c~ (y]. Hence (x] n (y] $ cM, proving that cM is prime. To prove cM 
is normal, in view of Theorem 14, it suffices to show that (cM)*:# (0]. Now if 
becM,  then b~ [a) and so, as [a) is maximal a - b = 0 .  Hence ae(cM)*. Conse- 
quently (cM)* ~ (0], completing the proof. 

Theorem 17 (cf. [2, Corollary under 3.2.2]). The pseudo-complement of a 
semi-ideal A of a poset P with 0 is the product of all the prime semi-ideals not 
containing A. 

Proof. Let B = product of all the prime semi-ideals not containing A. 
From the corollary under Theorem 13, it follows that B~=A*. If possible 
suppose B + A*. Then there exists x s P such that x ~ B, x ~ A*. So, for some 
y ~ A, (x] ~(y]  ~ (0]. Hence by Theorem 12, there exists a prime semi-ideal C 
such that ( x ] n ( y ] $  C. Clearly (x], (y] $ C. Consequently A, B$  C which is a 
contradiction to the choice of B. Hence B = A*. 

Theorem 18. The set-union of any family of prime semi-ideals of a poset P 
is a prime semi-ideal. The set-intersection of any lower-directed family of prime 
semi-ideals is a prime semi-ideaL 

Proof. The first part is obvious. 

Now let F = {Ail i ~ I} be a lower-directed family of prime semi-ideals of P. 
Let B = N Ai. Suppose B is not prime. Then there exist x, y ~ P such that 

i~ l  

(x ]n (y]  __c B and (x], (y] ~ B. Hence (x] $ Ai, (y] ~ Aj for some i, j e I .  As F is 
lower-directed there exists a k e I such that A k z_ Ai, A]. Clearly (x], (y] ~ A k. But 
(x] n (y] _C B = A k. This contradicts the fact that A k is prime. Hence B is prime. 

6. A Topology for the Prime Semi-ideals 

Most of the topological concepts used in this section are found in [5] and 
[11]. However, we recall them for convenience. 

Let T be a topological space. T is called, as usual, To if distinct points of T 
have distinct closures. A point p of T is called a T~ point if the closure of p 
contains no point other than p; a point p of T is called an anti-T~ point if the 
closure of no point other than p contains p. T is called T 1 if every point of T 
is T 1. T is called T2 if any two distinct points of T have disjoint neighbourhoods. 
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A closed (open) sub-set of T is called a closed domain (open domain) if it 
is identical with the closure of its interior (interior of its closure). A closed 
(open) sub-set of T is called semi-regular if it is an intersection (union) of closed 
domains (open domains). A closed (open) sub-set of T is called regular if it 
is an intersection (union) of closed domains (open domains) whose interiors 
(closures) contain (are contained in) it. T is called semi-regular (regular) if 
every open sub-set of T is semi-regular (regular). The regularity of T may 
alternatively be expressed as follows: Given a non-void closed sub-set C of 
T and a point p ~ C, we can find closed sub-sets C 1, C 2, of T containing C, p 
respectively such that C l c ~ ( p ) = O = C n C  2 and C1u C2 =  T (0 denotes the 
empty set). A T 1 regular space is called, as usual, a T3-space. A sub-set A of T 
is called compact, if from every open covering of A we can extract a finite 
covering. 

By the Hausdorff-residue of a sub-set A of T we mean R(A) where R(A) 
= i f (A) ,  f (A )  = closure of A - A. 

Throughout this section, unless otherwise stated, P denotes a poset 
with 0 and ~ the set of all prime semi-ideals of P. The set of all prime semi- 
ideals containing a semi-ideal A is denoted by F(A) and the set-complement of 
F(A) in ~ by F'(A). 

Theorem 19 (cf. [2, 2.3.1 to 2.3.4]). 

(i) F ( i ~ A i ) =  ~Ot F(A,), 

(ii) F(A 1 c~A 2 n . . .  r~A,) = F(A1)u F(A2)u. . .  u F(A,,), 

(iii) F(P) = O, 

(iv) F((0]) = ~ .  

Proof. (i) It suffices to observe that a semi-ideal B ~ U A~c~B~= A i for 
every i e I. ~t 

(ii) It is clear from the definition of F that A_C_B=~F(A)3=F(B). Hence 
F(A 1 ~ A 2 n . - .  hA , )  ~= F(Ai) for i = 1, 2, . . . ,  n and so F(A 1 n A  2 ~ . . .  c~An)~_ F(A1) 
u F(A2) u . . .  u F(A,). Also from Theorem 13 it follows that F(A ~ n A 2 n . . .  hA , )  
~_ F(AI)u  F(A2)u. . .  w F(A~). Hence (ii). 

(iii) and (iv) are obvious. 

Theorem 19 shows that we can introduce a (unique) topology T on 
whose closed sub-sets are precisely the sets F(A). We shall denote ~ with 
topology T again by ~'. 

Since F'(A) = ~ - F(A), the following result follows from Theorem 19. 

Theorem 20. (i) F' ( ,~,U A, /) = ,~,U F'(A,), 

(ii) F'(A 1 c~A2n.. ,  nA~) = F'(A1)nF'(A2)c~... nF'(A~) , 

(iii) F'(P) = ~ ' ,  

(iv) e ' ( ( 0 ] )  = 
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Corollary. The lattice of all open (closed) sub-sets of ~ is isomorphic 
(dually isomorphic) to Sg and the mapping associates unrestricted lattice-sums 
with the corresponding set-unions (set-intersections). 

Proof. Since by the corollary under Theorem 12, A C=B~F(A)~=F(B), 
the result follows from Theorems 19 and 20. 

We shall denote the closure, interior and set-complernent of a subset X of 
by cl. X, int. X and cX respectively. 

Theorem 21. I f  X is a sub-set of ~,  then cl. X---F(Xo) where X o is the 
product of all the members of X. 

Proof. Clearly F(Xo) is a closed sub-set o f ~  containing X. Also if F(Yo) is 
a closed sub-set of ~ containing X, each member of X contains I:o and so 
Xo = Yo- Consequently F(Xo) c F(Yo), whence the result follows. 

Theorem 22, (i) cl. F'(A) = F(A*). 
(ii) int. F(A) =F'(A*).  

Proof. (i) follows from Theorems 21 and 17. 

(ii) int. F(A) = c cl. F'(A) = F'(A*) by (i). 

Theorem 23. ~ is T o. 

Proof. From Theorem 21, it follows that the closure of a single point is the 
set of all prime semi-ideals containing it. Clearly of any two distinct (prime) 
semi-ideals at /east  one does not contain the other. Hence distinct points of 
have distinct closures. Thus ~ is To. 

Theorem 24. When P is a poser with O, 1, ~ is T 1 if and only if P is the chain 
of two elements. 

Proof. Clearly the only T 1 point of ~ is the semi-ideal consisting of all the 
elements of P other then 1. Hence the result. 

Theorem 25. When P is a poset with 0, 1, ~ is compact and non-regular. 

Proof. Let ~ = ~ F'(Ai). Then by (i) of Theorem 20, ~ = F ' ( U  Ai]. Since 
iE l  \ i~ l  / 

= F'(P),itfollowsthatP = U Ai .AsP = (1], 1 e Aj for somej ~ I. Consequently 
i ~ l  

P = Aj so that ~ = F'(Aj). Hence ~ is compact. 
Now let C = F(A) be a non-empty closed sub-set of ~ and p ~ ~ -  C. 

Suppose ~ is regular. Then there exist closed sub-sets C 1 = F(AI), C 2 = F(A2) 
containing C and p respectively such that C ~ C 2 = 0 = C 1 n (p) and C 1 w C 2 = ~i~. 
Since Cc~C2=O it follows that A t _ ; A  2 =P. Consequently as i ~P,  A = P  or 
A 2 = P .  So C=I~1 or C 2 - -0  which is a contradiction to our hypothesis.Hence 
the result. 

Theorem 26. A closed sub-set F(A) of P is a closed domain if and only if A 
is a normal semi-ideal. 

Proof. By Theorem 22, cl. int. F(A)= cl. F'(A*)=F(A**). It follows that 
F(A) is a closed domain if and only ifA = A**, thus proving the result. 
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Corollary. An open sub-set F'(A) of ~ is an open domain if and only if 
A is normal. 

Since the closed domains and the open domains of ~ are mutually com- 
plementary, the above result follows from Theorem 26. 

Theorem 27. An open sub-set F'(A) of  g~ is semi-regular if and only if A 
is a sum of  normal semi-ideals. 

Proof. By the corollary under Theorem 26, F'(A) is semi-regular if and 
only if F'(A) = U F'(Ni) where the Ni are normal semi-ideals. By (1) of Theo- 

i ~ l  

rem 20, U F'(Ni)= F ' (  U N,). Hence by the corollary under Theorem 12, it 
i ~ l  ~ i ~ l  / 

follows that F'(A) is semi-regular if and only ifA = U N~, thus proving the result. 

Corollary. A closed sub-set F(A) of 9 ~ is semi-regular if and only if A is a 
sum of normal semi-ideals of P. 

The following result is clear from Theorem 27. 

Theorem 28. (cf. [2, 5.2.2]). ~ is semi-regular if and only if ever), semi- 
ideal of P is a union of normal semi-ideals. 

Theorem 29. A closed sub-set F(A) of  ~ is non-dense if and only if A is a 
dense semi-ideal. 

Proof. By Theorem 22, int. F(A) = F'(A*). Hence F(A) is non-dense if and 
only if F'(A*)= 0. But F'((0])= 0. Now the result follows from the corollary 
under Theorem 12. 

Corollary. An open sub-set F'(A) of ~ is dense if and only if A is a dense 
semi-ideal. 

Theorem 30. The only closed sub-sets of ~ which are also open are the sets 0 
and ~ .  Hence the space is connected. 

Proof. Clearly the sets 0 and ~ are closed. Now any closed sub-set of 
is of the form F(A), A ~ S, and int.F(A) = F'(A*), so that, if F(A) is open, F(A) 
=F'(A*). Hence F ' ( A u A * ) = ~  and so A w A * = P .  As 1 EP, it follows that 
A = P or A* = P. Consequently A = P or A = (0]. Hence F(A) = 0 or F(A) = 2 ,  
thus proving the result. 

Theorem 31. An open sub-set F'(A) of ~ is compact if and only if A is a 
union of a finite number of  principal ideals. 

Proof. Suppose A = ( a t ] u ( a 2 ] u . . . w ( a , ]  and F'(A)~  U F'(Ai). Then it 
i e l  

follows that A =z U A~ and so each aj 6 A u forj  = 1, 2, ..., n. Hence A c_ Ai, uAi2 
i ~ l  

u .. . u A i , so that, F' (A) ~ F ' ( A i ) u  F'(Ai~)u...  u F' (Ai). Thus F'(A) is compact. 
Conversely, supposeF (A)ls compact. N o w F  ( A ) = r  t U (al l  -- U F ((a]) 

\ aEA / a ~ A  

= F ' ( ( a d ) u F ' ( ( a 2 ] ) u . . . w F ' ( ( a ~ ] ) ,  a~, a~ . . . .  , a~ ~ A as F'(A) is compact. It 
follows that A = (a i ]u(az]U- . .  w(aJ .  
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Since the principal ideals form an additive basis for Su, the above theorem 
implies 

Theorem 32 (cf. [2, 2.3.10]). The compact open sub-sets of ~ form a basis 
of open sub-sets. 

Theorem 33 (cf. [2, 2.3.40]). The completely meet-irreducible semi-ideals of 
P are identical in their totality with points of ~ which have null Hausdorff- 
residue. 

Proof. Suppose A ~ ~ and A is completely meet-irreducible. Then A C B 
where B = product of all the prime semi-ideals strictly containing A. Hence 
cl . (A)-(A) =F(B)  which is a closed sub-set of ~.  It follows that R(A)= 0. 
The converse is got by retracing the steps. 

Theorem 34 (cf. [8, Theorem 6] and [2, 2.3.41]). A necessary and sufficient 
condition for a prime semi-ideal A of P to be an isolated point of ~ is that A is 
normal and completely meet-irreducible. 

Proof. Suppose A is an isolated point of ~.  Then (A) = int. (A) = c cl. c(A) 
= F'(B) where B = product of all the prime semi-ideals of P other than A. 
Hence 

A ~ B (1) 

F(A) = cl. (A)= cl. F'(B)= F(B*) (Theorem 22) and so by the corollary under 
Theorem 12, A =B*.  Thus A is normal. Suppose A is not completely meet- 
irreducible. Then A = A t where A 1 = product of all the prime semi-ideals of 
P strictly containing A. So A = A~ ~ B which contradicts (1). Hence A is com- 
pletely meet-irreducible. 

Conversely, suppose A is normal and completely meet-irreducible. Then 
by Theorem 14, A* 4= (0] and so 

A ~ A* (2) 

If A s = product of all the prime semi-ideals strictly containing A and B 
= product of all the prime semi-ideals other than A, as A is completely meet- 
irreducible, we have 

A ~ A , .  (3) 

Since A is prime, from (2), (3) and Theorem 13, it follows that A ~A*c~A 1 =B 
by Theorem 17. Hence (A) = F'(B) and so A is an isolated point. 

The following result is clear. 

Theorem 35. The minimal prime semi-ideals of P are precisely the anti-T1 
points of ~ .  
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