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Semi-Ideals in Posets

P. V. VENKATANARASIMHAN

1. Introduction

In this paper we develop a theory of semi-ideals for posets (partially ordered
sets). In Section 2 we summarize some results used in subsequent sections;
for the proofs of these results, the reader is referred to [12]. Some concepts
relating to ideals like cut-complement, comprincipal envelope and normality,
as well as results concerning them carry over almost verbatim to semi-ideals.
These are given in Section 3. The concepts of comprincipal ideal, cut-comple-
ment of an ideal and comprincipal envelope of an ideal were introduced by
Vaidyanathaswamy [10]. The concept of comprincipal ideal is identical with
that of closed ideal of Birkhoff [3, p. 59]. Section 4 is devoted to a study of
normal and dense semi-ideals. In this section we obtain generalisations of
some theorems of Balachandran [1] and a theorem of Pankajam [6]. The last
two sections deal with prime semi-ideals. Guided by the definition of Stone’s
topology for prime ideals {in a distributive lattice) we introduce a topology for
the prime semi-ideals in a poset, and obtain extensions (vide Section 6) of
some of the results of Stone [8] and Balachandran [2]. While the above
topology for semi-ideals shares some of the features of Stone’s topology
(cf. Theorems 28 and 32) there are also one or two points of departure. Thus the
topology for the prime semi-ideals is connected and non-Hausdorff while the
Stone’s topology of a Boolean algebra is totally disconnected and Hausdorfl.

space.

2. Preliminaries

We shall denote the ordering relation in a poset by <. The greatest and
least elements of a poset, whenever they exist, will be denoted by 1 and 0
respectively. A non-null subset 4 of a poset P is called a semi-ideal if ae A4,
b<albe P)=be A. A semi-ideal A of P is called an ideal if the sum of any
finite number of elements of A, whenever it exists, belongs to 4. The principal
ideal generated by ¢ and the principal dual ideal generated by a are denoted
by (a] and [a) respectively. An element a of a poset P with 0 is said to have a
pseudo-complement a*, if in P, there exists an element a* such that (a]n{(a*]
= (0] and for be P, (a]ln(b] = (0]=(b] & (a*].

Theorem A. The set S, of all semi-ideals of a poset P with 0, forms a complete
distributive lattice closed for pseudo-complements under set-inclusion as ordering
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relation. The lattice sum and lattice product in S, coincide with the set union and
set intersection. Similar result holds for the set S, of dual semi-ideals of a
poset with 1.

The pseudo-complement of an element A of S, will be denoted by A*.

Theorem B. The set 1, of all ideals of a poset P with O forms a complete
lattice under set-inclusion as ordering relation; the lattice product in I, is the
same as that in S,. Similar result holds for the set 1, of all dual ideals of a poset
with 1.

We shall denote the set-inclusion, set-union and set-intersection by C,
U and  respectively. The lattice sum in I, and 1, will be denoted by \/.

Lemma A. In a poset P, a lattice product | | g, (lattice~sum > af) exists if
iel iel
and only if ~(a;] (" [a;) is a principal ideal (principal dual ideal). Also whenever

a3 a) exists n(a] = (Ta;] (n[a)=[2a).

Lemma B. In a poset P with O, the pseudo-complement a* of an element a
exists if and only if (aY* is a principal ideal. Further whenever a* exists {a}]*

=(a*].

Theorem C. In a poset P closed for pseudo-complements, the following
results hold:

(i) a < a** for every ae P.

(il) agb=>a*=b* for a,beP.

(iil) a*** =a* for every ae P.

(iv) P has the greated element 1 and 1 = 0¥,

Theorem D. In a poset P closed for pseudo-complements the following
results hold :

(i) If a finite product a,.a,..... a, exists in P, then so does the product

at*.a%* ... af* Further(a,,a,..... a)¥* = a¥*.af*. ... a**and(a,.a,.....a,)*
= (ar*.ak*. . Gy,
(ii) If asum Y a;existsin P, thenthe product | |a} existsin Pand (3} a;)* =Tla}.
iel iel

3. Comprincipal ldeal and Cut-complement

A semi-ideal of a poset P is called a comprincipal ideal if it is a product of
principal ideals. The comprincipal envelope of a semi-ideal is the product of
all the principal ideals containing it. Similarly we define a comprincipal dual
ideal and the comprincipal envelope of a dual semi-ideal. By the cut-comple-
ment of a semi-ideal (dual semi-ideal) 4 of P, we mean the set of all elements x
such that x > a{x < a)for all a € 4 and it is denoted by A,. The cut-complement
of A, is denoted by 4.

The following two results (Theorem 1 and 2) are clear.
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Theorem 1. Any comprincipal ideal of a poset P is the product of all the
principal ideals containing it. Similar result holds for dual ideals.

Theorem 2. The comprincipal envelope of a semi-ideal (dual semi-ideal)
A of a poset P is the smallest comprincipal ideal (comprincipal dual ideal)
containing A.

Remark. For any semi-ideal (dual semi-ideal) 4, A, is a comprincipal dual
ideal (comprincipal ideal).

Theorem 3. The comprincipal envelope of a semi-ideal or a dual semi-ideal
Aof aposet Pis A,,.

Proof. Let A be a semi-ideal of P. Then 4,.= () (x]. Now the elements

x€do

x € A, are precisely those elements of P which are.= a for every ae A. It follows
that A, is the product of all the principal ideals containing 4. Hence the first
part. The second part is proved on similar lines.

Theorem 4. A semi-ideal or a dual semi-ideal A of a poset is comprincipal if
andonly if A=A,,.

Theorem 4 follows from Theorem 3.

4. Normal and Dense Semi-ideals

A semi-ideal (dual semi-ideal) of a poset P with 0(1) is called normal if it is a
normal element of the lattice S,(S,) of all semi-ideals (dual semi-ideals) of P.
Similarly we define a dense semi-ideal (dense dual semi-ideal) in a poset with
0(1). If the lattice of all ideals (dual ideals) I,(I,) of a poset P with 0(1) is closed
for pseudo-complements, an ideal {a dual ideal} of P is called normal ifitis a
normal element of I,(I,). An ideal (a dual ideal) of a poset P with 0(1) is called
dense if it is a dense element of I,(I,). We shall denote the dual ideal consisting
of the dense elements of a poset by D.

Hereafter, throughout this section, unless otherwise stated, P will denote a
poset closed for pseudo-complements.

Theorem 5. Every normal semi-ideal of P is a comprincipal ideal.

Proof. Any normal semi-ideal of P is of the form A* for some 4 € §,. Since
A= | (a], by Theorem D, A*= () (a]*= () (a*] by Leuma B, thus

acAhd . ac4 acA
completing the proof.

Remark. If A, A* €1, then clearly A* = A®*(4® denotes the pseudo-com-
plement of 4 in I,).
Theorem 6. 1, is closed for pseudo-complements.

Proof. Let Ael,. Then clearly A€ S, and so A* exists. By Theorem 5,
A* e I,. Hence the result follows by the above remark.

Corollary 1. Any normal semi-ideal A of P is a normal ideal of P.
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Proof. Clearly A= B* for some BeS§,. Hence by Theorem C, 4= B***.
Also, by Theorem 5, B**eI,. Now the result follows by the remark under
Theorem 5.

Corollary 2. Every normal ideal A of a complete lattice L closed for pseudo-
complements is principal.

Proof. From Theorem 5 it follows that A is of the form () (a}]. Since Lis a
iel

complete lattice, by Lemma A, n(a¥] = (ITa}]. Hence the result.

Theorem 7. The pseudo-complement of a semi-ideal A of P is identical with
that of its comprincipal envelope.

Proof. Since A** is comprincipal (Theorem 5) and 4,, is the smallest
comprincipal ideal containing A (Theorem 2), we have A A, C A**. By
Theorem C, it follows that A* 2 (4, )* 2 A*** = A*. Hence A* = (4,)*.

Theorem 8. The dense semi-ideals of P are precisely those whose cut-
complement is contained in D.

Progf. Let A be a semi-ideal of P with A* = (0]. Then if xe 4, (x]2 4 and
so by Theorem C and Lemma B, we have (x*] ¢ A* = (0]. Hence x € D and so
A,CD.

Conversely, suppose A is a semi-ideal such that 4,CD. If x e A*, by
Theorem C and Lemma B, we have (x*]2 4**2 A. It follows that x*e 4,CD.
Hence x < x** =0 and so 4* =(0].

Theorem 9. If in a poset P (not necessarily closed for pseudo-complements)
with0, 1, D =[1), then any dense semi-ideal A has P for its comprincipal envelope.

Proof. If (a] is any principal ideal containing A4, (a]* € A* =(0]. Hence
aeD. As D={1), it follows that (1] is the only principal ideal containing 4,
whence the result follows.

Theorem 10. In a complete lattice L closed for pseudo-complements the
dense semi-ideals are precisely those whose comprincipal envelope is a principal
ideal having non-void intersection with D.

Proof. Since L is a complete lattice, if 4 is any semi-ideal of L, 4., is
principal, say A, = (t]. If A*=(0], by Theorem 7, (t]* =(0]. Hence t e D. Thus
te A..nD, proving thereby A..nD is non-null. Converse is got by retracing
the steps.

Theorem 11. If every element of P is normal the set of normal ideals
coincides with the set of comprincipal ideals.

Proof. In view of Theorem §, it suffices to prove that every comprincipal
ideal ﬂ (a]] of Pisnormal. Since every element of P is normal, () (a;] = () (a¥*]

iel iel
(a*] ® by Theorem D (as I, is closed for pseudo-complements by
f p
Theorem 6). Hence the result.
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Remark. Theorems 7, 8, 9, and 10 generalise the corresponding results of
Balachandran [1]aboutidealsin distributive lattices. Theorem 11 is a generalisa-
tion of the following result of Pankajam [6]: In a Boolean algebra the set of
comprincipal ideals is identical with the set of normal ideals.

5. Prime Semi-ideals in Posets

A semi-ideal (dual semi-ideal) A of a poset P, (4 + P) is called prime if
(@n(b]cA=(@]<cA or (B]SA([a)n[b)SA=[a)C A or [b)SA). An ideal
(a dual ideal) of a poset is called prime if it is prime as a semi-ideal {dual semi-
ideal). It is clear that in a lattice our definitions of prime ideal and prime dual
ideal coincide with the usual definitions.

A prime semi-ideal (prime ideal) 4 of a poset P is called minimal prime if 4
does not contain any other prime semi-ideal (prime ideal). A semi-ideal (ideal)
A of P is called completely meet-irreducible if 4 is not the product of any family
of semi-ideals (ideals) which does not contain A as a member. By the corollary
under Theorem 12, it follows that a completely meet-irreducible semi-ideal
of a poset is prime.

Theorem 12 {cf. [7, Theorem 16] and [4, Corollary 1 under Theorem 8J).
Given a semi-ideal A of a poset P and b¢ A(be P), among all the semi-ideals
containing A and not containing b, there exists a maximal one, and it is prime.

Proof. Since the set-union of any family of semi-ideals is a semi-ideal and
is the Lu.b of the family, first part follows by Zorn’s Lemma.

Now let B be a semi-ideal which is maximal among all the semi-ideals
containing A and not containing b. Suppose B is not prime. Then there exist
x, y€ P such that (x]n(y]< B and (x],(y]¢ B. The maximal property of B
implies that be Bu(x], Bu(y]. Consequently be(x], (y] so that be(x]n(y]
which is a contradiction. Hence B is prime.

Corollary. Any semi-ideal of a poset is the product of all the prime semi-
ideals containing it.

Theorem 13. If a prime semi-ideal of a poset contains the product of a
finite number of semi-ideals, then it contains at least one of them.

The proof of the above theorem is similar to that of the corresponding
known result concerning prime ideals in a lattice (vide [9, Theorem 8]).

Corollary. If the product of a finite number of semi-ideals of a poset P
is (0], then any prime semi-ideal of P contains at least one of them.

Theorem 14. A prime semi-ideal A of a poset with O is either normal or
dense.

Proof. A*nA**=(0] and so by the corollary under Theorem 13, 42 4*
or A2 A**. Hence the result.
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Theorem 15. The set complement cA of a prime semi-ideal A of a poset P
is a dual ideal.

Proof. Clearly cA is a dual semi-ideal. Further if x,, x,, ..., x,€cA and
Xi- Xp. ... X, €xists, by Lemma A4, (x;. x,. .... %} = (¢ ]n(x, 1N n(x,]¢ A,
since (x;]¢ 4 fori=1,2,...,n and A4 is prime. Hence x,. x,. .... x,€ cA and so
cA is a dual ideal.

Theorem 16 (cf. [2, 3.2.6]). The set complement cM of a maximal principal
dual ideal M = [a) of a poset with 0 is a normal prime semi-ideal.

Proof. Clearly cM is a semi-ideal. Now if (x], (y1¢ cM, then x, y=a and
so ae (x]n(y]. Hence (x]n(y]¢ cM, proving that cM is prime. To prove cM
is normal, in view of Theorem 14, it suffices to show that (cM)* = (0]. Now if
becM, then b ¢ [a) and so, as [a) is maximal a - b= 0. Hence a € (cM)*. Conse-
quently (cM)* # (0], completing the proof.

Theorem 17 (cf. [2, Corollary under 3.2.2]). The pseudo-complement of a
semi-ideal A of a poset P with O is the product of all the prime semi-ideals not
containing A.

Proof. Let B=product of all the prime semi-ideals not containing A.
From the corollary under Theorem 13, it follows that B2 A*. If possible
suppose B+ A* Then there exists x € P such that xe B, x ¢ 4*. So, for some
ye A, (x]n(y]+(0]. Hence by Theorem 12, there exists a prime semi-ideal C
such that (x]n(y]1¢§ C. Clearly (x], (y]§ C. Consequently A, B{ C which is a
contradiction to the choice of B. Hence B = 4*.

Theorem 18. The set-union of any family of prime semi-ideals of a poset P
is a prime semi-ideal. The set-intersection of any lower-directed family of prime
semi-ideals is a prime semi-ideal.

Proof. The first part is obvious.

Now let F = {4,]ieI} be a lower-directed family of prime semi-ideals of P.
Let B= () 4;. Suppose B is not prime. Then there exist x, ye P such that

iel
(x]n(y]1< B and (x],(v1¢ B. Hence (x]$ A;, (y]1¢§ A4, for some i,jel. As F is
lower-directed there exists a k € I'such that 4, C 4;, A;. Clearly (x], (y]{ 4. But
(x](y] € B € A4,. This contradicts the fact that 4, is prime. Hence B is prime.

6. A Topology for the Prime Semi-ideals

Most of the topological concepts used in this section are found in [5] and
[11]. However, we recall them for convenience.

Let T be a topological space. T is called, as usual, T, if distinct points of T
have distinct closures. A point p of T is called a T; point if the closure of p
contains no point other than p; a point p of T is called an anti-T, point if the
closure of no point other than p contains p. T is called T, if every point of T
is T;. T is called T, if any two distinct points of T have disjoint neighbourhoods.
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A closed (open) sub-set of T is called a closed domain (open domain) if it
is identical with the closure of its interior (interior of its closure). A closed
(open) sub-set of T is called semi-regular if it is an intersection (union) of closed
domains (open domains). A closed (open) sub-set of T is called regular if it
is an intersection (union) of closed domains (open domains) whose interiors
(closures) contain {(are contained in) it. T is called semi-regular (regular) if
every open sub-set of T is semi-regular (regular). The regularity of T may
alternatively be expressed as follows: Given a non-void closed sub-set C of
T and a point p ¢ C, we can find closed sub-sets C,, C,, of T containing C, p
respectively such that C,n(p)=0=CnC, and C,uC,=T (# denotes the
empty set). A T, regular space is called, as usual, a Ty-space. A sub-set 4 of T
is called compact, if from every open covering of 4 we can extract a finite
covering.

By the Hausdorff-residue of a sub-set 4 of T we mean R(A4) where R(4)
= ff(A), f(A)=closure of 4 — 4.

Throughout this section, unless otherwise stated, P denotes a poset
with 0 and 2 the set of all prime semi-ideals of P. The set of all prime semi-
ideals containing a semi-ideal A is denoted by F(A) and the set-complement of
F{A) in & by F'(A).

Theorem 19 (cf. [2,2.3.1 to 2.3.4)).

) F(4:)= N F@o,
() F(A;nA,n--nA)=F(A)OF(A)u--UF(4,),

(iii)) F(P)=4,

(v) F(0)=2.

Proof. (i) It suffices to observe that a semi-ideal B 2| ) A;<>B2 4, for
every iel. iel

(ii) It is clear from the definition of F that A< B=>F(4)2 F(B). Hence
F(A;nA,n---nA)2F(4)fori=1,2,...,nandso F(4,nA4,n---nA4,)2F(A,)
UF(4,)u---UF(4,). Also from Theorem 13 it follows that F(4,n4,n---NA,)
€ F(A)UF(A)u---UF(A,). Hence (ii).

(iii) and (iv) are obvious.

Theorem 19 shows that we can introduce a (unique) topology T on #
whose closed sub-sets are precisely the sets F(A). We shall denote # with
topology T again by 2.

Since F'(4) = # — F(A), the following result follows from Theorem 19.

Theorem 20. (i) F’ ( U Ai) = JF4),

iel iel
(i) F'(4,nAyn--nA)=F(A)"F ()0 nF(4,),
(i) F(P)=2,
(iv) F'(0))=8.
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Corollary. The lattice of all open (closed) sub-sets of P is isomorphic
(dually isomorphic) to S, and the mapping associates unrestricted lattice-sums
with the corresponding set-unions ( set-intersections).

Proof. Since by the corollary under Theorem 12, A< B<F(A4)2 F(B),
the result follows from Theorems 19 and 20.

We shall denote the closure, interior and set-complement of a subset X of
#bycl. X, int. X and cX respectively.

Theorem 21. If X is a sub-set of P, then cl. X = F(X,) where X, is the
product of all the members of X.

Proof. Clearly F(X,) is a closed sub-set of 2 containing X. Also if F(Yy) is
a closed sub-set of 2 containing X, each member of X contains Y, and so
X, 2Y,. Consequently F(X ) € F(Y,), whence the result follows.

Theorem 22, (i) cl. F'(4)=F(A*).

(i) int, F(4)=F'(4%).

Proof. (1) follows from Theorems 21 and 17.
(ii) int, F(A4) = c cl. F'(A)= F'(4*) by (i).
Theorem 23. 2 is T,

Proof. From Theorem 21, it follows that the closure of a single point is the
set of all prime semi-ideals containing it. Clearly of any two distinct (prime)
semi-ideals at least one does not contain the other. Hence distinct points of 2
have distinct closures. Thus Z is Tj,.

Theorem 24. When P is a poset with 0,1, # is T, if and only if’ P is the chain
of two elements.

Proof. Clearly the only T, point of # is the semi-ideal consisting of all the
elements of P other then 1. Hence the resuit.

Theorem 25. When P is a poset with 0, 1, P is compact and non-regular.

Proof. Let 2 = | ] F'(4,). Then by (i) of Theorem 20, # = F'( U A,.). Since

iel iel
P = F'(P),itfollowsthat P = U A;.AsP=(1], L € A;forsomej e I. Consequently
iel
P=A;sothat # = F'(A). Hence 2 is compact.

Now let C=F(4) be a non-empty closed sub-set of # and pe #—C.
Suppose 2 is regular. Then there exist closed sub-sets C, =F(A,), C,=F(4,)
containing C and p respectively such that CNnC, =@ =C,n(p)and C, 0 C,=2.
Since CnC, =# it follows that 4uA,=P. Consequently as 1eP, A=P or
A,=P. So C=0 or C, =4 which is a contradiction to our hypothesis. Hence
the result.

Theorem 26. A closed sub-set F(A) of P is a closed domain if and only if A
is a normal semi-ideal.

Proof. By Theorem 22, cl. int. F(A)=cl. F/(A*)= F(4**). 1t follows that
F(A)is a closed domain if and only if 4 = A**, thus proving the result.
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Corollary. An open sub-set F'(A) of # is an open domain if and only if
A is normal.

Since the closed domains and the open domains of & are mutually com-
plementary, the above result follows from Theorem 26.

Theorem 27. An open sub-set F'(A) of P is semi-regular if and only if A
is a sum of normal semi-ideals.

Proof. By the corollary under Theorem 26, F'(A4) is semi-regular if and
only if F'(4)= U F'(N,) where the N, are normal semi-ideals. By (1) of Theo-

rem 20, () F'(N)=F ’( UN, ) Hence by the corollary under Theorem 12, it
iel iel
follows that F’ (A) is semi-regular if and only if 4 = ( ) N, thus proving the result.
iel
Corollary. A closed sub-set F(A) of P is semi-regular if and only if Aisa
sum of normal semi-ideals of P.

The following result is clear from Theorem 27.

Theorem 28. (cf. [2, 5.2.21). @ is semi-regular if and only if every semi-
ideal of P is a union of normal semi-ideals.

Theorem 29. A4 closed sub-set F(A) of # is non-dense if and only if A isa
dense semi-ideal.

Proof. By Theorem 22, int. F(A)= F'(4*). Hence F(A) is non-dense if and
only if F'(A*)=g. But F'((0])=0. Now the result follows from the corollary
under Theorem 12.

Corollary. An open sub-set F'(A) of & is dense if and only if A is a dense
semi-ideal.

Theorem 30. The only closed sub-sets of & which are also open are the sets {
and P. Hence the space is connected.

Proof. Clearly the sets § and 2 are closed. Now any closed sub-set of 2
is of the form F(A4), A€ S, and int. F(A) = F'(A¥), so that, if F(4) is open, F(A4)
= F'{A*). Hence F(AUA*)=2 and so AUA*=P. As 1¢ P, it follows that
A=Por A*=P. Consequently 4 =P or A=(0]. Hence F{(4d)=@ or F(4)=2,
thus proving the result.

Theorem 31. An open sub-set F'(A) of P is compact if and only if A is a
union of a finite number of principal ideals.
Proof. Suppose A =(a,Ju(a,Ju--ula,] and F'(4) S| ) F'(4). Then it
ial

follows that 4 € U A;and so each g;e A;;forj=1,2,...,n Hence AS 4; LA,

U--UA4; 80 that F’(A)QF (A, JOF(4,)u--UF'(4,) ThusF {A) is compact.
Conversely, suppose F'(4) is compact. Now F'(4) = F’( U (a]) U F(a))

acA aed
=F'((a,J)oF{a,)u--vFa,l)aa; ...,a,€ A as F(A4) is compact. It
follows that A={a,Jula]u---U(a,]
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Since the principal ideals form an additive basis for S,, the above theorem
implies

Theorem 32 (cf. [2, 2.3.10]). The compact open sub-sets of # form a basis
of open sub-sets.

Theorem 33 (cf. [2, 2.3.40]). The completely meet-irreducible semi-ideals of
P are identical in their totality with points of % which have null Hausdorff-
residue.

Proof. Suppose A€ 2 and A is completely meet-irreducible. Then 4 C B
where B = product of all the prime semi-ideals strictly containing A. Hence
cl.(4) —(A) = F(B) which is a closed sub-set of #. It follows that R(4)=40.
The converse is got by retracing the steps.

Theorem 34 (cf. [8, Theorem 6] and {2, 2.3.417). A necessary and sufficient
condition for a prime semi-ideal A of P to be an isolated point of & is that A is
normal and completely meet-irreducible.

Proof. Suppose A is an isolated point of Z. Then (4)=int. (4)=c¢ cl. ¢(A4)
= F"(B) where B =product of all the prime semi-ideals of P other than A.
Hence

ADB (1)

F(A)=cl. (A)=cl. F'(B)= F(B*) (Theorem 22) and so by the corollary under
Theorem 12, A = B*. Thus A is normal. Suppose 4 is not completely meet-
irreducible. Then 4 = A, where A, = product of all the prime semi-ideals of
P strictly containing A. So A= A4, 2 B which contradicts (1). Hence A4 is com-
pletely meet-irreducible.

Conversely, suppose 4 is normal and completely meet-irreducible. Then
by Theorem 14, A* & (0] and so

AD 4* @)

If A, =product of all the prime semi-ideals strictly containing A and B
= product of all the prime semi-ideals other than 4, as A is completely meet-
irreducible, we have

ADA,. 3)

Since A is prime, from (2), (3) and Theorem 13, it follows that A P A*n~A, =B
by Theorem 17. Hence (4) = F'(B) and so A is an isolated point.
The following result is clear.

Theorem 35. The minimal prime semi-ideals of P are precisely the anti-T,
points of #.
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