
T H O M A S  EDE Z I M M E R M A N N  

S C O P E L E S S  Q U A N T I F I E R S  A N D  O P E R A T O R S  

O. O V E R V I E W  

The main objective of this paper is to give a characterization of those 
quantifiers and operators that are freely interchangeable with all other 
quantifiers or operators on a possibly different domain. The starting 
point is a slight generalization of  an earlier result on unary exten- 
sional quantifiers. These are shown to be scopeless just in case they 
are ultrafilters with certain strong completeness properties: in many, 
though not all cases, a quantifier must be trivial or name-like (i.e. 
principal) in order to be scopeless. Which cases depends on the rela- 
tive sizes of the domains of  quantification. 

Operators other than unary extensional quantifiers for which the 
notion of scopelessness also makes sense include quantifiers in three- 
valued logic, intensional quantifiers and propositional operators in 
possible worlds semantics, as well as modifiers in natural language. 
These operators, about which the above results have nothing to say, 
are the subject of Section 2. 

The characterization result can in a sense, however, be extended to 
them. This is done in Section 3. Although the notion of  a complete 
ultrafilter is as central in their case as it is in the case of unary exten- 
sional quantifiers, the results for the latter do not generalize as directly 
as one might think: scopelessness turns out to be even rarer in the 
more general setting. 

Finally, in Section 4, we briefly turn to notions of scoplessness that 
do not involve variable-binding, where it can be shown that complete- 
ness, but not ultrafilterhood, is irrelevant. 

1. S C O P E L E S S  Q U A N T I F I E R S  

The aim of this section is to give a characterization of those quan- 
riflers that show no scope interactions with any other quantifiers, i.e. 
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those F that satisfy: 

( S q )  (Fx)(Qy)(xRy) iff (Qy)(Fx)(xRy), 

for arbitrary relations R and quantifiers Q. The term quantifier will be 
used in the broad (and purely semantic) sense of  a second-order set: if 

A is a non-empty set, then a quantifier Q over A is a set of  subsets of  
A; and the bound-variable notation '(Qx)qS' expresses that the set of  x 

satisfying r is in Q: {x ~ AlqS} ~ Q. Since we will not assume that the 

quantifiers Q in (Sq) range over the same domain as F, our notion of 

scopelessness is a relative one: a quantifier F over A is said to be 

B-seopeless if (Sq) holds for every quantifier Q over B and every rel- 

ation R _~ A x B. I f  we think of  such R as functions from B to A's 

power set, 'Ry' naturally denotes the set of  y 's  predecessors: 

{x ~ A[xRy}; similarly, I will use 'xR' to refer to x 's  successors: 

{ y ~ BlxRy}. 
A brief look at the literature on generalized quantifiers already sug- 

gests a class of  obvious candidates for scopelessness, viz. the name- 

like principal ultrafilters over A (generated by x ~ A), i.e. the sets x* 
( =  x*) of  all subsets of  A containing x as an element: in their logical 

behaviour they are hardly distinguishable from (names of) x e A, for 

which the notion of scope does not even make sense. And, indeed, if 

Q is any quantifier over B and R ~_ A x B, then arbitrary x0 e A 

satisfy: (Qy) (x~x) (xRy) iff (Qy) (Rye  x*) iff (Qy) (xoRy) iff x0 e 
{x ~ A[(Qy) (xRy)} iff (x 'x)  (Qy) (xRy). Thus every principal ultra- 

filter over A is B-scopeless. 
Principal ultrafilters are only special cases of ultrafilters (over A) in 

general, i.e. quantifiers F that are closed under supersets and (finite) 

intersections as well as \-maximal in the sense that J( E F iff J? 
( =  A\X) q~ F. It  is easily seen (and well-known) that ultrafilters are 

exactly those quantifiers F that lack scope with respect to arbitrary 

truth-functional connectives �9 [(Fz) z ~ X �9 (Fz) z ~ Y] iff (Fz) 
[z e X �9 z e Y]. Hence, due to the functional completeness of  
neither-nor, we find that F is an ultrafilter over A iff all subsets X and 
Y of A satisfy: X u Y ~ F iff [X q! F and Y ql F]. This characterization 

immediately leads to the observation that any B-scopeless quantifier 
must be an ultrafilter, provided that B contains more than one 

element. For  if we pick Y0 e B and let R be (X x { Y0 }) u 
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(Y x B\{ y0}), we get: X u Y e  F i f f  {x e Al(,-~3y)xRy} e F i f f  (by 

F's scopelessness) ( ~  3y) (Fx)xRy iff [Ryo • F and (Vy r yo)Ry (~ F] 
iff [X r F and Y ql F]. 

Does scopelessness with respect to Boolean connectives imply 
scopelessness with respect to quantifiers? In other words, is every 
ultrafilter over a set A B-scopeless, or are the x* the only quantifiers 
with such trivial scope behaviour? The answer to this question 
depends on what A and B are. Thus, e.g., if A is finite, the question is 
pointless because every ultrafilter is principal. But if A is infinite and, 

consequently, does carry non-principal ultrafilters, the latter need not 
be scopeless. In particular, if there exists a one-one function f from A 
to B, any B-scopeless quantifier F over A must contain a singleton 
and thus be principal: A e F, because F is an ultrafilter, and A = 

{xI(3y)f(x) = y}, which means that {xl f (x)  = y} e F, for some 
y e B. As a consequence, we get the following two conclusions con- 
cerning ordinary and polyadic quantifiers, respectively~: 

(1) A quantifier F over a set A of  size 7> 2 is A-scopeless iff F is a 
principal ultrafilter. 

(2) A quantifier F over the Cartesian product A" is Am-scopeless 

(n, m >~ 1) iff F is a principal ultrafilter. 

(1) is immediate; (2) holds because either A, A", and A m are all finite, 
or else of  the same cardinality. What remains to be done, then, is to 
find a characterization of B-scopelessness where A is infinite and 
IB[ < IAI. The following observation gives a clue: 

(3) If  F is B-scopeless over A, then F is [BI +-complete, 

which means that F is closed under intersections of  length ~< ]BJ, i.e. 
for any H _ F of that size: n H e F. Given such H, let g be a func- 
tion from B onto H (i.e. rge(g) = H)  and put: xRy iff x e g(y). 

Clearly, every Ry is in F: (Vey) (Ry e F), where VB = {B}. So F's  
scopelessness tells us that: (Fx) (xR ~ VB). By the definition of  R, this 
means that n rge(g) = n H e F. 

Note that (3) is independent of  the relative sizes of  A and B. And it 
can be reversed, yielding the following general characterization of  
scopelessness: 
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T H E O R E M  1. Let  A and B be non-empty sets such that ]B] >~ 2, and 

let F be a quantifier over A.  Then F is B-scopeless i f f  F is a [B] +- 

complete ultrafilter. 

I will only sketch the proof  here, leaving technicalities to the appen- 

dix. Given A, B and F as described plus some R ___ A x B and a 

quantifier Q over B, we must show that (Sq) is satisfied. We can think 

of  R as a function indexing certain 'R-definable' subsets Ry  of A and 

then concentrate on these subsets, some of which might be in F. Let 

F + be the set of  all R-definable sets in F: F + = {X e FI(3y ~ B) 

(X = Ry)}; similarly, F is the set of  R-definable non-members of  F. 

Moreover,  we let F ~ be: c ~ F + \ u F  . Intuitively speaking, F ~ contains 

all elements of  A that could - should F be principal and judging 

only from the R-definable section of  F - be F ' s  generator. Finally, 
F ~ will contain those members of  B that define F-members: F B = 

{ y ~ BIRy ~ F} .  Using this notation, the right half of  (Sq) reads: 
' F  e e Q'. The key to the proof  of  Theorem 1 lies in the following two 

observations about  F~ 

(O1) F ~ = { x ~ A l x R  = FB}, 

(02) F ~ E F. 

Let us see how we can use (O1) and (02) to obtain (Sq). I f  ('=~') 
{x ~ A l x R  ~ Q} ~ F, then so is F ~ c~ {x ~ A l x R  ~ Q}, by (02). So, by 

(O1) and the fact that 0 r F, there is some x s A such that x R  = F B 

and x R  ~ Q. I f  ( ' ~ ' )  F B ~ Q, then x R  = F ~ always implies x R  ~ Q 

and hence, using F ' s  _ -monotonic i ty  and our observations, we con- 

clude: {x ~ AIxR  eQ} ~ F. So it remains to be shown that (O1) and 

(02) hold, which is done in the appendix. 
Note that if B is finite, then ]B] + ~ e) and hence any ultrafilter is 

]Bl+-complete. Thus Theorem 1 implies that some non-principal ultra- 

filters are scopeless quantifiers. However, if B happens to be infinite, a 
set A carrying a non-principal [BI +-complete ultrafilter would have to 

be very large - at least as large as the first measurable cardinal/t0. 
And whether/t0 exists seems to be left open by ordinary ZF set 
theory. So if we forget about  the realm of excessively large cardinals, 
we can sum up our findings by the following, possibly partial charac- 

terization of scopeless quantifiers: 
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COROLLARY 1.1. Let A and B be non-empty sets such that IAI < Ho 
and IB[ ~> co. Then a quantifier over A is B-scopeless iff it is a principal 
ultrafilter. 

COROLLARY 1.2. I f  [AI < #o, 2 ~< IB[, and F & a B-scopeless quan- 
tifier but not a principal ultrafilter over A, then F is an ultrafilter and B 

is finite. 

2. SCOPELESSNESS G E N E R A L I Z E D  

The quantifiers studied in the preceding section certainly do not 
exhaust all notions of quantification. Moreover, the very concept of 
scope is not confined to quantifiers but also makes sense for other 
kinds of operations, whether variable-binding or not. It is therefore 
natural to ask whether the above characterization of scopelessness can 
be shown to carry over to operators other than second-order sets. In 
this section we will look at some particular eases for which the prob- 
lem of characterizing scopelessness can be formulated without being 
covered by Theorem 1. 

The most obvious generalizations of the above concept of scope- 
lessness are obtained by varying the notion of a quantifier. I want to 
mention two possibilities, because they are both covered by the con- 
cept of an operator to be given in due course. The first one is triva- 
lent quantification: three-valued quantifiers (on a universe A of at least 
two individuals) Q can be thought of  as tri-partitions of the set of 
gapped predicates, i.e. as functions from gapped predicates to the set 
{ q-, .]_, u} of truth-values, where a gapped predicate is again a func- 
tion from individuals to {7-, _1_, u}. If we write '(Qx)qS' for the result 
of applying Q to that function 2~b that yields the truth-value q~ for 
arbitrary x e A, F may be called scopeless iff it satisfies: 

($3) (Fx) (Qy) R(x, y) = (Qy) (Fx) R(x, y), 

for any three-valued quantifiers Q (over A) and gapped relations R. 
Note that this is an absolute notion of scopelessness, so that we may 
expect it to be satisfied only by name-like quantifiers, i.e. those of the 
form [P P(x)], where 'P'  ranges over gapped predicates and x e A. 
This is indeed what we will be able to show. 
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The other notion of quantification I want to mention is intensional, 
in the following sense. Suppose that, in addition to our domain A of 
quantification, we are given a non-empty set W of possible worlds. 
Then a property (of As) may be thought of as a function P from W to 
A; and an intensional quantifier simply is a property of properties (of 
As). The appropriate notion of scopelessness becomes apparent when 
we take possible worlds as invisible parameters of interpretation in a 
language of higher-order modal logic. Thus F's satisfaction of the fol- 
lowing formula of Montague's (1970: 384ff.) language of intensional 
logic offers a natural criterion of scopelessness: 

D(VQ) (VR)F{2Q{ ;gR{x, y}}} ~ Q{ f~F{2R{x, y}}}. 

By translation into our extensional meta-language, we get the follow- 
ing definition: an intensional quantifier F over A is scopeless iff (Si) 
holds for arbitrary intensional quantifiers Q, binary properties R and 
possible worlds i: 

(Si) F,(j2Qj(f@Rk(x, y))) = Q,(@Fk(j2Rj(x, y))). 

Again this notion of scopelessness is absolute, i.e. with respect to 
quantifiers over the same domain and depending on the same possible 
worlds; and again we will find that only name-like quantifiers of the 
form [~/SP,.(x)] (for x e A) satisfy it. 2 

Judging from the variants of quantification discussed so far, it 
appears that the connection between (absolute) scopelessness and 
name-likeness is rather tight. However, facts are not always that 
simple. As a case in point, we may consider propositional operators 
expressing modalities, tenses, propositional attitudes, etc. Following 
Montague (1968), we may classify all these operators as properties of 
propositions, where a proposition is a set of indices (i.e. possible 
worlds, times, world-time pairs, etc.). Again, we find a natural 
criterion of scopelessness in higher-order intensional logic: 

E3(VO') (Vp) [O( A O'{p}) ~ O'( A O{p})l, 

which expresses that a scopeless propositional operator O must 
satisfy: 

(s~) o,(iOj (p)) = o; qoj(p)), 
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for arbitrary propositional operators O', indices i and propositions p. 
However, it is easily seen that this criterion is only met by the trivial 
operator [f/~p(i)]: just insert '[f0p(i)]' for 'O" in (Sp) and receive a 
point-wise definition of scopeless O. 

An intensional language also allows for interactions between inten- 
sional quantifiers Q and propositional operators O, thus giving rise to 
more general notions of scopelessness. Using results from Section 4, 
we will, e.g., be able to show that, as long as the number of indi- 
viduals does not exceed the number of propositions, the only inten- 
sional quantifiers that lack scope with respect to arbitrary intensional 
operators are name-like. 

Let me finally draw attention to natural language constructions 
that have a flavour of scopelessness about them. For the obviously 
scopeless proper names 3 do not appear to be the only expressions that 
are immune to shiftings of quantified noun phrases. Thus, e.g., van 
der Does (199 l) observes that certain infinitive embeddings allow for 
export and import of  quantifiers as illustrated by the absence of 
scope ambiguities in Caroline sees Tom eat five cakes. Now if we 
wanted to use a possible world framework to analyze see as a ternary 
(intensional) relation S holding between two objects and a property, 
we could express van der Does's transportation principle by a for- 
mula of intensionat logic: 

D(Vxo) (Vy0) (VQ) (VR)[S(x0, Yo, f~Q{2R{y, z}}) 

Q{s y0, 9R{ y, z})}], 

which means that: 

(Ss) [S,(x0, yo,j29Qj(fcSR~( y, z))) r Q,(kTeSk(x0, yo,jf:R;( y, z)))], 

where Q is an arbitrary intensional quantifier, i is a possible world, x0 
and Y0 are individuals and R is a binary (intensional) relation. What 
restrictions does (Ss) impose on the relation S? One consequence of 
the main result of Section 3 is that S cannot be veridical 4 in the sense 
of: 

(V) Si(x, y, P) ~ P~(y). 

But even without (V) would we get such unwelcome consequences 
that we may safely conclude that a Montague-style formalization of 
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quantifier transportation is impossible. The details can be found in 
the appendix. Analogous remarks apply to certain modifier construc- 
tions like manner or temporal adverbs. Concerning the former, it was 
already pointed out in Zimmermann (1987) that there is no way of 
analyzing slowly as a (non-trivial) verb phrase operator in Main eats 
few apples slowly, if it only modifies the main verb eats. And the fact 
that most temporal modifiers do scopally interact with even exten- 
sional quantifiers finds a natural explanation if we analyze them as 
propositional operators: given infinitely (but not measurably) many 
individuals, only designators of times (like today or the Queen's birth- 
day) are scopeless with respect tO quantifiers over individuals, as 
Theorem 1 shows. 5 

3. O P E R A T O R S  

Here is a straightforward generalization of the notion of a scopeless 
quantifier that covers some, but not all of the above examples: just 
think of the defining equivalence (Sq) as an equation in a language of 
functional type theory with application (from types ab and a to b) 
and abstraction (from a and b to ab). We thus get: 

(So) ~(~(~O(x, y))) = ~r  y))). 

It is readily seen that, in order for (So) to make sense, Y,  ~, and 4) 
would have to be expressions of some types (at)c, (bc)c, and b(ac), 
respectively, where '4)(x, y)' is the same as '4)(y)(x)'. This leads to a 
natural concept of operators: given a family of objects of some basic 
types (of at least two objects each), we define an ac-operator ~,~ to be 
a function of type (ac)c; and we say that J~ is b-scopeless if it satisfies 
(So), for any bc-operators ff and functions 4) of type b(ae). It is clear 
that this concept is a generalization of scopelessness for quantifiers, 
because quantifiers are at-operators, where t = {0, 1} is the type of 
classical truth-values. The subsumption of scopeless three-valued 
quantifiers under (So) is equally straightforward. As to intensional 
quantifiers, we only have to observe that, being of type s((s(et))t), they 
stand in a one-one correspondence to e(st)-operators. 6 So if we 
manage to characterize scopeless operators, we can deal with the 
notions of quantification indicated in the preceding section. And in 
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the appendix the results on operators will also be applied to scopeless 
natural language modifiers. Onlythe  discussion of scopeless propo- 
sitional operators will have to await Section 4. 

In order to generalize the above considerations on quantifiers to 
operators, we must first find a generalization of the notion of an 
ultrafilter. In the case of principal ultrafilters x*, the obvious can- 
didates are those ac-operators that are reducible to x,  i.e. of the form 
[~05(x)]. Indeed, replacing sets by characteristic functions turns a prin- 
cipal ultrafilter x* into a reducible at-operator x t .  If we think of 
characteristic functions 05 as bi-partitions, then xj" assigns to 05 that 
truth-value that 05 assigns to the cell belonging to x*. This corre- 
spondence between x* and x t  can be generalized to ultrafilters and 
(certain) operators in general. Given an ultra filter F and a function 05 
of type ac, we define F ~" (05) as that element of c whose 05-predecessors 
form a filter set: 

F: ~ ~ ~ ~ ~ ~ ~ ~.. .  

D D D X] [7 X] ...... 
$ $ $ $ $ $ $ $ $  

C: ~ . . . . . .  

Obviously, the existence of FT depends on there being a unique 
F-member -go in the partition P determined by 05. Now whereas X0's 
uniqueness is directty implied by F's  filter properties, its existence in 
general amounts to F being IP[+-complete] Since IPI is at worst icl, 
we find that an ultrafilter (of type (at)t) can be extended to an ac- 

operator F t  i f f F  is M+-complete. This means that, in effect, either Icl 
is finite or F is principal (or ial > #0). But restricted to those F that 
can be extended, the ]'-operation is obviously a one-one correspond- 
ence between them and their operator-counterparts matching principal 
ultrafilters with reducible operators. We will now see that it also 
preserves scope behaviour. 

As a first step towards the characterization of scopeless operators 
we can prove that, just as scopelessness implies ultrafilterhood in the 
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case of  quantifiers, so must  scopeless opera tors  always extend ultra- 

filters. In order  to show this, we will first s tudy the effects o f  scopeless 
opera tors  on characteristic functions. The  first observat ion is that  
whichever members  T and _L of  c we might  declare our  ad hoc t ruth- 
values, a scopeless ac-opera tor  will assign one of  the two to any 
characteristic function X~ v (of  X ~_ a). In fact, one can prove  a more  
general 

P R O P O S I T I O N .  I f  ~ is a b-scopeless operator, then ~(49) e rge(49), 
for any 49 in Y ' s  range. 

For  the limiting case of  constant  bc-functions [2z], this is easily estab- 
lished: Y(2z )  = ~ ( 2  [~z] ()~Z(x, y))) = [¢z] ( ) ~ ( 2 Z ( x ,  y))) = z. 

The general case then follows if we assume that  a~-(49) ¢ rge(49) and let 
Y interact with the be-opera tor  { 39~(49)}~ v on the matr ix  49(x). I leave 
the details to the reader. 

So for any choice o f  T and ± ,  b-scopeless ~ ' s  restriction to 
characteristic functions is (the characteristic function of)  a quantifier 

$. Certainly, ~ +  is b-scopeless. And  one can also show that  it does 

not depend on T and _L: given an alternative set { + ,  - }  of  truth- 
values, we can define a 'mixed '  existential opera to r  ~9~ taking charac-  
teristic functions X [  and yielding a { + ,  - } - v a l u e :  

+ , i f ¢ ( y )  = T,  for s o m e y e b .  
~¢~(~,) 

- otherwise. 

It  is then readily seen that, for any x of  type a, x e X iff f#~ (3~X~ v (x)) = 

+ ;  in other words, [2% ( p X ]  (x))] = X + . Using ~ ' s  scopelessness, 
we may  therefore conclude: 

g ( x _  +) = + 

iff ~ (2c~ ( 3~X] (x))) = 

iff ff~ ( 39~(2X~ v (x))) = 

iff (3y ~ b ) ~ ( 2 X [  (x)) 

+ 

+ 

= T 

i f f ~ ( X ~ )  = T,  
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which means that Y $  does not depend on our choice of truth-values. 

Moreover, by studying ~-'s interaction with the bc-operator 
{ ~ ~"~ t'-'/~'A~ s~(~) z~-~,e~z , we find that ~ extends ~ + :  ~,~+~ = Y.  Again I leave 

the details to the reader. 
So a scopeless operator always extends a scopeless quantifier, i.e. 

an ultrafilter. As was already mentioned, the simplest scopeless oper- 

ators are the reducible ones extending principal ultrafilters. One might 
expect that their role as scopeless operators is analogous to that of 
the principal ultrafilters as scopeless quantifiers. And, in a sense, this 
is so. However, we must keep in mind that not every scopeless quan- 
tifier can be extended to an operator. In particular, then, we should 
not expect the existence of scopeless, irreducible operators to be 
independent of the choice of c. For  if Icl >~ ]al, scopeless ~ would 
have to extend a principal ultrafilter, because only Icl+-complete ultra- 
filters can be extended to ac-operators; thus ~ is reducible, even if b 
happens to be finite. In general, then, if a scopeless quantifier fails to 
be Icl+-complete, we will not be able to extend it to a scopeless oper- 
ator. However, in all other cases we will, as is apparent from the 

MAIN LEMMA. Any ac-operator extending a tbl+-complete ultrafitter 
is b-scopeless. 

The proof  can be found in the appendix. We just draw the main 
conclusion: 

T H E O R E M  2. An ac-operator ~ is b-scopeless iff Y ~. is a lbJ +- 
complete ultrafilter. 

The direction ' ~ '  is the Main Lemma, the other direction is a com- 
bination of  our earlier observation and Theorem 1. In view of  the fact 
that not every ultra filter can be extended, we get the following corol- 
laries, the first of which covers the above-mentioned characterization 
of scopeless intensional and multi-valued quantifiers as name-like: 

COROLLARY 2.1. f f  ia] <~ [b[ or Hal ~< lej, then the b-scopeless ac- 
operators are precisely the reducible ones. 
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C O R O L L A R Y  2.2. I f  ]a] < #0 and ~ is a b-scopeless, irreducible ac- 

operator, then ~ extends a non-principal ultrafilter and both b and c 

are fn i t e .  

4. S C O P E L E S S N E S S  W I T H O U T  B I N D I N G  

Even within the type-theoretic f ramework sketched at the beginning 

of the preceding section, the above considerations do not cover all 

phenomena falling under the intuitive notion of scopelessness. The 

aim of the present section is to fill one obvious gap. Let us first 

observe that the results obtained in Section 2 immediately carry over 

to multiple variable binding: we can always identify multiple binding 

with unary binding of variables ranging over a Cartesian product. 

Thus, without loss of  generality, we have restricted our attention to 

those instances of  the scheme (Sn,m) in which n = m = 1" 

( S , , , m )  ~ ( S c ,  . . . f c , , f ~ ( f ~  . . . f ~ m Z ( x : ,  . . . , x , , ,  Y l  . . . . .  Y m ) ) )  

~ -  ~ ( ) ~ 1  " � 9  ) ~ m ~ ( - ) ~ l  " �9 " X n ) ~ ( X l ,  " " ' ,  Xn ,  Y ] ,  " ' ' ,  Y m ) ) ) "  

This trick only works if there actually are variables to be bound by 

and fr i.e. if both n and m are at least 1. However, (S,,,,,) also makes 

(type-theoretic) sense for cases in which n or m (or both) are 0, i.e. 
where no variables are bound by one or both of  the operators. It  is 

easily seen that the only @ satisfying (S0,0) or (So,m) is the identity 
function [s But (Sn.0) is different. One of its instances is the case 

where c contains exactly two members. In this case (Sn,0) essentially 

says that ~- is a quantifier lacking scope with respect to all unary 
truth-functions, i.e. it is \-maximal and contains the universe, s As a 
case in point we may consider the quantifier 3 >50~ ( =  {X _ a] IX] > 
]al/2}) on a finite domain of  an odd number of  individuals; note that 
3 > 50./0 is not an ultrafilter. 

The above discussion may give the impression that satisfaction of 
(S,,.o) - and hence scopelessness without variable-binding in general 

- is quite unrelated to the notions of  scopelessness discussed in the 

previous two sections. However, the case Ic[ = 2 is somewhat mis- 
leading: for larger }e[, the kind of scopelessness defined by (S,.o) turns 
out to be a variant of  what we have already seen. To see this, we 
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should recall that every ultrafilter lacks scope with respect to (classi- 

cal) truth-functional connectives �9  Since the arguments of such �9 
can be recategorized as sequences (rather than tuples) of truth-values, 
binary connectives may be classified as tt-operators so that the ultra- 
filters turn out to be precisely the t-scopeless at-operators. This re- 
categorization is, of  course, perfectly general and can also be applied 
to operators with ranges other than t: 

PROPOSITION. An ac-operator Y satisfies ($2) (for arbitrary ~ of  
type c(cc) and ~ and tp of  type ac) iff ~ is t-scopeless: 

(s2) Y ( : ~ ( 4 ( x ) ,  0(x))) = ~(~(~r  g(:~O(x))). 

The proof  can be given by directly applying the above-mentioned re- 
categorization. 

There is a tight connection between ($2) and the kind of scopeless- 
ness that we are after, i.e. (S,,,o): if a type c covers some set d as well 
as the Cartesian product d 2 (=  d x d), the functions from d-pairs to 

d are contained in the type cc and hence scopelessness with respect to 
the latter implies scopelessness with respect to the former: (S,,.o) 
($2). Instead of going into the details of this argument, I will merely 

indicate how it helps characterizing scopelessness of  the (S,,o) kind. 
The trick is that scopelessness never depends on the internal structure 
of the argument type a of  an ac-operator, so that it is preserved under 
type-isomorphisms. So the condition that d w d 2 __ c is not essential 
for getting from (S~.o) to ($2). 9 In view of the above proposition and 
the Boolean scopelessness of  ultrafilters, we thus obtain the direction 
' ~ '  of  

T H E O R E M  3. L e t  a and  c be types such that Icl >~ 5. Then an ac- 
operator Y satisfies (S,,o) iff g extends an uhrafiher on a. 

The other direction ( ' ~ ' )  is not related to the discussion in the pre- 
sent section. If ~ ,  exists and ~f and ;g are as required by (S,,0), we 
pick z0 s c and let N* be the cc-operator [q?N(q~(z0))]. Using Y ' s  
c-scopelessness guaranteed by Theorem 2, we immediately find that it 
satisfies (S~,0). 
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As a corollary, Theorem 3 gives us the announced characterization 
of those intensional quantifiers that lack scope with respect to arbi- 
trary propositional operators: 

C OR OLLAR Y 3.1. I f  there are at least three possible worlds, a is a 

type and la[ <<. Istl, then an intensional quantifier Q is scopeless with 

respect to intensional operators iff  Q is o f  the form [f/3P,.(x)], for  some 

x ~ a .  

The relevant notion of scopelessness is, of  course, satisfaction of 

(i) Oi(]Qj(l~2Pk(x))) = Qi(l~2Q(jPj(x))),  

for arbitrary O e s((st)t), P ~ s(at) and worlds i e s. We have already 
mentioned that intensional quantifiers Q directly correspond to a(st)- 

operators. Moreover, satisfaction of (i) obviously amounts to (S,.0)- 
scopelessness. The assumption about Isl guarantees that Istl > 4, so 
that Theorem 3 applies, informing us about Q$'s existence. But the 

latter must be Istl+-complete and hence principal, because lal ~< [stl. 
So Q is of the form indicated. The other direction is trivial, l~ 

APPENDIX: SOME PROOFS 

(o1): ' ~ ' :  We assume that x o ~ O F + \ O F  -. But if  xoRy, then R y ~  F: 

otherwise we would have R y ~  F -  and hence: x0 e U F - .  So xoR 
F 8. If, on the other hand, y ~ F B, Ry  e F + so that Xo ~ Ry  (because x0 

OF+).  We thus have: xo R = F 8, as required. 
' ~ ' :  If (!) x l R  = F B, we would like to conclude that (a) XI e F + 

implies x~ e X1, and (b) X0 e F -  implies x, r X0. But X, E F + means: 

XI = Ryj e F ( f o r  some y,), i.e.: YI ~ FB. So, by (!), x, ~ Ryl = X1. 
For (b), we assume that x~ e X0 s F -  and derive a contradiction: X0 
F -  tells us that X0 is of the form Ryo but Ryo r F. On the other hand, 
we have: xl E X0 iff x, Ryo iff Yo E Xl R iff Y0 E F ~, by (!). But then 
Ryo ~ F, contrary to what we have just found. 

(02): Let us first note that, because of  F 's  [B] +-completeness, N F  + 
must be in F, because each member is R-defined by some y e B. 
Proceeding indirectly, let us now assume that F ~ ~ F, i.e.: O F  + 
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U F -  ~ F. Using F's  filter properties, we can thus conclude that 

[O F+ u U F - ]  ~ N F+ _~ U F -  ~F ,  i.e. that U F -  = Nx~F- 37~F, 
because F is \-maximal. But certainly, for any X e F - ,  )? e F (because 
X 6  F). Moreover, IF-] ~< [BI < IBI +. So, by F's  IBl+-completeness, 
we should also have: nx~F )? e F, a contradiction. 

Incompatibility o f  (Ss) and (V): 

We show that, under (Ss) and (a certain instance of) (V), Barwise 
sees Perry wink if and only if Perry winks, i.e. that (1) and (2) are 
equivalent: 

(1) S~(b, p, W), 

(2) W~(p). 

Now, (1) is the same as Qi(W), where Q is the intensional quantifier 
that yields Sj(b, p, P) when applied to indices j and properties P. 
According to (Ss), Q is scopeless and hence of the form [fl3Pj(x0) ], by 
Theorem 2. So (1) just says that x0 winks: 

([) (1) <=> Q,(W) ~ [jPP/(xo)](i)(W) <=> Wi(x0). 

But who is x0? Whoever he is, he is self-identical, i.e. the property 
[j2 x = x0] belongs to Q at index i. If  we now express Q in terms of 
S again, we find that Barwise sees Perry being identical to x0: 

Q,(j2 x = x0) 

<=> [j/~S~(b, p, P)](i)(fYc x = Xo) 

<=> Si(b, p, j 2  x = Xo), 

which means that Xo is Perry, if S satisfies at least this instance of (V)! 
We may thus add '<=> (2)' to (!). 

MAIN LEMMA. Let us assume, for contradiction, that Y extends a 
Ibl+-complete ultrafilter but (T..=)o~(2N(j)Z(x, y))) # ~(5~-(2Z(x, y))). 
We now define a set M as: {x e al~()~Z(x, y)) = T}. Thus M e ~ .  
Moreover, for any x0 e M, we have: ~()~Z(x0, y)) = T # 
N(9~'(2Z(x, y))). So, in particular: 

(+)  [r y)] # [y~-(:~z(x, y))], 
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whenever x0 e M. If we now we put K,...= {x 0 E alg(Xo, y) = 
~(,fZ(x, y))}, for arbitrary y E b, then all K~ must be in Y J,, because 

extends ~J, .  But ~ is Ibl+-complete and so N~.~b K~ must also be 
in ~ ] .  Now, any x0 in that intersection satisfies: Z(xo, y) = ~ (2X (x ,  y)), 
whichever y we pick. Hence, in view of (+) ,  ('l~.~b K,. and M would have 
to be disjoint, which they cannot be because both are in ~J, .  

N O T E S  

See van Benthem (1989) for the notion of polyadic quantification in general and 
Zimmermann (1987: 85) and van Benthem (ibid., 454f.) for different proofs of  (1); the 
question whether (3) holds was brought to my attention by Jaap van der Does (p.c.). 

-" A reduction of this result to Theorem 1 had already been given in Zimmermann 
(1987: 88). But it was rather ad hoc and does not generalize to the other examples 
discussed in the present section. 

3 'Obviously',  because at least semanticists working in possible worlds frameworks 
tend to accept Kripke's (1972) thesis about the rigidity of  proper names. 

4 Unless it is the trivial relation [ i ~ : ~ ( y ) ] ,  that is. Van tier Does claims non-veridi- 
cality for see, too, but for empirical reasons. I should perhaps mention that we get the 
same results under a 'small clause' analysis of  see as a binary relation between seers 
and propositions. 

5 The reason is that any propositional operator O can be re-wrinen as a time- 
dependent quantifier over times, so that scopelessness amounts  to each time slice's of  O 
being D-scopeless, where D is the set of  individuals. 

6 Incidentally, we may note that intensional quantifiers can be thought of  as many- 
valued quantifiers, where propositions act as (Boolean) truth-values. 

7 See, e.g., Chang & Keisler (1973: 180f.) for a proof of  the fact that an ultrafilter F 
over a set A is ~c-complete iff for every partition P _~ ~ A  such that [P] < •, P n F ¢ 0. 

Using the obvious isomorphism between the set of  quantifiers over a singleton B 
and the type tt of  unary truth-functions, we may also conclude that a quantifier over a 
set A is B-scopeless iff it is \-maximal and contains A. 

But c would have to contain at least 5 elements in order to cover a minimal set of  
the form d w d 2 (where d is, say {0, (0, 0)}). Whether this restriction is essential I do 
not know. 
to The above is a shortened version of a paper written in the academic year 1989/90 
that I spent as a visitor to the linguistics department of  the University of  Massachusetts  
at Amherst;  I would like to take this opportunity to thank everybody in the department 
for their hospitality and help. Comments  from Ulf Friedrichsdorf, Fritz Harem, 
Angelika Kratzer, Michael Morreau, Roger Schwarzschild, and three JPL referees 
helped to improve the style and content of  this paper. 
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